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Abskuct- We introduce a discrete-time model of FAST 
TCP that fully captures the effect of self-clocking, and 
compare it with the traditional continuous-time model. 
While the continuous-time model predicts instability for 
homogeneous sources sharing a single link when feedback 
delay is large, experiments suggest otherwise. Using the 
discrete-time model, we prove that FAST TCP is locally 
asymptotically stable in general networks when all sources 
have a common round-trip feedback delay, no matter how 
large the delay is. We also prove global stability for a 
single bottleneck link in the absence of feedback delay. 
The techniques developed here are new and applicable to 
other protocols. 

lnder Terms- Congestion control, FAST TCP, Local 
stability, Global stability 

I. INTRODUCTION 
Congestion control is a distributed feedback algorithm 

to allocate network resources among competing users. 
The algorithms in the current Internet, TCP Reno and 
its variants, have prevented severe congestion while 
the Internet underwent explosive growth during the last 
decade. However, it is well-known that these algorithms 
do not scale as bandwidth-delay product of the Internet 
continues to grow 181, 1131. This has motivated several 
recent proposals for congestion control of high speed 
networks, including HSTCP [6 ] ,  STCP [ll], FAST TCP 
[9], and BIC TCP [ 191 (see [9] for extensive references). 
Local stability of FAST TCP in the absence of feedback 
delay is proved in 191 for the case of a single link. In this 
paper, we extend the analysis to local stability for general 
networks with feedback delay and global stability on a 
single link without feedback delay. 

Most of the stability analysis in the literature is based 
on the fluid model introduced in [SI (see surveys in 
[12], [lo], [16] for extensions and related models). A 
key feature of many of these models is that a soutce 
controls its sending rate directly', and that the queueing 
delay at a link is proportional to the integral of the 

'Even when the congestion window size is used as the control 
variable. sending rate is often taken to be the window normalized by 
a consdmt round-trip time, and hence a source still controls its rate 
directly. 

excess demand for its bandwidth. In reality, a source 
dynamically sets its congestion window rather than its 
sending rate. These models do not adequately capture 
the self-clocking effect where a packet is sent only 
when an old one is acknowledged, except briefly and 
immediately after the congestion window is changed. 
This automatically constrains the input rate at a link 
to the link capacity, after a brief transient, no matter 
how large the congestion windows are set. Recently, 
a new discrete-time link model is proposed in 1181, 
[9] to capture this effect, and experimental validations 
have been carried out in [18]. While the traditional 
continuous-time link model does not consider the self- 
clocking, our new discrete-time link model ignores the 
fast dynamics at the links. We fist present both models 
in Section 11. We then provide experimental results that 
show that, despite errors in these models, both of them 
track queueing delays reasonably well. 

In Section I11 we compare the predictions on stability 
using the continuous-time modei to experiments on the 
Dummynet testbed. When sources are homogeneous, 
i.e., have the same round trip delay, experiments so fru 
suggest that FAST TCP is always stable on a single 
link, while the continuous-time model predicts instability 
when the delay is large. 

We analyze the stability of FAST TCP using the 
discrete-time model in Sections IV and V. In Section IV, 
we prove the local asymptotic stability of FAST TCP in 
arbitrary networks when all sources have the same round- 
trip feedback delay, no matter how large the delay is. In 
Section V, we restrict ourselves to a single link without 
feedback delay and prove the global stability of FAST 
TCP. The techniques developed in this paper are new 
and applicable to analyzing other protocols. 

Finally, we conclude in Section VI with limitations of 
this paper. 

11. MODEL 

A. Notation 
A network consists of a set of L links indexed by 1 

with finite capacity cl. It is shared by a set of N unkasl 
flows identified by their sources indexed by i .  Let R be 
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the routing matrix where Rli = 1 if source i uses link 1, 
and 0 otherwise. 

FAST TCP updates its congestion window every fixed 
time period. We use this update period as lime unit. All 
the time variables are measured in this time unit. 

Let di denote the round-trip propagation delay of 
source i ,  and q i ( t )  denote the round-trip queueing deiay. 
The round-trip time is given by Ti(t) := d; + q i ( t ) .  We 
denote the forward feedback delay from source i to link 
I by TL, and the backward feedback delay from link 1 to 
source i as 3:. The sum of forward delay from source 
i to any link 1 and the backward delay from link 1 to 
source i is fixed, i.e., Ti := T~~ + rk for any link 1 on 
the path of source i. We make a subtle assumption here. 
In reality, the feedback delays q<, 7; include queueing 
delay and are time-varying. We assume for simplicity 
that they are constants, and mathematically unrelated to 
Ti(l). Later, when we analyze linear stability around the 
network equilibrium in the presence of feedback delay, 
we can inlerpret ri as the equilibrium value of Ti. 

Let w,(l) be source %'s congestion window at time t .  
The sending rate of source i at time t is defined as 

f 

The assregate rate at link 1 is 

i 

Let p l ( t )  be the queueing delay at link 1 .  The end-to-end 
queueing delay qi( t )  observed by source .i is 

(3) 

B. Discrere and continuous-time models 
FAST TCP source periodically updates its congestion 

window w based on the average RTT and estimated 
queueing delay. The pseudo-code is: 

where y E (0:1]. baseRTT is the minimum RTT 
observed, and Q is a constant. 

We model this by the following discrete time equation 

where wi(t)  is the congestion window of the ith source, 
y E (0,1], and  CL^ is a constant for source i .  The 
corresponding continuous-time model is 

where the time is measured in the unit of update period 
in FAST TCP. 

For the continuous-time model, queueing delay has 
been traditionally modelled with 

However, TCP uses self-clocking: the s o m e  always 
tries to maintain that the number of packets in fly equals 
to the congestion window size. When the congestion 
window is fixed, the source will send a new packet 
exactly after it receives an ACK packet. When the 
congestion window changes, the source sends out bulk 
traffic in burst, or sends nothing in a short time period. 
Therefore, one round-trip time after a congestion window 
is changed, packet transmission will be clocked at the 
same rate as the throughput the flow receives. We assume 
that the disturbance in the queues due to congestion 
window changes settles down quickly compared with 
the update period of the discrete-time model; see [I81 
for detailed justification and validation experiments for 
lhese arguments. A consequence of this assumption is 
that the link queueing delay vector, p ( t )  = (pr( t ) ,  for 
all Z), is determined implicitly by sources' congestion 
windows in a static manner: 

where the qi is the end-to-end queueing delay given by 
(3). 

In sunmary, the continuous-time model is specified 
by (5) and ( B ) ,  and discrete-time model by (4) and (7), 
where the source rates and aggregate rates at links are 
given by (1) and (2), and the end-to-end delays are given 
by (3). While the continuous-time model does not take 
self-clocking into a full account, the discrete-time model 
ignores the fast dynamics at the links. Before compar- 
ing these models, we clari€y their common equilibrium 
structure. 

Theorem 1 ([9]). Suppose rhar rhe routing matrix R 
has full row rank. A uniqrte eyirilibriurn (x*,p*) of the 
nehvork exists, arid x' is the unique rrwirnizer of 

wish p* as the corresponding optinium of its Lagrangian 
dual. This implies in parricular that the equilibrium rate 
x+ is ai-weighted proportionally fair: 

C. Val idu tion 
The continuous-time link model implies that the queue 

takes infiniteIy amount of time to converge after a 
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window change. On the other extreme, the discrete-time 
link model assumes that the queue settles down in one 
sampling time. Neither is perfect, but we now present 
experimenral results that suggest both track the queue 
dynamics well. 

All the experiments reported in this paper are carried 
out on the Dummynet testbed [4]. A FreeBSD machine 
is configured as a Dummynet router which provides 
different propagation delays for different sources. It 
can be configured with different capacity and buffer 
size. In our experiments, the bottleneck link capacity 
is 800Mbps, and the buffer size is 4000 packets with 
fixed packet length of 1500 bytes. A Dummynet monitor 
records the queue size every 0.4 second. The congestion 
window size and RTT are recorded at the host every 
5Oms. TCP traffic is generated using iperf. The publicly 
released code of FAST [5 ]  is used in all experiments 
involving FAST. We present two experiments to validate 
the model, one closed-loop and one open-loop. 

In the first (closed-loop) experiment, there are 3 
FAST TCP sources sharing a Dummynet router with 
a common propagation delay of 100ms. The measured, 
and predicted queue sizes are given in Figure 1. In the 
beginning of the experiment, the FAST sources are in 
the slow start phase, none of the models gives accurate 
prediction. After the FAST TCP enter the congestion 
avoidance phase, both models track the queue size well. 
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Fig. 1. Model validation: closed loop with FAST TCP 

To eliminate the modelling error in congestion window 
adjustment algorithm itself while validating the link 
models, we decouple the TCP and queue dynamics by 
using open loop window control. The second experiment 
involves three sources with propagation delays 50ms; 
lOOms and 150ms sharing the same Dummynet router. 

We changed the Linux 2.4.19 kernel so that the 
sources vary their window sizes according to the sched- 
ules shown in Figure 2(a). The sequences of congestion 

window sizes are then used in (1)-(2) and (6) to compute 
the queueing delay predicted by the continuous-time 
model. We also use them in ( l t ( 2 )  and (7) to compute 
the predictions of the discrete-time model. The queueing 
delay measured from the Dummynet, and those predicted 
by these two models are shown in Figure 2(b) which 
indicates that both models track the queue sizes well. We 
next analyze the stability properties of these two models. 
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(b) Queue size 

Fig. 2. 
the schedules in (a). Resulting queueing delays are shown in (b). ' 

Model validation: congestion window are set according to 

111. NUMERICAL SIMULATION AND EXPERIMENT 
WITH CONTINUOUS-TIME MODEL 

Using h e  standard technique, we can derive a suf- 
ficient condition for local stability of FAST TCP fb: 
a general network using the continuous-time model. 
The condition implies that FAST TCP will beconit: 
unstable when the ratio between the propagation delay 
and queueing delay is laqe. However our experiments 
of FAST TCP on the Dummynet testbed has always 
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been stable in the case of homogeneous sources and a 
single link even when the delay well exceeds the the 
threshold in the stability condition, We now present such 
an experiment which not only violates the local sta- 
bility condition, moreover, numerical simulation of the 
continuowlime model exhibits instability. Yet, the same 
network on Dummynet is clearly stable. This suggests 
that the discrepdncy is not in the stability theorem but 
rather in the continuous-time model. 

In our experiment, the sources have identical prop- 
agation delay of lOOms with a constant c)1 value of 
70 packets. They share a bottleneck with capacity of 
800Mbps. The simulations and experiments consist of 
three intervals. The interval Iength is 10 seconds for the 
continuous-time model simulation, and 100 seconds for 
the experiment2, Three sources are active from the be- 
ginning of the experiment, 7 additional sources activate 
in the second interval, and in the last interval, all sources 
become inactive except 5 of them. The simulation and 
experimental results are shown in Figure 3 and Figure 4 
respectively. 

When the ratio between the propagation delay and 
queueing delay is larse, the numerical simulation based 
on the continuous-time model exhibits periodic oscilla- 
tion. However, i n  the Dummynet experiment, FAST TCP 
is actually stable (see Figure 4).3 

We believe that the discrepancy is largely due to the 
fact that the continuous-time model does not capture 
the self-clocking effect accurately, Self-clocking ensures 
that packets are sent at the same rate as the goodput 
the source receives, except briefly when the window 
size changes. This self-clocking feature can actuatly help 
the system approach to an equilibrium. Indeed, for the 
case of one source one link, a discrete-event model is 
used in [18] to prove that TCP FAST and Vega is 
always stable regardless of the feedback delay. It also 
provides justification for the the discrete-time model (4) 
and (7) based on the self-clocking feature introduced in 
the last section. We now analyze the stability of this 
model. We will see that the discrete-time model predicts 
that a network of homogeneous sources with the same 
feedback delay is locally stable no matter how large the 
delay is, agreeing with ow experimental experience. 

*We use a long duration in the Dummynet experiment because a 
FAST TCP source takes longer to converge due to slow-stat which 
is not included in our model. 

3The rcgular spikes every 10 seconds in the queue size is probably 
due to certain background task in the sending host. 

(a) Queue size 

Fig. 3. Numerical simulations of FAST TCP 

Iv, LOCAL STABILITY I N  ARBITRARY NETWORK 
WITH COMMON FEEDBACK DELAY 

A network of FAST TCP sources is modelled by 
equations (3), (4), (7). This generalizes the model in 
[9] by including feedback delay. When local stability 
is studied, we ignore all un-congested links (links where 
prices are zero in equilibrium) and assume that equality 
always holds in (7). 

The main result of this section provides a sufficient 
condition for local asymptotic stability in general net- 
works with common feedback delay. 

Theorem 2. FAST TCP is Eocally sfable fur arbitrary 
nemarks if y E (0,1] and all soirrces have the same 
round-trip feedback del91 ri = r for  ull i. 

The stability condition in the theorem does not depend 
on the value of the feedback delay, but only on the het- 
erogeneity among them. In particular, when all feedback 
delays are ignored, ~i = 0 for all i, then FAST TCP 
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f The relation T~~ + TL = ~i gives 

& ( z )  = Rj(z-') . diag(z-T*) (9) 

Denote W ( z ) ,  Q ( z )  and P ( z )  as the corresponding Z- 
transforms of 6w(t) ,  6q( t )  and r5p(t) for the linearized 
system. Let q and w he the end-to-end queueing delay 
and congestion window at equilibrium. Linearizing (7) 
yields 

where the equality is used in (7). The corresponding Z- 
transform in matrix form is 

(IO) 

Er@7mN In* (LPC) 

(a) Queue size 
Rf ( .Z )D- ln / !w(Z)  - Rf(Z)BQ(Z)  = 0 

where the diagonal matrices B ,  D and A$' are: 

m 3 := diag ( (d, :o,)2) 1 h4 := diag ( d * d ; J  - 
5 D := diag(d,) 

fi 
d e IW 

z 
E 1IW 
I Since R f ( z )  is generally not a square matrix, we cannot 

cancel i t  in (10). 
Equauon (3) is already h e a r ,  and the corresponding 

2-transform in matrix form is sw 

Q(4 = Rb(4TP(z)  (1 1) 
b 

By combining (10) and (1 l), we obtain IM 13 
~UinmnlunP(elc1 

(b) Window size 

Fig. 4. Dummynet experiments of FAST TCP 

is locally asymptotically. This generalizes the stability 
result in [9]. 

Corollary 3. FAST TCP is  locallq. aqmpturically srable 
in the absence of feedback d e l q  for general nenvorks 
W i f h  an?, y E [O, 1). 

Solving this equation w i h  block matrix inverse gives the 
transfer function from W ( z )  to Q ( z ) :  

Qo = R;(z) (Rf(2)BR~(z))-lRf(z)D-1 
W ( Z )  

The 2-transform of the linearized congestion window 
update algorithm of FAST TCP is The rest of this section is devoted to the proof of 

we to the linearized and By combining the above equations, we get the open loop 

Theorem 2. 

use the generalized Nyquist criterion to derive a suffi- 
cient stability condition. Define the forward and hack- 
ward 2-transformed routing matrices R f ( r )  and R ~ ( x )  L ( z )  = - (y ( M  - D B R , T ( z ) ( R ~ ( t ) B R ~ ( z ) ) - '  

z W ( z )  = y (AlW(2) - DBQ(2))  + (1 - y)W(z) 

transfer function L(zt)  from w7(z) to w(z) as 

as: R j ( Z ) D - w )  -1- (1 - ? ) I )  z- l  

if RI; = I 
if Et[; = 0 

if R1; = 1 
if RI; = 0 

A sufficient condition for local stability can be developed 
for FAST TCP based on the generalized Nyquist criterion 
[3], [2]. Since any changes in the input w can at most 
give a finite change at the output. Therefore, the system 
is open loop stable. If we can show that the eigenvalue 
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loci of L ( P ' )  does not enclose -1 for w E [0,27;), the 
closed loop system is stable. Therefore, if the spectral 
radius of L(ej"') is strictly less than 1 for LC! E [ 0 , 2 ~ ) .  
the system will be slable. 

When z = eja', the spectral radii of L ( z )  and - z L ( z )  
are the same. Hence, we only need to study the spectral 
radius of 

J ( z )  : = y(M - DBRT(z) (R f ( z )B@(z ) ) - '  
R f ( Z ) D - I M  + (1 - 7 ) I  

Clearly, the eigenvalues of J ( z )  are dependent on 7. 
For any given z = P, let the eigenvalues of J ( z )  be 
denoted by Xi(y), i = 1 . . . N ,  as functions of y E (0,  11. 
It is clear that: 

IMr)i = IYXi(1) + (1 -711 
? l X i ( l ) l  + (1 - 7 )  I 

Hence if p(J (z ) )  < 1 for any z : eJw for y = 1, it will 
also hold for all 7' E ( O , l ] ,  Therefore, it suffices to study 
stability condition for y = 1. 

Let pi be the ith diagonal entry of matrix M with pi = 
d i / ( d ,  + qi). Denote pmax := maxi pi. Since the end- 
to-end queueing delay qi cannot be zero at equilibrium 
(otherwise the rate will be infinitely large}, we have gi > 
0 and pmaa < 1. The following lemma characterizes the 
eigenvalues of J ( z )  with y = 1. 

Lemma 4. When z = eJw wirh w E IO, 27r) and y = I, 
the eigenvalues of J ( z )  have rhe following properties: 

1) There are L zero eigenvalues with rhe corre- 
sponding eigenvectors as the columns of matrix 

2) The nonzeru eigenvalues have moduli less than 1 
i f  T,, - Tmin < 1/4, where Tmax = maxi 7; a2d 
Tmin = mlniTi 

M-l DBR?(Z). 

Prwof: At y = 1, the matrix J ( t )  is 

A4 - DBRF ( Z )  ( R f  ( Z )  B E r  (2)) - R f (  2 )  D-l M 

It is easy to check that: 

J ( z ) h l P D B R , T ( z )  = DBR;(z) - D a g ( z >  
= o  

Since M - l D B R r ( z )  has full column rank, it consists 
of L linearly independent eigenvectors of J ( z )  with cor- 
responding eigenvalue 0. This proves the first assertion. 

For the second assertion, suppose that X is an eigen- 
value of J ( z )  for a given z .  Define matrix A as 

A :  = J (  z )  -XI 
= (A4 - AZ) - OBR~(~)(~,(.~)BR~(Z))-~ 

R f ( Z ) D - l M  

which is singular by definition. From the matrix inver- 
sion formula (see e.g. [7 ] )  

( J  + 
= J-' - J-'E(N-l + SJ-lE)-lSJ-l 

if .T + E H S  is singular. then either J or H-l + SJ- lE  
is singular, We can let 

J := M'- X I )  E := -DBR,T(zZ), 

H := ( R ~ ( x ) B R ~ ( z ) ) - ~ ~  S := R ~ ( Z ) D - ' M .  

Since A = J + E H S  is singular, either J = AT - A I  
or H-l + SJ-lE is singular. The second term can be 
reformulated into 

R ~ ( z ) ( B  - A4(M - XI)-'B)R:(z) 

Case 1: Ad - X I  is singular. Since A4 is diagonal, then 

Case 2: Rtf(z)(B - M ( M  - XI)- 'B)RT(z)  is singular. 
It is clear that 

B - M(M - X I y B  
= diag (1 - pi (p i  - A)-'&) 
= -Xdiag (-) Pi 

pi - x 
where ,!3i is the ith diagonal entry of matrix B. Hence, 
X = 0 is always an eigenvalue, which is claimed before. 
If X is nonzero, it has to be true that 

When z = e ju ,  we have z-' = Z. Hence, equation (9) 
can be rewritten as 

RT(z) = diag(t-Ti)Ry(Z) 
= diag(z-T')RT(z) 

When z = e j w ,  the nonzero eigenvalue X satisfies 

Substituting the above equation into (12) with z = e lw  
yields 

det' ( Rf(z)diag (e - jWT*")  R;(z) ) = 0 
Pi - (13) 

Therefore, the €allowing formula is also zero 
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where 13i = ( T ~ ~ ~  - TJW, and 71, can be any vdue. When 
T~~~ - Tmin < 1/4, we have 

0 5 0i = (Tma - 7 i ) W  5 742 

Suppose that there is a solution such that 1x1 2 
1. From Lemma 5 below, there exists a $ s.t. 
Im(diag (e j ( ' z+$)f l i / ( ,u;  - A))) is a positive diago- 
nal matrix. Therefore the imaginary part of matrix 
Rj(z)diag (de i+$) /3 ; / (p i  - A))) Rj(z)  is positive def- 
inite, and the real part is symmetric. From Lemma 6 
below, it has to be nonsingular. This contradicts the 
equation 

Theorem 7. On a single link, FAST TCP converges ex- 
potierztially ro the equilibrium, in the absence of feedback 
dela?,. 

In the rest of this section, we prove the theorem in 
several steps. The first result is that after finite steps 
K1, equality always holds in (15) and q ( t )  > 0 for any 
t > A'l. Define the normalized congestion window sum 
as 

From (15), it is clear that q( t )  > 0 if and only if Y ( t )  > 
C. 

Lemma 8. There exists KI  > 0 siich that thefollowing 
claim are true fo r  all t > K1: 

1) Q(t) > 0 
2) ~ ( t  + 1) = (1 - y)v(t) where 

Hence, we have 1x1 < 1. 

The proof of Theorem 2 will be complete after the 
(17) 

Proof: If initially q( t )  = 0 which also means Y ( t )  5 c, 

Qi next two Lemmas. v(t) := Y(t) - c - - 
i d; 

Lemma S. Suppose that 0 < pi < 1 and 0 5 Bi < n/2. 
r f  1x1 2 1 , there exists a sucli that 

,"pi 
I! . (  ) > o  for i = 1  . . .  N 

from (14) we have 

Y ( l . + l ) = Y ( t ) + r C ~  
, d z  

Proof: See Appendix VII-A. I? 
which linearly increases with t. Then Y ( t )  > c after 
some finite steps, and there is a K 1  such that Y(t) > c 
and q( t )  > 0 at t = K~ 

implies y( t  + 1 )  > c. 
Hence q ( t )  > 0 for t > Kl .  Moreover, w i t )  converges 

Lemma 6. I f  the real pari of a complex matrix is 
pnunetn'c, and $he imaginary part is positive definite, 
then the rnatrix is nansirigulal: 

we now prove that y ( t )  > 

Proof: S e e  Appendix VII-3. 

v, GLOBAL STABILITY FOR ONE LINK WITHOUT 
FEEDBACK DELAY 

0 exponentially to 0. 
Suppose Y ( t )  > c. From x i  wi(t)/(di + qi(t)) = e, 

we have 

wi(t + 1) J4t+ 1) = 1 
d; t i 

In the absence of f d b a c k  delay, when there is only w&) - ai 

a 
one link, the FAST TCP model can be simplified into 

z 

= (1 -r> Y ( t )  
wi(t) < c with equality if q( t )  = 0 (15) 

This proves the second assertion. Moreover it implies ai + q ( t )  - i 

where q ( t )  is the queueing delay at the link (subscript 

the above system (14)-(15) is globally asymptotically 
is omitted). The main result of this section proves that Y( t  + 1) = (1 - y ) Y ( t )  + 7 

stable and converges to the equilibrium exponentially fast 
starting from any initial value. Hence, Y(t) > c implies Y(t  + 1) > c and q ( t  + 1) > 0. 

U This completes the proof. 
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For the rest of this subsection, we pick a fixed E with 
0 < E < Ciai/4. Define 

where dmin := mini di and d,,, := maxi di. Then q(t) 
is bounded by these two values after finite steps. 

Lemma 9. There e.risrs a posirive K2 such that for ally 

t 2 K2 we have 

qmin 5 q ( i )  I qmax 

Proof: From Lemma 8, afier finite steps KI, ~ ( t  + 1) = 
(1 - y )v ( t ) .  Therefore, there exists a K2 such that 
Iv(t)l < e for all t 2 K 2 .  It implies 

Hence, 

The proof for qmax is the same. 

Proof: From (19), i t  is easy to check that 

Y ( t  + 1) - Y ( t )  = - y ( t )  

By Lemma 8, when t 2 Ii, we have 

Y ( t  + I) - Y(t)  = -yv( t )  
- < y(1 - #-K21v(K2)1 

= K ( l  - Y ) f  (22) 

where K := y(1-  - y ) - K 2 1 z / ( K , ) l  
The update of source i ' s  congestion window is: 

wi(t + 1) - m&) 

= --yazq(t)p;(t)rl;(t) 

Choose 61 large enough such that 

~ 1 N Y C Y r n i n q m i n ~ m i n / d m a x  > 
where a m i n  := mini ai. We now prove q m a s ( t )  > 
-ijl (1 - Y ) ~  for a.11 t 2 by contradiction. Suppose that 

Then all the qi(t)  are negative, which implies 

there is a time t 2 K2 such that qmax(i) I -&(l- y) t . 

Y ( t  + I) - Y ( t )  
= - y ( W i ( t  + 1) - W i ( t ) ) / d i  

i 

2 ~ 1 ~ ( 1 -  Y) tYQminqminCmin/dmax 

. > K . ( l - - y  

The proof for qmjn(t) is similar. 
This contradicts equation (221, which proves the claim. 

U 

and denote qmax(t) := maxiqi(t), qmin(t)  := 
minivi(t). We will show that the congestion window 
update for source i is proportional to qi(t), and the 
system is at equilibrium if and only if all q;(t) are zero. 
The next Lemma gives bounds on qi(t). 

Lemma 10. There are N O  positive numbers 61 and 42 

such that for all t 2 K2 

~ m a x ( t )  > -61(1- T > ~  qmin( t>  < 6 2 ( 1 -  T ) ~  

Define L ( t )  as: 

L( t )  := ~ m a x ( i )  - qmin( t>  (23) 

The following Lemma implies that the difference be- 
tween different qi(t) goes to zero exponentially fast. 

Lemma 11. There are W O  positive numbers 63 and 64, 
such thaf for t 2 Kz we have 

1) q t )  2 0 
2) q t  4- 1) I (1 - Y -I- r rumax)Jq t )  + S3(1 - 
3 )  L( t )  I 64(1 - y + YPm,x)t 
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Proof: See Appendix VII-C. 

Lemma 12. Borh qmax(t) and qmin(t) converge io zeru 
e.xponentiu 11y 

Proof: When t 2 K 2 ,  combining Lemma 10 and Lcmma 
1 1  yields an upper bound for qmas(t), 

qmax(t)  = L( t )  + ~ m m ( t )  

I 64(1- 7 + r p m a x ) t  + 6 2 ( 1 -  

The lower bound of qmax is 

t -61U - Y) I 7 7 , a d t )  

Since both the upper and lower bounds of qmax(t) 
converge to zero exponentially fast, it exponentially goes 

0 to zero. The proof for qmin(t) is similar. 

Proof of Theorem 7: The system is at equilibrium if 
and only if tu; ( t )  = wi (t + 1) for all i .  This is equivalent 
to qi(t) = 0 €or all i because of the equation 

W i ( t  + 1) - w(t) = - Y w ( t ) P i ( t ) r l i ( t )  

Since both qmax(t) and qmin(t) converge to zero expo- 
nentially from any initial value, the system converges to 

0 the equilibrium defined by qi(t) = 0 globally. 

VI. CONCLUSION 

We have introduced a new discrete-time link model 
that fully captures the effect of self-clocking and com- 
pared it with the traditional continuous-time model. 
Using this model, we have derived a sufficient condition 
for local asymptotic stabijity for general networks in the 
presence of feedback delay. The condition states that 
the system is stable if the difference among delays of 
the sources is small. This implies, in particular, that 
a network with homogeneous sources is always stable, 
consistent with our experimental experience so far, We 
have proved that FAST TCP is globally stable on a single 
link in the absence of feedback delay. 

This work can be extended in several ways. First, the 
condition for local asymptotic stability derived appears 
more restrictive than our experiments suggest. More- 
over, we have also found scenarios where predictions 
of the discrete-time model disagree with experiment. 
This discrepancies should be clarified. Second. it will 
be interesting to extend the global stability analysis 
to general networks and in the presence of feedback 
delay. Finally, the new model and the analysis techniques 
here can be applied to analyze other congestion control 
algorithms. 
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VII. APPENDIX 

A. Proof of Lemma 5 

Proof: There is a complex plane in Figure 5 .  Let the 
points A ,  B,  and X represent the value of pmin ,  pmax and 
A, respectively. 2 is the intersection of segment AX and 
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Multiplying PT to equation (24) yields 

(26) T j3 Ara = PTAiP 2 0 

Multiplying aT to equation (25) g' ives us 

&'ATP = -aTAia 5 0 (27) 

Since PTAra = a A T P  ~ CY A,,!!?, both (26) and (27) 
must hold with equality. This means that both a and /3 
are zero. It contradicts the assumption that is nonzero. 

a 

T T  - T  

Fig. 5. Illustration of Lemma 5.  

the unit circle. and 3 stands for the complex conjugate 
of A. 

Let 4; E [ 0 ! 2 ~ )  be the phase of l / ( p i  - A), Clearly, 
4i E [O ! . r r )  if Im(A) 5 0, and 4i E (x,21;) otherwise, 
Denote $,,, := max;qh, and &in := mini$j, then 
0 2 #max - $min I T .  Since every pi is in the range 
[Pmin ,  /A,,,], it is easy to check that every $i is in 
the range formed by the phases of l / ( / i m i n  - A) and 
l/(,umaK - A). This implies 

I 
mi n /Lmax - A 

1 1 
#+"-&in I lLp , - L  

= LAXB=LAAB 
< L O Z B < x / 2  

Let E > 0 be small enough such that $I,,, - 
~ / 2  - E .  Choosing $ = -&in + e gives us 
Lej(4i-s6)pz 

= $ z + $ + - t - ;  

= 4; - 4min  + e + Bi (greater 
< 

pi - 

+ma, - 4 m i n  + E -t ~ / 2  
< n  

The fact that its phase is in (0, n)  implies that 

4min 

than 0) 

0 

B. Proof of Lemma 6 
Suppose that A = A, +jAi  where A, = AT and Ai is 

positive definite. If A is singular, there exists a nonzero 
vector o such that AV = 0. Suppose that 'U = a + j,i?. 
Then Aw = 0 gives 

A T a - A i / 3  = 0 (24) 
A,P+AiCL: = 0 (25)  

C. Proof of Leirrina I1 

(23). We start with the update of qi(t) described as 
It is obvious that L( t )  2 0 because of its definition in 

V d t  + 1) - ?I$) 

- W i Y ( t ) P i  @)Vi ( t )  - 

- W i ( t  + 1) - W i ( t )  1 I 
aidj g@ + 1) 4 ( t )  

+- 
1 1 

- - 

+- - - 
aidi Y ( t  + 1) Y( t )  

For simplicity, we let ai ( t )  := 1 - y + ypi(t) and 
denote afmax := 1 - 7 + Ypmax, then ai(t) 5 amax. 
This definition simplifies the above equation into 

By comparing equation (28) for source i and j, we obtain 

'Iji(t + 1) - 77j(f + 1) ==,:&)Vi@) - .j(t>V&> (29) 

Without loss of generality, suppose that at time t 4- 1, the 
largest and smallest values of 7 are achieved at sources 
i and j respectively, This assumption implies 

q t  + 1) = Vi(t + 1) - V j ( t  + 1) 

The upper bound of L(t  + 1) is derived by considering 
separately the following three cases. 
Case 1: q-i(t) and qj( t )  have different signs. It is easy 
to see that 
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Case 2: Both qi(t) and qj(t)  are positive. It yields Denote b := 1 - y, then 1 > a.max > b 2 0. For any 
t 2 IC2, an upper bound of L ( t )  is 

L(t + 1) = .i(t)Pi(t>Vi(t) - aj(t>Vj(t j  
L( t )  I amaxL(i - 1) + 63bt-l I %-“max(tj 

- - amaxL(t)  + amaxqmin( t )  

5 a m a x q t )  + %“2(1 - 

5 a m a x q t )  + 63(1 - 

5 a:,-2 L( &) 

1 K2 t-K2-1 +S3(bt-l -i- P 2 a m a x  + . . . + b amax 
bh;u;% Wt 

arnax + = ( o , 2 L ( I c 2 )  - 63 1 b - amax b - amax 
where the last step is by choosing 63 larger than amax&. 
Case 3: Both qi(t) and qj(t)  are negative. The proof is 
similar to that for Case 2. 

Note that the coefficient of bt is negative. By choosing 
hd as the coefficient of ahax, we get 

Hence, we have proved L( t  + 1) I amaxL(t) + 63( I - L(t)  5 L%&ax = 64(1 - Y + Y / h ” t  
for d1 t 2 K2. 

cl 
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