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Abstract— This paper presents an algorithm for resource
allocation in satellite networks1. It deals with planning a
time/frequency plan for a set of terminals with a known geometric
configuration under interference constraints. Our objective is
to maximize the system throughput while guaranteeing that
the different types of demands are satisfied, each type using a
different amount of bandwidth. The proposed algorithm relies
on two main techniques. The first generates admissible config-
urations for the interference constraints, whereas the second
uses linear and integer programming with column generation.
The obtained solution estimates a possible allocation plan with
optimality guarantees, and highlights the frequency interferences
which degrade the construction of good solutions.

I. INTRODUCTION

We consider a multi-spot geostationary satellite system for
which a manager assigns satellite uplink MFTDMA (Multi-
Frequency Time-Division Multiple Access) slots to service
providers (operators). The service providers themselves oper-
ate a park of terminals distributed on the satellite area of cover.
Concerning the radio channel, the satellite divides the time
and frequency spectrum into time slots. Geographically, the
terminals are distributed on zones, themselves being included
in spots, which correspond to equipments of reception (beams)
of the satellite. Radio interferences impose constraints on the
slots that can simultaneously be assigned in different spots
that have the same frequency. A slot cannot be assigned
simultaneously to more than one zone in a spot. Spots are
given colors (bands of frequencies) and spots of different
colors do not interfere, but spots of the same color do, and a
slot can be assigned to an operator in a given zone only if the
interference it experiences with the other active zones is below
a given threshold. Slot assignment is static but can be changed
once per hour (due to changes in demands, on the one hand,
and to changes in atmospheric conditions, on the other hand).
Every hour, the demand of the service providers is re-evaluated
and a new allocation could be generated. Due to real-time
constraints, solutions are needed within a few minutes.

Our goal is to maximize the throughput of the system. The
approach adopted to achieve this goal can be formulated as
a fractional coloring problem [1]. Casting the problem into

1This work is part of research convention A 56918 between INRIA and
ALCATEL SPACE INDUSTRIES (contract number 1 02 E 0306 00 41620 01 2).

coloring of graphs shows that it is NP-complete to maximize
the throughput [2, GT20]. Instead, we propose to solve the
problem using a linear and integer programming approach with
column generation.

This work is clearly motivated by the cost of the design
of satellite antennas [3]. The cost of an antenna is a strong
function of its size, roughly speaking, proportional to the
diameter cubed. Larger antennas generate small interferences
and have better gain, but increase tremendously the cost of
the satellite. One of the goals of this approach is to tune
precisely the assignment problem given its profile in terms of
interference and gain. We will see that in return, our program
can derive which interferences are responsible for (sometimes
substantial) loss of capacity for a given demand.

In our experiments to evaluate the proposed approach, we
will be using two series of data corresponding to 8 and 32 spots
per color respectively. We assumed that there are three zones
per spot, and four types of carriers2. Our work is focused on
one of the colors of the bandwidth (recall that spots of different
colors do not interfere with each other), so that the complete
processing phase should use the same program for each color
(if necessary in a parallel way). In our experiments, the total
number of time slots that can be assigned is set to 3456.

We propose in this paper a linear and integer programming
approach that allows to solve the problem almost optimally.
For the 8-spot case, the problem is solved in a minute or so,
with a guarantee of consuming at most 1% more bandwidth
than the absolute optimum. The dual/primal approach is ex-
ploited in a master/slave fashion, where the master program
is a heuristic that finds non-interfering zones that are directly
translated into valid columns for the primal problem handled
by the slave program. This approach can output the interfering
configurations that limit the optimization up to a certain
threshold. This information is extremely important for the
design of antennas since it explains the characteristics of the
antennas that lead to performance limitation. In other words,
our approach identifies the interfering configurations that are
crucial to the optimization, and this information has to be taken
into account when designing antennas. Designers have to make

2Carriers have different bandwidths thus providing different slot durations.
The use of a specific carrier by a given terminal is determined by the terminal’s
transmission capability.



(a) 3 colors used (b) 4 colors used

Fig. 1. Spatial distribution of spots and optimal reuse of colors.

Fig. 2. Spatial distribution of spots using the same color (4 colors case).

sure that the antennas do not impair such configurations. Last,
we show that, in the 32-spot case, our program can output
solutions that in practice have good performance.

Due to lack of space we do not discuss in details related
references which have appeared in the past; they all dealt with
simpler models that in some cases have been solvable using
polynomial algorithms. We refer to the book chapter [4] for
a survey. We wish to mention however that problems with
similar nature but with simpler structure have also been treated
in the context of scheduling in ad-hoc networks, see e.g. [5]
and references therein.

The structure of the paper is as follows. The system model
and its constraints are presented in Section II. The resolution of
the time slot allocation problem throughout a simple example
is detailed in Section III, whereas the general solution is
detailed in Section IV. Numerical results are presented in
Section V, followed by a concluding section.

II. THE MODEL

A. Spatial reuse

The total satellite bandwidth is subdivided in several
equally-large bandwidths. Each one of these will be assigned
a color. Every spot is assigned a unique fixed color, implying
that all terminals of a spot can transmit within the bandwidth
corresponding to the spot’s color. Every color may be assigned
to several spots. This is the concept of spatial reuse (see
for instance [6]). Observe that terminals in different spots
of the same color will interfere with each other when using
the same frequency band within the spots total bandwidth.
Multiple terminals will not be allowed to transmit if the global
interference generated is too high, as it will impair the correct
reception of the data by the satellite. Color assignment is given
as an entry of our problem. Examples of color assignment can
be seen in Fig. 1(a), resp. Fig. 1(b), when 3 colors, resp. 4
colors, are used.

Since colors do not overlap in bandwidth, they are com-
pletely independent from each other. Hence, resource allo-
cation can be done for each color separately. The original
problem has simply to be split in the number of colors used,
and each resulting problem can be solved independently from
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Fig. 3. Interferences model and 3 spots with 2 zones example.

the others. Hereafter, we will consider only the problem of
resource allocation within the same color. Without loss of
generality, we will consider a spatial reuse of 4 colors. Let
N denote the numbers of spots having the same color, and B
denote the color bandwidth. We are particularly interested in
the case where N ≤ 32. Fig. 2 depicts the spots configuration
within one color when 4 colors are used. Different spots of
the same color are allowed to transmit only if the overall
level of interferences is acceptable and does not impair the
correct reception of the transmitted signals at the satellite. In
the following section, we will introduce an allocation criterion
as a mean to check if it is safe to activate one spot or another.
This allocation criterion will condition any frequency reuse
between spots of the same color.

B. Interference level

To take into account the real conditions of the radio propaga-
tion, it is necessary to account for the position of the terminals
within a given spot. The spot is usually large enough to have
different channel conditions in different geographical regions.
We will therefore divide a spot in a number of zones (typically
2 or 3), assuming that each zone exhibits the same propagation
conditions in all its area. The radio propagation experienced
by a terminal is thus completely characterized by the zone
where the terminal is.

If a terminal is transmitting at time t, using carrier f ,
we will say that its zone/spot is active in (t, f). Whenever
a zone is active, its transmission will generate interferences
over all other spots using the same carrier at the same time.
Note that this interference will be the same over any zone
of a given active spot. The importance of the interference
is directly affected by the size of the antennas’ sidelobes.
Fig. 3(a) illustrates well how a transmission can interfere over
others. It is clear from Fig. 3(a) that the interference, generated
over spot s′ by a terminal in spot s, located in a zone other
than zone z, will be different.

Let G(z) denote the minimal antenna gain corresponding to
zone z. Let I(s, z) denote the maximal interference generated
over spot s by a transmission in zone z. It is the maximal
antenna gain in the sidelobes corresponding to zone z, when
the main beam is directed to spot s. If zone z belongs to spot
s then I(s, z) = 0. The received signal at the satellite is useful
only if its power amplitude is large enough compared to the
power of the interfering signals. In other words, the carrier



to interference ratio should be beyond a certain threshold σ,
otherwise the satellite cannot properly handle the received
transmission. Hence, a zone z could be active in (t, f) if and
only if the following criteria is satisfied:

C

I
=

G(z)∑
z′ active in (t,f) I(Spot(z), z′)

≥ σ, (1)

where Spot(z) denotes the spot in which zone z is located.

C. Interference model in numerical results

The power of the interfering signal used in (1) depends
on the size of the antenna. Small sidelobes lead to weak
interferences. Unfortunately, we do not have data on the power
distribution of the interfering signal over all geographical
areas, we will therefore assume the following: neighboring
spots are the ones generating the highest interference over
each other; remote spots still interfere one on each other but
not as significantly. In the results of Section V, the values in
decibels of the gain G(z) (resp. interference I(s, z)) are taken
randomly in the interval [40, 41] (resp. [11, 15]) decibels. Thus,
we use these different quantities:

I1(z) =
∑

z′ neighbor, active in (t,f)

I(Spot(z), z′) (2)

I2(z) =
∑

z′ active in (t,f)

I(Spot(z), z′) (3)

I(z) = I1(z) + (1 − γ) (I2(z) − I1(z))

where γ is a given weight. Equation (1) is replaced with

C

I
=

G(z)
I(z)

≥ σ. (4)

The interferences generated by remote spots are reduced by
a factor 1 − γ. Observe that taking γ = 0 is equivalent to
considering that all interferences are equally important (Eqs.
(1) and (4) will be exactly the same), while having γ = 1
nullifies the effect of transmissions in non-neighboring spots
over the zone at hand.

D. Types of terminals and demand

Terminals have different capabilities of transmission. A
given type of terminals will use a unique frequency band.
Hereafter, we will classify terminals according to their ca-
pability of transmission, and use the notation tk, k = 1, . . . , τ
to refer to a given type of terminals. Every type of terminals
tk will be assigned a unique bandwidth, denoted by tbk. In our
problem, the ratio of the bandwidths of any two different types
is either an integer or the inverse of an integer and is called
the multiplicity. Nevertheless, each type transmits the same
amount of data: for any type tk, the product of its bandwidth,
tbk, and its slot duration, denoted by ttk, is a constant: tbkttk = ∆.
Table I reports the values used to test our algorithm.

The individual demands of all terminals in a zone are
aggregated according to the type of terminals, and hence, the
bandwidth used by every type. Let d(z, tk) denote the demand
in time slots in zone z expressed in time slots of type tk, for
any zone z and any type tk.

TABLE I

TEST VALUES OF TERMINALS TYPES.

Type Maximum number of Maximum number of carriers
time slots per frame per spot bandwidth

t1 192 18
t2 96 36
t3 24 144
t4 6 576

TABLE II

GAIN AND INTERFERENCES OF THE 6 ZONES IN THE EXAMPLE.

Zone Gain I(Spot 0, ·) I(Spot 1, ·) I(Spot 2, ·)
0.0 4 - 5 3
0.1 6 - 5 7
1.0 3 4 - 2
1.1 8 7 - 10
2.0 5 3 7 -
2.1 5 7 3 -

III. A SIMPLE EXAMPLE

In this section, we will consider the simple case where
there is only one type of terminals, i.e. all terminals use
the same amount of bandwidth to transmit their data. For
every carrier, the channel can be accessed simultaneously
by multiple terminals/zones according to the Time-Division
Multiple Access (TDMA) technique. Solving the resource
allocation problem translates then into the following question:
which zones are allowed to transmit in a given time slot and
using a given carrier?

Consider the example illustrated in Fig. 3(b). There are
3 spots transmitting in the same color, each spot having 2
zones. When active, every zone generates a certain level of
interference over all other spots (gain and interferences can
be found in Table II, values are not in dB). Every spot can
have either one of its zones active, or be inactive (recall that
only one zone in a given spot can be active at a given time).
Hence, there are 33 = 27 possibilities in our simple example.

Considering any zone from the example, this zone can be
active (on) only if its carrier-to-interference ratio is above
a certain value. This ratio will naturally depend on whether
the other spots are active or not (on or off). For every zone
considered, there are 9 possible situations, as reported in
Table III. Let σ = 0.3. All of the situations where only
two spots are active are valid, since the carrier-to-interference
ratio is higher than 0.3 for all zones in every such situation
(refer to last column and last row for every zone). Among all
23 = 8 situations where 3 spots are active, only 3 are valid.
For instance, if zones 0.0, 1.0 and 2.0 are active, it appears that
the carrier-to-interference ratio is above σ = 0.3 for zones 0.0
and 2.0, but not for zone 1.0. The only 3 combinations with
3 active spots that are valid are illustrated in Fig. 4.

Observe that the 3-spot combinations transmit more data,
at the same time, than the 2-spot combinations which are less
efficient.

a) Case of a simple demand: Assuming that there is a
demand of 100 time slots per zone, it is clear that the minimum



TABLE III

VALUES OF THE CARRIER-TO-INTERFERENCE RATIO.

C/I for Zone 0.0 Zone 1.0 on Zone 1.1 on Spot 1 off
Zone 2.0 on 0.57 0.40 1.33
Zone 2.1 on 0.36 0.29 0.57
Spot 2 off 1.00 0.57 -

C/I for Zone 0.1 Zone 1.0 on Zone 1.1 on Spot 1 off
Zone 2.0 on 0.86 0.60 2.00
Zone 2.1 on 0.55 0.43 0.86
Spot 2 off 1.50 0.86 -

C/I for Zone 1.0 Zone 0.0 on Zone 0.1 on Spot 0 off
Zone 2.0 on 0.25 0.25 0.43
Zone 2.1 on 0.38 0.38 1.00
Spot 2 off 0.60 0.60 -

C/I for Zone 1.1 Zone 0.0 on Zone 0.1 on Spot 0 off
Zone 2.0 on 0.67 0.67 1.14
Zone 2.1 on 1.00 1.00 2.67
Spot 2 off 1.60 1.60 -

C/I for Zone 2.0 Zone 0.0 on Zone 0.1 on Spot 0 off
Zone 1.0 on 1.00 0.56 2.50
Zone 1.1 on 0.38 0.29 0.50
Spot 1 off 1.67 0.71 -

C/I for Zone 2.1 Zone 0.0 on Zone 0.1 on Spot 0 off
Zone 1.0 on 1.00 0.56 2.50
Zone 1.1 on 0.38 0.29 0.50
Spot 1 off 1.67 0.71 -
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Fig. 4. Valid 3-spot combinations for a threshold σ = 0.30.

number of time slots necessary to fulfill the demand is 200,
since only one zone per spot can be active at any time. For
the first 100 time slots, the combination in Fig. 4(a) can be
used to satisfy the demand of zones 0.0, 1.1 and 2.0, and for
the second 100 time slots, the combination in Fig. 4(c) can be
used to satisfy the demand of zones 0.1, 1.0 and 2.1, which
solves the problem.

b) Case of a more complex demand: Consider here a
demand slightly more complex than in the previous case, as
can be seen in Table IV. The demand per spot is 200 time
slots, as in the previous case, but more than 200 time slots
are needed to satisfy all zones, because the 3 combinations
of Fig. 4 cannot be used as efficiently as before. It is clear
that the combination in Fig. 4(a) can still be used for 50
time slots to satisfy the demand of zone 0.0, and zones 1.1
and 2.0 are left with 100 time slots demand to satisfy. Also,
the combination in Fig. 4(c) can be used for 50 time slots
to satisfy the demand of zones 1.0 and 2.1, and zone 0.1
is left with an unsatisfied demand of 100 time slots. To
complete the allocation problem, we can use combinations
with only two active zones, allocating 50 time slots to each
one of the following combinations: (i) zones 0.1 and 1.1;
(ii) zones 0.1 and 2.0; and (iii) zones 1.1 and 2.0. Observe

TABLE IV

DEMAND OF THE DIFFERENT ZONES (EXPRESSED IN TIME SLOTS).

Zone 0.0 0.1 1.0 1.1 2.0 2.1
Demand 50 150 50 150 150 50

TABLE V

A MORE EFFICIENT SOLUTION TO THE EXAMPLE.

Number of time slots Family to use Active zones
100 Zones 0.0, 1.1, 2.0 Zones 0.0, 1.1, 2.0
50 Spot 0, Zones 1.0, 2.1 Zones 0.1, 1.0, 2.1
50 Spots 0, 1 Zones 0.1, 1.1
50 Spots 0, 2 Zones 0.1, 2.0

that the allocation procedure consists mainly in allocating
250 time slots to combinations of zones, provided that these
combinations are valid.

Looking at Fig. 4, we can see that combinations (b) and (c)
differ only on spot 0. It is therefore possible to merge these
combinations into one, composed of any zone of spot 0 and
zones 1.0 and 2.1. Hereafter, we will use the term “family”
to refer to such combination of zones/spots. Observe that it
is possible to use a given family when allocating slots, even
though not all zones within this family need to be active. This
observation will add flexibility to the solution. Using the same
amount of time slots as before, that is 250, the allocation
to satisfy the demand of Table IV could now be satisfied
as expressed in Table V. In this solution, zone 0.0 will be
assigned 50 extra time slots.

IV. SOLVING THE GENERAL CASE

As seen in the previous section, to solve the allocation
problem in the simple case where there is only one type of ter-
minals, we have first computed the carrier-to-interference ratio
for all zones which let us identify the valid combinations, or
families, of zones that are allowed to transmit simultaneously.
Second, we have allocated a certain number of time slots for
some families in order to satisfy the demand of all zones. To
solve the allocation problem in general (arbitrary number of
zones/spots, arbitrary demand and multiple types of terminals)
we will have to (i) generate families of spots/zones that are
valid (see Section IV-A), (ii) identify the amount of time slots
of each type to allocate to which families in order to satisfy
the demand (see Sections IV-C-IV-H), and (iii) allocate the
required number of time slots by placing the carriers in the
radio channel and the time slots in the corresponding time
frames (see Section IV-B). Section IV-I presents a wrap-up of
our approach.

A. Solving interference problems

Our approach is mainly based on the following key obser-
vation: for any time t and any frequency f , there exists at least
one family of zones that can be simultaneously active. Let Z
denote one such family, we therefore have:

G(z)∑
z′∈Z I(Spot(z), z′)

≥ σ ∀z ∈ Z. (5)



(b) a possible configuration 5/7(a) a possible configuration 6/7
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Fig. 5. Example of configurations 6/7 and 5/7.

Naturally, there could be in family Z no more than one (active)
zone per spot. This concept of concurrent transmissions is
somehow similar to graph coloring [7], where families of
independent edges are used to solve the problem.

In practice, there is a very large number of families checking
this criterion. It is possible to have families that differ only by
one spot, according to which zone in the spot is active (see
the example in Section III). As already said, such families
can be merged in a single family. To solve the interference
problem, we will generate a certain number of families, that
will be used later on in the time slot allocation procedure.
It is crucial to generate in the first place the most efficient
families, or in other words, the families having the highest
possible number of zones that can be active in (t, f), while
presenting the highest flexibility.

1) Generating generic families: The threshold of interfer-
ence σ is given as an input. If σ is very weak (for instance
10dB, which is not very realistic), all spots can be active in
(t, f). As σ increases, less spots can be active simultaneously
using the same frequency. The difficulty here is to have the
maximum number of active spots/zones for a given σ.

Recall the allocation criterion given in (4). It makes the
distinction whether the interfering terminal is in a neighbor-
ing spot or not. Terminals in the vicinity are considered to
interfere more than remote terminals. It then comes out that
inactive spot should be geographically distributed for increased
efficiency. We consider situations where only a restricted set
of spots are inactive. We call a configuration 6/7 (resp. 5/7,
4/7) when at most 6 (resp. 5, 4) spots over a vicinity of 7 are
active. We illustrate in Fig. 5 such possible configurations.
We translate the illustrated patterns (that have maximality
properties on the infinite grid) to obtain a limited but efficient
series of families.

2) Status of a spot: We have introduced efficient spatial
configurations that can yield several families of active zones.
Indeed, spots are usually divided into few zones (typically
2 or 3), and there are several possibilities for having a spot
active. As (i) the power gain depends on the geographical zone
within a spot, and (ii) the interferences generated over the
spot depend on which zones have transmitted the interfering
signals, it is quite possible that one zone in a spot does not
check the allocation criterion (4) while another zone in the
very same spot does. Therefore, every spot will be assigned
a status describing which zones can potentially be active. If
a spot s has nbZones(s) zones, then its status takes value in
the interval [0, 2nbZones(s)−1]. For instance, the status of a 3-

zone spot could take on one of the following values (a 2-zone
spot could take on one of the first 4 statuses in the list):

0: the spot is inactive;
1: zone 0 checks (4), hence it could transmit;
2: zone 1 checks (4), hence it could transmit;
3: zones 0 and 1 check (4); either one could transmit;
4: zone 2 checks (4), hence it could transmit;
5: zones 0 and 2 check (4); either one could transmit;
6: zones 1 and 2 check (4); either one could transmit;
7: all zones check (4); either one could transmit;

Instead of generating families of zones, we will generate
families of spots and assign to each spot the convenient status
given the allocation threshold σ. Allocating time slots to a 3-
zone spot with status 7 would actually be done by allocating
the time slots to either one of its 3 zones, which increases
freedom and improves the efficiency of our approach.

3) Simplifying the computation of the allocation criterion:
At the beginning of Section IV-A, we have defined a family
of zones Z satisfying (5). In this section, we will derive a
similar equation for families of spots. Instead of checking the
allocation criterion (4) for every zone, we will have to check
it for every spot. To be able to check if a spot could be active
and decide which status it could have, we assign to every spot
a gain and an interference over other spots.

The gain of a spot is defined as the minimum value of the
gains of its zones which are active (information available from
the status of the spot). Let G(s) denote the spot gain, we can
write

G(s) = min
z in s, active

G(z).

The interference generated over spot s by spot s′ is defined as
the maximum value of the interferences generated by all zones
of spot s′ that could potentially be active. It will be denoted
as I(s, s′). We have

I(s, s′) = max
z′ in s′, active

I(s, z′).

Recall the sums I1(z) and I2(z) introduced in (2)-(3). They
represent the overall interference generated by active zones in
neighboring spots and in all spots, respectively. Let I1(s) and
I2(s) be their equivalent at the spot level:

I1(s) =
∑

s′neighbor, active

I(s, s′), I2(s) =
∑

s′ active

I(s, s′)

Similarly to what we did at the zone level, the total level of
interference generated over a spot s will be computed as:

I(s) = γ I1(s) + (1 − γ) I2(s)

Thus, a spot is said to be valid if it checks the following
criterion

G(s)
I(s)

≥ σ. (6)

The advantage of using (6) rather than using (4) will be clear
from the following example. Consider a spot whose status is
7. This means that it has 3 zones that could all be active (of
course, not together). To check this hypothesis, one would



have to check if each zone satisfies the criterion (4). It is
definitely more advantageous to use instead the criterion (6)
as the computation time would be greatly reduced. Note that
(6) implies (4). For any active zone z in spot s:

G(s)
I(s)

=
G(s)

γ I1(s) + (1 − γ) I2(s)

≤ G(z)
γ I1(z) + (1 − γ) I2(z)

=
G(z)
I(z)

.

For flexibility reasons, we would like to have all spots
in a family have a status equal to 2nbZones(s) − 1. To that
purpose, we will first generate families of spots, all having
the highest status, and then test their validity. That can be
done by checking the allocation criterion (6) for all spots in a
family.

4) Heuristics for generating valid families: We want to
maximize the number of active zones, we start by generating
the 7 families 6/7 in which any active spot s has the status
2nbZones(s) − 1 while inactive ones have status 0. We then
successively test the validity of these families and separate
them in two pools, one for valid families and the other for
non-valid families. We do the same with families 5/7, 4/7,
etc.

To make a non-valid family become valid, some of its active
zones should be deactivated. For instance, if a 3-zone spot
having status 7 (any one of its 3 zones could be active) is not
valid, then we should test the validity of its family when its
status is 3, 5 or 6 (zone 2, zone 1 or zone 0 are deactivated).
The following heuristic is used:

1) randomly choose a non-valid family;
2) as long as the family is not valid, do:

a) randomly choose a spot,
b) if its status is non-null and the spot is non-valid,

deactivate at random one of the active zones; keep
a record of the spot identifier;

3) try, for a certain number of times, to reactivate zones
which were deactivated in step 2 and test the validity
of the resulting family after each try: an amendment is
adopted only if the family is valid;

4) compare the valid family obtained in step 3 with those
in the pool of valid families. In case of redundancy,
increment a counter of redundancies and reject the
family; otherwise, add the family to the pool of valid
families. Return to step 1 to generate another family.

This algorithm stops either when the desired number of valid
families is reached, or when the counter of redundancies
has reached a given maximum value. At this point, we have
generated valid families of spots. In every spot s of a valid
family, 0, . . . , nbZones(s) zones are candidates in the time
slot allocation procedure.

B. Placing the carriers in the radio channel

The constraints on the radio channel deal with the spot
bandwidth B and the time frame length T . When planning the
allocation of a time slot from a given carrier to a given type of

terminal, one schematically uses a rectangle of a fixed surface
equal to ∆ in the time-frequency space (recall Section II-D).
See for instance zone 0.1 in Fig. 7 in which two different types
of terminals are used.

Thus, if the types of terminals are denoted by subscripts
from 1 to τ (ordered by decreasing bandwidth), and if xtk

denotes the number of time slots of type tk used in the spot,
we then have: ∑

k∈{1,...,τ}
xtk ≤ BT

∆
.

In other words, the maximal surface, in the time-frequency
space, that can be allocated to a spot is equal to the product
BT , yielding an upper bound equal to BT/∆ on the number
of time slots that can be allocated.

The following result is used to establish the properties of a
filling of time slots:

Lemma 4.1: Let G = (V,E) be a directed graph with V =
{t1, . . . , tτ} and E = {(tj , tk) : j < k}. Define w(j,k) =

w(tj , tk) = tb
j

tb
k

− 1. Then any path in G from t1 to tτ has a
weight less than w(1,τ).

Proof: Note that G is transitive. For each x and y such
as x ≥ 1 and y ≥ 1, we have x− 1 + y − 1 = xy − 1− (x−
1)(y − 1) ≤ xy − 1. Thus, if (ti, tj) ∈ E and (tj , tk) ∈ E,
then (ti, tk) ∈ E and w(i,k) ≥ w(i,j) + w(j,k). Which implies
the result, by transitivity.

Thereafter, we show that a path in this graph corresponds
to losses due to the geometrical structure of the problem. Any
change in type during the placement process will incur a waste
in space in the time-frequency space. Changing from type ti
to type tj (j > i) will cause at most an unused space equal to
w(i,j). To minimize the space that could be lost, the best thing
to do is to place the types monotonically. We have opted to fill
the time-frequency space from left to right and top to bottom
using the ascending order of types. The maximum number of
unused time slots with this policy is given by the weight along
a path in G that goes from t1 to tτ . We know from Lemma
4.1 that this maximum is less than w(1,τ).

Result 4.1: It is feasible to place, in the time-frequency
space, xtk time slots of type tk, for k ∈ 1, . . . , τ if∑

k∈{1,...,τ}
xtk ≤ BT

∆
− w(1,τ).

This equation is therefore a sufficient condition for a place-
ment algorithm.

Proof: We convey the reader to the book chapter [4] for
the proof.

Therefore, let δ = w(1,τ). Observe that for the data in
Table I, this constraint allows to solve the problem of the
placement by sacrificing less than w(1,4)/3456 = 0.897%
of the bandwidth. It might be possible to do even better
than that by adopting a lower value of δ, assuming that the
arrangement will still be feasible. In practice, one can carry
out the placement according to many other policies, which
may lead to a waste smaller than w(1,τ).
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Fig. 6. Sample output of the placement algorithm.

Due to space limitations, we will not write here the
placement algorithm. The interested reader may refer to [4]
for a simple version of it. We will therefore just give an
example of the final stage of an algorithm working with 3
types of terminals, as seen in Fig. 6. The rectangles drawn
in dotted lines are “lost spaces” whereas the rectangles in
continuous features are time slots of different types placed on
the time-frequency space. The selected example being very
small (demand of few time slots of the same type) and the
configuration being voluntarily bad, the lost space is here very
significant (8 time slots out of 33 are unused). The placement
represented is based on an algorithm which fills the space
from left to right and “jumps” to the order of multiplicity
when there is a change in the type. The orders of multiplicity
in this example are 8 between types 1 and 2, and 2 between
types 2 and 3.

C. Satisfying the global demand

Instead of allocating time slots of a certain type to a
spot, we propose to allocate slots to typified families, i.e.,
simultaneously in all spots. In a typified family, distinct spots
can be assigned different types. If family Fi assigns type tk
to spot s, we will note FT

i (s) = tk.
Initially, we will consider families with only one type. Thus,

for a family Fi, we can choose a type of terminal tk which
will be used on all concerned spots (another family Fi′ would
use another type tk′). In other words, ∀s, FT

i (s) = tk. Such
families will be denoted as 1-typified families. We place this
1-typified family, in the time-frequency space, at exactly the
same place for all concerned spots, implying that all spots
would use the same frequency band. In this way, we are
sure that the allocation criterion is respected, because of the
definition of a family. Over other frequency bands, another
family could be used to satisfy another (or the same) demand.

Fig. 7 shows a possible placement of the radio resources. If
FT

i (s) = tk, we will note (Fi, tk) in the rectangle concerned.
Thus, this notation is found in all active zones of a family (for
instance, zones 0.1 and 2.0 for family F2). The constraints of
capacity on each zone, in terms of bandwidth and time frame
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Fig. 7. A global example of arranging families.

are ensured by the constraint of surface of a rectangle (Fi, tk)
on the rectangle B × T .

A family can possibly have several types of terminals
according to its different spots. It is the case, for example, for
the rectangles (F3, t1) and (F3, t2); we will say that family F3

is 2-typified with type t1,2. These families have a specific order
of multiplicity. If tk is the type in the family having the larger
bandwidth and tk′ that with the narrower bandwidth, then the
order of multiplicity of the family is FM

i = tb
k

tb
k′

∈ IN∗ − {1}.

D. Linear program

In this section, we define the linear program used to com-
pute a solution, based on the typified families described earlier.
Without loss of generality, we consider the case where each
spot has three zones. We model the constraints for satisfying
demands with Eqs. (8)-(10). Equation (7) provides the time-
frequency space constraint of Result 4.1.

The variables of the linear program, denoted P , are the xFi
,

which represent the number of times that the typified families
are used. They must be integer variables. Let I be the current
set of typified families used to solve P . Recall that d(z, tk)
is the demand for type tk, as defined in Section II-D. Let
FA

i (z) = on denote if zone z could be active, and FA
i (z) = off

otherwise. P is then defined as min J where

J =
∑
i∈I

FM
i xFi

≤ BT

∆
− δ (7)

∀k ∈ [1, τ ], ∀z ∈ s,∑
i∈Γ(z,k)

FM
i xFi

≥ d(z, tk) (8)

∀k ∈ [1, τ ], ∀z, z′ ∈ s,∑
i∈Γ(z,z′,k)

FM
i xFi

≥ d(z, tk) + d(z′, tk) (9)

∀k ∈ [1, τ ], ∀ s,∑
i∈Γ(z,z′,z′′,k)

FM
i xFi

≥ d(z, tk) + d(z′, tk) + d(z′′, tk) (10)



with:

Γ(z, k) = {i ∈ I/FT
i (s) = tk, FA

i (z) = on}
Γ(z, z′, k) = {i ∈ I/FT

i (s) = tk,

(FA
i (z) = on or FA

i (z′) = on)}
Γ(z, z′, z′′, k) = {i ∈ I/FT

i (s) = tk,

∃z ∈ s/FA
i (z) = on}

It is obvious that if (7) is not satisfied, no integer solution
can be found. Therefore, we choose to consider the occupied
surface as the objective function to minimize. Minimizing J
results in the maximization of reuse of the resources and thus
in the maximization of the system throughput.

Result 4.2: Equations (8)-(10) guarantee the satisfaction of
the demand in type tk.

Proof: The satisfaction of the demand in type tk can be
computed on a flow from a source s, while passing by 3 arcs
(or nbZones(s), if there are nbZones(s) zones) of respective
capacities d0 = d(z0, tk), d1 = d(z1, tk), and d2 = d(z2, tk),
as seen in Fig. 8. The capacities of the other arcs, denoted
by C[z0, z1, z2], C[zj , zj′ ] for j �= j′, {j, j′} ⊂ {0, 1, 2} and
C[zj ], j ∈ {0, 1, 2}, are given by:

C[z0, z1, z2] =
∑

i

xtk

Fi
× U [Fi, {z0, z1, z2}]

C[zj , zj′ ] =
∑

i

xtk

Fi
× U [Fi, {zj , zj′}]

C[zj ] =
∑

i

xtk

Fi
× U [Fi, {zj}]

where U [Fi, Z] is equal to 1 when Fi could activate either
one of the zones of the set Z, and to 0 otherwise.

The capacities of all other arcs in the figure are assumed
infinite. Indeed, by the theorem of Ford Fulkerson [8] (or in
its version of Menger [9]), there is a maximum integer flow
from the source to the sink, which is equal to the cardinality
of a minimal cut. However, there are 8 cuts of finite size (or
2nbZones(s) in the case of nbZones(s) zones), according to
the choice of the arcs of capacity d0, d1 and d2. One of these
equations is trivial since it stipulates that the flow of the zones
must be less than d0 + d1 + d2. The 7 others are checked by
our linear program.

E. Optimal typification of families

There exists τN different ways to typify a given non-typified
family Fi. As it is too much to include in P we will use the
concept of generation of columns [10]. A column corresponds
to one valid typified family. The optimal float solution is
obtained when I is the set of all valid typified families, a set
that is too large to be used in practice. Actually, the process
initializes I as the set of homogeneously typified families.
However, given a restricted I, dual properties allow to identify
new columns to be added to I to improve the solution.
We show in the following that dual properties characterize
non-typified families, which greatly simplifies the problem of
identifying an optimal I.

C[z0, z1, z2]

C[z1]

d0

d1

d2

C[z0, z2]

C[z2]

C[z0, z1]

C[z1, z2]

C[z0]

Fig. 8. Modeling the constraints of zones as flows.

Let P be rewritten as follows:

Minimize f = c · x
Such that

{
Ax = b
x ≥ 0

Let AB denote the matrix extracted from the corresponding
system of equations, and xB be the vector of the associated
families. Let xN denote the vector of the other families,
and AN be the corresponding matrix. In the same way, we
subdivide c in cB and cN . We can write

ABxB + ANxN = b and f = cBxB + cNxN .

It comes then

xB = A−1
B b − A−1

B ANxN ,
f = cBA−1

B b + (cN − cBA−1
B AN )xN .

The equations above return a basic solution to the system with
xN = 0. The system is optimal if and only if

cN − cBA−1
B AN ≥ 0.

Thus, the system is improvable if and only if a negative coeffi-
cient can be found in the above vector. We further decompose
AN by writing AN = [Aα1 · · ·Aαj

· · ·Aαm
] where m is the

number of columns of AN , each column corresponding to a
family with subscript αj . In particular, we have cαj

= FM
αj

.
Result 4.3: For any non-typified family F , there exist

a constant KF > 0 and a function κF , mapping pairs
(type, Spot) to positive real numbers, such that for all typified
families deriving from F , we have

ci − cBA−1
B Ai = FM

i

(
KF −

∑
s spot

κF (FT
i (s), s)

)
.

Proof: Observe that, for a given line of A corresponding
to a family Fi, denoted as Ai, all coefficients are either 0 or
FM

i . In addition, if Fi and Fj are typified families deriving
from the same non-typified family, then Ai/FM

i = Aj/FM
j .

Also, if ci and cj are the coefficients of c corresponding to
Fi and Fj , then ci/FM

i = cj/FM
j . Observe that a spot s

corresponds specifically to certain lines of A, given by PsA
where Ps is the corresponding projection. If Fi and Fj derive
from the same non-typified family and FT

i (s) = FT
j (s), then



PsAi/FM
i = PsAj/FM

j . Last, defining the following con-
stants KF := ci/FM

i and κF (FT
i (s), s) := cBA−1

B PsAi/FM
i

yields the result.
The optimal solution of our program is obtained when I is
the set of all typified valid families. Since this set is too large
to be used for a computation, we simply start with a restricted
I which is progressively augmented to reach the optimum.

Result 4.4: The program P with the restricted set of fami-
lies I is improvable with respect to the set of all valid families
if there exists a non-typified family F such that

KF −
∑
s spot

max
t type

κF (t, s) < 0. (11)

If we find one or several non-typified families which show
that the system is improvable, we can strictly improve the
solution by introducing the corresponding typified families
(with the types found by the above maximization) into the
linear program. This property considerably reduces the number
of searches to be made in order to reach the optimal solution.
In practice, as long as it is assumed that the solution is im-
provable, it will be possible to restrict the search by choosing a
type for all spots in a subset of {t1, . . . , tτ}, reducing thereby
the coefficient of multiplicity of the derived families and thus,
the difficulty of the integrity constraints.

F. The slave program

Given a set of non-typified valid families, the slave program
assigns the types to the families and returns the exact solution
of P among all possible types. At first, the families are
1-typified with all possible types. The solution returns a
dual which allows to derive the improving 2-typified families
according to Section IV-E. Then the linear program is solved
again and eventually the dual will generate new 2-typified fam-
ilies. The process is iterated until no new 2-typified families
are obtained, which means that we have reached the optimal
solution given (i) the current set of non-typified families and
(ii) the fact that only 2-typified families are used. The same
process is done until τ -typified families are considered.

G. The master program

In this section, we show how we exploit the properties
derived in Section IV-E to find new valid families that will
eventually lead to one I having the optimal solution.

A spot s being either inactive, or either one of its
nbZones(s) zones being active, it will have nbZones(s) + 1
possible states. Hence, for N spots, all having the same num-
ber of zones, there will be (nbZones(s) + 1)N combinations
to test. For instance, there will be 48 = 65536 combinations to
test for an 8-spot configuration in which each spot has exactly
3 zones, which is very reasonable. However, when the number
of spots increases, it will no longer be reasonable to generate
all families, which makes it difficult to find the optimal float
solution.

Fortunately, for moderate numbers of spots, we will still be
able to derive an optimal solution in a relatively small time,
thanks to a pruning technique described hereafter.
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Fig. 9. Pruned search of improving families.

• A “pruner” selects zones within a spot. If several zones
have the same gain, then only one of these is selected for
an exhaustive search. This step is called “pruning”.

• The p families with the highest “improvement potential”
are selected. These are the ones having the highest sum
in (11).

• Every selected family is “reaugmented” whenever pos-
sible. In other words, if there are zones satisfying the
allocation criterion without invalidating the family, then
these are incorporated in the family.

The valid families generated by this technique are added to
I and used in the next iteration to solve the linear program.
This methodology is depicted in Fig. 9.

H. Integer solution to P
The resolution of the slave programs enables the generation

of the columns giving the best floating solution in each case.
All these columns are then introduced into a new integer linear
program, and are candidates to return the best possible integer
solution. We stress that a solution exists with a number of
non-zero variables xFi

at most equal to the number of lines
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[11, Theorem 9.3, page 145]. For instance, in the case of 8
spots, we know that at most 224 floating variables will be used
(896 in the 32 spots case), and therefore a simple ceiling of
the variables will give a solution with all variables integer and
multiple of 32 at less than 2.1% of the float solution (8.3% in
the 32 spots case).

In practice, the resolution of the linear program, using the
software Cplex CONCERT 8.0, returns an integer solution,
which we arbitrarily fix at 1% of the optimal solution of
the float problem. Note that solving completely the problem
P , using the columns candidates, cannot be achieved in a
reasonable time.

I. Algorithm wrap-up

This part sums up the whole behavior of our algorithm.
Each part is represented in Fig. 10 by a rectangle (resp. an
oval) corresponding to a part of the process (resp. an action
or a decision). We also show the interaction between the
master and the slave explained in Sections IV-G and IV-F.
The algorithm starts in the leftmost rectangle. We first generate
valid but non-typified families as described in Section IV-A.
Then, the master program gives directly these families to the
slave. The slave program operates as described in Section IV-F:
the families are typified, the linear program P is solved and the
slave iterates until reaching optimality. The families involved
in the solution are stored for the final integer computation.
Afterwards, the master program checks the optimality of the
solution given by the slave using the criterion (11). If the
optimality is not reached, the pruning technique described
in Section IV-G is performed, generating new families. The
master program then calls again the slave, giving it the new
families generated. The master/slave process continues until
optimality is reached. Next, the final integer linear program
is solved as explained in Section IV-H. Finally, we achieve
the placement of the resulting number of typified time slots
as described in Section IV-B.
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Fig. 11. A sample resource allocation (satellite’s point of view).

V. NUMERICAL RESULTS

This section provides some numerical results returned by
our approach. We have tested several configurations ranging
between 8 and 32 spots. The zones demand has been gener-
ated according to examples previously provided by ALCATEL

SPACE INDUSTRIES. The interferences (in dB) as well as
the gains (also in dB) were drawn from uniform distri-
butions, according to specifications provided by ALCATEL

SPACE INDUSTRIES. The global interference was considered
to be generated mostly by the spots in the vicinity, as the
interference generated by remote spots was reduced by 15%
(γ = 0.85).

Our program outputs a time-frequency plan showing the
slots allocated, as it can be seen in Fig. 11. The time-frequency
space therein depicted shows results in the same way as in
Fig. 6. Real data, provided by ALCATEL SPACE INDUSTRIES,
were used as input to our program and the results are drawn
to scale. The lost space here consists of only 4 time slots.

A. Results for 8 spots

In the case where there are only 8 spots per color, our
program succeeds in computing the optimal floating solution in
about one minute when running on Pentium III machines. This
case is particularly interesting as it enables a precise analysis
of the effect of the allocation threshold.
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TABLE VI

THRESHOLD VALUES AND FAMILIES INVALIDATED (X=ZONE OFF).

spot 0 spot 1 spot 2 spot 3 spot 4 spot 5 spot 6 spot 7
σ 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

373 X X X X
373 X X X X
418 X X X
423 X X X
450 X X X X
450 X X X X
450 X X X X
469 X X X X
472 X X X X
472 X X X X
472 X X X X
472 X X X X
490 X X X
496 X X X X
501 X X X X
505 X X X X
510 X X X

We have computed the minimal surface, in the time-
frequency plan, that is needed to satisfy the demand, for
several values of the allocation threshold σ. The results are
plotted in Fig. 12. This figure clearly highlights the fact that
the minimal surface increases abruptly around certain values
of the threshold. Indeed, at some point, the threshold becomes
too high impairing the use of some families that will no
longer be valid at the considered threshold. The “loss” of
these families degrades the solution, yielding a larger minimal
surface. Table VI reports which families become no longer
valid at some threshold values.

As a consequence, one is able to highlight the configurations
of interferences which block the generation of good solutions.
This result has obviously a very strong impact on the design
of antennas.

B. Results for 32 spots

For a configuration with 32 spots, we recommend a non-
optimal approach using a restricted number of families. We
stick to our real-time constraints that consist in obtaining a
solution in a few minutes.

Fig. 13(a) depicts the amount of time slots needed to satisfy
the demand as a function of the number of valid families used,
for several threshold values. Observe that when the pool of
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Fig. 13. Results for 32 spots.

families used is larger, the required amount of time slots to
satisfy the demand gets smaller. It is therefore more efficient to
use a larger pool of families. Observe as well that the solution
is more efficient when the allocation threshold σ is smaller, re-
gardless of the number of families used. This observation does
not come as a surprise. It is obvious that smaller thresholds
would allow a larger number of simultaneous transmissions.
Every family would therefore include a larger number of zones
that could be active, increasing the efficiency of their use.

As written previously, a larger pool of families improves
the solution as it lessens the minimal amount of time slots to
be allocated. However, this enhancement comes at the cost of
an increased solving time, as it can be seen in Fig. 13(b). This
figure plots the solving time (over Pentium III machines) as a
function of the pool size, for several threshold values. Observe
that, for the same number of families used, the solving time
increases as the threshold values increases. This is mainly due
to the time taken for generating the required amount of valid
families. For larger thresholds, much more time is needed to
generate valid families, as the number of non-valid families
gets larger. This is why the difference, between solving times
for different thresholds, increases as the number of families to
generate increases (see Fig. 13(b)).

In practice, there is a trade-off between the solving time and
the minimal amount of time slots to allocate. For the same
number of families used, a small solving time yields a large
amount of time slots to satisfy the demand, whereas large
solving times yield resource economy. It is then up to the
satellite operators to decide for the optimal number of families
to use, according to their priorities.



VI. CONCLUSION

In this paper we have devised a novel resource allocation
algorithm for MFTDMA satellites. We have considered a more
accurate model for satellite communications, first by introduc-
ing a realistic modeling of the interferences that are generated
by active terminals. Second, we have considered the fact that
terminals have specific transmission’s capabilities, which is
translated into demands of different types of communications.
In this context, our model is much more general than the ones
found in the literature (refer to [4] for a survey).

We have first introduced the concept of non-concurrent
transmissions with the use of families of spots that could
transmit simultaneously at the same frequency. These families
are then used to allocate time slots to multiple terminals
increasing the efficiency of the algorithm. The total demand
is satisfied by judiciously placing the different carriers in the
radio channel, and the time slots in the corresponding time
frames. A linear program is used to compute the number of
typified families to use. A column generation process improves
these families and selects the good candidates for the last
integer programming.

We have shown that with this solution, we can arrange
the different carriers in the bandwidth with a less than 1%
waste. Our numerical results for a relatively small number
of spots have shown that some interference configurations
are harmful, in the sense that they impair the use of some
families, hence, degrading the efficiency of the solution. For
a large number of spots, our results show that a large number
of families can improve the efficiency of the solution at the
cost of increasing the solving time. Therefore, a trade-off has
to be found according to the priorities of the satellite operator.
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