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Abstract— This paper presents a distributed contention win-
dow control control algorithm, GCA (General Contention window
Adaptation), that achieves various bandwidth allocation policies
and at same time efficient channel utilization. By modeling differ-
ent bandwidth allocation policies as optimization problems of con-
tention window assignment, we are able to design GCA and prove
that it converges to the solution of the contention window assign-
ment problem. By examining the stability properties of GCA, we
identify the optimal stable point that maximizes channel utiliza-
tion and provide solutions to control the stable point of GCA near
the optimal point. Simulation results show that GCA achieves fair-
ness and efficiency. Due to the generality of GCA, our work pro-
vides a theoretical foundation to analyze existing and design new
contention window control algorithms.

I. INTRODUCTION

Due to the shared nature of wireless communication chan-
nels and the intrinsic scarcity of bandwidth in wireless LANs,
nodes must contend for the channel and compete for bandwidth.
While both contention resolution and bandwidth allocation can
be achieved through centralized scheduling at a wireless LAN
access point, such centralized control is not scalable to a large
number of nodes, suggesting the use of distributed algorithms
for both contention resolution and bandwidth allocation. Dis-
tributed contention resolution in wireless LANs is quite com-
mon and can be achieved using various protocols [27], [15],
[3], [11], [8]. In current distributed contention window based
access protocols (e.g., IEEE 802.11 [27], MACA [15] and
MACAW [3]), the contention window size is used to control the
frequency at which a node accesses the channel to reduce con-
tention in the network. However, contention window size also
directly affects the share of bandwidth a node achieves during
competition for the channel. Therefore, it is natural to extend
such algorithms to support bandwidth allocation. The goal of
such a combined algorithm is to allocate bandwidth to the nodes
both “efficiently” and “fairly”, where efficiency is defined by
the level of bandwidth utilization and fairness is defined by the
goals of the particular network. Given this observation, the goal
of our research is to design a distributed contention window
control algorithm to support fair bandwidth allocation and effi-
cient channel utilization.

While efficiency can be defined in terms of the throughput
of a network, fairness must be defined in the context of the
requirements of the nodes using the network. For example,
fairness may mean that every competing node in the network
obtains the same bandwidth, that the share of bandwidth to a
node is proportional to its priority, or that the highest priority
node should obtain all of the bandwidth. Due to these differ-
ent goals, it is desirable to support any definition of fairness.
One major contribution of our research is bandwidth allocation
with support for a large class of fairness definitions, including
definitions used in current research.

There are two challenges to designing a fair and efficient dis-
tributed contention window control algorithm for wireless net-
works. First, the relationship between a node’s bandwidth share
and its contention window size is not straightforward. Second,
the node’s bandwidth share is also dependent on the contention
window sizes of all competing nodes in the network. While a
node can set its own contention window size, it has no control
over the contention window sizes of other nodes. Additionally,
by adjusting its own contention window size, a node directly
affects other nodes’ share of the bandwidth. Without careful
design, adjusting contention window sizes at different nodes
may result in an unstable system. Therefore, it is necessary to
identify the properties of distributed contention window control
algorithms that can guarantee fairness and stability.

Applications requiring bandwidth allocation can either have
real time deadlines (i.e., streaming traffic) or be more tolerant
of changes in service (i.e., elastic traffic [26]). While stream-
ing traffic requires admission control to provide guarantees and
ensure optimal bandwidth allocation, elastic traffic always has
backlogged packets and adjusts the rate of the flows to fill the
available bandwidth. Hence, competing flows with elastic traf-
fic are more concerned about fairness and efficiency of band-
width allocation. The focus of this paper is on supporting such
elastic traffic using dynamic contention window control. Using
contention window control for service guarantees for realtime
traffic is beyond the scope of this paper and can be found in our
technical report [29].

There have been extensive studies on contention window
control in wireless LANs. However, none of these approaches
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can support both an arbitrary definition of fairness and efficient
use of bandwidth. The first type of algorithm, including IEEE
802.11e [21] and [1], assigns different minimum contention
window sizes to different types of nodes to achieve weighted
fairness. However, since minimum contention window sizes are
pre-configured and do not adapt to congestion, such approaches
do not utilize the channel efficiently. The second type of algo-
rithm, including AOB [5], MFS [18], [6] and [7], only focuses
on efficient channel utilization in the context of uniform band-
width allocation and the support for other definitions of fairness
is limited. The third type of algorithm, including PFCR [24],
tries to provide a more general definition of fairness by mod-
eling fairness as an optimization problem of transmission rate
allocation. However, the mapping between rate allocation and
contention window adaptation in PFCR is only appropriate for
a limited set of fairness definitions (See Section VIII-A.1). The
final type of algorithm, P-MAC [25], tries to achieve both pro-
portional fairness and efficient utilization by estimating the con-
tention windows used by the competing nodes. Such estimation
requires that every node, with or without packets for transmis-
sion, must start P-MAC simultaneously and calculate the con-
tention window sizes for all other nodes synchronously. Nodes
with outdated contention window sizes of the other nodes due
to asynchronous starting time or temporary failure may cause
the algorithm to fail.

Due to the limitations of existing approaches, we propose our
distributed contention window control algorithm, called GCA
(General Contention window Adaptation), which can be used
to achieve optimal bandwidth allocation for competing wireless
nodes in terms of efficient channel utilization and various defi-
nitions of fairness. GCA is a fully distributed algorithm, where
each node adjusts its contention window size individually based
on purely local information. Additionally, GCA makes no as-
sumptions about frame size. The goal of GCA is to provide
a general solution for designing dynamic contention window
control algorithms in wireless LANs. To our knowledge, GCA
is the first such algorithm to be proved convergent and stable.

There are four major contributions of the research presented
in this paper. First, we identify and model, for the first time,
a variety of fair bandwidth allocation problems as an optimiza-
tion problem for contention window assignment. Second, to
solve this optimization problem, we present the design of GCA,
a fully distributed contention window control algorithm. Addi-
tionally, we rigorously prove that GCA converges to the exact
solution of the optimization problem, meaning that GCA can
achieve fairness for any given fairness definition. Third, by
studying the properties of the stable point of GCA, we show that
efficient channel utilization can also be achieved. Therefore,
by controlling this stable point, GCA can achieve both channel
efficiency and fairness. We validate this claim through simula-
tions of GCA with two different fairness definitions. Finally, we
demonstrate that GCA provides a systematic scheme to general-
ize and evaluate related approaches by showing that many exist-
ing heuristic-based algorithms for dynamic contention window
control can be analyzed by the GCA approach.

This paper is organized as follows. Section II discusses band-
width allocation in wired and wireless networks. Section III
reviews contention window based distributed medium access

control in wireless networks and the relationship between band-
width allocation and contention window size is established in
Section IV. Section V presents contention window control as an
optimal contention window assignment problem. Section V-B
introduces our contention window control algorithm, GCA, that
can be used to solve the optimization problem and Section VII
discusses guidelines for implementing GCA. In Section VIII,
we analyze several existing dynamic contention window algo-
rithms. Section IX presents the evaluation of GCA. Finally,
Section X concludes and discusses future research.

II. BANDWIDTH ALLOCATION

Bandwidth allocation in wired networks has been researched
for many years. Since wired networks are assumed to be ei-
ther point-to-point and/or have high link bandwidth, competi-
tion for bandwidth happens at the transport layer where flows
compete for buffer space in routers. Essentially, end hosts mod-
ulate their TCP congestion window size to achieve distributed
control [23], [28], [19], [16], [12]. The theoretical foundation
of this competition is work by Kelly, et al. [16], which describes
a distributed rate control algorithm to solve the optimal band-
width allocation problem. Given the above assumptions about
wired networks, the sending rate of a node is essentially its
own TCP congestion window size over its own round trip time.
Therefore, Kelly’s rate control algorithm can be directly used to
design optimal congestion window control algorithms for TCP.

The shared nature and limited bandwidth of wireless links
moves the competition for bandwidth from router queues to
channel access time, limiting the direct application of research
results in wired networks to wireless networks. In wired net-
works, the relationship between the sending rate and the con-
gestion window size are simple, since sending rate is conges-
tion window size over round trip time. Since each node has
direct control over its sending rate, Kelly’s rate control algo-
rithm [16] can be directly applied to congestion window con-
trol. However, in wireless networks, the sending rate of a node
is dependent on the contention window sizes of all competing
nodes, and so no node has direct control over its sending rate.
Therefore, the same rate control algorithm can not be directly
applied to contention window control.

The problem of supporting efficient channel utilization and
fair bandwidth allocation is currently being researched by the
wireless networking community. However, most approaches
sacrifice one goal to achieve the other.

The first type of approach focuses on fairness in terms of
service differentiation, such as IEEE 802.11e [1], [21], assign
different minimum contention window sizes to different types
of nodes to achieve weighted fairness among nodes. However,
since minimum contention window sizes are preconfigured and
do not adapt to congestion, such approaches do not utilize the
channel efficiently. Additionally, these approaches are limited
to only one definition of fairness.

The second type of approach uses dynamic contention win-
dow control algorithms to achieve maximum channel utiliza-
tion for networks with no service differentiation (i.e., compet-
ing nodes share the bandwidth equally) [5], [6], [7]. Addition-
ally, these approaches assume the same average packet size at
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every node. The support for other definitions of fairness is lim-
ited in these approaches and the fairness that they target may be
broken if packet sizes are different.

The third type of approach P-MAC [25] proposes a dis-
tributed contention window control algorithm to achieve
weighted proportional bandwidth allocation given that the
packet sizes of all nodes are the same. However, this algorithm
requires that the number of traffic classes and their associated
weights are preconfigured into all competing nodes. The algo-
rithm also requires that every node, with or without packets for
transmission, must calculate the most recent contention win-
dow sizes for all other nodes continuously and synchronously
. Nodes with outdated contention window sizes for the other
nodes, due to failures or interference, may cause the algorithm
to fail to achieve fair bandwidth allocation. Essentially, this
algorithm is very sensative to disturbence and is not a stable
algorithm.

The final approach, PFCR [24], tries to provide a more gen-
eral definition of fairness by modeling fairness as an optimiza-
tion problem of transmission rate allocation. Then it tries to use
the Kelly’s rate control algorithm [16] to adjust the contention
window of wireless networks. Unfortunately, this mapping be-
tween rate control and contention window adaptation is only
appropriate for a limited set of fairness definitions.

Based on the limitations of existing approaches, we conclude
that a distributed contention window control algorithm should
satisfy three requirements. First, it should be flexible so that
it can be configured to achieve arbitrary definitions of fairness.
Second, it should utilize the channel efficiently. Third, it should
not require synchronized calculations for nodes in the network
and should be a stable algorithm. In the remainder of this paper,
we present GCA (General Contention window Adaptation) and
show how it satisfies these requirements.

III. DISTRIBUTED CONTENTION WINDOW BASED

CHANNEL ACCESS CONTROL

Distributed contention window based channel access is a
common approach for MAC protocols in wireless networks, the
most widely used of which is IEEE 802.11 DCF mode. Al-
though the design and validity of GCA is not dependent on any
one MAC protocol, we present IEEE 802.11 DCF as an exam-
ple protocol to set the stage for presenting GCA.

IEEE 802.11 DCF mode mediates between competing nodes
using Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA). If the medium is idle at the time of transmission,
nodes can send immediately. However, when the medium is
busy, nodes uses a random backoff procedure to resolve con-
tention conflicts with other competing nodes. RTS and CTS
messages provide medium reservation prior to data transmis-
sion, as well as fast collision resolution. Nodes may bypass
RTS-CTS transmission using a DATA-ACK handshake.

Before transmission, a node must determine whether the
medium is busy or idle. If the medium remains idle for DCF
inter-frame space (DIFS) time units, the node can transmit. If
the medium was initially busy or changed from idle to busy
during the DIFS, the node must defer its transmission. The first
part of the deferment period is determined by the success of
the last transmission. If the last frame was successful, the node

waits DIFS time units. If the last frame was not successful, the
node waits extended inter-frame space (EIFS) time units. The
second part of the deferment period is determined by a random
backoff timer, calculated by the following equation:

Backoff Time = Random() × aSlotTime, (1)

where Random() is a pseudo-random integer uniformly dis-
tributed over [0,CW ]. The contention window, CW , is an inte-
ger in the range [minimum contention window (CWmin), max-
imum contention window (CWmax)]. After a successful trans-
mission, CW is set to CWmin. After an unsuccessful transmis-
sion, CW is doubled, up to CWmax. When the timer expires,
the node can transmit an RTS message. When the medium is
idle, the backoff timer is decremented by aSlotT ime, deter-
mined by the physical layer. However, the timer is stopped
when the medium is busy and restarted after the medium is idle
for a DIFS.

IV. BANDWIDTH ALLOCATION AND CONTENTION

WINDOW SIZE

To realize fair bandwidth allocation by adapting the con-
tention window size, it is essential to understand the relation-
ship between a node’s bandwidth allocation and its contention
window size. The relationship can be found in two steps. The
first step is to find the relationship between Node i’s bandwidth
allocation and its contention window size, assuming no expo-
nential increase of the contention window size after a collision.
Second, the analysis is extended to consider the exponential
backoff algorithm used in IEEE 802.11, where the contention
window size is doubled after each collision. For notation con-
venience, we use Wi for the contention window size of node i
and Wmin

i as the minimum contention window size for Node i
when exponential backoff is used. Notation for the entire paper
can be found in Appendix B.

The analysis in this section is similar to some existing
work [4], [20], [10] and is presented here for completeness and
later reference. We use this analysis to show that the relation-
ship between Node i’s bandwidth allocation and Wi is approxi-
mately the same as the relationship between its bandwidth allo-
cation and Wmin

i when exponential backoff is used. Therefore,
any algorithm that successfully allocates bandwidth by control-
ling Wi can also be used to control Wmin

i . While this relation-
ship is only an approximation, we validate the accuracy of this
approximation through simulation in Section IX. Additionally,
in Section VII, we show that the proper form of GCA controls
congestion in the network. Since the purpose of exponential
increase is to control congestion, GCA actually eliminates the
need for such exponential increase.

A. Channel Model

The channel model used to analyze the relationship between
a node’s bandwidth allocation and Wi was developed in [4].
This model assumes that every competing node can hear each
other. Since GCA is designed for WLANs, this assumption is
valid for GCA. The extension of GCA to more complex envi-
ronments is future work. In this model, real time is divided into
virtual time slots, where a node decrements its backoff timer
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Fig. 1. Virtual time slots

once per virtual time slot and at most one packet can be trans-
mitted in a virtual time slot. To visualize this model, Figure 1
shows the channel state and Node i’s backoff timer. In this ex-
ample, there are two types of virtual time slots. When the chan-
nel is idle, a virtual time slot is exactly aSlotT ime (e.g., Node
i’s first virtual time slot). When the channel is busy during the
countdown of the backoff timer, a virtual time slot includes a
busy period (e.g., Node i’s second virtual time slot), but only
decrements the backoff timer once. Such a virtual time slot
extends from the start of the busy period until the end of the
aSlotT ime period, since the backoff timer is not decremented
until after the channel becomes idle for a DIFS period and the
aSlotT ime period. This mapping of real time into virtual time
slots allows the backoff process of a node to be modeled as a
discrete Markov process (see [4] for details).

B. Bandwidth Allocation vs. Contention Window Size

For the set of transmitting nodes, N , the absolute bandwidth
allocated to Node i in bits per second, si, can be directly deter-
mined from the fraction of the total network capacity allocated
to Node i, xi. The general relationship between si and xi can
be stated in terms of Pi, the probability that Node i successfully
transmits in a virtual time slot, and Li, the channel bandwidth
consumed by a successful packet transmission at Node i, as fol-
lows:

Theorem 1:

xi =
si∑

j∈N sj
=

PiLi∑
j∈N PjLj

Proof: Since all nodes are assumed to carry elastic traf-
fic and always have backlogged packets, the combined trans-
missions of all nodes consumes the entire network capacity, C.
When the total throughput of all nodes achieves the capacity of
the network, the following relationships hold:∑

i∈N
si = C, (2)

xi =
si

C
, (3)∑

i∈N
xi = 1. (4)

For a period of real time, t, with m virtual time slots, Node
i’s expected number of sent packets is mPi and Node i’s ex-
pected throughput is si = mPiLi. Therefore, si/

∑
j∈N sj =

mPiLi/(
∑

j∈N mPjLj). Canceling out m, si∑
j∈N sj

=

PiLi∑
j∈N PjLj

. Since xi is defined as si/C and
∑

i∈N si = C

according to Equations (2) and (3), PiLi∑
j∈N PjLj

= xi.

The following two subsections show the relationship be-
tween Pi and the contention window size, Wi, for all nodes.
By linking Pi and Wi, Theorem 1 can be used to determine the
relationship between Wi and si or xi. We first discuss the case
with no exponential increase after a collision and then relax this
assumption and discuss the case with exponential increase.

1) Fixed Contention Window Sizes: Theorem 1 defines the
relationship between xi and Pi. Next, the relationship between
Pi and Wi is derived so xi can be expressed in terms of Wi.

Theorem 2: If Wi does not change after a collision,

xi =
PiLi∑

k∈N PkLk
=

Li

Wi∑
k∈N

Lk

Wk

. (5)

Proof: Let τi denote the probability that Node i transmits
in a randomly chosen virtual time slot. When multiple nodes try
to transmit in the same virtual time slot, a collision occurs and
all transmissions fail. Therefore, the successful transmission
probability, Pi, equals the probability that only Node i transmits
in a virtual time slot [4]. Therefore,

Pi = τi

∏
j �=i,j∈N

(1 − τj) =
τi

∏n
j=1(1 − τj)
1 − τi

. (6)

If Wi does not change after a collision, τi can be expressed
as [4], [13]:

τi =
1

Wi/2 + 1
. (7)

Therefore, combining Equations (7) and (6) results in:

Pi

Pj
=

Wj

Wi
. (8)

Finally, combining Equation (8) with Theorem 1 results in:

xi =
PiLi∑

k∈N PkLk
=

Li

Wi∑
k∈N

Lk

Wk

.

Theorem 2 shows that a node’s allocated bandwidth is deter-
mined by competing nodes’ contention window sizes. There-
fore, adaptation of the competing nodes’ contention window
sizes can achieve fair bandwidth allocation. Since Node i has
no control over the contention window sizes of all other nodes,
it is very important that the design of a contention window con-
trol algorithm ensures the stability of the system, even if each
node adapts its own contention window size independently.

2) Exponentially Increasing Contention Window Sizes: In
this section, IEEE 802.11-type protocols are considered, where
the contention window size is doubled after a collision. Let
mi be the number of unsuccessful transmissions needed for the
contention window size of Node i to reach Wmax

i . The re-
lationship between Node i’s bandwidth allocation, si, and its
minimum contention window size, Wmin

i , can be expressed in
the following theorem [20]:
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Theorem 3:

xi =
PiLi∑

k∈N PkLk
≈

Li

W min
i∑

k∈N
Lk

W min
k

. (9)

when the following two conditions are satisfied:
1) Wmin

i � 1,∀i ∈ N , (e.g. Wmin
i = 16, 32, 64 in the

IEEE 802.11 standard),
2) mi ≈ mj ,∀i, j ∈ N .

Proof: The detailed proof in [20] shows that if Wi � 1,
the probability of collision is approximately the same for all
nodes. Therefore, assuming mi ≈ mj ,∀i, j ∈ N and using the
results developed in [4], the proof in [20] shows that,

xi =
PiLi∑

k∈N PkLk
≈

Li

W min
i∑

k∈N
Lk

W min
k

.

Since the relationship between xi and Wmin
i (Theorem 2)

is approximately the same as the relationship between xi and
Wi (Theorem 1), in the rest of this paper, we design our dy-
namic contention window control algorithm assuming no ex-
ponential increase of the contention window size after a colli-
sion. Our algorithm can also be used to dynamically adjust the
minimum contention window size when exponential increase is
used, which we validate through simulation (see Section IX).

V. GENERAL CONTENTION WINDOW ADAPTATION

ALGORITHM (GCA)

In this section, we present GCA, our distributed contention
window control algorithm that achieves fair bandwidth alloca-
tion for any arbitrary definition of fairness. We first formulate
the general fairness requirement as an optimization problem for
contention window assignment. After the presentation of GCA,
we prove the convergence and stability of GCA. Finally, the
stable point for GCA is shown to provide fair bandwidth allo-
cation.

A. Fairness Formulation

To design a general contention window control algorithm that
supports various fairness definitions, it is necessary to iden-
tify a general formulation of fairness and translate it to a con-
tention window assignment that achieves this fairness defini-
tion. In wired networks, fair bandwidth allocation has been
modeled as an optimization problem [16], [22], [23]. We trans-
late this optimization problem into a contention window assign-
ment problem for wireless networks using the relationship be-
tween a node’s allocated bandwidth and its contention window
size. We provide solutions to the contention window assign-
ment problem, which are window sizes that achieve fair band-
width allocation.

The fairness of bandwidth allocation in wired networks can
be formulated as an optimization problem for bandwidth allo-
cation [16], [22], [23]. Essentially, each Node i has a utility of
Ui(si) when its bandwidth allocation is si. Given elastic traffic,
the utility functions follow the following assumption [26]:

Assumption 1: For each i, Ui(si) is an increasing, strictly
concave and continuously differentiable function of si over the
range si ≥ 0.
Assuming that the channel capacity is C, the optimal bandwidth
allocation problem can be formulated as [16], [22], [23]:

OPT BW (U,C) :
max

∑
i∈N Ui(si)

subject to ∑
i∈N si ≤ C and si ≥ 0 for i ∈ N .

According to the Karush-Kuhn-Tucker optimality condition
[2], it has been shown that the unique solution to the above
OPT BW problem is given by [16]:

U ′
i(si) = µ, for i ∈ N (10)

µ(C −
∑
i∈N

si) = 0, (11)

µ ≥ 0, (12)

where µ is the Lagrange multiplier.
GCA is designed around a general definition of utility that

adheres to the above assumption. However, different defini-
tions of utility result in different solutions to OPT BW (U,C)
and so achieve different definitions of fairness [22], [23]. In
Section VII-B, we discuss the choice of the specific utility func-
tion and show some examples of how specific utility functions
achieve specific definitions of fairness.

We now present the translation of OPT BW (U,C) into a
contention window assignment problem. First, the function
Ui(si) is mapped to a function of xi by substituting Ui(si) with
Ũi(xi), where Ui(si) = Ui(xiC) = Ũi(xi). Similar to Ui(si),
Ũi(xi) is an increasing, strictly concave and continuously dif-
ferentiable function of xi over the range xi ≥ 0. Second, using
the relationship between xi and Wi expressed in Theorem 1 to
replace xi, we can translate OPT BW (U,C) into a contention
window allocation problem, OPT WIN(Ũ , C), as follows:

OPT WIN(Ũ , C) :

max
∑

i∈N Ũi(
Li
Wi∑

k∈N
Lk
Wk

)

over
Wi ≥ 1 for i ∈ N .

Using the relationship between si, xi and Wi expressed in
Theorem 1 to replace si in Equations (10), (11) and (12), solu-
tions to OPT WIN(Ũ , C) satisfy:

Ũ ′
i(

Li

Wi∑
k∈N

Lk

Wk

) = µ, for i ∈ N (13)

µ(1 −
∑
i∈N

Li

Wi∑
k∈N

Lk

Wk

) = 0, (14)

µ ≥ 0. (15)

Since (1 − ∑i∈N
Li
Wi∑

k∈N
Lk
Wk

) = 0, Equation (14) is al-

ways satisfied and can be omitted. Therefore, solutions to
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OPT WIN(Ũ , C) satisfy:

Ũ ′
i

(
Li/Wi∑

k∈N Lk/Wk

)
= µ, for ∀i ∈ N

µ ≥ 0.
(16)

Note that in OPT WIN , we assume that each node has one
utility function. Therefore, solutions to OPT WIN achieve
per-node fairness. We can build a similar model for per-flow
utility functions to achieve per-flow fairness. However, solu-
tions to OPT WIN may require that flows in the same node
use different Wi’s. To implement per-flow fairness, every flow
must keep a record of its own Wi and some scheduling algo-
rithm must be implemented to ensure that fairness is not com-
promised by head-of-line blocking. Such an approach is taken
in the design of IEEE 802.11e. For simplicity of presentation,
we focus on fairness between nodes. However, our results can
be used for per-flow fairness, assuming per-flow Wi state and
per-flow scheduling.

It is very important to note that, although the solution to
OPT WIN(Ũ , C) is unique in terms of xi = Li/Wi∑

k∈N Lk/Wk
, it

is not unique in terms of Wi. Consider contention window sizes
W = {Wi : i ∈ N} that solve OPT WIN(Ũ , C). When W
is multiplied by a constant factor a, the resulting contention
window assignment aW = {aWi : i ∈ N} is also a solu-
tion to OPT WIN(Ũ , C). Among the possible solutions to
OPT WIN(Ũ , C) that satisfy the fairness requirement, chan-
nel utilization can be quite different. Therefore, the identifi-
cation of the solution of OPT WIN(Ũ , C) that maximizes
channel utilization is important and is discussed in Section VI-
A.

B. The Design of the GCA Algorithm

GCA is used to control the contention window size of all
nodes in the network to achieve fair and efficient bandwidth al-
location. The design of GCA is fully distributed and so each
node need only collect local information and adjust its con-
tention window size accordingly. In addition, unlike previous
work on dynamic contention window control [5], [6], [7], [25],
GCA can be used in a network where nodes have different av-
erage packet sizes.

In GCA, a Node i adapts its Wi according to the following
differential equation:

Ẇi(t) = −αWi(t)[Ũ ′
i(xi) − f(W,L)], (17)

where α is a positive constant factor, Ẇi(t) is the time deriva-
tive of Wi, W = {Wi : i ∈ N} and L = {Li : i ∈ N}.
f(W,L) is a function of some observable state of the channel.

Various choices for channel state characteristics can be used
in f(W,L) and the corresponding f(W,L) can have many dif-
ferent forms. However, GCA does make two assumptions about
f(W,L). First, the channel state that f(W,L) uses must be
observable by all nodes sharing the channel and all nodes must
be configured with the same f(W,L). Since in the networks
targeted by GCA every node can hear each other and hence
see the same channel state, the first assumption is not very re-
strictive. Second, to guarantee system stabilization at a unique

point (See details in Section V-C), f(W,L) must be strictly
increasing with respect to

∑
i∈N

Li

Wi
inside a certain set of sys-

tem states. Since there are many channel states that depend on
the window sizes and packet lengths of all nodes (e.g., packet
transmission delay, average length of an idle period or collision
probability), a f(W,L) that uses any of these channel states
is by definition a function of W and L. By choosing the right
form of the function for these channel states, f(W,L) can eas-
ily meet the second assumption. As long as f(W,L) satisfies
these assumptions, GCA is not limited to any specific observed
channel state or type of function for f(W,L). We demonstrate
in Section VIII that these assumptions are not too restrictive and
GCA can be used to model current dynamic contention window
control algorithms.

To implement GCA in real system, the update algorithm in
Equation (17) must be translated into to its discrete counterpart.
Therefore, according to Taylor Series expansion, Equation (17)
can be expanded over a small time interval ε as follows:

Wi(t + ε) = Wi(t) + Ẇi(t)ε + o(ε),
≈ Wi(t) − αWi(t)[Ũ ′

i(xi(t)) − f(W(t),L)]ε,

where o(ε) represents the second and higher order terms of ε.
Therefore, if a node updates its contention window size at every
virtual time slot, the discrete version of GCA can be expressed
as the following iterative algorithm:

W k+1
i = W k

i − αW k
i [Ũ ′

i(x
k
i ) − f(Wk,L)]. (18)

If a node only performs the window size update for each
packet transmission, which means that the average number of
slots between each update is Wi

2 , the discrete version of GCA
becomes:

W k+1
i = W k

i − 0.5α(W k
i )2[Ũ ′

i(x
k
i ) − f(Wk,L)]. (19)

The GCA algorithm itself is simple and only requires local
information about the state of the network. Despite this sim-
plicity, GCA converges to the solution of OPT WIN , and so
also achieves efficient allocation for any arbitrary fairness defi-
nition. In the remainder of this section, we present the proof of
GCA’s convergence to OPT WIN using control theory [17].

C. The Convergence and Fairness of GCA

In this section, we prove that GCA, as expressed in Equa-
tion (17), asymptotically converges to a unique point that is
a solution to OPT WIN given the two assumptions about
f(W,L). Our proof includes two theorems. Theorem 4 states
that regardless of the specific form of f(W,L) (as long as ev-
ery node observes the same f(W,L)), GCA converges to an
invariant set [17] where each element of the set is a solution to
OPT WIN . The second theorem takes f(W,L) into consid-
eration and shows that given the two assumptions for f(W,L),
GCA converges to a unique point that solves OPT WIN .

Theorem 4: Starting from any initial state of Wi(0) > 0, the
system described in Equation (17) converges to an invariant set

Γ = {W : Ẇi

Wi
= Ẇj

Wj
, for ∀i, j ∈ N} and every element in Γ

is a solution to OPT WIN . In addition, inside Γ, the Ũ ′
i(xi)
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in Equation (17) remains a constant; i.e., Ũ ′
i(

Li/Wi∑
k∈N Lk/Wk

) =

Ũ ′
j(

Lj/Wj∑
k∈N Lk/Wk

), for ∀i, j ∈ N .
Proof: The proof consists of four steps. At step one, for

notation simplicity, we translate the update algorithm of Wi to
the update algorithm of its reciprocal Zi = 1

Wi
. At step two,

we find a Lyapunov function V (·) of the system and prove that
V̇ ≥ 0 1. At step three, we prove that the set of points that
satisfy V̇ = 0 is an invariant set. Therefore, using the La Salle
Invariant Set Principle [17], we conclude that GCA converges
to this invariant set. At step four, we prove that every point in
this invariant set is a solution to OPT WIN .

Step 1: Let Zi = 1/Wi,∀i ∈ N . By Theorem 2 and replac-
ing Wi with Zi, the update algorithm in Equation (17) is:

Ẇi = −αWi(t)

[
Ũ ′

i(
Li

Wi∑
k∈N

Lk

Wk

) − f(W,L)

]
, (20)

= − α

Zi(t)

[
Ũ ′

i(
ZiLi∑

k∈N ZkLk
) − f(Z,L)

]
, (21)

where Z = {Zi : i ∈ N}. Note that Żi has the following
relationship to Ẇi:

Żi =
d 1

Wi

dt
= − 1

(Wi)2
Ẇi = −Z2

i Ẇi.

After replacing Ẇi by Żi, the algorithm expressed in Equa-
tion (17) is equivalent to:

Żi = αZi

[
Ũ ′

i(
ZiLi∑

k∈N ZkLk
) − f(Z,L)

]
. (22)

Step 2: In this step, we define a scalar function V (Z) as:

V (Z) =
∑
i∈N

Ũi(
ZiLi∑

k∈N ZkLk
). (23)

According to Lemma 1 in Appendix A, V is a Lyapunov func-
tion with V̇ ≥ 0. The zero values of V̇ are obtained for the
set:

R =
{
Z :

Żi

Zi
=

Żj

Zj
, for ∀i, j ∈ N

}
. (24)

Step 3: From Equation (22),

Żi

Zi
= α

[
Ũ ′

i(
ZiLi∑

k∈N ZkLk
) − f(Z,L)

]
.

Therefore, the equality condition in Equation (24) is equivalent
to:

Ũ ′
i(

ZiLi∑
k∈N ZkLk

) = Ũ ′
j(

ZjLj∑
k∈N ZkLk

), for ∀i, j ∈ N .

(25)
Hence, R can also be defined as:

R =
{
Z : Ũ ′

i(
ZiLi∑

k∈N ZkLk
) = Ũ ′

j(
ZjLj∑

k∈N ZkLk
),∀i, j ∈ N

}
.

(26)

1Note that we are discussing a maximization problem. Therefore, the con-
vergence condition is V̇ ≥ 0 [16], [28].

The following proof shows that R is an invariant set of the
system described in Equation (22). First, note that:

d
dt Ũ

′
i(

ZiLi∑
k∈N ZkLk

) =
∑

j∈N
[

∂
∂Zj

Ũ ′
i(

ZiLi∑
k∈N ZkLk

)
]
Żj ,

= [ ∂
∂Zi

Ũ ′
i(

ZiLi∑
k∈N ZkLk

)]Żi+∑
j∈N ,j �=i[

∂
∂Zj

Ũ ′
i(

ZiLi∑
k∈N ZkLk

)]Żj ,

= Ũ ′′
i ( ZiLi∑

k∈N ZkLk
) Li

(
∑

k∈N ZkLk)2×[∑
j∈N ,j �=i ZjŻiLj −

∑
j∈N ,j �=i ZiŻjLj

]
,

= 0. (ŻiZj = ŻjZi (Equation (24)).)

Therefore, if at any time the condition in Equation (25) is sat-
isfied, Ũ ′

i(
ZiLi∑

k∈N ZkLk
) for ∀i ∈ N remains constant for all fu-

ture time. Therefore, Equation (25) holds for all future time.
Hence, R is an invariant set of the system, which means that
whenever the system state evolves into R, it remains in R. To-
gether with the result from Step 2, we conclude that the update
algorithm of Equation (22) converges to an invariant set R.

Step 4: Since the update algorithm of Equation (22) is equiv-
alent to the algorithm in Equation (17), we conclude that the
update algorithm in Equation (17) converges to an invariant set:

Γ =
{
W : Ẇi

Wi
= Ẇj

Wj
,∀i, j ∈ N

}
,

=
{
W : Ũ ′

i(
Li
Wi∑

k∈N
Lk
Wk

) = Ũ ′
j(

Lj
Wj∑

k∈N
Lk
Wk

),∀i, j ∈ N
}

.

(27)
Clearly, Γ matches the optimality condition for OPT WIN

in Equation (16) and so any element in Γ solves OPT WIN .

This proof shows that as long as every node observes the
same f(W,L), GCA converges to a set Γ, whose elements all
solve OPT WIN . The next theorem shows that given the sec-
ond assumption about f(W,L), GCA converges to a unique
point in Γ, hence the system stabilizes at a single point.

Theorem 5: Inside Γ, if f(W,L) is strictly increasing with
respect to

∑
i∈N

Li

Wi
, the update algorithm in Equation (17)

converges to a unique point Ŵ ∈ Γ that solves OPT WIN .
Proof: The proof of Theorem 4 shows that the system de-

scribed by Equation (17) converges to the invariant set Γ, every
element of which is a solution to OPT WIN . To prove this
theorem, we only need to show that starting from any point in
Γ, the algorithm of Equation (17) converges to a unique point
Ŵ ∈ Γ. Since the algorithm of Equation (17) is equivalent to
the algorithm of Equation (22), we can show convergence of
the algorithm in Equation (17) by showing convergence of the
algorithm in Equation (22) to a unique point Ẑ ∈ R.

For ease of notation, we define θ =
∑

k∈N ZkLk. Since,∑
i∈N

Li

Wi
=
∑

i∈N ZiLi, the assumption that f(W,L) is

strictly increasing with respect to
∑

i∈N
Li

Wi
is equivalent to the

assumption that f(Z,L) is strictly increasing with respect to θ.
The rest of the proof consists of three steps. First, we trans-

late f(Z,L) to a function of θ. Then, using the property that
f(Z,L) is strictly increasing with respect to θ, we identify the
unique equilibrium point of GCA, Ẑ. Finally, we prove that Ẑ
is the unique stable point of GCA, and so GCA converges to Ẑ.
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Step 1: By defining γ̂ = Ũ ′
i(

ZiLi∑
k∈N ZkLk

) for ∀i ∈ N , the

proof of Theorem 4 shows that when GCA converges to R, γ̂
remains constant. Therefore, Equation (25) can be expressed
as:

Ũ ′
i(

ZiLi

θ
) = γ̂, for ∀i ∈ N . (28)

Next, by defining g(·) = {Ũ ′−1
i (·) : i ∈ N} and L−1 =

{ 1
Li

: i ∈ N}, Z can be expressed as ({·} is the notation for
set):

Z = {Zi} =

{
Ũ ′−1

i (γ̂)θ
Li

}
= θ{Ũ ′−1

i (γ̂)}T { 1
Li

}(29)

= θ[g(γ̂)]T L−1, (30)

Therefore, f(Z,L) = f(θ[g(γ̂)]T L−1,L).
Step 2: From Equations (22) and (28), when Żi = 0,

f(θ[g(γ̂)]T L−1,L) = Ũ ′
i(

ZiLi

θ
) = γ̂.

If θ̂ is the solution to the above equation,

f(θ̂[g(γ̂)]T L−1,L) = γ̂. (31)

Since f(Z,L) = f(θ[g(γ̂)]T L−1,L) is strictly increasing with
respect to θ, θ̂ is unique. Therefore, the unique equilibrium
point of the system can be defined as Ẑ = θ̂[g(γ̂)]T L−1 =
{Ẑi : i ∈ N}, where:

Ẑi =
Ũ ′−1

i (γ̂)θ̂
Li

, (32)

θ̂ =
∑
k∈N

ẐkLk. (33)

Step 3: To show that Ẑ is the unique stable point of GCA, we
define a scalar function V2(Z) as follows:

V2(Z) =
∑
i∈N

∫ Zi

Ẑi

1
σ

(Ẑi − σ)Lidσ.

The following proof shows that V2(Z) is a Lyapunov function,
and therefore GCA converges to Ẑ.

V̇2 =
∑

i∈N (∂V2
∂Zi

)Żi,

=
∑

i∈N
1
Zi

(Ẑi − Zi)LiŻi.

Note that in the invariant set R,

Żi = αZi(Ũ ′
i(

ZiLi

θ ) − f(Z,L)) Equation (22) and definition of γ
= αZi(γ̂ − f(Z,L)). from Equation (28)

Therefore, using Equations (31) and (33),

V̇2 =
∑

i∈N α(Ẑi − Zi)Li(γ̂ − f(Z,L)),
= α(

∑
i∈N ẐiLi −

∑
i∈N ZiLi)(γ̂ − f(Z,L)),

= α(θ̂ − θ)
[
f(θ̂[g(γ̂)]T L−1,L) − f(θ[g(γ̂)]T L−1,L)

]
.

Since f(θ[g(γ̂)]T L−1,L) is strictly increasing with respect to
θ, V̇2 ≥ 0. This equality holds if and only if θ = θ̂. Therefore,

we have shown that the algorithm in Equation (22) converges
to a unique point Ẑ ∈ R. Since the algorithm of Equation (17)
is equivalent to the algorithm of Equation (22), we conclude
that the algorithm in Equation (17) converges to a unique point
Ŵ ∈ Γ.

The proofs of Theorems 4 and 5 demonstrate that the system
is stable under the control of GCA and that GCA converges
to a unique point that solves OPT WIN . Therefore, GCA
achieves our goal of support for arbitrary fairness definitions.
Next, we present how GCA can be used to achieve high channel
utilization.

VI. CHANNEL UTILIZATION OF GCA

Theorem 4 shows that utility functions determine the invari-
ant set Γ (see Equation 27), where the ratios between any two
Wi’s are fixed and invariant. Essentially, the choice of utility
functions defines the ratios of Wi’s at the stable point of GCA,
and, therefore, the fairness between nodes. However, multi-
ple assignments of W may satisfy the same ratio condition and
their channel utilization may be quite different.

In Sections V-B and V-C, we note that the choice of f(W,L)
controls the stable point of the system and so determines chan-
nel utilization. If W at the stable point is too large, channel
bandwidth is not fully utilized since idle periods are too long.
If W at the stable point is too small, collisions increase, which
also results in inefficient use of bandwidth. Therefore, the prob-
lem of maximizing channel utilization is essentially the prob-
lem of choosing the right f(W,L), which, together with the
choice of utility functions, should enable the system to stabilize
at a point that supports the fairness definition and achieves high
channel utilization.

A. Optimal Stable Point

To investigate how to choose f(W,L) such that the system
stables at a point that maximizes channel utilization, we need
to identify this optimal stable point. In this section, we analyze
the property of the optimal stable point of GCA and show that
at the optimal stable point, the sum of the reciprocals of all Wi’s
is quasi-constant regardless of the number of competing nodes
and therefore can be pre-calculated. Hence, using this property,
we can design f(W,L) to ensure that GCA converges around
the optimal stable point (details in Section VI-B).

To identify the property of ω at the optimal stable point,
assume there are n competing nodes belonging to m classes
c1, c2, . . . cm and nodes in the same class have the same utility
function. The fraction of nodes in each class is β1, β2, . . . βm,
where

∑m
i=1 βi = 1. Therefore, ω can be expressed as

ω =
n∑

i=1

1
Wi

. (34)

To capture the fact that the ratios between contention win-
dow sizes are determined by the choice of utility functions and
the fact that the nodes in the same class share the same utility
function, we define a new variable ϕi as follows:

ϕi =
1/Wi∑n

j=1 1/Wj
=

1/Wi

ω
,∀1 ≤ i ≤ n, (35)

ϕi = ϕj = ϕck
,∀i, j ∈ ck, (36)
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where
∑n

i=1 ϕi =
∑m

k=1 nβkϕck
= 1.

To maximize channel utilization, the average time between
each successful packet transmission, denoted as F , must be
minimized. Given the probability that a successful transmission
occurs in a slot, Ps, the average number of slots between each
successful transmission can be expressed as (1/Ps − 1). Given
the virtual time channel model from Section IV, virtual time
slots between two consecutive successful transmissions may be
idle slots or busy slots containing collisions. Therefore,

F = (
1
Ps

− 1)(aSlotT ime
PI

1 − Ps
+ Tc

Pc

1 − Ps
), (37)

=
1
Ps

(aSlotT ime · PI + TcPc), (38)

where aSlotT ime is the duration of an idle virtual time slot, Tc

is the duration of a busy virtual time slot containing collisions,
PI is the probability of a virtual time slot being idle and Pc is
the probability that a collision happens in a virtual time slot.
Equation (37) follows because given the condition that a slot
does not include a successful transmission, the probability that
the slot is an idle slot is PI

1−Ps
and, similarly, given the condition

that a slot does not include a successful transmission, the prob-
ability that the slot has a collision is Pc

1−Ps
. Note that PI equals

the probability that no node transmits in a slot. Combining PI

with Equations (7) and (35), we get:

PI =
n∏

i=1

(1 − τi) =
n∏

i=1

(1 − 1
Wi/2 + 1

)

=
1∏m

k=1(1 + 2ωϕck
)nβk

.

(39)

Since the probability that Node i successfully transmits a
packet in a slot is Pi and a slot can have at most one success-
ful transmission, according to the additive rule of probability
for mutually exclusive events: Ps =

∑n
i=1 Pi. Combining this

with Equations (6), (7), (39) and the definition of ω results in:

Ps =
n∑

i=1

τi

1 − τi

n∏
j=1

(1 − 1
Wi/2 + 1

) =
n∑

i=1

2
Wi

PI = 2ωPI .

(40)
Given that Pc equals the probability that a slot is neither idle

nor contains a successful transmission,

Pc = 1 − PI − Ps. (41)

Using Equations (39), (40) and (41), the expression of F in
Equation (38) can be translated to a function of ω as follows:

F (ω) =
1
2ω

[Tc

m∏
k=1

(1 + 2ωϕck
)nβk

− Tc(1 + 2ω) + aSlotT ime].

(42)

According to optimization theory [2], the ω that minimizes
F , denoted as ωopt, satisfies F ′(ωopt) = 0. By calculating
F ′(ω) and setting it to zero,[

1 −
m∑

k=1

(
2ωoptnβkϕck

1 + 2ωoptϕck

)

]
m∏

k=1

(1 + 2ωoptϕck
)nβk

= 1 − aSlotT ime

Tc
.

(43)
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Fig. 2. ωopt in three network configurations. Configuration 1 has 1 class,
Configuration 2 has 2 classes with ϕc1 : ϕc2 = 1 : 5 and β1 : β2 = 0.5 : 0.5
and Configuration 3 has 4 classes with ϕc1 : ϕc2 : ϕc3 : ϕc4 = 1 : 5 : 10 :
20 and β1 : β2 : β3 : β4 = 0.5 : 0.3 : 0.15 : 0.05

Since
∑m

k=1 nβkϕck
= 1, when n → ∞, Equation (43) be-

comes:

(1 − 2ωopt)e2ωopt = 1 − aSlotT ime

Tc
. (44)

Solving this equation gives the lower bound of ωopt. Fig-
ure 2 depicts how ωopt changes as n increases. As we can
see, for a large n, ωopt is a quasi-constant and the differences
between different configurations of classes are hard to distin-
guish. Therefore, we can pre-calculate this quasi-constant and
pre-configure GCA to converge around this value by a proper
design of f(Ω).

Given ωopt, the optimal stable point of W is:

Wi,opt = 1/(ϕiωopt),∀i.

Since
∑n

i=1 ϕi = 1, ϕi decreases as n increases. Because ωopt

tends to be a constant as n increases, it can be concluded that
W at the optimal stable point tends to increase as n increases.

In summary, this analysis shows that ωopt, which is the sum
of the reciprocals of all Wis at the optimal stable point of GCA,
is a quasi-constant whose range can be pre-calculated. In addi-
tion, as the number of competing nodes increases, the Wi’s at
the optimal stable point also increase. Therefore, if we use the
pre-calculated range of ωopt in the design of f(W,L) so that
the stable point of GCA is around the optimal value, we ensure
that Wi’s increase as the number of competing nodes increases.
Essentially, in this way, GCA can provide congestion control
that prevents the system from heavy collision loss. On the other
hand, when the number of competing nodes decreases, GCA
decreases every node’s Wi to avoid long idle periods.

B. Choice of f(W,L)
Since ωopt is a quasi-constant, if at a stable point of the sys-

tem, the value of ω is inside the small range of ωopt, this sta-
ble point is not far from the optimal stable point. Therefore,
the channel utilization of the system is close to the maximum
value. The simplified case, as we have discussed above, can be
used to get an approximation of the range of ωopt. If the range
of ωopt is known, we can design some f(W,L) functions to
confine the stable point of the system so that its ω is inside the
range of ωopt. When the ω of the system is larger than the upper
bound of ωopt, indicating a too small W, the value of f(W,L)
is a large negative value. According to Equation (17), this large
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negative value of f(W,L) forces the system to increase its W,
driving its ω back inside the range of ωopt. Similarly, when
the ω of the system is smaller than the lower bound of ωopt,
f(W,L) becomes a large positive value, which drags the sys-
tem back inside the range of ωopt. Examples of f(W,L) are
presented in Section VIII. Our simulation results in Section IX
verify the effectiveness of this approach.

VII. IMPLEMENTATION CONSIDERATIONS

In the previous section, we introduced our general contention
window control algorithm, GCA, and showed how it can be
used to achieve fair and efficient channel utilization. However,
we need to address two implementation issues of GCA. First,
estimation of the fraction of the total network capacity allocated
to Node i, xi, in Equation (17). Second, choosing the utility
functions. In this section, we address these two issues.

A. Estimation of xi

If the network capacity C is known, a node can simply ob-
serve its own sending rate, si, to obtain xi, since xi = si

C . How-
ever, the capacity of a wireless channel is not always constant
since it may be affected by outside interference, such as con-
flicting technologies or a microwave. Therefore, this method is
not practical for use in real networks.However, a node can di-
rectly estimate its xi by observing two states of the channel, the
average number of idle virtual slots between two busy virtual
slots, I , and the average length of a busy virtual slot, Tb. Since
in IEEE 802.11 networks a node monitors the channel continu-
ously, I and Tb can be obtained at the MAC layer easily. In the
rest of this section, IEEE 802.11 DCF RTS/CTS mode is used
as an example to show how this can be done.

Let Pb be the probability that a virtual slot is a busy slot.
Since I is the average number of idle slots between two con-
secutive busy slots,

Pb = 1 − PI =
1

I + 1
. (45)

Since a busy virtual slot is caused either by a successful trans-
mission or by a collision, the average length of a busy slot, Tb,
can be expressed as:

Tb = Ts

∑
i∈N Pi

Pb
+ Tc

Pc

Pb
, (46)

where Pi is the probability that Node i successfully transmits
in a virtual slot, Ts is the average length of a virtual slot with a
successful transmission and Tc is the duration of a virtual slot
with a collision. Ts can be expressed as Ts = RTS + CTS +
3 × SIFS + DATA + ACK + DIFS + aSlotT ime. Since
RTS/CTS exchange is used, collisions usually happen between
RTS packets. Hence, Tc = RTS+EIFS+aSlotT ime. Based
on IEEE 802.11 configurations, Tc is much smaller than Ts.
Therefore, as long as Pc is not much larger than

∑
i∈N Pi, us-

ing Equation (45), Equation (46) can be simplified to:

Tb ≈ Ts

∑
i∈N Pi

Pb
= Ts(I + 1)

∑
i∈N

Pi. (47)

Note that Ts also satisfies Ts =
∑

i∈N
LiPi

S
∑

j∈N Pj
, where S is

the channel transmission rate. Therefore, from Equation (47),
we can get

∑
i∈N PiLi = TbS/(I + 1). Since

∑
i∈N PiLi

is the average network throughput per virtual slot and PiLi is
Node i’s average throughput per virtual slot,

xi =
PiLi∑

j∈N PjLj
≈ PiLi(I + 1)

TbS
. (48)

To calculate Pi from I , note that Node i transmits in a slot
successfully if and only if it is the only node that transmits in
that slot. Therefore, Pi = 1

Wi/2+1

∏
j∈N ,j �=i(1 − 1

Wj/2+1 ).
Combining the fact that Pb = 1 − PI and using Equations (39)
and (45), Pi becomes Pi = 2

Wi
(1− 1

I+1 ). Integrating this with
Equation (48), we finally obtain the estimation of xi based on I
and Tb:

xi ≈ 2LiI

WiTbS
. (49)

Since in IEEE 802.11 networks a node monitors the channel
continuously, the value of I and Tb can easily be obtained at
the MAC layer. Therefore, the approximation in Equation (49)
provides a practical estimation of xi.

B. Choice of Utility Functions

Depending on the system design policies, the choices of util-
ity functions can be quite different. The strength of GCA is that
it is very flexible and can be used with a large range of utility
functions that define a variety of fairness definitions, as long as
the utility functions are strictly increasing concave functions. In
this section, we briefly review several common utility functions
and their corresponding fairness definitions.

1) Strict Priority: For a system that needs to achieve strict
priority (i.e., the highest-priority nodes get all the bandwidth
while other nodes get no bandwidth), we can use a weighted
linear utility function like Ũi(x) = ρixi, where ρi is node’s
weight as defined by its priority. Using this utility function, the
optimal bandwidth allocation problem becomes:

max
∑

i∈N (ρixi)
over

∑
i∈N xi ≤ C

and xi ≥ 1 for i ∈ N ,

with the optimality condition:∑
i:ρi=max{ρi,i∈N} xi = C,

xi = 0 for ∀i such that ρi < max{ρi, i ∈ N}.
From Equation (17), the corresponding update algorithm is:

Ẇi = −αWi[ρi − f(W,L)]. (50)

Note that this utility function does not satisfy the stability
conditions (i.e., Ũ(·) is not strictly concave). Therefore, the
system is not stable, meaning that our update algorithm will
never converge to a certain W. However, an interesting be-
havior of this update algorithm is that the highest-priority node
with ρi = max{ρi, i ∈ N} essentially drives f(W,L) to be
equal to max{ρi, i ∈ N}. The other competing nodes infinitely
increase their Wi’s. Therefore, the nodes with high priority
quickly obtain all the bandwidth of the channel and our update
algorithm achieves this strict priority between nodes.
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2) Weighted Proportional Fairness: Some systems aim to
achieve weighted proportional fairness [16] between nodes (i.e.,
bandwidth allocations satisfy xi

ρi
= xi

ρj
,∀i, j ∈ N , where ρi is

the weight of a node). The utility function that can be used to
achieve such proportional fairness is a weighted log function
like Ui(xi) = ρi log xi. Our update algorithm for this system
is:

Ẇi = −αWi[
ρi

xi
− f(W,L)].

3) Minimum Potential Delay: If the policy of the system is
to minimize the total delay of file transfers in the system, the
utility function can be expressed as Ui(x) = − ρi

xi
, where ρi

is the size of the file that Node i is transmitting. Our update
algorithm for this system is:

Ẇi = −αWi[
ρi

x2
i

− f(W,L)].

4) Mixed Utility: It is also possible that in a system, differ-
ent nodes have different goals and hence different utilities. In
such situations, each node simply updates its contention win-
dow according to its own utility function. The system automat-
ically converges to a stable point where the aggregated utility
of all competing nodes is maximized. In general, the variety
of choices of the utility functions give GCA the flexibility to
achieve many different kinds of fairness definitions and so GCA
can be used in systems that have different fairness policies.

VIII. CASE STUDY

In the previous sections, we have analyzed the optimality,
stability and optimal stable point of GCA. Since GCA is a gen-
eral algorithm for contention window control, these analyses
can be used as a powerful tool to examine existing approaches
and design new algorithms. Due to space limitations, we can
only present a brief analysis of three examples. The first exam-
ple shows how to use GCA to check the fairness of an existing
algorithm. The second case shows how to use GCA to analyze
the stability and efficiency of an existing algorithm. The final
case shows how to use GCA to design a new contention window
control algorithm.

A. Case 1: Fairness Analysis

1) PFCR: In [24], it is proposed to directly translate the rate
adaptation algorithm ṡi = α− β Pc

Ũ ′
i(si)

to a contention window

control algorithm,

Żi = α − β
Pc

Ũ ′
i(Zi)

, (51)

to solve OPT BW (U,C) (α and β are positive constants). A
special case of the algorithm with a weighted log utility func-
tion is named PFCR. Assuming uniform packet size, it can be
shown that this algorithm can not achieve an arbitrary fairness
definition.

At the equilibrium point of the algorithm, Żi = 0, which
results in: Ũ ′

i(Zi) = Ũ ′
j(Zj) = βPc

α ,∀i, j ∈ N . By replacing
Zi with 1

Wi
, we get:

Ũ ′
i(

1
Wi

) = Ũ ′
j(

1
Wj

) =
βPc

α
,∀i, j ∈ N , (52)

which does not satisfy the optimality condition for OPT WIN
in Equation (16), and hence can not achieve an arbitrary fair-
ness. Although, for log utility functions (e.g. PFCR), when
Equation (52) is satisfied, the fairness condition in Equation
(16) is also satisfied. However, such a property does not hold
for many utility functions (e.g Ũi(xi) = ρixi + logxi).

2) AOB: In this section, we analyze the fairness property of
AOB, Asymptotically Optimal Backoff Algorithm. AOB is pro-
posed to dynamically adjust contention window sizes to achieve
maximum bandwidth utilization. In AOB, for Node i with pri-
ority ρi, at every packet transmission, the node set its contention
window size as:

Zk+1
i = 0.5

[
1 − min(1,

1
(Ik + 1)2ωopt

)mkρi

]
, (53)

where ωopt is pre-computed and mk is the number of transmis-
sion attempts for the current packet. At the stable point of the
network, we have Zk+1

i − Zk
i = 0, which indicate that:

Zi = 0.5
[
1 − (

1
(I + 1)2ωopt

)miρi

]
. (54)

Note that the average number of transmission attempts for a
packet from Node i can be expressed as

mi = 1/(1 − φi),

where φi is the probability that when Node i transmits in a slot,
this transmission fails due to a collision. φi can be expressed
as:

φi = 1 −
n∏

j=1,j �=i

(1 − 1
Wi/2 + 1

) = 1 − (1 + 2/Wi)PI .

Therefore, using Equations (39) and (45),

mi =
1

(1 + 2/Wi)PI
=

I + 1
(1 + 2/Wi)I

Combining this with Equation (54), we get:

Zi = 0.5
[
1 − (

1
(I + 1)2ωopt

)
I+1

(1+2/Wi)I
ρi

]
. (55)

For large number of nodes, since AOB control the congestion
level of the network, the Wi of each node is large. Therefore,
2/Wi 	 1 Hence,

Zi ≈ 0.5
[
1 − (

1
(I + 1)2ωopt

)
I+1

I ρi

]
= 0.5[1 − βρi ],

(56)

where β = ( 1
(I+1)2ωopt

)
I+1

I . Therefore, we finally obtain the
specific fairness achieved by AOB as:

si

sj
=

Zi

Zj
=

1 − βρi

1 − βρj
∀i, j ∈ N . (57)

Obviously, the fairness achieved by AOB is not arbitrary.
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B. Case 2: Stability and Efficiency Analysis

1) IEEE 802.11e: In this section, we show that IEEE
802.11e can be treated as a special form of GCA with weighted
log utility function ρilog(xi) and f(W,L) = λ

I , where λ is
a positive constant. The following derivation shows that this
f(W,L) is strictly increasing with respect to θ =

∑
i∈N

Li

Wi

in invariant set Γ. Therefore, this form of GCA is stable. From
Equations (7), (??) and (45),

1
I + 1

= (1 −
n∏

j=1

(1 − τj)) = (1 −
n∏

j=1

(
Wj/2

Wj/2 + 1
)). (58)

Combining the definition Zi = 1/Wi and Equations (30) and
(58), it can be derived that in the invariant set Γ, the following
relationship holds:

f(W,L) =
λ

I
= λ

⎡⎣⎛⎝ n∏
j=1

Lj + 2U ′−1
j (γ̂)θ

Lj

⎞⎠− 1

⎤⎦ ,

where γ̂ is a positive constant. The derivative of f(W,L) to θ
then can be shown as:

∂
∂θf(W,L) = λ

∑n
i=1

2U ′−1
i (γ̂)

Li+2U ′−1
i (γ̂)θ

∏n
j=1

Lj+2U ′−1
j (γ̂)θ

Lj
> 0.

Therefore, f(W,L) is strictly increasing with respect to θ
inside Γ, which guarantees the stability of the system according
to Theorem 5.

To examine the property of the stable point for this example,
we combine the weighted utility function f(W,L) = λ

I and
Equations (49) and (17):

Ẇi = −αWi

[
ρiWiTbR

2LiI
− λ

I

]
.

At the stable point of the system, where Ẇi = 0,

Wi =
2λLi

ρiTbS
.

Note that in the above expression, Wi is not related to the
channel status and is purely decided by the packet size and
weight. Essentially, this form of GCA results in static Wi’s,
similar to the behavior of IEEE 802.11e. Also note that the dis-
cussion in Section VI-B shows that as the number of competing
node increases, the Wi’s at the optimal stable points of GCA
must also increase. Since the Wi’s in IEEE 802.11e are fixed,
this system can not achieve efficient channel utilization.

C. Case 2: Asymptotically Optimal Backoff Algorithm (AOB)

A heuristic algorithm called AOB, Asymptotically Optimal
Backoff Algorithm, has been proposed to dynamically adjust
contention window sizes to achieve maximum bandwidth uti-
lization [5]. AOB assumes that every node has the same priority
and the same average packet size. At every packet transmission,
a node sets its contention window size to:

Zk+1
i = 0.5

[
1 − min(1,

1
(Ik + 1)2ωopt

)mk

]
,

where ωopt is precomputed, Zi = 1
Wi

and mk is the number of
transmission attempts for the current packet. By the following
calculations, we can translate AOB’s contention window update
algorithm to a special form of GCA.

Note that the update algorithm of AOB can be written as:

Zk+1
i − Zk

i = 0.5
[
1 − min

(
1,

1
(Ik + 1)2ωopt

)mk
]
− Zk

i .

(59)
Let Ũ(·) be Ũ(x) = x − 0.5x2, which is a strictly increasing
concave function in the range of [0, 1]. Since Ũ ′(x) = 1 − x,
Equation (59) can be written as:

Zk+1
i −Zk

i =
1

2(I + 1)
[Ũ ′(

2Zk
i

1
Ik+1

)−min(1,
1

(Ik + 1)mk−12ωmk
opt

−I)].

(60)
Note that the proof of Theorem 4 shows that GCA is equiv-

alent to the update algorithm Zi in Equation (22). By approxi-
mating

∑
k∈N Zk ≈ 1

2(I+1) , the discrete form of GCA is:

Zk+1
i − Zk

i = α[Ũ ′
i(2Zk

i (I + 1)) − f(Zk,L)],
(Note Li = Lj∀i, j ∈ N ),

where each iterative step is a packet transmission. Comparing
this to Equation (60), we find that the AOB algorithm is a spe-
cial case of GCA with its f(W,L) defined as:

f(W,L) = f(Z,L) = min(1,
1

(I + 1)m−12ωm
opt

− I).

Using a similar method to the analysis of Case 1, it is easy to
verify that this version of f(W,L) is also a strictly increasing
function of

∑
i∈N

Li

Wi
in Γ. Therefore, AOB is a stable algo-

rithm that converges to a unique point.
To analyze the property of the stable point of AOB, note that

every node has the same priority in AOB. Therefore, at the sta-
ble point, each node should have the same contention window
size. Assume there are n competing nodes, Zi = 1

Wi
= ω

n ,∀i ∈
N . Also note that at the stable point, Ż = 0 (i.e., the right side
of Equation (59) becomes zero). Therefore, at the stable point
of the system, ω satisfies:

2ω

n
= 1 − (

1
I+1

2ωopt
)m,

where:
1

I + 1
= 1 −

n∏
i=1

1
1 + 2ω

n

.

It is obvious that ω is related to n. However, by setting n = 1
and n → ∞, we obtain the bounds of ω as [ω1, ω2], where:

1 − 2ω1 = (
ω1

(1 + 2ω1)ωopt
)m, (61)

(
1 − e−2ω2

2ωopt
)m = 1. (62)

Essentially, AOB bounds the ω of the system inside a range that
includes ωopt, which explains why AOB can almost achieve
maximum channel utilization. Therefore, AOB is a stable algo-
rithm and achieves high channel utilization.
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Fig. 3. f(W,L) for Case 3

D. Case 3: New Algorithm Design

Since we have shown the analysis of existing approaches, we
next present an example of the process of designing a special
case of GCA. In this example, we assume any utility function
that is strictly increasing and concave and that the observed
channel state for f(W,L) is I . To ensure that f(W,L) can
control the system operating near the maximum channel uti-
lization point, we first give an approximation of Iopt corre-
sponding to ωopt. Using the same simplifications as in Sec-
tion VI-A and according to Equation (58), it is easy to derive
that I = 1

(1+ 2ω
n )n−1

. For large n, I at the optimal stable point

is Iopt ≈ 1
e2ωopt−1

. This approximation allows us to calculate
Iopt and define f(W,L) as:

f(W,L) = λ/(I − Imin) + λ/(I − Imax),

where Imin < Iopt < Imax and the range of [Imin, Imax] is
small. Figure 3 shows the shape of f(W,L) with Imin = 2 and
Imax = 6. According to Section VI-B, this function f(W,L)
bounds the stable point of the system around the point that max-
imizes channel utilization. Using this method, we ensure that
the ω of the system converges in the range around the value of
ωopt. The performance of this algorithm is evaluated in Sec-
tion IX.

IX. EVALUATION

In this section, we evaluate the performance of two variants
of GCA using simulations in ns2 [9]. In GCA-EXP, GCA is
used to adjust the minimum contention window size of IEEE
802.11, where contention window size is exponentially in-
creased after a collision. In GCA-DIRECT, GCA is used to
directly adjust the contention window size, without exponen-
tial increase. The evaluation of these two variants of GCA
focuses on three aspects: (1) support for different definitions
of fairness, (2) maintaining fairness and (3) maintaining effi-
ciency. Although GCA is a general algorithm that can be used
to achieve many different kinds of fairness, we only present the
performance of GCA for strict priority and proportional fairness
in this paper. These two types of fairness represent opposite
extremes, where strict priority requires that all bandwidth is al-
located to the node with the highest priority while proportional
fairness requires that every node get a fraction of bandwidth
proportional to its priority.

The f(W,L) used in all simulations is the one discussed
in Section VIII-D. Additionally, we use a simple implementa-
tion of GCA where a node only updates its contention window

size when it transmits a packet. While other update options
are possible, such as updating every virtual time slot or every
short period of time, updating the contention window size at
each packet transmission is the simplest and imposes minimal
computational overhead. Finally, channel bandwidth is always
11Mbps.

In the first part of the evaluation, two simple simulations are
used to illustrate the evolution of the system under the control
of GCA. Next, the fairness of GCA is evaluated for proportional
and strict priority fairness. Finally, GCA’s channel utilization is
evaluated for both fairness definitions.

A. System Evolution

To illustrate how GCA adapts the contention window size to
support fair and efficient channel utilization, simulation results
from two simple cases are presented.

First, we examine the behavior of GCA for proportional fair-
ness. In this simulation, there are five competing nodes with
weighted log utility functions with weights 1, 2, 3, 4 and 5, re-
spectively. The simulation runs for 70s. The node with weight
1 starts first at 5s, the node with weight 2 starts at 15s, the node
with weight 3 starts at 25s, and so on. All packet sizes are 512B.

By examining the evolution of the contention window sizes
for all competing nodes, we can see how GCA adapts the con-
tention windows sizes as each new node starts transmitting (see
Figure 4(a)). As the number of competing nodes increases,
GCA increases the contention window sizes for all competing
nodes to prevent congestion and so keeps the system operating
near its optimal point. Additionally, GCA quickly adapts and at
the same time maintains the ratio between contention window
sizes to provide each competing node its weighted fair share of
bandwidth (see Figure 4(b)). Finally, GCA maintains high net-
work utilization (see Figure 4(c)), indicating that the through-
put of the network is not greatly affected by the changes in the
number of competing nodes. Essentially, GCA avoids conges-
tion and maintains high throughput in the network.

For the second example, we examine the behavior of GCA
for strict priority fairness. There are five competing nodes with
linear utility functions with weights 1, 2, 3, 4 and 5, respec-
tively. All competing nodes have bulk data to be transmitted
and start at 5s. The simulation runs for 100s. All packets are
512B.

Similar to the evaluation for weighted proportional fairness,
Figure 5(a) shows the evolution of the contention window size
as nodes finish their transmissions one by one and Figure 5(b)
shows the throughput of the nodes. At the beginning of the
simulation, the node with weight 5 has a very small contention
window size while the other nodes with lower weights keep on
increasing their contention window sizes. Therefore, the node
with weight 5 soon obtains the whole channel bandwidth. After
the node with weight 5 finishes its transmission, the contention
window size of the node with weight 4 drops down and grabs
the bandwidth of the channel. After the node with weight 4
finishes its transmission, the node with weight 3 gets the chan-
nel. The process goes on until only the node with the lowest
priority is left in the network. These results show that GCA can
achieve strict priority fairness between competing nodes using
weighted linear utility functions.
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Fig. 4. Evolution of contention window size, throughput and total throughput for weighted proportional fairness
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Fig. 5. Contention window size and throughput evolution for strict priority

B. Fairness

Next, we evaluate GCA’s performance in terms of accuracy
of the achieved fairness, measured in terms of Jain’s fairness
index [14], a common measure of fairness for bandwidth allo-
cation. Given n competing node, Jain’s fairness index is ex-
pressed as:

Ψ =
(
∑n

i=1
si

ri
)2

n
∑n

i=1(
si

ri
)2

,

where ri is Node i’s share of bandwidth proportional to its
weight and si is Node i’s achieved bandwidth. The fairness
index is a real value between 0 and 1 with values closer to 1
indicating better proportional fairness. When perfect propor-
tional fairness is achieved, the fairness index equals 1. If, on
the other hand, only one node out of n is allocated bandwidth,
the fairness index is 1/n. Since bandwidth allocation based on
strict priority fairness aims to give all the bandwidth to the node
with the highest priority, the fairness index should be 1/n for a
perfect strict priority fairness based bandwidth allocation.

1) Weighted proportional fairness: GCA achieves weighted
proportional fairness using the weighted log utility functions as
discussed in Section VII-B.2. Competing nodes have weights
from 1 to 5, while the number of competing nodes ranges from
5 to 50. All competing nodes start in the first 10s. We evaluate
GCA for both fixed and heterogeneous packet sizes.

For heterogeneous packets sizes, per-node packet sizes are
randomly picked between 400B and 1000B. By looking at
the fairness indexes for GCA-EXP, GCA-DIRECT and IEEE
802.11e (see Figure 6(a)), we can see that both GCA-EXP and
GCA-DIRECT achieve a fairness index that is much larger than
the fairness index of IEEE 802.11e and very close to 1 regard-

less of the number of competing nodes. The main reason for
IEEE 802.11e’s unfairness is that the contention window size
is independent of the packet size. In essence, nodes that send
larger packets obtain more bandwidth than their fair share.

When all packets are 512B, the fairness for IEEE 802.11e is
greatly improved (see Figure 6(b)), although its performance is
still worse than GCA. The fairness index of GCA-EXP is also
slightly smaller than for GCA-DIRECT because the exponen-
tial increase of the contention window after a collision changes
the ratio between contention window sizes and hence degrades
the fairness of GCA-EXP’s bandwidth allocation. Therefore,
both GCA-EXP and IEEE 802.11e are less fair than GCA-
DIRECT. However, since GCA-EXP is able to adjust the mini-
mum contention window to avoid excessive collisions, it essen-
tially controls the effects of collisions on fairness. Therefore,
GCA-EXP has better fairness performance than IEEE 802.11e.

2) Strict priority: To examine the ability of GCA to achieve
strict priority fairness, we vary the number of competing nodes
from 5 to 50, with weights ranging from 1 to 5. All nodes start
in the first 10s. In one set of simulations, all nodes have 512B
packets, while in the other set of simulations, each node has
a different packet size randomly generated between 400B and
1000B. The simulations run for 100s.

Regardless of packets size, both GCA-EXP and GCA-
DIRECT achieve a fairness index that is very close to that of
the ideal allocation based on strict priority fairness (see Figure
6(c)). This demonstrates GCA’s ability to support strict priority
fairness based bandwidth allocation.
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C. Channel utilization

Finally, we evaluate GCA’s ability to achieve high channel
utilization by comparing it with IEEE 802.11 or IEEE 802.11e
and the theoretical capacity of the network.

1) Weighted proportional fairness: In this set of simula-
tions, the channel utilization of GCA is compared with IEEE
802.11e and the theoretical maximum network capacity where
the contention window sizes are assigned to ensure maximum
network throughput. For GCA, the weights of the log utility
functions range from 1 to 5. For IEEE 802.11e, there are five
classes of traffic, with the minimum contention window sizes
of the classes being 30, 37, 50, 75 and 150, respectively. These
contention window sizes for IEEE 802.11e are selected to en-
sure similar weighted bandwidth allocation as GCA. The num-
ber of competing nodes range from 5 to 50. All packets are
512B. Each simulation runs for 100s. All competing nodes start
in the first 10s.

Figure 7(a) depicts the throughput of GCA and IEEE
802.11e, normalized to the theoretical maximum capacity of
an IEEE 802.11 network. Essentially, the channel utilization of
GCA is very close to the theoretical limit of IEEE 802.11, in-
dicating efficient channel usage. Since IEEE 802.11e does not
have the ability to dynamically adjust its minimum contention
window size according to the congestion level, the channel uti-
lization of IEEE 802.11e degrades as the number of competing
nodes increases.

2) Strict priority: Since strict priority requires that only the
node with the highest priority wins the bandwidth, we com-
pare the channel utilization of GCA to an IEEE 802.11 network
with only one sending node and the theoretical maximum net-
work capacity for a single sending node. The performance is
evaluated both for fixed and heterogeneous packet sizes. Each
simulation runs for 100s. All nodes start in the first 10s.

Figure 7(b) depicts the throughput of GCA (with multiple
competing nodes) and compares it to the throughput of an IEEE
802.11 network with one sending node, normalized to the theo-
retical maximum capacity of the IEEE 802.11 network with one
sending node. These results show that the channel utilization
of GCA is very close to the theoretical limit of a single-node
IEEE 802.11 network, indicating an efficient use of the chan-
nel. Since IEEE 802.11 does not have the ability to dynami-
cally decrease its minimum contention window size when the
congestion level of the network is low, the channel utilization
of IEEE 802.11 is much lower than GCA.

X. CONCLUSION AND FUTURE WORK

In this paper, we provide a systematic method for design-
ing dynamic contention window control algorithms that can be
used to achieve fair and efficient bandwidth allocation. We de-
compose the requirement for both fairness and efficiency to
the problem of choosing proper utility functions and observ-
able functions of the channel state. Due to the inclusion of
a wide diversity of both of these types of functions, we es-
sentially broaden the scope of designing dynamic contention
window control algorithms. In response to the limitations of
current algorithms, we present a general form of dynamic con-
tention window control (GCA) that can be used to achieve both
arbitrary fairness and efficient channel utilization and prove its
stability.

It is also interesting to note that our analysis of dynamic con-
tention window control to achieve fair and efficient bandwidth
allocation can also be used to formulate dynamic packet size
control for achieving the same goal. The algorithm design and
analysis is similar to GCA and due to space limitations, is not
presented in this paper. However, in general, dynamic packet
size control is inferior to contention window control since it in-
troduces additional complexities due to the high packet error
rate associated with longer packets, which may affect the fair-
ness of bandwidth allocation.

For future work, we plan on comparing the performances of
different choices of f(W,L). Additionally, we plan to extend
GCA into the domain of multihop wireless networks, with the
goal of supporting fair bandwidth allocation along with efficient
channel utilization in such environments.
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APPENDIX

A. Proof of Lemma 1

Lemma 1: If scalar function V is defined as:

V (Z) =
∑
i∈N

Ũi(
ZiLi∑

k∈N ZkLk
), (63)

V is a Lyapunov function for the system described by Equation
(22) with V̇ ≥ 0. The zero values of V̇ are obtained for the set

R = {Z : Żi

Zi
= Żj

Zj
,∀i, j ∈ N}.

Proof: Note that the derivative of V (Z) to Zi is:

∂V
∂Zi

= ∂
∂Zi

Ũi( ZiLi∑
k∈N ZkLk

) + ∂
∂Zi

∑
j∈N ,j �=i Ũj(

ZjLj∑
k∈N ZkLk

),

= Ũ ′
i(

ZiLi∑
k∈N ZkLk

)Li

∑
k∈N ZkLk−ZiL

2
i

(
∑

k∈N ZkLk)2

−∑j∈N ,j �=i Ũ ′
j(

ZjLj∑
k∈N ZkLk

) ZjLjLi

(
∑

k∈N ZkLk)2 .

The first item after the last equal sign can be expressed as:

= Ũ ′
i(

ZiLi∑
k∈N ZkLk

)
Li

∑
k∈N ,k �=i ZkLk

(
∑

k∈N ZkLk)2 ,

=
∑

j∈N ,j �=i Ũ ′
i(

ZiLi∑
k∈N ZkLk

) ZjLjLi

(
∑

k∈N ZkLk)2 .

Therefore,

∂V
∂Zi

=
∑

j∈N ,j �=i Ũ ′
i(

ZiLi∑
k∈N ZkLk

) ZjLjLi

(
∑

k∈N ZkLk)2

−∑j∈N ,j �=i Ũ ′
j(

ZjLj∑
k∈N ZkLk

) ZjLjLi

(
∑

k∈N ZkLk)2 ,

= Li

(
∑

k∈N ZkLk)2

∑
j∈N ,j �=i[Ũ

′
i(

ZiLi∑
k∈N ZkLk

)

−Ũ ′
j(

ZjLj∑
k∈N ZkLk

)]ZjLj .

From Equation (22), Ũ ′
i(

ZiLi∑
k∈N ZkLk

) can be expressed as:

Ũ ′
i(

ZiLi∑
k∈N ZkLk

) = [
Żi

αZi
+ f(Z,L)].

Substituting Ũ ′
i(

ZiLi∑
k∈N ZkLk

) in the expression of ∂V
∂Zi

, we get:

∂V
∂Zi

= Li

(
∑

k∈N ZkLk)2

∑
j∈N ,j �=i{[ Żi

αZi
+ f(Z,L)]

−[ Żj

αZj
+ f(Z,L)]}ZjLj ,

= Li

α(
∑

k∈N ZkLk)2

∑
j∈N ,j �=i[

Żi

Zi
− Żj

Zj
]ZjLj .
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If η = 1
α(
∑

k∈N ZkLk)2 , it is obvious that η > 0. Therefore,

∂V
∂Zi

= ηLi

∑
j∈N ,j �=i[

Żi

Zi
− Żj

Zj
]ZjLj ,

= ηLi

∑
j∈N ,j �=i[(

ZjLj

Zi
)Żi − ŻjLj ],

= η[(
∑

j∈N ,j �=i ZjLj)Li

Zi
Żi − (

∑
j∈N ŻjLj)Li].

Therefore, the time derivative of V (Z) can be shown as:

V̇ =
∑

i∈N
∂V
∂Zi

Żi,

=
∑

i∈N η[(
∑

j∈N ,j �=i ZjLj)Li

Zi
Żi − (

∑
j∈N ,j �=i ŻjLj)Li]Żi,

= η
∑

i,j∈N ,j �=i[
ZjLjLi

Zi
Ż2

i + ZiLiLj

Zj
Ż2

j − 2ŻiŻjLiLj ],

= η
∑

i,j∈N ,j �=i[(
√

ZjLjLi

Zi
| Żi | −

√
ZiLiLj

Zj
| Żj |)2

+2 | Żi || Żj | LiLj − 2ŻiŻjLiLj ],

≥ η
∑

i,j∈N ,j �=i(
√

ZjLjLi

Zi
| Żi | −

√
ZiLiLj

Zj
| Żj |)2,

≥ 0.

Finally, the equality holds if and only if:

Żi

Zi
=

Żj

Zj
, for ∀i, j ∈ N .

B. Notation
• N : the set of transmitting stations
• C: the network capacity
• Pi: the probability that Node i successfully transmits in a virtual

slot
• τi: the probability that Node i attempts to transmit in a virtual

slot
• si: the sending rate of Node i
• Li: the channel bandwidth consumed for a successful packet

transmission.
• xi: the fraction of channel bandwidth of Node i
• Wi: the abbreviation for contention window size of Node i
• W min

i : the abbreviation for minimum contention window size
of Station i

• W: {Wi : i ∈ N}
• L: {Li : i ∈ N}
• P: {Pi : i ∈ N}
• Zi: 1

Wi

• Γ: the invariant set of GCA
• R: the invariant set of GCA-Z
• F : the average time between successful packet transmissions
• I: the average number of idle virtual slots between two busy

virtual slots
• ω:

∑
i∈N

1
Wi

• ϕi:
1/Wi

ω

• θ:
∑

i∈N
Li
Wi

=
∑

k∈N ZkLk

• Tb: the average length of busy virtual slot
• Tc: the average duration of a virtual slot including a collision
• PI : the probability that a virtual slot is an idle slot
• Ps: the probability that a successful transmission happens in a

virtual slot
• Pc: the probability that a collision happens in a virtual slot
• S: the channel sending rate of IEEE 802.11


