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Abstract— Internet maps are generally constructed using the
traceroute tool from a few sources to many destinations. It ap-
peared recently that this exploration process gives a partial and
biased view of the real topology, which leads to the idea of increas-
ing the number of sources to improve the quality of the maps. In
this paper, we present a set of experiments we have conduced to
evaluate the relevance of this approach. It appears that the statis-
tical properties of the underlying network have a strong influence
on the quality of the obtained maps, which can be improved using
massively distributed explorations. Conversely, we show that the
exploration process induces some properties on the maps. We val-
idate our analysis using real-world data and experiments and we
discuss its implications.

Index Terms— Network measurements, Graph theory, Simula-
tions.

INTRODUCTION.

Due to its fully distributed construction and administration,
mapping the Internet (in terms of machines and physical links
between them) is a challenging task. It is however essential to
obtain some information on its global shape. Indeed, it plays a
central role in key problems like network robustness [3], [10],
[11], simulation of future protocols and uses [30], and many
others.

Exploring the Internet topology is a research problem in it-
self [18], [21], [28], [40], [42]. Indeed, many difficulties (like
the identification of the multiple interfaces of a same router)
arise when one wants to map the Internet. Various techniques
and methods have been introduced to achieve this goal. Some
of them are very subtle, but current explorations still rely on
the extensive use of the t raceroute tool: one collects routes
from a given set of sources to a given set of destinations, and
then merges the obtained paths. Some post-processing is gen-
erally necessary to clean the obtained data, but we do not enter
in these details here.

Two points are particularly important in the scheme sketched
above. First, it must be clear that the image we obtain from the
network is partial (except if the number of sources and desti-
nations is huge, we certainly miss some nodes and some links)
and may be biased by the exploration process (some properties
of the obtained map may be induced by the way we explore the
network). Second, the number of sources cannot be increased
easily, whereas one can take as many destination as one wants.
Indeed, one needs direct access to the sources in order to run the
traceroute tool, whereas one only needs the 1P addresses of

the destinations. In the case of [18], which is one of the largest
explorations currently available, only a few dozens of sources
are used whereas there is several hundreds of thousands desti-
nations.

Recently, several researchers conduced experimental and for-
mal studies to evaluate the accuracy of the obtained maps of the
Internet [9], [23], [24], [25], [36], [39]. All these studies use
simple models of networks and t raceroute but they all give
good arguments of the fact that the currently available maps of
the Internet are very incomplete, and that there probably is an
important bias induced by the exploration process.

In order to improve these maps, several researchers and
groups now propose to deploy massively distributed measure-
ment tools [17], [37], [38]. The basic idea is that dramatically
increasing the number of sources would significantly improve
the quality of the obtained maps. Our central aim in this paper
is to rigorously evaluate the relevance of this approach.

To achieve this, we conduce an extensive set of experiments
designed as follows. We consider a graph G representing the
network to explore. We then simulate the exploration process
and obtain this way a (partial and biased) view G’ of the original
graph. We then compare G’ and G to evaluate the quality of this
view. We process this simulation using all the possible numbers
of sources and destinations, which makes it possible to study
the impact of these numbers on the accuracy of the obtained
view.

This method is not new: since its introduction in the leading
paper [25], it has been used in [9], [23], [12]. However, whereas
in these papers the authors consider only one or few sources and
study the bias induced on the degree distribution, we will here
use a wide variety of numbers of sources and consider a rich set
of statistical properties.

This paper is organized as follows. First we define the sta-
tistical properties of networks relevant to our study, we present
the models we use and discuss our methodology (Section I).
Then we present and analyze the results of our simulations on
various models and statistical properties (Sections II-III). Sec-
tion V is devoted to the comparison of our results with real-
world data and experiments, which makes it possible to iden-
tify the most meaningful simulations. Finally we present our
conclusions and discuss them.



I. PRELIMINARIES.

A network topology can naturally be represented by a graph.
For our purpose, the graph does not need to be weighted nor
directed. A route in the network, as given by the t raceroute
tool, is a path in the corresponding graph. Since a few years [8],
[16], [18], [34], a strong effort has been made to discover the
topology of the Internet by extensive use of t raceroute and
other tools (BGP tables, source routing, etc).

The obtained maps give much information on the global ar-
chitecture of the Internet. In particular, they gave evidence of
the fact that the Internet topology has some statistical properties
which make it very different from the models used until then
[7], [16]. This induced an intense activity in the acquisition of
such maps [18], [21], [34], in their analysis [16], [41] and in the
accurate modeling of the Internet [6], [29], [43], [44]. See [35]
for a survey.

Our analysis of the exploration process will be based on these
statistical properties and these models, which we present be-
low. We also need to model the traceroute tool and the
exploration process, which we also discuss in this section. Fi-
nally, we present our methodology, and explain how our results
should be read.

Statistical properties

The Internet, at router level, is composed of several millions
of nodes and dozens of millions of links. Let NV denote its num-
ber of nodes and M its number of links.

It is well known and quite intuitive, that the density of the
Internet graph is low: the number of existing edges over the
number of possible ones, WM—U’ is low. In other words, the
average degree k of the nodes (their average number of links),
ie. k = %, is a constant independent of the size of the net-
work.

A less known point is that the average distance (length of a
shortest path between two nodes) is low. It typically scales as
log(N). This is however not surprising, since it is an essential
objective of the design of the network, and since it is actually
very natural for any graph to have a low average distance [5],
[26], [33].

On the contrary, although it is now well understood, the fact
that the degree distribution of the Internet graph follows a power
law has been a surprise [16]. Indeed, the proportion pj of nodes
of degree k scales as a power of k: py ~ k= with a ~ 2.5.
Intuitively, this means that most nodes have a low degree but
there exists some nodes with (very) high degree. Such graphs
are said to be scale-free.

Another important statistical property measured on the Inter-
net is its clustering C' defined as C' = ]Nv—é, where N, is the
number of triangles (three nodes with three links) in the net-
work and [V, is the number of connected triples (three nodes
with at least two links). In other words, C is the probability
that two nodes are connected together, given that they are both
connected to a same third, which gives a measure of the local
density of the graph. The clustering of the Internet is high, con-
sidered as a constant independent of N.

All these claims (low density, low average distance, power
law degree distribution and high clustering) follow the opinions

most widely spread today. However they rely on measurements
processed on partial and biased views of the actual Internet.
They should therefore be considered carefully. In particular
there is a lot of discussion about the presence of power-law de-
gree distribution [7].

Modeling networks

The basic model for networks is the Erdos and Rényi (ER)
random graph model [5], [15]. In an ER graph with n nodes,
each of the w possible links exists with a given probabil-
ity p. In other words, an ER graph is constructed from n nodes
by choosing m = p - @ links at random. Notice that an
ER graph contains a giant component as soon as the average de-
gree is greater than 1. In the following this condition is always
fulfilled an generally the graph itself is fully connected.

In such a graph, the average distance grows as log(n) [5] as
long as p is high enough. However, the clustering is small (it
tends to zero when n grows), and the degree distribution follows
a Poisson law (py, ~ e*a"‘k—’:). This implies in particular that
all the nodes have a degree close to the average. Therefore,
although this model can be considered as relevant concerning
the average distance, it misses the two other main properties of
the Internet.

An important step was made when Albert and Barabdasi (AB)
introduced their model based on preferential attachment [1],
[14]. In this model, nodes arrive one by one and choose k
neighbors among the existing ones with a probability propor-
tional to their degree. The degree distribution of the nodes in
the obtained graphs follow a power-law with an exponent —3
(it is possible to modify this exponent in others models using
preferential attachment). The average distance of such a graph
is logarithmic in the number of nodes, but the clustering is low.

This model has been modified to give highly clusterized
graphs: in the Dorogovtsev and Mendes (DM) model [13],
nodes arrive one by one but at each step one chooses a random
link {u, v} and the new node is linked to both u and v. This im-
plies that a node is chosen with a probability proportional to its
degree. Therefore, the preferential attachment principle is hid-
den in this model, which induces the fact that DM graphs have
a power-law degree distribution. Moreover, since one forms a
triangle at each step, they have a high clustering.

It is also possible to sample a random graph with a prescribed
degree distribution using the Molloy and Reed (MR) model
[271, [31], [32]. This gives graphs with exactly the wanted de-
gree distribution, but with low clustering.

Finally, the Guillaume and Latapy (GL) model [22], based on
bipartite graphs, gives graphs with power law degree distribu-
tions and high clustering, by sampling graphs with prescribed
distribution of clique (complete sub-graph) sizes.

These models are currently the most widely used for the re-
alistic modeling of clusterized scale-free networks and have all
their own advantages. In particular, the parameters are different
from one model to another: the main parameter for ER and AB
models is the average degree, and the others properties of these
models (the degree distribution for instance) are consequences
of the construction process itself. Likewise, the original DM
model has no parameter but the size of the generated graph



and once again, the properties of this model are contained in
the construction process. Finally, MR and GL models are de-
fined using the degree distributions one wants to obtain, and
most of the properties (including the average degree) are con-
sequences of these distributions. Therefore, depending on the
objective (degree distribution, clustering, etc), one will use one
model rather than another. These models have been considered
as building blocks for more complex models. See [2] for a de-
scription of some of these.

In the results we present here, our aim is to give evidence of
the impact of network properties on the efficiency of shortest-
path based explorations. In most cases, the results do not vary
qualitatively between the AB and the MR model on the one
hand (which have a power-law degree distribution and no clus-
tering), and between the DM and the GL ones on the other hand
(both power-law degree distribution and clustering). We will
therefore mainly present results on ER, AB and DM models,
except in Section V where it is particularly relevant to use MR
and GL ones.

Modeling t raceroute and the exploration

In this paper, we will make the classical assumption [12],
[25], [23] that a route as obtained by t raceroute is nothing
but a shortest path between the source and the destination. It
is known that this is not always true [19], [24], but the realistic
modeling of routes is nowadays an open problem.

Moreover, let us emphasize on the fact that we will make an
intensive use of routes simulations, which makes it crucial to
be able to process them very efficiently. To this respect, our
assumption has important advantages.

Since there may be many shortest paths between two
nodes, this is not sufficient to properly define a model of
traceroute. At a given moment, the route followed by a
packet when a given router R routes it to a destination D will
always be the same independently of the sender. This may have
an influence on the quality of the exploration process, therefore
we included it in our model of traceroute: we always fol-
low the same shortest path (initially chosen randomly) between
any two nodes. In [25] a similar definition of traceroute
based on shortest-paths has been introduced.

We now have a precise model of routes as viewed by
traceroute. But we also need a model for the exploration
process. We considered two points of view: in the first one we
suppose we make a snapshot of the network, and in the second
one we suppose we make a long-time exploration. This leads
respectively to the unique shortest path (USP) model, and to
the all shortest paths (ASP) one: we either see only one route
for any given source and destination, or we see all the possible
ones. The ASP model should not be considered as a realistic
model, since one cannot expect to get all shortest-paths even
within a long period of time (in such a long time, the network
is very likely to evolve). However it can be considered as a best
case when dealing with shortest-paths or as an upper bound on
the amount of information on can expect from a shortest-paths
based exploration.

We also conduced experiments using other models (random
shortest path, several shortest path but not all, etc), but the re-
sults do not qualitatively vary, so we do not detail them here.

Finally, we generally consider a set of sources and a set of
destinations, and make the exploration using each possible cou-
ple of source and destination in these sets. Such a model has al-
ready been used in [4], [25], where the authors call it a (k, m)-
traceroute study (k is the number of sources and m the
number of destinations).

Methodology
Following [25], our global approach is as follows:

1) generate a graph GG using a given model with some known
parameters,

2) compute a view G’ of G using a given model of the ex-
ploration process and a set of sources and of destinations,
and

3) compare the statistical properties of G’ to the ones of G.
Let us insist on the fact that we seek qualitative results only: we
want to know how qualitative properties of the network influ-
ences the properties we observe during an exploration process,
and how reliable are the obtained maps with respect to some sta-
tistical properties. It makes no sense to interpret quantitatively
the results obtained with the kind of approach we use here. On
the contrary, by the simplicity of the models and of the proper-
ties we use, we obtain evidences of the fact that some properties
play a fundamental role in the exploration whereas others may
be neglected.

In the method sketched above, the third point (comparison of
the original graph with the view we obtain) is a difficult task.
To achieve it, we will make an extensive use of grayscale plots
defined as follows (see Figure 6 for some easily readable ex-
amples). For a graph G of N nodes, we consider a square of
size N x N. Each point (z,y) of the square corresponds to a
view G’ of G using = sources and y destinations with a given
model of the exploration process. The point is drawn using
a grayscale representing the value of the real-valued statistical
property p under consideration: from black for p = 0 to white
for the maximal value obtained for p (which might be greater
than its value for 7).

Therefore, in these plots, the point (0,0) is always black
(we do not see anything using zero sources and zero destina-
tions) and the point (N, N) has the grayscale corresponding to
the value of p for the original graph G' (when every node is a
source and a destination, we see everything: G’ = G). The
points darker than the point (N, N') correspond to conditions
where the value of p is under-estimated, whereas points clearer
correspond to conditions where it is over-estimated. The white
points correspond to the maximal values reached by p. Notice
also that the gray variation is linear: if a dot is twice darker than
another dot, then the associated value is twice as large.

Each point of such a plot corresponds to a graph G’, and
therefore computing such plots is computationally expensive.
Therefore, is it important to efficiently compute them and to
keep N quite low. We conduced experiments with N = 103,
N =10* and N = 10° typically, and, whereas some finite size
effects are visible on small graphs (N = 103), these effects
disappear for graphs of size N = 10* and more. This is why
we will present plots for this value of N in general.

Finally, to improve the grayscale plots readability, we added
on each such plot the 0.25—, the 0.50—, the 0.75— and the 0.99-



level lines, where the [-level line is defined as the set of points
where the value of p over its maximal value is between [ —
0.01 and ! 4+ 0.01. These lines are often a precious help in the
interpretation of the grayscale plots. See Figure 6 and the rest
of the paper for examples.

II. PROPORTION DISCOVERED

In this section, we focus on the most basic statistical prop-
erties of an exploration, namely the proportion of discovered
nodes, the proportion of discovered links, and the quality of the
evaluation of the average degree. We present the relevant results
on the ER, the AB, the MR and the DM models, and we explain
which parameters have a strong influence on these results.

Notice that results using similar approach have been ob-
tained in [4], however our explorations are processed on ran-
dom graphs instead of real data, the aim being to highlight the
parameters of the models and therefore the characteristics of the
graphs which influence the efficiency of the exploration.

Random graphs

Let us first study what happens during the exploration of an
ER graph. Figures 1 and 2 plot the proportion of the graph
discovered. When the average degree is quite small, there is
no qualitative difference between ASP and USP (there exists in
general very few shortest path between any two nodes) and the
quality of the view is good even for small numbers of sources
and destinations (Figure 1 shows the USP plots, which are very
similar to the ASP ones in this case).

Fig. 1. ER graph: number of vertices, number of edges, and average degree.
k = 10, N = 104, USP. The ASP plots are very similar in this case.

On the contrary, when the average degree grows, so does the
number of shortest paths, and the difference between ASP and
USP becomes significant. This can be observed in Figure 2,
where we show the plots for both USP and ASP on an ER
graph with high average degree. In this case, the vertices are
not harder to find than in a low-average degree graph, but the
edges are.

The fact that the average degree is obtained by dividing two
other properties which are improved by the use of more sources
and/or destinations has important consequences. If one of the
two properties is highly biased and the other is not, then the
average degree will have a strong bias. The quotient acts like a
worst case filter. Figure 2 shows this effect on dense ER graphs.
Since the number of edges is very poorly estimated, so is the
average degree.

Notice however that when N grows, the proportion of
sources and destination necessary to obtain an accurate view
decreases, even if the number of sources and destinations in-
creases.

Fig. 2. ER graph: number of vertices, number of edges, and average degree.
k = 100, N = 104, USP (first line) and ASP (second line).

Scale-free graphs

Let us now observe what happens when we consider scale-
free graphs. Let us begin with the AB model which makes it
possible to obtain scale-free graphs with a given average degree
(by choosing the number of edges created for each new vertex).
In Figure 3 (all the plots, using different parameters, display
a very similar behavior), we can see that the efficiency of the
exploration on such graphs is qualitatively similar to the one on
ER graphs, though it is lower. If we want a very precise map,
however, we need much more sources and destinations. There
is also a strong difference between USP and ASP, which tends
to show that there are multiple shortest paths between nodes.

Fig. 3. AB graph: number of vertices, number of edges, and average degree.
k =10, N = 104, USP (first line) and ASP (second line).

If we make the same experiments with MR graphs, which
also have a scale-free nature and should be equivalent to AB
graphs, we obtain the surprising results plotted in Figure 4: the
quality of the obtained view is much worse for MR graphs than
for AB graphs. Even when considering ASP, one needs to take
about half sources and destinations to view 75% of the graph
(both in terms of edges and nodes).

Notice also that the average degree is surprisingly well esti-
mated, even if overestimated. Since the average degree is the
quotient of the proportion of nodes and edges discovered, if the
two properties has the same kind of bias, this may be hidden by
the quotient: the evaluation of the average degree is good when-
ever the ratio between the number of edges and the number of



nodes is accurate, even if these numbers themselves are wrong.
Figure 4 plots such a behavior. Actually the average degree is
overestimated since high degree nodes and some of the edges
attached to them are first discovered and low degree nodes are
discovered only in the later steps of the exploration.

Fig. 4. MR graph: number of vertices, number of edges, and average degree.
a = 2.5, N = 10%, USP (first line) and ASP (second line).

The fact that MR graphs are harder to explore than AB ones
rely on a simple explanation of this fact: in an AB graph with
average degree k, the minimal degree is % (we add % links
at each step, see Section I). Therefore, the power-law degree
distribution of such a graph stands only for nodes with degree
higher than g On the contrary, in a MR graph, the number
of low-degree nodes (and in particular the number of nodes
with only one link) is very high. During an exploration pro-
cess, these nodes are difficult to discover since they lie on very
few shortest paths. For example, a node of degree 1 and the link
attached to it are discovered only when we choose this node as
a source or destination. If the number of such nodes is high then
the estimation of the size of the graph can only be good with a
lot of shortest paths.

These explanations can be checked as follows. Instead of
considering the original MR graph, we consider its core defined
as the graph obtained by removing all the nodes of degree 1 and
iterating this process until there is no such node anymore. In
other words, the graph is composed of the core, to which are
attached some tree-like structures, which we remove. If we run
the exploration on the core of a MR graph, we obtain the plots
in Figure 5. For the USP exploration, these results are more in
accordance with the ones for the AB graphs. Notice however
that it is not only difficult to find a node of degree 1, but also to
find all the nodes of low degree, which explains the difference
between AB (no nodes of degree lower than %) and the core
MR graphs.

The difference between ASP and USP is more important in
AB graphs than in MR (or in the core of MR), which shows that
there are more multiple shortest paths in an AB graph than in a
MR one.

The important point here is that the quality of an exploration
of a MR graph is low because of the large number of low-degree
nodes. Such nodes, among which are tree-like structures, are
difficult to discover since they lie on few shortest paths, whereas
the core of the graph and especially the nodes of high degree are

Fig. 5. Core of a MR graph: number of vertices, number of edges, and average
degree. o = 2.5, N = 10, USP (first line) and ASP (second line).

rapidly discovered.

Clusterized graphs

Let us now consider a DM graph, in which there are many
triangles and the degree distribution follows a power law. Like
in an AB graph, there is no node with only one link. Therefore,
the effect noticed above in MR graphs should not appear.
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Fig. 6. DM graph: number of vertices, number of edges, and average degree.
N = 104, USP (first line) and ASP (second line).

However, one can see in Figure 6 that we again obtain low
quality maps of this kind of graphs. The fact that the plots for
USP and ASP are very similar indicates that there are very few
different shortest paths between nodes. This, and the fact that
the quality of the obtained views is low, can be understood as
follows. When one wants to explore a clique (complete graph),
or more generally a dense graph, one has to use a large num-
ber of sources and destinations. For instance in a simple tri-
angle, two edges cannot be discovered simultaneously by one
traceroute. Therefore three t raceroute have to be pro-
cessed to discovered a triangle. The same happens for a k-
clique in which k - (k — 1)/2 traceroute have to be pro-
cessed. The high clustering in DM graphs is equivalent to the
fact that there are many subgraphs which are cliques or almost.
All these parts of the graph are difficult to explore.

Notice that this time the average degree is poorly estimated,
which shows that inferring the average degree is very sensitive:
very similar behaviors (see Figures 4 and 6 for instance) may



lead to very different average degree estimations. This warns
us against drawing precise conclusions for the average degree
from such explorations.

Finally, the conclusion of this section is the following: two
properties of graphs make them hard to explore in different
ways. The first one is the large number of tree-like structures
around the core of the graph. The second one is the high cluster-
ing which induces many dense subgraphs. The two properties
are complementary and act on different parts of the graph (on
the border and on the core, respectively), which indicates that
we should take them both into account.

III. DEGREE DISTRIBUTION

The degree distribution of the Internet has recently received
much attention. It is the main property for which the bias in-
duced by the exploration have been studied [9], [23], [24], [25],
[36], [39]. In particular in [25] it is shown that under simple
assumptions it is possible to obtain a view with an heavy tailed
distribution from an ER graph. We will deepen these study here
by considering several models, exploration methods, and num-
bers of sources and destinations. However, we cannot use the
grayscale plots in this context, since the question we address is:
how fast does the observed degree distribution converge to the
real one with respect to the number of sources and destinations?
This can not be directly evaluated as a real number which would
be necessary for grayscale plots. Instead, we display plots for
representative values of the parameters (again, we conduced ex-
tensive simulations but we selected the most relevant ones for
this presentation).

Random graphs

Let us first consider ER graphs with low average degree. As
shown in Figure 7, if the number of sources is very low then
the obtained degree distribution is far from the real one. With
an USP exploration, the obtained degree distribution converges
quite slowly: it is still significantly different from the real one
if we take 1% of sources and 10% of destinations. With an ASP
exploration, the accuracy is much better: the view is almost
perfecteven with only 0.5% of sources and 20% of destinations.

The case of ER graphs with high average degree (Figure 8)
is more interesting: the presence of high degree nodes makes
it possible to obtain power-law degree distributions with par-
tial USP explorations. This has been studied in previous works
[25], [36] to show that the exploration bias may be qualitatively
significant. This measurement bias occurs when one consid-
ers very few sources and many destinations (Figure 8, top) and
the USP exploration. It disappears when one considers a larger
number of sources, for instance 0.5% of the whole (Figure 8,
bottom), or when one considers an ASP exploration (Figure 9),
even for small numbers of sources and destinations.

Notice also that, in intermediary cases, one may obtain sur-
prising results like the plot for 500 sources and 5000 destina-
tions in Figure 8, which has two peaks. As explained in [25],
this is due to the fact that in such cases most of the links close to
the sources are discovered, whereas the ones close from the des-
tination are not. The rightmost peak then corresponds to nodes
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Fig. 7. ER graph: degree distribution. & = 10, N = 10%, USP (top) and ASP
(bottom).

close from the sources (for which we have all their edges) while
the leftmost one corresponds to the nodes close from the desti-
nations (for which we miss almost every link).

These first results concern ER graphs, for which the degree
distribution are not power-laws. They show that it is quite dif-
ficult to obtain an accurate view of the degree distribution of
such graphs, which is improved significantly by the use of many
sources and destinations. As already noticed, the use of a low
number of sources may even give degree distributions qualita-
tively different from the real ones.

Scale-free graphs

If we now consider scale-free graphs, the results are totally
different: as one can check in Figures 10 and 11 respectively
for MR and DM graphs, USP explorations give accurate views
of the actual degree distribution I even for small numbers of
sources and destinations. In the case of MR graphs (the results
are the same for AB graphs), the fit is excellent. In the case of
DM graphs, the obtained exponent is slightly lower for small
numbers of sources but it rapidly converges to the real one.

In conclusion, the behaviors of ER and scale-free graphs are
completely different concerning the accuracy of the obtained
degree distributions. Whereas it is quite difficult (especially
using an USP exploration) to obtain an accurate estimation for

IThe important characteristic of a power-law distribution is its exponent c,
i.e. the slope of the log-log plot. Here, to improve the plots readability, we
divide the number of nodes of a given degree by the total number of nodes IV,
including the ones which are not discovered during the exploration in concern.
This does not change the slope «
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ER graphs, the exponent of the power-law degree distribution
of a MR, an AB or a DM graph is correctly measured even with
a small number of sources and destinations. We also show that,
despite the fact that using a very small number of sources and
a large number of destinations can in principle give us a wrong
idea of the actual degree distribution of a graph, these cases are
quite pathological.

IV. CLUSTERING

The clustering of a graph is computed by dividing the num-
ber of triangles in the graph by the number of connected triples
(see Section I). Just like the average degree depends on the ob-
tained numbers of nodes and links (see Section II), this means
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Fig. 11. DM graph: degree distribution. N = 10*, USP.

that the evaluation of the clustering of a graph we obtain using
an exploration depends on how fast we discover triangles with
respect to the speed at which we discover triples: the evaluation
of the clustering is accurate if we discover a proportion of the
total number of triangles similar to the proportion of the total
number of triples we discover. We will therefore study how tri-
angles and triples are discovered, together with the clustering
itself.

Fig. 12.  ER graph: clustering, number of triangles, and number of triples.
k =10, N = 104, USP (first line) and ASP (second line).

Let us first observe what happens for ER graphs. Notice that
when the average degree is low, there are almost no triangles in
such graphs (and so the clustering is zero). When the average
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Fig. 13.  Dense ER graph: clustering, number of triangles, and number of
triples. k = 100, N = 10%, USP (first line) and ASP (second line).

degree grows, so does the clustering. We therefore perform our
measurements in both cases. As one can check in Figures 12
and 13, there is no real surprise: increasing the numbers of
sources and destinations increases the evaluation of the cluster-
ing, a consequence of the fact that the speeds at which triangles
and triples are discovered are quite the same. This is in agree-
ment with the results in previous sections which highlighted the
fact that dense sub graph are quite hard to explore.

Fig. 14.  AB graph: clustering, number of triangles, and number of triples.
k =10, N = 10*, USP (first line) and ASP (second line).

If we turn to AB and MR graphs (the behaviors of the two
kinds of graphs are very similar), we again have a very low
clustering but in the USP case it is over-estimated when we
consider few sources and destinations. This is a consequence
of the fact that we discover much more triangles than triples at
the very beginning of the exploration. However, the estimations
rapidly becomes accurate, and lower than the initial value. This
can be seen in Figure 14: the black value corresponds to the
clustering of the original AB graph, and the only cases where
the estimation is wrong are in the lower left corner. The ASP
explorations give more accurate results.

Let us now observe what happens with a highly clusterized
graph, obtained with the DM model. In Figure 15, we can see
that the clustering can be well evaluated if we use as many
sources as destinations. If we use much more sources than des-
tinations or conversely then the estimation is bad (notice that
this is currently the case for the explorations of the Internet).

Fig. 15. DM graph: clustering, number of triangles, and number of triples.
N = 104, USP (first line) and ASP (second line).

Indeed, in these cases, there is a strong difference between the
rapidity with which we discover triangles and triples. When the
numbers of sources and destinations are similar, on the contrary,
despite we miss many triangles and triples, the proportions we
miss of each are similar. In this case, therefore, the estimation
of the clustering is accurate.

In conclusion, we see in this section that the clustering may
have a lot a different behaviors since it is computed by a ratio
of two parameters: triangles and triples (it is quite similar to
the average degree), and even if both parameters are not well
estimated, the clustering itself may be. Discovering dense sub-
graphs and in particular triangles is never an easy task using
shortest-paths, however discovering triples might not be very
easy in dense graphs since they often belong to triangles (see
Figure 13 and 15), which means that two links of the triple can-
not be discovered with only one path. In all cases, increasing
the number of sources and destinations gives a better approxi-
mation of the clustering.

V. REAL-WORLD DATA AND EXPERIMENTS

Until now, we presented simulations carried out on models of
networks and using simple models for traceroute and the
exploration process. We will now make the same kind of ex-
periments on real-world data to evaluate the relevance of these
simulations.

To achieve this, we use the core of the Mercator map of the
Internet [20], [21], i.e. the subgraph obtained by iteratively re-
moving the nodes of degree 1 from the original Mercator map.
This map has all the properties we have mentioned: low density,
high clustering, power-law degree distribution and low average
distance. Notice that this map has been obtained with only one
source and use of source-routing and therefore the protocol can-
not be compared with the one used in our study. However we
only study the map itself and consider it representative of the
Internet.

We restrict our study to the core of this map because we have
already seen that the tree-like structures around it are difficult to
discover, and our aim is now to identify other properties which
may influence the exploration. Using this graph, we make ex-
actly the same measurements as the ones presented above and
we compare the results with the ones obtained on a random



graph having exactly the same degree distribution (MR model)
and on graphs having the same distribution of clique sizes (GL
model). See Figure 16 for the basic statistics, and Figure 17
for the clustering 2. The results concerning the average distance
and the degree distributions are similar to the ones observed on
models, therefore we do not discuss them further.

R

Fig. 16.  Number of nodes, number of links, and average degree for (from
top to bottom): the original Mercator graph, a MR graph with exactly the same
degree distribution, and GL graph with the same distribution of cliques sizes.
USP explorations.

From Figure 16 and the ones discussed before, we can derive
the following observations:

« the low quality of the exploration of the Mercator graph is
not only due to the presence of tree-like structures around
the core, since we removed them in this experiment,

o the Mercator graph cannot be viewed as a MR graph since
the exploration of its core gives results different both from
the explorations of the core of a MR graph (Figure 5) and
from the explorations of MR graphs with the same degree
distribution (Figure 16, second line),

« the clustering could be viewed as the main property re-
sponsible for the low quality of the explorations, since the
results for the Mercator graph are very similar to the ones
for DM graphs (Figure 6, first line) and quite similar to the
ones for GL graphs (Figure 16, third line).

This last conclusion, however, is not completely satisfactory.
Indeed, the results concerning the quality of the estimation of
the clustering are significantly different for DM graphs (Fig-
ure 15) and for the Mercator graph (Figure 17, first line). The
clustering certainly plays a role in the exploration of the Mer-
cator graph, but it is much more similar to the one observed
for GL graphs (Figure 17, second line). It therefore seems that
the models do not capture all the properties which influence the

2The jumps in the grayscale plots for the clustering of the Mercator graph
are due to the ones in the plot of the number of triples. Themselves are con-
sequences of the fact that, at this point, we take a very high-degree node as a
source with many destinations, which suddenly increases the number of triples
(by d(d — 1) where d is the degree of the node).

exploration process, even if the low degree nodes and the clus-
tering have been clearly identified among them.

74,
7

Fig. 17. Clustering, number of triangles, number of triples for the original
Mercator graph (first line) and a GL graph with the same distribution of cliques
sizes (second line). USP explorations.

The exact sources and destinations, and the obtained routes,
used to produce the Mercator graph are not available. More-
over, it relies on one source and source-routing. Therefore, we
cannot plot the grayscale plots where we would take the same
sources and destinations as in the real exploration, and where
we would take real routes rather than shortest paths. Such ex-
periments are currently in progress and we will present them in
the full version of this paper.

CONCLUSION AND DISCUSSION

We conduced an extensive set of simulations aimed at evalu-
ating the quality of current maps of the Internet and understand-
ing how to distribute explorations massively to improve it. To
achieve this, we considered the most commonly used models
of graphs (namely the ER, the AB, the MR, the DM and the
GL ones). Following the method introduced in [25], we then
constructed views of these graphs and compared them to the
original graphs. We focused on the proportion of the graph dis-
covered (both in terms of nodes and links), the average degree,
the average distance, the degree distribution and the clustering,
which are the basic statistical properties of complex networks
in general, and of the Internet in particular.

We presented in this paper the most significant results. To do
so, we introduced the grayscale plots and the level lines, which
make it possible to give a synthetic view of a huge amount of
information, and to interpret it easily. We also compared the
results on network models to the ones obtained on real-world
data. This last point confirmed that the simplifications and as-
sumptions we have made in our simulations do not influence
significantly the obtained results.

From these experiments, we can derive the following conclu-
sions:

« Two statistical properties of graphs influence strongly our
ability to obtain accurate views of them: the presence of
many tree-like structure and the high clustering. These
two properties act independently and their effects are com-
bined in the case of the Internet.



o It is relevant to use massively distributed exploration
schemes to obtain accurate maps of scale-free clusterized
networks like the Internet, in particular if we want to dis-
cover most nodes and edges, and have an accurate esti-
mation of the clustering. Using more than a few sources
should yield much more precise maps.

« On the contrary, the evaluation of the degree distribution of
such a network, as well as its average distance (results not
presented here) is achieved with very good precision even
for reasonably small number of sources and destinations.

o The details of the exploration scheme (for instance USP
versus ASP or the behavior of traceroute) tends to
have little importance when the number of sources and
destinations grows. In the case of the Internet, this means
that distributing explorations can be viewed as a way to
improve the independence of the results from the explo-
ration scheme.

« Despite power-law degree distribution and high clustering
play a role in the efficiency of the explorations of the In-
ternet, it seems that other unidentified properties also in-
fluence this efficiency.

« Some results not presented here show that it may be rele-
vant not to place sources and destinations randomly in the
graph. More surprisingly, the placement of sources and
destinations has not the same influence on all the proper-
ties.

Finally, these results make it possible to conclude that we may
be confident in the fact that the Internet graph has a degree dis-
tribution similar to a power-law and that the current evaluation
of the exponent of this distribution is quite accurate: current
explorations use sufficiently many sources to ensure that we
do not obtain biased explorations of ER-like graphs, and in the
other cases it seems that the estimation of the degree distribu-
tion is accurate. Likewise, one might give credit to the avail-
able evaluations of the average distance in the Internet. On the
contrary, despite the clustering of the Internet is certainly quite
high, the estimations we have should be considered more as
qualitative than quantitative.

More investigations are currently in progress. First, we are
considering more subtle statistical properties, like the correla-
tions between node degrees, or the correlations between degree
and clustering, and more realistic models of traceroute.
We are also studying real explorations of the Internet using
traceroute from many sources to many destinations in or-
der to create grayscale plots from real paths.

Finally, let us insist on the fact that most real-world complex
networks, like the World Wide Web and Peer to Peer systems,
but also social or biological networks are generally not directly
known. Various exploration schemes are used to infer maps of
these networks, which may influence the vision we obtain. The
metrology of complex networks is therefore a general scientific
challenge, for which the goal is to be able to deduce properties
of the real network from the ones observed.
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