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Abstract— We introduce a discrete-time model of FAST
TCP that fully captures the effect of self-clocking, and
compare it with the traditional continuous-time model.
While the continuous-time model predicts instability for
homogeneous sources sharing a single link when feedback
delay is large, experiments suggest otherwise. Using the
discrete-time model, we prove that FAST TCP is locally
asymptotically stable in general networks when all sources
have a common reund-trip feedback delay, no matter how
large the delay is. We also prove global stability for a
single bottleneck link in the absence of feedback delay.
The technigues developed here are new and applicable to
other protocols.

Index Terms— Congestion control, FAST TCP, Local
stahility, Global stability '

I. INTRODUCTION

Congestion control is a distributed feedback algorithm
to allocate network resources among competing users.
The algorithms in the current Internet, TCP Reno and
its variants, have prevented scvere congestion while
the Internet underwent explosive growth during the last
decade. However, it is well-known that these algorithms
do not scale as bandwidth-delay product of the Internet
continues to grow [8], {13]. This has motivated several
recent proposals for congestion control of high speed
networks, including HSTCP [6], STCP [11], FAST TCP
[9], and BIC TCP [19] (see [9] for extensive references).
Local stability of FAST TCP in the absence of feedback
delay is proved in {9] for the case of a single link. In this
paper, we extend the analysis to local stability for general
networks with feedback delay and global stability on a
single link without feedback delay.

Most of the stability analysis in the literature is based
on the fiuid model introduced in [8] (see surveys in
[12], [10], [16] for extensions and related models). A
key feature of many of these models is that a source
controls its sending rate directly!, and that the queueing
delay at a link is proportional to the integral of the

"Even when the congestion window size is used as the control
variable. sending rate is often taken to be the window normalized by
a consiant tound-trip time, and hence a source still controls its rate
directly.
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excess demand for its bandwidth. In reality, a source
dynamically sets its congestion window rather than iis
sending rate. These models do not adequately capture
the self-clocking effect where a packet is sent only
when an old one is acknowledged, except briefly and
immediately after the congestion window is changed.
This automatically constrains the input rate at a link
to the link capacity, after a brief transient, no matter
how large the congestion windows are sct. Recently,
a new discrete-time link model is proposed in [18],
[9] to capture this effect, and experimental validations
have been carried out in [18]. While the traditional
continuous-time link model does not consider the self-
clocking, our new discrete-time link model ignores the
fast dynamics at the links. We first present both models
in Section II. We then provide experimental results that
show that, despite errors in these models, both of them
track queueing delays reasonably well.

In Section III we compare the predictions on stability
using the continuous-time model to experiments on the
Dummynet testbed. When sources are homogeneous,
i.e., have the same round trip delay, experiments so far
suggest that FAST TCP is always stable on a single
link, while the continuous-time model predicts instability
when the delay is large.

We analyze the stability of FAST TCP using the
discrete-time model in Sections I'V and V. In Section IV,
we prove the local asymptotic stability of FAST TCP in
arbitrary networks when all sources have the same round-
trip feedback delay, no matter how large the delay is. In
Section V, we restrict ourselves to a single link without
feedback delay and prove the global stability of FAST
TCP. The techniques developed in this paper are new
and applicable to analyzing other protocols.

Finally, we conclude in Section VI with limitations of
this paper.

1I. MODEL
A. Notation

A network consists of a set of L links indexed by !
with finite capacity ¢;. It is shared by a set of NV unicast
flows identified by their sources indexed by <. Let R be
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the routing matrix where Ry = 1 if source ¢ uses link [,
and 0 otherwise.

FAST TCP updates its congestion window every fixed
time period. We use this update period as time unit. All
the time variables are measured in this time unit.

Let d; denote the round-trip propagation delay of
source 7, and g;(t) denote the round-trip queueing delay.
The round-trip time is given by T;(t) := d; + ¢:(t). We
denote the forward feedback delay from source 7 to link
[ by TL{, and the backward feedback delay from link { to
source i as 75 The sum of forward delay from source
7 to any link ! and the backward delay from link [ to
source % is fixed, Le., 7 = 'rf; + 7 for any link { on
the path of source i. We make a subtle assumption here.
In reality, the feedback delays 7}, 7/; include queucing
delay and are time-varying. We assume for simplicity
that they are constants, and mathematically unrelated to
T;(t). Later, when we analyze linear stability around the
network equilibrium in the presence of feedback delay,
we can inlerpret 7; as the equilibrium value of 7.

Let w;{t) be source i’s congestion window at time 2.
The sending rate of source 7 at time ¢ is defined as

_wi(t)
xi(t) = 4+ D) ey
The aggregate rate at link / is
u(t) =Y Ruzi(t — 1) @

Let p(t) be the queueing delay at link {, The end-to-end
queucing delay g;(¢) observed by source ¢ is

w(t) = Rupi(t — 74}) 3)
{

B. Discrete and continuous-time models

FAST TCP source periodically updates its congestion
window w based on the average RIT and estimated
queueing delay. The pseudo-code is:

baseRTT )
—_— W

we(1l—7w + 'y( RTT

where v € (0,1]. baseRTT is the minimum RTT
observed, and « is a constant.
We model this by the following discrete time equation
dywi(t) )

wilt+ 1) =v 77—~ +oa; } + (1 —vjws(l) @&

der) = (72289 0} 4@ - ) @

where w;(t) is the congestion window of the ith source,

v € (0,1], and «; is a constant for source ¢. The
corresponding continnous-time model is

diwg(t
wy(t) o — wi(t))

(0 =7 (2

di + q;(t} &

where the time is measured in the unit of update period
in FAST TCP.

For the continuous-time model. queueing delay has
been traditionally modelled with

Pi(s) = %(yz(t) —a) ©

However, TCP uses self-clocking: the source always
tries to maintain that the number of packets in fly equals
to the congestion window size. When the congestion
window is fixed, the source will send a new packet
exactly after it receives an ACK packet. When the
congestion window changes, the source sends out bulk
traffic in burst, or sends nothing in a short time period.
Therefore, one round-trip time after a congestion window
is changed, packet transmission will be clocked at the
same rate as the throughput the flow receives. We assume
that the disturbance in the queues due to congestion
window changes setties down quickly compared with
the update period of the discrete-time model; see [18]
for detailed justification and validation experiments for
these arguments. A consequence of this assumption is
that the link queueing delay vector, p(t) = {m(t), for
all [), is determined implicitly by sources’ congestion
windows in a static manner:

wilt = 1)
L
T ditalt =)
where the ¢; is the end-t0-end queueing delay given by

(3).

In summary, the continuous-time model is specified
by (5) and (6), and discrete-time model by (4) and (7),
where the source rates and aggregate rates at links are
given by (1) and (2), and the end-to-end delays are given
by (3). While the continuous-time model does not take
self-clocking into a full account, the discrete-time model
ignores the fast dynamics at the links. Before compar-
ing these models, we clarify their common equilibrium
strucore.

<a

if pi(t) > 0

it () —0 D

Theorem 1 ([91). Suppose that the routing matrix R
has full row rank. A unique equilibrium (x*,p*) of the
network exists, and x* is the unique maximizer of

Rr<c t))

max a;loga; st
o) . 3 10g X{
T
with p* as the corresponding optimum of its Lagrangian
dual. This implies in particular thar the equilibrium rare

x* is a;-weighted proportionally fair.

C. Validation

The continuous-time link model implies ihat the queve
takes infinitely amount of time to converge after a
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window change. On the other extreme, the discrete-time
link model assumes that the queue settles down in one
sampling time. Neither is perfect, but we now present
experimental results that suggest both track the queue
dynamics well,

All the experiments reported in this paper are carried
out on the Dummynet testbed [4]. A FreeBSD machine
is configured as a Dummynet router which provides
different propagation delays for different sources. It
can be configured with different capacity and buffer
size. In our experiments, the bottleneck link capacity
is 800Mbps. and the buffer size is 4000 packets with
fixed packet length of 1500 bytes. A Dummynet monitor
records the queue size every 0.4 second. The congestion
window size and RTT are recorded at the host every
50ms. TCP wraffic is generated using iperf. The publicly
released code of FAST [5] i1s used in all experiments
involving FAST. We present two experiments to validate
the model, one closed-loop and one open-loop.

In the first (closed-loop) experiment, there are 3
FAST TCP sources sharing a Dummynet router with
a common propagation delay of 100ms. The measured,
and predicted queue sizes are given in Figure 1. In the
beginning of the experiment, the FAST sources are in
the slow start phase, none of the models gives accurate
prediction. After the FAST TCP enter the congestion
avoidance phase, both models track the queue size well.
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Fig. 1. Model validation: closed loop with FAST TCP

To eliminate the modelling error in congestion window
adjustment algorithm itself while validating the link
models, we decouple the TCP and queuve dynamics by
using open loop window control. The second experiment
involves three sources with propagation delays SOms,
100ms and 150ms sharing the same Dummynet router.

We changed the Linux 2.4.19 kernel so that the
sources vary their window sizes according to the sched-
ules shown in Figure 2(a). The sequences of congestion

window sizes are then used in (1)—(2) and (6) to compute
the queueing delay predicted by the continuous-time
model. We also use them in (1}~(2) and (7} to compute
the predictions of the discrete-time model. The queuveing
delay measured from the Dummynet, and those predicted
by these two models are shown in Figure 2(h) which
indicates that both models track the queue sizes well. We
next analyze the stability properties of these two models.
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Fig. 2. Model validation: congestion window are set according to
the schedules in (a). Resulting queueing delays are shown in (b). =

III. NUMERICAL SIMULATION AND EXPERIMENT
WITH CONTINUOUS-TIME MODEL

Using the standard technique, we can derive a suf-
ficient condition for local stability of FAST TCP fo:
a general network using the continuous-time meodel.
The condition implies that FAST TCP will become
unstable when the ratio between the propagation delay
and queueing delay is large. However our experiments
of FAST TCP on the Dummynet testbed has always
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been stable in the case of homogeneous sources and a
single link even when the delay well exceeds the the
threshold in the stability condition. We now present such
an experiment which not only violates the local sta-
bility condition, moreover, numerical simulation of the
continuous-time model exhibits instability. Yet, the same
network on Dummynet is clearly stable. This suggests
that the discrepancy is not in the stability theorem but
rather in the continuous-time model.

In our experiment, the sources have identical prop-
agation delay of 100ms with a constant o value of
70 packets. They share a bottleneck with capacity of
800Mbps. The simulations and experiments consist of
three intervals. The interval Iength is 10 seconds for the
continuous-time mode] simulation, and 100 seconds for
the experiment?. Three sources are active from the be-
ginning of the experiment, 7 additional sources activate
in the second interval, and in the last interval, all sources
become inactive except 5 of them. The simulation and
experimental resulis are shown in Figure 3 and Figure 4
respectively.

When the ratio between the propagation delay and
queueing delay is large, the numerical simulation based
on the continuous-time model exhibits periodic oscilla-
tion. However, in the Dummynet experiment, FAST TCP
is actually stable (see Figure 4).?

We believe that the discrepancy is largely due to the
fact that the continucus-time model does nol capture
the self-clocking effect accurately. Self-clocking ensures
that packets are sent at the same rate as the goodput
the source receives, except briefly when the window
size changes. This self-clocking feature can actually help
the system approach to an equilibrium. Indeed, for the
case of one source one link, a discrete-event model is
used in [18] to prove that TCP FAST and Vegas is
always stable regardless of the feedback delay. It also
provides justification for the the discrete-time model (4)
and (7) based on the self-clocking feature introduced in
the last section. We now analyze the stability of this
model. We will see that the discrete-time model predicts
that a network of homogeneous sources with the same
feedback delay is locally stable no matter how large the
delay is, agreeing with our experimental experience.

*We use a long dutation in the Dummynet experiment because a
FAST TCP source takes longer to converge due to slow-start which
is not included in our model.

3The regular spikes every 10 seconds in the queue size is probably
due to certain background task in the sending host.
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Fig. 3. Numerical simulations of FAST TCP

1V. LOCAL STABILITY IN ARBITRARY NETWORK
WITH COMMON FEEDBACK DELAY

A network of FAST TCP sources is modelled by
equations (3), (4), (7). This generalizes the model in
[9] by including feedback delay. When local stability
is studied, we ignore all un-congested links (links where
prices are zero in equilibrivm) and assume that equality
always holds in (7).

The main result of this section provides a sufficient
condition for local asymptotic stability in general net-
works with common feedback delay.

Theorem 2, FAST TCP is locally stable for arbitrary
networks if v € (0,1] and all sources have the same
round-trip feedback delay v, = T for all 1.

The stability condition in the theorem does not depend
on the value of the feedback delay, but only on the het-
erogeneity among them. In particular, when all feedback
delays are ignored, 7, = O for all ¢, then FAST TCP
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Fig. 4. Dummynet experiments of FAST TCP

is locally asympiotically. This generalizes the stability
result in [9}.

Corollary 3, FAST TCP is locally asymptotically stable
in the absence of feedback delav for general nerworks
with any «y € [0,1).

The rest of this section is devoted to the proof of
Theorem 2.

We apply Z-transform to the linearized system, and
use the generalized Nyquist criterion o derive a suffi-
cient stability condition. Define the forward and back-
ward Z-transformed routing matrices R¢{z) and Ry(2)
as:

& ifR=1
if Ry =0
- ifRy=1
if Ry =0

S w

(Rg(2))i = {
(Ru(2))is ;:{ S

The relation 7 + 7§ = 7 gives
Ry(z) = Ry(27") - diag(z™™) &)

Denote W(z), Q{(z) and P(z) as the corresponding Z-
transforms of dw(t), dg(t) and dp(t) for the linearized
system. Let g and w be the end-i0-end queueing delay
and congestion window at equilibrium. Linearizing (7)
yields

st =1 (6~
S Ry (am(t W), rh))zo

d; +q Cdi + g)?

where the equality is used in (7). The corresponding Z-
transform in matrix form is

Ri(z)D7IMW(2) — Ry(2)BQ(2) = 0 (10)
where the diagonal matrices B, D and M are:

. wz i dz
B :=diag (W) , M = diag (d,- + Qi)
D := diag(d;)

Since Rp(z) is generally not a square matrix, we cannot
cancel it in (10).

Equation (3) is already linear, and the corresponding
Z-transform in matrix form is

Q(z) = R(2)" P(2)
By combining (10) and (11), we obtain

(wiom 87 )(73)

= ( Rf(z)gylm )W(‘"‘)

Solving this equation with block matrix inverse gives the
transfer function from W{z) to {}(z):

Q(z)
W(z)

The Z-transform of the linearized congestion window
update algorithm of FAST TCP is

W (z) = vy (MW(z) - DBQ(2)) + (1 - 7)W(z)

(11)

= R(2)(Ry(z)BRY(2)) "' Ry(2) D™ M

By combining the above equations, we get the open loop
transfer funcdon L(z) from W (z) to W(z) as

L(z) = —(v(M - DBR{(2)(R;(2}BR{(2))™"
Rp(2)D7T'M) + (1 = y)1) 27"

A sufficient condition for local stability can be developed
for FAST TCP based on the generalized Nyquist criterion
[31, [2]. Since any changes in the input w can at most
give a finite change at the output. Therefore, the system
is open loop stable. If we can show that the eigenvalue
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loci of L(e™) does not enclose —1 for w € [0,2r), the
closed loop system is stable. Therefore, if the spectral
radius of L(e’™) is strictly less than 1 for w € [0, 27),
the system will be stable.

When z = 7, the spectral radii of L{z) and —zL(z)
are the same. Hence, we only need to study the spectral
radius of

J(z): = !

v(M — DBR}(z) (R¢(2) BR{ (2))~
Ri(z)D*M + (1 = )1

Clearly, the cigenvalues of J(z)} are dependent on ~.
For any given z — ¢/, let the eigenvalues of J{z) be
denoted by A\;{v),¢=1... N, as functions of y € (0, 1].
It is clear that:

M)l = IvAs(l) + (1 =)
< A+ (1 =)

Hence if p(J(z)) < 1 for any z = e/ for v = 1, it will
also hold for all v € (0, 1]. Therefore. it suffices to study
stability condition for v = 1.

Let u; be the ith diagonal entry of matrix M with y; =
d:/(d; + ¢i). Denote pimayx ‘= max; g;. Since the end-
to-end queueing delay ¢; cannot be zero at equilibrium
(otherwise the rate will be infinitely large), we have ¢; >
0 and pmex < 1. The following lemma characterizes the
eigenvalues of J(z) with y = 1.

Lemma 4. When z = e/ with w € [0,2r) and v = 1,
the eigenvalues of J{z) have the following properties:

1) There are L zero eigenvalues with the corre-

sponding eigenvectors as the columns of matrix
M~'DBRI(2).
2) The nonzero eigenvalues have moduli less than 1
if Tmax — Tmin < 1/4, where tmax = max; 7 and
Tmin = Minh; T3
Proof: At v = 1, the matrix J(z} is
M — DBRI(2)(R(2)BRE (2)) 'Rf(2) DM
It 1s easy to check that:
J(z)M™DBRF(z) = DBRI(z) - DBRI(z)
= 0
Since M~'DBRT (%) has full column rank, it consists
of L lincarly independent eigenvectors of J(z} with cor-
responding eigenvalue 0. This proves the first assertion.

For the second assertion, suppose that X is an eigen-
value of J(z) for a given z. Define matrix A as

A = Jz)-M
(M — XI) — DBR(2)(R(2)BR] ())™!
Ryz)D"'M

which is singular by definition. From the matrix inver-
sion formula (see e.g. [7])

(J + EHS)™! :
= JU'—JBHT s RSS!

if .7+ EHS is singular, then either J or H~! +SJ-'E
is singular, We can let

J:=M-Al, E:=-DBR](2),
H = (Ri(z)BR{(2))"", S:=Rs(2)D7'M.

Since A = J + EHS is singular, either J = M — A/
or H=! 4+ 8J71E is singular. The second term can be
reformulated into

Re(2)(B — M{M —AD)7'B)R] (2)
Case 1: M — A is singular. Since M is diagonal, then

d;
D< A= = p; < <1
di+qi MHi = fmax

Case 2: R;(2)(B — M(M — M)}~ 'B)R{ (2) is singular.
It is clear that

B-M(M-X)"'B

diag (1 — pipss ~ A) 7' 8:)

—)\diag( bi )
i —

where 7; is the ith diagonal entry of matrix B. Hence,
A = 0 is always an eigenvalue, which is claimed before.
If X is nonzero, it has to be true that

det (Rf(z)diag (”5_ /\) Rg"'(z)) =0
1

i

a2

When z = €™, we have z~! = Z. Hence, equation (9)

can be rewritten as

R}:(z) = diag(z‘T*)RJ]:(E)
= diag(z™ )R} (2)

When z = ’“, the nonzero eigenvalue A satisfies
J(B:+) 3.
det (Rf(z)diag (e__ﬁ) R}(z)) =0
i — A
Substituting the above equation into (12) with z = e’

yields
. e~ 3, .

Therefore, the following formula is also Vzcro

i(0:+¥) 3.
- '(WTmax‘i“‘w) 2 et ﬁ‘t *
e d det (Rf(z)cllag (ﬁ—) Rﬂﬂ))
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where 6; = (Tmax — 7i)w, and ¢ can be any value. When

Tmax — Tmin < 1/4, we have

0 <8 = (Tmax — Tg)w < /2

Suppose that there is a solution such that || >
1. From Lemma 5 below, there exists a 7 s.L.
Im(diag (e?%+¥)3;/(u; — A)}) is a positive diago-
nal matrix. Therefore the imaginary part of matrix
Ry(2)diag (e %93, /(1 — A))) R}(z) is positive def-
inite, and the real part is symmetric. From Lemma 6
below, it has to be nonsingular. This contradicts the
equation

gdlfitd) g,
det Rf(Z)dla ﬁ— R:{'(Z) =

Hence, we have |A| < 1. O

The proof of Theorem 2 will be complete after the
next two Lemmas,

Lemma 5. Suppose that 0 < p; < 1 and 0 < 6; < n/2.
If |A| 2 1, there exists a v such that

Im (e

Proof: See Appendix VII-A. 0

j(8*+¢)6i

Y )>0 for i=1...N

Lemma 6. If the real part of a complex matrix is
symmetric, and the imaginary part is positive definite,
then the matrix is nonsingular.

Proof: Sce Appendix VII-B, O

V. (GLOBAL STABILITY FOR ONE LINK WITHOUT
FEEDBACK DELAY

In the absence of feedback delay, when there is only
one link, the FAST TCP model can be simplified into

diw;(t)
di + q(t)

Z w@(t < e
di +q(t) ~

where g(t) is the queueing delay at the link (subscript
is omitted). The main result of this section proves that
the above system (14)—(15) is globally asymptotically
stable and converges to the equilibrium exponentially fast
starting from any initial value.

wi<t+1>—v~f( +ozz-) LU=l (4

with equality if g(t) =0 (15)

Theorem 7. On a single link, FAST TCP converges ex-
ponenttally to the equilibrium, in the absence of feedback
delay.

In the rest of this section, we prove the theorem in
several steps. The first result is that after finite steps
K1, equality always holds in (15) and g(¢} > O for any

t > K. Define the normalized congestion window sum
as
1
Y(t) = %(_—l (16)

g

From (15), it is clear that ¢(¢) > 0 if and only if Y'(¢) >
C.

Lemma 8. There exists K| > 0 such thar the following
claims are true for all t > K.
1) g(t) >0
2) v(t+1) = (1 —y){t) where

v{t) .=

8]

T (17

Y({t)—c—

Proof: If initially ¢(¢) = 0 which also means Y (¢} < ¢,
from (14) we have

Yt +1) = (18)

Y(t)+72%

which linearly increases with t. Then Y'(t) > c after
some finite steps, and there is a K such that Y () > ¢
and g(t) >0 at t = K

We now prove that Y (¢) > ¢ implies Y (¢t + 1) > c
Hence ¢(t) > 0 for ¢t > K;. Moreover, v{t) converges
gxponentially to 0.

Suppose Y(t) > ¢. From Z wi(t)/{di + @(t)) = ¢,
we have

VW):ZM_ %

d; —~ d;
wz(t) Cwilt)
fr— 1 —
=M = T ie®
uy [
= (1- ——c— )y =
4= (Za: d; C i di)
= (1-7) @)
This proves the second assertion. Moreover it implies

Y(E+1) = (1= 7)Y )+ (Z% +c) (19)

Hence, Y (t) > ¢ implies Y (¢ -+ 1} > c and g(t +1) > 0.
This completes the proof. O
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For the rest of this subsection, we pick a fixed € with
0 <e <Y, a;/d;. Define

(i)
d'max

=325 4

where dmpip = min; d; and dyp., = max; d;. Then g(t)
is bounded by these two values after finite steps.

Gmin =

Gmax =

Lemma 9. There exists a positive Ko such that for any

t > Ko we have
Groin = (I(t) < max

Proof: From Lemma 8, after finite steps K1, #(t4+1) =
(1 — #)r(t). Therefore, there exists a Ko such that
|{t}] < ¢ for all ¢ > K,. It implies

o4 ’w;,;(t)
% < L7

- 2 (% ;ii(;%ﬂ%e

Q(t w;(t
= Z Arnin (d; +q(t ) te

—-c+te

= % +e
Hence,
o (Z = e) = Guin  (20)
The proof for gma.x is the same. 0

Define u;(t) = d;/{d; + q(t)), and denote pmuy =
max; d;/{(di+qmin)s fmin := min; d;/(d; + gmax ). Based
on Lemma 9, it is true that

1> pmax 2 pilt) > ftmin >0 forany ¢t > Ky

Define
(21)

and denote 7mex(t) = max;m(t), Gmn(t) =
min; 7:(t). We will show that the congestion window
update for source i is proportional to #;(¢), and the
system is at equilibrium if and only if all #;(t) are zero.
The next Lemima gives bounds on ().

Lemma 10. There are rwo positive numbers & and s
such that for all t > K,

Nmax () > —81(1 - 'Y)t Nmin(t) < d2(1 — 7)t

Proof: From (19), it is easy to check that
Y(it+1)-Y({) —yu(t)

By Lemma §, when ¢ > K3 we have

Yit+1)-Y{¢) = —ye(t)
< A1 =R p(R))
= K(1-7) (22)
where & = (1 — )~ %2 | (Ky)|

The update of source i’s congestion window is:

wi(t + 1) — wy(t)

diw;(t) s
a (di T “(t))
va(t)  [ouds o
Z+ () ((qgt) (it =)
_ i wift) — o 1
= e d; + 4(t) ( aid; Q(t)>

= —vyauq(thus(Ent)

Choose d; large enough such that
01N ¥0minGmin ftmin/ dmax > K

where apip = min; ;. We nOw prove max(t) >
—81(1—~y) forali t > K3 by contradiction. Suppose that
there is a time ¢ > Ko such that nyax{t) < —6;(1—7)%
Then all the #;(¢) are negative, which implies

Y{t+1)-Y()
D (wilt + 1) — wilt))/d;

z

> —voug(@)p(tni(t)/di

g

> N(_nmax)')/amin(]min,u'min/dmax
= ‘51N(1 - 7)t"/amianinﬂmin/dmax
> K{l—n)*
This contradicts equation (22), which proves the claim.
The proof for 7,n(t) is similar. O

Define L(t) as:

L(t) = Wmax(t) - nmin(t)

The following I.emma implics that the difference be-
tween different 7;(¢) goes to zero exponentially fast.

(23)

Lemma 11. There are two positive numbers 83 and 84,
such that for t = K9 we have
1) L{t}) >0
2) L{t+1) < (1 =7 + yprmax) L(E) + 851 — 7},
3) L(t) < 54(1 -7+ 7numax)t
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b

Proof: See Appendix VII-C. O

Lemma 12. Both nmax(t) and nmin(t) converge to zero
exponentially.

Proof: When ¢ > K5, combining Lemma 10 and Lemma
11 yields an upper bound for #ax(t).

= L{t) + mminlt)

< Ba(1 =y + YVitmax)® + 821 — )

Nmax(t)

The lower bound of 7y sy 18

_61(1 - 7)t < Tlmam(t)

Since both the upper and lower bounds of rpax(t)
converge to zero exponentially fast, it exponentially goes
to zero, The proof for Muyn(¢) is similar. O

Proof of Theorem 7: The system is at equilibrium if
and only if w;(t) = w;(t+1) for all 4. This is equivalent
to 7;(¢) = 0 for all ¢ because of the equation

wi(t + 1) ~wi(t) = —vouq(t) p:(t)mi(t)

Since both Nyax(t) and Nmin(t) converge 0 zero expo-
nentially from any initial value, the system converges to
the equilibrium defined by #;(t) = 0 globally. O

VI. CONCLUSION

We have introduced a new discrete-time link model
that fully captures the effect of self-clocking and com-
pared it with the traditional continuous-time model.
Using this model, we have derived a sufficient condition
for local asymptotic stability for general networks in the
presence of feedback delay. The condition states that
the system is stable if the difference among delays of
the sources is small. This implies, in particular, that
a network with homogeneous sources is always stable,
consistent with our experimental experience so far. We
have proved that FAST TCP is globaily stable on a single
link in the absence of feedback delay.

This work can be extended in several ways. First, the
condition for local asymptotic stability derived appears
more restrictive than our experiments suggest. More-
over, we have also found scenarios where predictions
of the discrete-time model disagree with experiment.
This discrepancies should be clarified. Second. it will
be interesting to extend the global stability analysis
to general networks and in the presence of feedback
delay. Finally, the new model and the analysis techniques
here can be applied to analyze other congestion control
algorithms.
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VII. APPENDIX

A. Proof of Lemma 5

Proof: There is a complex plane in Figure 5. Let the
points A, B, and ) represent the value of fimin, fimax and
A, respectively. Z is the intersection of segment AX and
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Fig. 5. Tlustration of Lemma 3.

the unit circle, and X stands for the complex conjugate
of A

Let ¢; € [0,27}) be the phase of 1/{u; — A), Clearly,
¢; € [0,7) if Im{A\) < 0, and ¢; € (m,2x) otherwise.
Denote ¢rpax = max;¢; and @i = min; ¢;, then
0 < Pmax — Pmin < 7. Since every . is in the range
[#4min, #max], it 18 easy to check that every ¢; is in
the range formed by the phases of 1/(jimin — A) and
1/(ptmax ~ A). This implies

1
/ 1

ax — i < £ -
Qbm Qﬁmm l M_{n]n _ /\ fimax — )\l
= ZAAB =ZAAB
< ZOZB < w/2

Let € > 0 be small enough such that ¢ray — Pmin <
7 /2 — e. Choosing ¥ = —¢min + € gives us
cilw+83) 3,

= i+t
= ¢i — ¢min + €+ 0; (greater than 0)

< ¢max‘¢miu+€+ﬂ'/2
< T

i~ A

The fact that its phase is in (0, 7) implies that

FHv+8:) 3.
Im (e—_ﬁ_l) >0
i — A

B. Proof of Lemma 6

Suppose that A = A, +jA; where A, = AT and A; is

positive definite. If A is singular, there exists a nonzero

vector v such that Av = (. Suppose that v = o + j 5.
Then Av = 0 gives

Ao —A:8 = 0

Arﬂ + Afiﬂi = 0

(24)
(25)

Multiplying 37 to equation (24) yields

AT Ara= T A8 20 (26)
Multiplying o to equation (25) gives us
al4,8=-0T40<0 (27)

Since A7 Ay = aT AT = o™ A, 3, both (26) and (27)
must hold with equality. This means that both « and 3

are zero, It contradicts the assumption that v is nonzero.
O

C. Proof of Lemima 11

It is obvious that L{¢) > 0 because of its definition in
(23). We start with the update of 7;(¢} described as

ni(t + 1) — ()
wi(t + 1) — wi(t) 1 1
o:d; Tt +1) N q(t)
Cyesgua(tin(t) 1 P
s g(t+1) = qt)
Cyem@ 1 b
di+q(t) qit+1)  qlf)

= - RO — s+

gt +1) * qt)

For simplicity, we let ai(t} = 1 ~ v + yu(f) and
denO[C max - — 1-— Y + ’Yﬂmax, l.hcll ai(t) S Tmax.
This definition simplifies the above equation into

mu+n=wwmm~E@}5+a%

By comparing equation (28) for source ¢ and j, we obtain

mi(t +1) —n;(t +1) :_;a_% (f)ﬁi(t) —a;{n;{t)  (29)

(28)

Without loss of generality, suppose that at time 741, the
largest and smallest values of n are achieved at sources
¢ and § respectively. This assumption implies

Lit+1) = mt+1)—n;(t+1}

The upper bound of L(t 4+ 1) is derived by considering
scparately the following three cases.

Case 1: 7;(¢) and n;(¢) have different signs. It is easy
10 see that

Lt +1)

1

ai(t)mi(t) — a;(t)n;(¢)
amax(mi(t) — n;{t))
amax(nmax(t) - nmin(t))
Amax L(1)

IAIA

i
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Case 2: Both 7;(t} and n;(¢) are positive. It yields Denote b := 1 — v, then 1 > amax > b > 0. For any
t > Ko, an upper bound of L(%) is
L+ = alm(m) - a0 % &1 Upp @

i

< arnax'rimax(t) L(t) < amaxL(t = 1) + 53bt_1
t— K.
= amaxLAt) + tGmaxMmin(t) < Apax  L(K2) )
< GmaxL(t) + amaxba(l — )’ +03(b" 1 + B 2amay + -+ WAl
Ko, — K. (4
= amaxL(t) + 53(1 - ’Y)t = (a;;{?L(Kﬁ - 53 z B ) a?nax + b 63b
— Qmax — Umax

where the fast step is by choosing ¢35 larger than aaxds.
Case 3: Both 7;(t) and n;{t) are negative, The proof is
similar to that for Case 2.

Hence, we have proved L(t +1) < apax L(2) +83(1 — L(t) < 64ty = 64(1 = ¥ + Yitmax)"
)t for all £ > Ks.

Note that the coefficient of b is negative. By choosing
b4 as the coefficient of af ., we get
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