
IEEE INFOCOM 2005 1

On Survivable Routing of Mesh Topologies in
IP-over-WDM Networks

Maciej Kurant, Patrick Thiran
LCA - School of Communications and Computer Science

EPFL, CH-1015 Lausanne, Switzerland
Email: {maciej.kurant, patrick.thiran}@epfl.ch

Abstract— Failure restoration at the IP layer in IP-over-WDM
networks requires to map the IP topology on the WDM topology
in such a way that a failure at the WDM layer leaves the IP
topology connected. Such a mapping is called survivable. Finding
a survivable mapping is known to be NP-complete [1], making
it impossible in practice to assess the existence or absence of
such a mapping for large networks. (i) We first introduce a new
concept of piecewise survivability, which makes the problem much
easier, and allows us to formally prove that a given survivable
mapping does or does not exist. (ii) Secondly, we show how to
trace the vulnerable areas in the topology, and how to strengthen
them to enable a survivable mapping. (iii) Thirdly, we give an
efficient and scalable algorithm that finds a survivable mapping.
In contrast to the heuristics proposed in the literature to date,
our algorithm exhibits a number of provable properties that are
crucial for (i) and (ii). We consider both link and node failures
at the physical layer.

Index Terms— IP-over-WDM, link and node failures, surviv-
ability, graph theory

I. INTRODUCTION

Generally, there are two approaches for providing surviv-
ability of IP-over-WDM networks: protection and restora-
tion [2]. Protection uses pre–computed backup paths applied in
the case of a failure. Restoration finds dynamically a new path,
once a failure has occurred. Protection is less resource efficient
(the resources are committed without prior knowledge of the
next failure) but fast, whereas restoration is more resource
efficient and slower. Protection and restoration mechanisms
can be provided at different layers. IP layer (or logical layer)
survivability mechanisms can handle failures that occur at both
layers, contrary to WDM layer (or physical layer) mechanisms
that are transparent to the IP topology. It is not obvious
which combination (mechanism/layer) is the best; each has
pros and cons [3]. IP restoration, however, deployed in some
real networks, was shown to be an effective and cost–efficient
approach (see e.g., Sprint network [4]). In this paper we will
consider exclusively the IP restoration approach.
Each logical (IP) link is mapped on the physical (WDM)
topology as a lightpath. Usually a fiber is used by more than
one lightpath (in Sprint the maximum number is 25 [5]).
Therefore a single physical link failure usually brings down
a number of IP links. With the IP restoration mechanism,
these IP link failures are detected by IP routers, and alternative
routes in the IP topology are found. In order to enable this,
the IP topology should remain connected after a failure of a
physical link; this in turn may be guaranteed by an appropriate

mapping of IP links on the physical topology. We call such a
mapping a link-survivable mapping.
Physical link failure is a common type of failure, but not the
only one. We can also encounter a physical node failure (e.g.,
a failure of an optical switch); it is equivalent to the failure of
every fiber beginning in the failing node, making the problem
more difficult. If, after any single physical node failure, the
logical topology (excluding the failing node) remains con-
nected, then the mapping is declared to be node-survivable.
In this paper we consider both link- and node-survivability.
Firstly, we are interested in the existence of a (link- or node-)
survivable mapping for a given pair of logical and physical
topologies. There is some work on the topic in the literature,
but it assumes ring topologies at the physical [6], [7] or the
logical [1], [8] layer. We study the existence of a link/node-
survivable mapping for general mesh topologies at both layers,
which is foreseen to be the main future topology. To date, the
only general method verifying the existence of a survivable
mapping was an exhaustive search (or equivalent) run for the
entire topology. Due to NP-completeness of the survivable
mapping problem [1], the exhaustive approach is not realizable
in practice for the topologies larger than a few nodes. To
bypass this difficulty, we introduce a new type of mapping,
which preserves the survivability of some subgraphs (‘pieces’)
of the logical topology; we call it a piecewise survivable
mapping. The formal analysis of the piecewise survivable
mapping shows that a survivable mapping of the logical
topology on the physical topology exists if and only if there
exists a survivable mapping for a contracted logical topology,
that is, a logical topology where a specified subset of edges is
contracted (contraction of an edge amounts to removing it and
merging its end-nodes). This new result substantially simplifies
the verification of the existence of a survivable mapping,
making it, for the first time, often possible for moderate and
large topologies.
A second application of a piecewise survivable mapping is
tracing the vulnerable areas in the network and pointing where
new link(s) should be added to enable a survivable mapping.
To the best of our knowledge, this is also a novel functionality.
Thirdly, the formal analysis reveals an easy way to incremen-
tally expand the survivable pieces in a piecewise survivable
mapping. This leads us to SMART - an efficient and scalable
algorithm that searches for a survivable mapping. SMART is
different from the algorithms solving this problem proposed in
the literature. These algorithms can be divided into two groups:

2 IEEE INFOCOM 2005

(i) greedy search based on Integer Linear Programming (ILP),
and (ii) heuristics. The ILP solutions can be found for example
in [1], [9]. However, this approach leads to an unacceptably
high complexity, even for networks of small size (few tens
of nodes). The second approach uses various heuristics, such
as Tabu Search [9], [10], [11], Simulated Annealing [3] and
others [2]. If a heuristic fails, nothing can be claimed about
the existence of a survivable mapping. We introduced the
SMART algorithm in [12] as such a heuristic, without any
formal analysis. Simulations in [12] showed that SMART
is efficient and scales very well. The concept of piecewise
survivability introduced in the present paper makes the formal
analysis of SMART possible. It revealed that the SMART
algorithm actually opens a third group (iii) in the family of
algorithms that search for a survivable mapping. One of our
key results is that, contrary to the heuristics (ii), SMART never
misses a solution if there is one. This is because, even if
SMART does not fully converge, the mapping it returns is
piecewise survivable. This mapping is defined for a subset of
logical links, and leaves the remaining logical links unmapped.
We prove that if a survivable solution exists, the remaining
unmapped logical links can be still mapped in a way ensuring
the survivability of the resulting full mapping.
In contrast to physical link failures, physical node failures
were rarely addressed before. The solutions proposed in the
literature (e.g., [13]) are protection/restoration mechanisms at
the WDM layer, but not at the IP layer. To the best of our
knowledge, this work is the first one to formally address node
failures by an IP restoration approach.
Many of the approaches mentioned above take as a parameter
the number of wavelentgths in each fiber, i.e., take fiber
capacities into account. Clearly, this better reflects real-life
situations. The approach in this paper, like the approaches
in [1], [10], releases the capacity constraints, by assuming
infinite capacities on each physical link. Hence our approach
deals only with topological constraints, not with capacity lim-
itations. This has pros and cons. On one hand, this makes the
‘negative results’ more general; if we prove that a survivable
mapping does not exist for a particular pair of physical and
logical topologies with infinite physical capacities, then this
proof holds for any combination of finite capacities. On the
other hand, the ‘positive result’ (i.e., a survivable mapping)
found for infinite capacities is not necessarily applicable to a
scenario with given finite capacities.
The organization of this paper is the following. Section II
introduces notations and formalizes the problem. Section III
gives two fundamental theorems. For better readability, their
proofs are moved to the Appendix. Section IV introduces
the SMART algorithm and describes its implementation. Sec-
tion V discusses a number of possible applications of SMART.
Section VI presents the simulation results. Section VII con-
cludes the paper.

II. NOTATION AND PROBLEM FORMULATION

A. Generalities

We use the formal notation of graph theory, mainly based on
[14]. However, we also introduce the stack of our definitions

well suited to the problems we tackle. The following general
notation is used:

• φ corresponds to the physical topology,
• L corresponds to the logical topology,
• C corresponds to the contracted topology (introduced

later in Section II-C),
• a, b, c, d, e . . . are used to denote edges/links,1

• u, v, w . . . are used to denote vertices/nodes,2

• p is used to denote a path, i.e., an alternate sequence
of nodes and edges, where two consecutive edges have
a common end-node that appears between them in the
sequence. A path p from vertex v to vertex u will be
denoted by pv,u.

Physical and logical topologies are represented by undirected
simple graphs: Gφ = (V, Eφ) and GL = (V, EL), respec-
tively. V is the set of vertices, Eφ and EL are the sets of
undirected edges. In reality, not every physical node (i.e.,
optical switch) has an IP routing capability, which would imply
V φ ⊇ V L. All the the results in this paper hold for V φ ⊇ V L,
but for the sake of simplicity we have chosen to keep V φ and
V L identical (V φ ≡ V L ≡ V).

B. Lightpath and mapping

Definition 1 (Lightpath): A logical link eL is mapped on a
physical topology as a physical path pφ in such a way that pφ

connects the same two vertices in Gφ as eL connects in GL.
In optical networking terminology, such a physical path pφ is
called a lightpath. The failure of any physical link in pφ breaks
the lightpath and consequently brings down the logical link eL.
Note that, since we release the capacity constraints, we do not
have to consider the wavelengths assigned to lightpaths and
wavelength converters placement.

Definition 2 (Mapping): Let P φ be a set of all possible
physical paths in the physical topology and A ⊂ EL be
a set of logical links. A mapping MA is a function MA :
A → P φ associating each logical link from the set A with a
corresponding lightpath in the physical topology.
For some particular logical edge eL ∈ A, MA returns a
physical path pφ = MA(eL), pφ ∈ P φ. For arguments beyond
A, MA is not defined. We also allow putting a set of logical
links Asub ⊂ A as an argument, which results in a set of
lightpaths MA(Asub) ⊂ P φ. Similarly, taking as an argument
a logical path pL whose edges are in A, we obtain a set of
lightpaths MA(pL) ⊂ P φ associated with the edges of pL

(nodes of pL are ignored).
Example 1: Fig. 1 illustrates the definitions given above. In

Fig. 1a the mapping MA is defined for the subset A of logical
links (marked in bold in the logical topology). For example,
we have MA(aL) = 〈cφ, dφ〉, which means that the lightpath
assigned for the logical edge aL consists of two physical links,
cφ and dφ. Fig. 1b presents a mapping defined for the subset
B, whereas the mapping MEL in Fig. 1c is defined for all
links of the logical topology EL = A ∪ B.

1The terms edge and link will be used interchangeably
2The terms vertex and node will be used interchangeably

IEEE INFOCOM 2005 3

c) Full mapping
EL=A ∪ B={aL, bL, cL, dL, eL fL,gL,hL}

GL

aL

bL

cL

fL

eL
 gL

hL
 dL

G
�

e
�

a
�

b

�

c

�

d
�

g
�

f
�

 h
�

LE
M

b) Mapping of the set
 B={dL, eL}

GL

aL

bL

cL

fL

eL
 gL

hL
 dL

G
�

e
�

a
�

b

�

c

�

d
�

g
�

f
�

 h
�

BM

a) Mapping of the set
 A={aL, bL, cL, fL,gL,hL}

GL

aL

bL

cL

fL

eL
 gL

hL
 dL

eL

dL

uC
 vC

GC=GL A

G
�

e
�

a
�

b

�

c

�

d
�

g
�

f
�

 h
�

AM

V*

V*

V*

V*

V*

V*

V*

V*

V*

Fig. 1. Three mapping examples. We have four layers, from bottom to top: the physical topology Gφ, the mapping M , the logical topology GL and the
contracted logical topology GC (only in (a)). In (a) the pairs

[
GL

{aL,bL,cL}
, MA

]
and

[
GL

{fL,gL,hL}
,MA

]
are link- and node-survivable, and therefore

the pair
[
GL,MA

]
is piecewise link- and node-survivable. In (b) the mapping MB maps edge-disjointly the set B = {dL, eL} of two logical links. The

contracted topology GC in (a) is composed of these two links. Taking GC and B together, we obtain the pair
[
GC ,MB

]
, which is link-survivable, but not

node-survivable. In (c) the pair
[
GL,MEL

]
is link-survivable, that is MEL is a link-survivable mapping of the entire logical topology.

We will often deal with mappings of different subsets of
logical edges. Let A1, A2 ⊂ EL. For consistency, we always
require that:

for every eL ∈ A1 ∩ A2 : MA1
(eL) = MA2

(eL). (1)

The mappings MA1
and MA2

can be merged, resulting in a
mapping MA3

defined as follows

A3 = A1 ∪ A2 (2)
MA3

(A3) = MA1
(A1) ∪ MA2

(A2). (3)

For convenience of notation, we will write (2) and (3) as
MA3

= MA1
∪ MA2

.

C. Contraction and Origin

In the paper we will often use the graph operator of
contraction, which is illustrated in Fig. 2 and is defined as
follows:

Definition 3 (Contraction [14]): Contracting an edge e ∈
E of a graph G = (V, E) consists in deleting that edge and
merging its end–nodes into a single node. The result is called
the contraction of a graph G on an edge e (or simply a
contracted graph), and is denoted by GC = G↓e.
By extension, we also allow contracting a set of edges
A ⊂ E, resulting in a contracted graph GC = G↓A, obtained

by successively contracting the graph G on every edge of A.
It is easy to show that the order in which the edges of A are
taken to contraction, does not affect the final result.

Let G = (V, E), A ⊂ E and GC = (V C , EC) = G↓A.

contraction

G

A={a,b,c,g}

y

z v

u

w x

c

a

b e g

h d

f

GC=G A

h
e

d
uC

f
vC

wC

 Origin(e) = e
 Origin(vC) = ({u,v,w}, {a,b,c})
 Origin(uC) = ({y,z}, g)
 Origin(wC) = x
 Origin(({uC,wC}, {f,h})) = ({x,y,z}, {f,g,h})

Fig. 2. Contraction of a graph G on a set of edges A = {a, b, c, g} (GC =

G↓A). The origins of some elements of GC are also shown (bottom).

Note that by construction EC = E\A. Therefore each edge
of GC can be found in G, as depicted in Fig. 2. This is
not always true for vertices. A vertex of V C may either
‘originate’ from a single vertex in G (like wC in Fig. 2), or
from a connected subgraph of G (like vC and uC). We call

4 IEEE INFOCOM 2005

this relation an Origin(·).
Definition 4 (Origin): Let GC = G ↓ A. Now take a

subgraph GC
sub ⊆ GC . We say that Gsub = Origin(GC

sub),
if Gsub is the maximal subgraph of G that was transformed
into GC

sub by the contraction of A in G.
According to this definition, the result of the Origin(·)
function is the maximal subgraph transformed in its argument.
For example, one could say that in Fig. 2, the vertex z ∈ G
was transformed into the vertex uC ∈ GC , however z 6=
Origin(uC) because it is not the only element that was
transformed into uC by contraction. The maximal subgraph
in this case is ({y, z}, g) = Origin(uC).

D. Survivability and piecewise survivability

Let MEL be a mapping of the logical topology GL on the
physical topology Gφ. Assume that a physical link eφ fails.
Each logical link in GL using eφ in its mapping (lightpath) will
than be cut. This may cause a disconnection of GL. If, after
any single physical link failure, the graph GL remains con-
nected, then the pair

[
GL, MEL

]
is declared link-survivable.

We extend this property to a family of graphs constructed from
the logical topology, and to the other type of failures, in the
following definition:

Definition 5 (Link- and node-survivability): Let GL =
(V, EL), A ⊂ EL and GC = (V C , EC) = GL ↓ A. Take
any connected subgraph GC

sub = (V C
sub, B) of the contracted

topology GC , and let MB be a mapping of the set B of logical
links. The pair

[
GC

sub, MB

]
is link-survivable if the failure of

any single physical link eφ does not disconnect the graph GC
sub.

The pair
[
GC

sub, MB

]
is node-survivable if the failure of any

single node v∗ ∈ V does not disconnect the graph

GC
sub\{v

C ∈ GC
sub : Origin(vC) = v∗}. (4)

The graph (4) is GC
sub minus one vertex, if its origin is the sin-

gle vertex v∗. If v∗ is a part of a larger subgraph of GL, which
was contracted into a single node in GC

sub, then the graph (4)
is GC

sub. For example, in Fig 2, let GC
sub = GC . For v∗ = x, the

graph (4) is equal to GC
sub\{w

C} = {{vC , uC}, {e}}. But if
v∗ = u then (4) is equal to the entire GC

sub. This modification
in the definition of node-survivability, compared to that of link-
survivability, is necessary, because if node v∗ fails it trivially
disconnects the logical topology into GL\{v∗} and {v∗}. The
node-survivability definition applies therefore to GL\{v∗}.
A direct consequence of Definition 5 is that if

[
GC

sub, MB

]

is link/node-survivable, then
[
GC

sub, MB′

]
is also link/node-

survivable, for any B ⊂ B′ ⊆ EL.
In Definition 5, GC

sub represents a large family of graphs
obtained from the logical topology. If A = ∅, then GC = GL

and GC
sub is any connected subgraph of GL (including GL

itself). If A 6= ∅, then GC
sub is any connected subgraph of

GL↓A. The different instances of GC
sub and survivable pairs are

given in Fig. 1 and described in the following three examples:
Example 2: One can check that in Fig. 1c the pair[

GL, MEL

]
is link-survivable. It is not, however, node-

survivable, because a failure of node v∗ splits the remaining
logical topology GL\{v∗} into two graphs.

Example 3: In Fig. 1a, let GL
{aL,bL,cL} be the subgraph of

GL defined by the edges aL, bL, cL and their end-vertices. The
pair

[
GL

{aL,bL,cL}, MA

]
is link-survivable, since the failure

of any physical link does not disconnect GL
{aL,bL,cL}. The

pair
[
GL

{aL,bL,cL}, MA

]
is also node-survivable, because the

failure of any physical node v ∈ V does not disconnect
GL

{aL,bL,cL}\{v}. Similarly, the pair
[
GL

{fL,gL,hL}, MA

]
is

also link- and node-survivable.
Example 4: In Fig. 1a, the contracted topology GC is the

result of the contraction of the logical topology on the set
A, i.e., GC = GL↓A. Take GC

sub = GC . It consists of two
logical links, dL and eL. An example mapping of the set
B = {dL, eL} is the mapping MB shown in Fig 1b. Consider
the pair

[
GC , MB

]
; it is link-survivable, because a single

physical link failure cannot bring down both dL and eL at
the same time, hence GC will remain connected. However,
the pair

[
GC , MB

]
is not node-survivable, because the failure

of the node v∗ splits GC . (Note that v∗ ∈ Origin(uC), but
v∗ 6= Origin(uC), so the graph (4) in this case is the entire
GC .) Moreover, it is easy to check that no mapping M{dL,eL}

forms a node-survivable pair with GC , because the lightpath
associated with dL must go through at least one of the end-
nodes of eL. The failure of this node brings down both dL

and eL, disconnecting GC .
Definition 6 (Piecewise survivability): Let MA be a map-

ping of a set A ⊂ EL on the physical topology. The
pair

[
GL, MA

]
is piecewise link/node-survivable if, for every

vertex vC of the contracted logical topology GL↓A, the pair[
Origin(vC), MA

]
is link/node-survivable.

Unlike survivability, piecewise survivability is defined only for
the entire logical topology GL. We will say that a mapping
MA is (piecewise) link/node-survivable, if the pair

[
GL, MA

]

is (piecewise) link/node-survivable (i.e., we take GL as the
default topology).

Example 5: In Fig. 1a, the pair
[
GL, MA

]
is piecewise link-

and node-survivable. To prove it, we have to show that for
vertices uC and vC of GL ↓A, the pairs

[
Origin(uC), MA

]

and
[
Origin(vC), MA

]
are link- and node-survivable. Here

we have Origin(uC) = GL
{aL,bL,cL} and Origin(vC) =

GL
{fL,gL,hL}. We have shown in Example 3, that each of these

two graphs forms a link- and node-survivable pair with MA.

III. TWO FUNDAMENTAL PROPERTIES OF PIECEWISE
SURVIVABLE MAPPINGS

In this section we prove two useful properties of a piecewise
link/node-survivable mapping.

A. The expansion of survivability

Given a piecewise link/node-survivable mapping, the logical
topology can be viewed as a set of link/node-survivable
‘pieces’. This is a general property of a piecewise link/node-
survivable mapping. (For instance in Example 5, given
the piecewise survivable mapping MA, there are two
link/node-survivable ‘pieces’ of GL: GL

{aL,bL,cL} ⊂ GL and
GL

{fL,gL,hL} ⊂ GL.) The following theorem enables us
to merge some of these pieces, resulting in a single large
link/node-survivable piece.

IEEE INFOCOM 2005 5

Theorem 1 (Expansion of survivability): Let MA be a
mapping of a set of logical edges A ⊂ EL on the physical
topology Gφ, such that the pair

[
GL, MA

]
is piecewise

link/node-survivable. Let GC = GL ↓A. Take any subgraph
of GC , call it GC

sub = (V C
sub, B). Let MB be a mapping of

the set B of edges of GC
sub on Gφ. If the pair

[
GC

sub, MB

]
is

link/node-survivable then the pair
[
Origin(GC

sub), MA ∪MB

]

is also link/node-survivable.
Proof: See Appendix.

The following example illustrates this theorem.

Example 6: In Example 5 we have shown that in
Fig. 1a, the pair

[
GL, MA

]
is piecewise link- and node-

survivable (here we will use only its piecewise link-
survivability). Take GC

sub = GC = GL↓A and take MB

as in Fig. 1b. From Example 4, we know that the
pair

[
GC , MB

]
is link-survivable. Now, by Theorem 1,

the pair
[
Origin(GC), MA∪MB

]
=

[
GL, MA∪MB

]
is link-

survivable. So starting from the piecewise link-survivable
mapping MA and adding the mapping MB, we merged the
two link-survivable pieces GL

{aL,bL,cL} and GL
{fL,gL,hL} into

a single, large, link-survivable piece. In this example the
resulting link-survivable piece is the entire logical topology
GL. The full mapping MA∪MB = MEL is shown in Fig. 1c.

B. The existence of a survivable mapping

In general, for a given pair of physical and logical topolo-
gies, it is very difficult to verify the existence of a link/node-
survivable mapping. A heuristic approach, if it fails, does
not give any answer. The ILP approach or an exhaustive
search could provide us with the answer, but due to their high
computational complexity their application is limited to the
topologies of several nodes. The following theorem shows how
this verification problem can be substantially reduced:

Theorem 2 (Existence of a survivable mapping): Let MA

be a mapping of a set of logical edges A ⊂ EL, such that the
pair

[
GL, MA

]
is piecewise link/node-survivable. A link/node-

survivable mapping M surv
EL of GL on Gφ exists if and only

if there exists a mapping M surv
EL\A of the set of logical links

EL\A on Gφ, such that the pair
[
GL↓A, Msurv

EL\A

]
is link/node-

survivable.
Proof: See Appendix.

The following example illustrates this theorem.

Example 7: For the pair of logical and physical topologies
presented in Fig. 1, the node-survivable mapping does not ex-
ist. To prove it, take the mapping MA, as in Fig. 1a. We know
from Example 5 that the pair

[
GL, MA

]
is piecewise node-

survivable. Note that EL\A = {dL, eL}. From Example 4
we know that no mapping M{dL,eL} forms a node-survivable
pair with the contracted logical topology GL↓A. Therefore,
by Theorem 2 we know that no node-survivable mapping of
GL on Gφ exists. Note that to prove it, we only considered
the two-edge topology GL↓A instead of the entire GL, which
greatly simplified the problem. Clearly, the larger the set A,
the more we benefit from Theorem 2.

IV. THE SMART ALGORITHM

In this section we present an algorithm that searches for a
link/node-survivable mapping. We call this algorithm SMART
(this acronym stands for “Survivable Mapping Algorithm
by Ring Trimming”, which will be explained at the end of
this section). It maps the topology part by part, gradually
converging to a final solution. By formal graph theoretic
analysis, we prove that if SMART converges completely,
a link/node-survivable mapping is found. Otherwise, when
the algorithm terminates before its complete convergence, a
returned mapping is piecewise link/node-survivable.

The pseudo-code of SMART is:
Step 1 Start from the full logical topology GC = GL,

and an empty mapping MA = ∅, A = ∅;
Step 2 Take some subgraph GC

sub = (V C
sub, B) of GC and

find a mapping MB , such that the pair
[
GC

sub, MB

]

is link/node-survivable. IF no such pair is found,
THEN RETURN MA AND GC = GL↓A, END.

Step 3 Update the mapping by merging MA and MB,
i.e., MA := MA ∪ MB;

Step 4 Contract GC on B, i.e., GC := GC↓B;
Step 5 IF GC is a single node, THEN RETURN MA,

END.
Step 6 GOTO Step 2

(The choice of “link” or “node” in Step 2 results in obtaining
a (piecewise) link- or node-survivable mapping, respectively.)

The SMART algorithm starts from an empty mapping
MA = ∅. At each iteration it maps some set B of logical
links (Step 2), and, in the case of a success, extends the
mapping MA by MB (Step 3). Meanwhile, the contracted
topology GC gradually shrinks (Step 4). We will declare that:
• SMART converges if the contracted topology GC

converges to a single node. We prove later in Corollary 1,
that the mapping MA returned in step 5 is then a link/node-
survivable solution;
• SMART does not converge if SMART terminates before

GC converges to a single node. This may happen when
Step 2 of SMART is impossible or hard to make. The
mapping MA returned in Step 2 is not a link/node-survivable
solution. However, we prove below in Theorem 3, that the
pair

[
GL, MA

]
is piecewise link/node-survivable. The graph

GC = GL ↓ A is also returned in Step 2. We call it the
remaining contracted logical topology since it consists of
unmapped logical links EL\A.

Theorem 3 (SMART’s piecewise survivability): After each
iteration of the SMART algorithm, the pair

[
GL, MA

]
is

piecewise link/node-survivable.
Proof: See Appendix.

Corollary 1 (SMART’s correctness): If, in the SMART al-
gorithm, the contracted topology GC converges to a single
node topology, then the pair

[
GL, MA

]
, A = EL, is link/node-

survivable.
Proof: (i) By Theorem 3, the pair

[
GL, MA

]
is piecewise

link/node-survivable. So for every vertex vC ∈ GC the
pair

[
Origin(vC), MA

]
is link/node-survivable. (ii) There is

only one vertex in GC (i.e., GC = {vC}), and therefore

6 IEEE INFOCOM 2005

Origin(vC) = GL. Combining (i) and (ii), we have that[
GL, MA

]
is link/node-survivable.

GC may converge to a single node topology with self-loops,
which are the set of remaining unmapped logical links EL\A.
However, this does not affect the result, as the links of EL\A
may be mapped in any way (e.g. shortest path) to obtain a
link/node-survivable mapping MEL .
In the implementation of the SMART algorithm we take the
graph GC

sub in Step 2 in the form of a cycle. Therefore we
will systematically contract cycles (or ‘rings’) found in the
contracted logical topology, which explains the name of the
algorithm (“Survivable Mapping Algorithm by Ring Trim-
ming”). GC

sub in the form of a cycle requires the mapping MB

(Step 2) to be edge-disjoint. (Otherwise, if the same physical
link eφ is used by two or more logical links in GC

sub, a failure of
eφ will bring these links down, disconnecting the cycle GC

sub.)
Since finding it is equivalent to the NP-complete edge-disjoint
paths problem [15], we applied a simple heuristic, as follows.
Let each physical edge have a weight (these weights will be
used only by this heuristic), which is initially set to one. At
each iteration, map the logical links from GC

sub with the shortest
path. If no physical link is used more than once, the disjoint
solution is found. Otherwise, the weight of each physical link
used more than once is increased, and a new iteration starts.
After several unsuccessful iterations the heuristic fails.
The implementation of a node-survivable version of SMART
is based on a node-disjoint mapping of a cycle, instead of an
edge-disjoint mapping.

V. SMART APPLICATIONS

We can apply the SMART algorithm in a number of ways.
The general scheme can be found in Fig. 3. The option we
choose depends on the nature of the results we want to obtain.
Specifically we can distinguish:

• the formal verification of the existence of a link/node-
survivable mapping,

• a tool tracing and repairing the vulnerable areas of the
network,

• a fast heuristic.
We discuss each of these applications separately, in the fol-
lowing sections.

A. Formal verification of the existence of a survivable map-
ping (ES-rem and SepPath)

Run SMART to map a logical topology GL on the physical
topology Gφ. If SMART converges, the link/node-survivable
mapping exists and is returned. If SMART does not converge,
it returns a mapping MA and the remaining contracted log-
ical topology GL↓A. Because MA is piecewise link/node-
survivable (see Theorem 3), Theorem 2 reduces the task
of verifying the existence of a link/node-survivable mapping
for the entire GL, to the same verification for GL↓A. This
property is a key feature of SMART: if there is a link/node-
survivable mapping of GL on Gφ, then SMART will never
miss it, because the set of the remaining logical links EL\A can
be still mapped in a way preserving the link/node-survivability

SMART
- physical topology
- logical topology

Survivable
mapping

Survivable mapping
not possible (proof)

Piecewise survivable
mapping

SMART
converges

Do you
need a proof of
impossibility?

NoYes

ES-rem
and/or

SepPath
Survivable
mapping

found

SMART does
not converge

Survivable
mapping
not found

Piecewise survivable
mapping

+
Remaining contracted

logical topology

Survivable
mapping

Repair the vulnerable areas of
the network by adding a link(s)

Option

Fig. 3. Applications of the SMART algorithm. This scheme is valid for both
link- and node-survivability.

of GL↓A (and hence of GL).
We use two methods to verify the existence of a link/node-
survivable mapping for GL↓A:

1) Exhaustive Search (ES-rem) uses exhaustive search to
find a link/node-survivable mapping of the contracted logical
topology GL↓A.

2) Separated Path check (SepPath) is defined as follows.
If the contracted logical topology GL↓A contains a path pC

such that all nodes on pC , but the first and the last ones,
are of degree two, then clearly all the logical links in pC

must be mapped edge-disjointly to enable link-survivability.
Therefore the failure of an exhaustive search for an edge-
disjoint mapping of pC will prove impossibility. A simple
modification adapts SepPath to the node-survivability case.
Compared to an unrestricted exhaustive search, the exhaustive
search respecting the edge-disjointness constraint is relatively
easy (though still NP-complete). For this reason SepPath is
better suited to larger topologies than ES-rem.

B. A tool tracing and repairing the vulnerable areas of the
network

We have developed two methods to verify the existence of a
link/node-survivable mapping: ES-rem and SepPath. Once we
know that a particular pair of physical and logical topologies
cannot be mapped in a link/node-survivable way, a natural
question is to modify the topologies to enable such a mapping.
Where should a new link be added? The SMART algorithm
helps us in answering this question. Run SMART and wait
until it terminates. The remaining contracted logical topol-
ogy GL↓A and the piecewise-survivable mapping MA are
returned. Choose at random two nodes uC , vC in GL↓A and

IEEE INFOCOM 2005 7

pick any two nodes u, v in GL, such that u ∈ Origin(uC) and
v ∈ Origin(vC). Now connect u and v with an additional log-
ical/physical link (remember that we assume identical vertices
at both layers). If this link already exists, repeat the procedure.
The simulation results in Section VI-D discuss the efficiency
of this approach.

C. A fast heuristic

The application of SMART as a heuristic was studied
in [12]. With SMART a link/node-survivable mapping is found
orders of magnitude more rapidly and usually more often than
with other heuristics proposed in the literature to date.

VI. SIMULATION RESULTS

A. Physical and logical topologies

b) f-lattice (2-node-connected) a) NSFNET

1

2

4 7

8

3 6

5

9

11

10 14

13

12

Fig. 4. Physical topologies used in simulations. (a) NSFNET; (b) f –lattice
constructed from full square lattice by deleting fraction f of links, while
preserving 2–node–connectivity (here f ' 0.25).

In the simulations we use various topologies. A relatively
small physical topology is NSFNET (14 vertices, 21 edges)
presented in Fig. 4a. To imitate larger, real-life physical
topologies we also generate square lattices in which a fraction
f of edges is deleted, as shown in Fig. 4b; we call them f -
lattices. The parameter f is often fixed to f = 0.3, which
resulted in an f -lattice with an average vertex degree slightly
smaller than that of NSFNET. Since the IP graph is less regular
(for instance, there is no reason why it should be planar),
the logical topologies are 2-node-connected random graphs of
various average vertex degree. (Clearly, 2-node-connectivity of
both physical and logical topologies is a necessary condition
for the existence of a node-survivable mapping.)

B. ES-rem and SepPath efficiency, and ‘unknown area’

In Section V-A we defined two methods of verification of
the existence of a survivable mapping, ES-rem and SepPath.
In this section we examine the benefits of these approaches.
The physical topology is an f -lattice with the parameter
f = 0.3. The logical topology is a random graph with average
vertex degree 〈kL〉 = 4. For each number of nodes N , we
generate a number of physical/logical topology pairs, and keep
the first 1000 for which SMART does not converge. In Fig. 5a,
we present the cumulative distribution function (CDF) of the
number of logical links in the remaining contracted logical
topology GL↓A returned by the algorithm. We can see that,
if SMART does not converge, the size of GL↓A is usually

relatively small. For instance, for N = 36, SMART leaves six
or fewer logical links out of the total number of 72, in about
80% of cases. Moreover, this property seems to depend only
slightly on the topology size.
The distribution of run-times of ES-rem is plotted in Fig. 5b.
For N = 16, about 90% of topologies need less than 0.001 sec
to run ES-rem.3 Only very few need more than 0.1 sec. For
comparison purposes we also ran a full exhaustive search
without prior contraction by SMART for N = 16. We observe
the difference in run-times of at least 7 orders of magnitude.
Most of the runs of the full exhaustive search last more than
10000 seconds (∼ 3 hours), the maximal time allowed in the
simulations. This limits the application of the full exhaustive
search to the topologies of size of several nodes.
Fig. 5b also exemplifies the tradeoff we faced in simulations.
On one hand, the ES-rem runs quickly for the majority of the
topologies, but on the other hand, the remaining few topologies
will take orders of magnitude more time. We observed the
same phenomenon when applying the SepPath verification
method. Therefore we have decided to use a strict, one minute
stopping time. If neither ES-rem nor SepPath finishes the
computation within 60 seconds, the question of the existence
of a survivable mapping is left unanswered. As the result, the
figures in the following sections display two curves: the lower
one is the percentage of survivable mappings found within
1 minute, the upper one is the percentage of logical topologies
proved to be unmappable in a survivable way within 1 minute.
The curves are separated by an ‘unknown area’ set in gray.
The results in Fig. 5 were generated for link-survivability,
however, in the case of the node-survivability we obtained
very similar results.

C. Survivability of random graphs on various physical topolo-
gies

It is interesting to see what fraction of randomly cho-
sen topologies can/cannot be mapped in a link- and node-
survivable way. To the best of our knowledge, it is the first
time these results can be obtained in a reasonable time for
moderate and large topologies.
For a particular pair of physical and logical topologies, we first
apply the SMART algorithm. If SMART does not converge,
we try ES-rem and SepPath to verify the existence of a
survivable solution. Their run-times are restricted to the ‘one
minute bound’, as explained in Section VI-B.
In Fig. 6a we present the results of the mapping of random
graph logical topologies on NSFNET. We vary the average
vertex degree 〈kL〉 of the logical graph; for each 〈kL〉 we
generate 1000 topologies. As expected, link-survivability is
far easier to obtain than node-survivability. Note also that the
results strongly depend on 〈kL〉.
In order to examine a larger spectrum of physical topologies
and topology sizes, in Fig. 6b,c we map a random graph logical
topology on the f -lattice physical topology. This time we fix
the average vertex degree of the logical topology 〈kL〉 = 4 and
we vary the parameter f of the physical topology (Fig. 6b)

3We implemented the SMART algorithm in C++ and ran it on a Pentium 4
machine.

8 IEEE INFOCOM 2005

(a) Size of remaining contracted logical topology

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16
Number of remainings logical links

C
u

m
ul

at
iv

e
D

is
tr

ib
u

tio
n

N=16
N=36
N=100

(b) Run-times of ES-rem

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100 1000 10000
Time [s]

C
u

m
u

la
tiv

e
D

is
tr

ib
u

tio
n

N=16, ES-rem

N=36, ES-rem

N=16, Exhaustive search for
the entire logical topology

60 sec limit

Fig. 5. (a) CDF of the number of logical links in the remaining contracted logical topology. f = 0.3, N = 16 . . . 100; (b) CDF of ES-rem and full
exhaustive search times. f = 0.3, N = 16 . . . 100.

(a) Random graph on NSFNET

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.3 2.5 2.7 2.9 3.1 3.3 3.5

Average node degree <kL>

F
ra

ct
io

n
 o

f m
ap

p
ed

 to
po

lo
gi

es

Link-survivability found
by SMART
Node-survivability found
by SMART

Unknown

(b) Random graph on f-lattice, N=49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
f - parameter of f -lattice

F
ra

ct
io

n
of

 m
ap

p
ed

 to
po

lo
gi

es

Link/node-survivability possible

Link/node-survivability
impossible

Unknown

Link-survivability possible,
node-survivability impossible

(c) Random graph on f -lattice, f =0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100
N - number of nodes

Fr
ac

tio
n

o
f m

ap
pe

d
to

po
lo

gi
es

Link/node-survivability possible

Link/node-survivability impossible

Unknown

Link-survivability possible,
node-survivability impossible

(d) Introduction of new link

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70
N - number of nodes

Fr
ac

tio
n

o
f m

ap
pe

d
to

po
lo

gi
es

Logical link added with the help of SMART
Logical link added at random
Physical link added with the help of SMART
Physical link added at random

Fig. 6. Link- and node-survivability under various scenarios. Parameters: N–number of nodes (N = |V |); f–parameter of the f -lattice physical topology;
〈kL〉–average node degree of the logical topology. (a) Random graph logical topologies mapped on NSFNET. N =14, 〈kL〉=2.3 . . . 3.5 ; (b) Random
graph logical topologies mapped on f -lattices. N =49, f =0 . . . 0.35, 〈kL〉=4; (c) Random graph logical topologies mapped on f -lattices. N =16 . . . 100,
f =0.3, 〈kL〉=4; (d) Enabling link-survivability by introducing an additional link. Random graph logical topologies mapped on f -lattices. N =16 . . . 100,
f =0.3, 〈kL〉=4.

or the number of nodes N (Fig. 6c). We generated 1000 topologies for each parameter. Fig. 6b shows that the fraction

IEEE INFOCOM 2005 9

of topologies mappable in a survivable way decreases with
growing f . This was expected, since it is more difficult to map
the logical topology on a sparser physical graph. In Fig. 6c,
the ‘unknown area’ quickly widens for N > 80 because of
the ‘one minute bound’.
The dashed curves in Fig. 6a,b,c show the fraction of topolo-
gies mapped in a link-survivable (triangles) or node-survivable
(circles) way by SMART alone, without being followed by
any exhaustive search approach. The distances between these
curves and the mapping-impossible areas are relatively small,
which confirms the high efficiency of SMART as a heuristic.

D. Introduction of an additional link

Another property of the SMART algorithm is the ability
to trace and repair the vulnerable areas of the network. In
particular, in Section V-B we described a way to introduce
an additional logical or physical link to enable a survivable
mapping. In this section we verify the efficiency of that
approach.
We map random graph logical topologies on f -lattices and
vary N . For each N , we generate 1000 pairs of physical and
logical topologies, such that for each pair separately, a link-
survivable mapping does not exist. For each topology pair, we
add one logical or physical link with the help of SMART,
as described in Section V-B. Next, the existence of a link-
survivable mapping is verified again, for this extended pair
of topologies. For comparison purposes we also simulate a
completely random placement of an additional link.
The results are shown in Fig. 6d. For better readability, we do
not include the ‘unknown area’, which lie above each curve.
The application of SMART enables a very efficient placement
of an additional logical link, which helps in 70% to 95% of
cases (depending on N). In contrast, the completely random
placement helps far less, and only for small topologies - for
larger N its efficiency becomes insignificant. This is because
only new logical links connecting different nodes in GL↓A
(i.e., different link-survivable pieces in GL) may help; the
larger the topology, the lower the probability of achieving it
with a completely random placement. The efficiency of the
placement of a new physical link has a more random nature.
Again, the SMART approach helps, however, its impact is not
as significant nor dependent on N , as in the case of logical
links. This is because the introduction of a new physical link
within the same link-survivable piece may also help.
The results concerning the node-survivability are very similar
to those presented in Fig. 6d.

VII. CONCLUSION AND FUTURE WORK

In this paper we defined a piecewise survivable mapping
which preserves the survivability of some subgraphs of the
logical topology. The formal analysis of the piecewise surviv-
able mapping enabled us to specify the necessary and sufficient
conditions for the existence of a link/node-survivable mapping.
This substantially simplifies the verification of the existence
of a survivable mapping. A second application of a piecewise
survivable mapping is tracing vulnerable areas in the network
and pointing where new link(s) should be added to enable

a survivable mapping. Finally, we showed that the SMART
algorithm is not only an efficient and scalable algorithm that
searches for a survivable mapping, it also exhibits a number
of provable properties that are crucial for the applications
we consider in the paper. Therefore the combination of the
SMART algorithm and the formal analysis of the survivability
problem gives us a powerful tool to designing, diagnosing and
upgrading the topologies in IP over WDM networks. We have
tested these applications in simulations, for a large spectrum
of physical and logical topologies.
In our future work we will address the capacity-constrained
version of the problem. We also plan to consider the case of
multiple failures.

VIII. ACKNOWLEDGEMENTS

The work presented in this paper was financially supported
by grant DICS 1830 of the Hasler Foundation, Bern, Switzer-
land.

REFERENCES

[1] E. Modiano and A. Narula-Tam, “Survivable lightpath routing: a new
approach to the design of WDM-based networks,” IEEE Journal on
Selected Areas in Communications, vol. 20, no. 4, pp. 800–809, May
2002.

[2] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee, “Fault manage-
ment in IP-Over-WDM Networks: WDM Protection vs. IP Restoration,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 1,
January 2002.

[3] A. Fumagalli and L. Valcarenghi, “IP Restoration vs. WDM Protection:
Is There an Optimal Choice?,” IEEE Network, Nov/Dec 2000.

[4] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility
of IP restoration in a tier-1 backbone,” Sprint ATL Research Report Nr.
RR03-ATL-030666.

[5] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C-N. Chuah, and
C. Diot, “Characterization of Failures in an IP Backbone,” Proc. of
IEEE INFOCOM’04, 2004.

[6] L-W. Chen and E. Modiano, “Efficient Routing and Wavelength Assign-
ment for Reconfigurable WDM Networks with Wavelength Converters,”
Proc. of IEEE INFOCOM 2003, 2003.

[7] H. Lee, H. Choi, S. Subramaniam, and H.-A. Choi, “Survival Embedding
of Logical Topology in WDM Ring Networks,” Information Sciences :
An International Journal, Special Issue on Photonics, Networking and
Computing, 2002.

[8] A. Sen, B. Hao, B.H. Shen, and G.H. Lin, “Survivable routing in WDM
networks logical ring in arbitrary physical topology,” Proceedings of
the IEEE International Communication Conference ICC02, 2002.

[9] F. Giroire, A. Nucci, N. Taft, and C. Diot, “Increasing the Robustness
of IP Backbones in the Absence of Optical Level Protection,” Proc. of
IEEE INFOCOM 2003, 2003.

[10] J. Armitage, O. Crochat, and J. Y. Le Boudec, “Design of a Survivable
WDM Photonic Network,” Proceedings of IEEE INFOCOM 97, April
1997.

[11] A. Nucci et al., “Design of Fault-Tolerant Logical Topologies in
Wavelength-Routed Optical IP Networks,” Proc. of IEEE Globecom
2001, 2001.

[12] M. Kurant and P. Thiran, “Survivable Mapping Algorithm by Ring
Trimming (SMART) for large IP-over-WDM networks,” Proc. of
BroadNets 2004, 2004.

[13] S. il Kim and S. Lumetta, “Addressing node failures in all-optical
networks,” Journal of Optical Networking, vol. 1, no. 4, pp. 154–163,
April 2002.

[14] J. Gross and J. Yellen, Graph Theory and its Applications, CRC Press,
1999.

[15] A. Frank, Packing paths, circuits and cuts - a survey (in Paths, Flows
and VLSI-Layout), Springer, Berlin, 1990.

10 IEEE INFOCOM 2005

IX. APPENDIX

In this section we prove Theorems 1, 2 and 3. For this
purpose we use the following definition of link- and node-
survivability, equivalent to Definition 5.

Definition 7 (Link- and node-survivability): Let GL =
(V, EL), A ⊂ EL and GC = (V C , EC) = GL ↓ A. Take
any connected subgraph GC

sub = (V C
sub, B), B ⊆ EC , of the

contracted topology GC , and let MB be a mapping of the set
B of logical links. The pair

[
GC

sub, MB

]
is link-survivable if

for any physical link eφ and for any two vertices u, v ∈ V C
sub,

there exists a path pL
u,v ⊂GC

sub between vertices u and v such
that eφ /∈ MB(pL

u,v). The pair
[
GC

sub, MB

]
is node-survivable if

for any node v∗ ∈ V and for any two vertices uC , vC ∈ V C
sub

such that Origin(uC) 6= v∗ and Origin(vC) 6= v∗, there
exists a path pL

uC ,vC ⊂GC
sub between vertices uC and vC such

that v∗ /∈ MB(pL
uC ,vC).

(We keep L in pL
u,v in order to stress that pL

u,v consists of
logical links.)

CG

uC

vC

wC

C
subG

LG

L
subG

Origin(uC)

Origin(wC)

v = Origin(vC)
u

C
vu CCp

,

patch
L

vup ,

Fig. 7. Illustration of proof of Theorem 1. A first portion of the path pL
u,v is

the path pC
uC ,vC found in GC

sub
. Next it is completed, where necessary, with

the patches found in origins of the nodes of pC
uC ,vC .

Proof of Theorem 1: (Please refer to Fig. 7.)
A. Link-survivability case:
First note that since GC = GL ↓A, no logical edge from the
set A can be found in GC , which implies that A ∩ B = ∅.
Therefore the operation MA ∪MB is always well defined, as
in (2) and (3).
Let MA∪B = MA∪MB and GL

sub = Origin(GC
sub). We have

to prove that the pair
[
GL

sub, MA∪B

]
is link-survivable. Take

any single physical link eφ and two vertices u, v ∈ GL
sub.

According to Definition 7 we have to show that there exists a
path pL

u,v in GL
sub such that eφ /∈ MA∪B(pL

u,v). The path pL
u,v

is constructed in two steps, (i) and (ii).

(i) A first portion of pL
u,v is found in the contracted graph

GC (recall that GC consists of logical edges), as follows. Call
uC , vC ∈ V C

sub the vertices in GC
sub = (V C

sub, B) whose origins
contain u and v, respectively, i.e., such that u ∈ Origin(uC)
and v ∈ Origin(vC). Find a path pC

uC ,vC in GC
sub, such that

eφ /∈ MB(pC
uC ,vC). This is always possible since the pair[

GC
sub, MB

]
is link-survivable. We take pC

uC ,vC as the first
portion of pL

u,v.
(ii) We now turn our attention to the origins of vertices of
pC

uC ,vC . Take any two consecutive edges aL and bL of pC
uC ,vC ,

and let wC be their common end–node in GC
sub. If Origin(wC)

is not a single node in GL
sub, then aL and bL might not

have a common end–node in GL
sub. However, by piecewise

link-survivability of
[
GL, MA

]
, the pair

[
Origin(wC), MA

]

is link-survivable. Therefore, if we denote respectively by
va, vb ∈ Origin(wC) the end–nodes of aL and bL, that
belong to Origin(wC), we can find a logical path pL

va,vb

in Origin(wC) connecting va and vb, such that eφ /∈
MA(pL

va,vb
). We call this path a patch of wC and denote it

by patch(wC). If for a given wC , the edges aL and bL have
a common end–node vL in GL

sub then patch(wC) = vL.
For every vertex wC ∈ pC

uC ,vC , find patch(wC). If wC=uC

then patch(uC) will connect the logical vertex u with an end–
node of the first logical edge in pC

uC ,vC , instead of connecting
two end–nodes. The same holds for wC=vC .
To summarize, in step (i) we have found the path pC

uC ,vC

in the contracted subgraph GC
sub. Next, in step (ii), we have

constructed a set of patches for each vertex of this path. Now
we combine steps (i) and (ii) to obtain the full path pL

u,v:

pL
u,v = edges(pC

uC ,vC) ∪
{ ⋃

wC∈pC
uc,vc

patch(wC)
}

. (5)

(Note that the vertices of pC
uC ,vC belong to GC , but not

necessarily to GL. Therefore, to avoid confusion we took
“edges(pC

uC ,vC)”; appropriate vertices from GL will be pro-
vided by the patches.)
The logical path pL

u,v connects the vertices u and v and has
been constructed in such a way, that for every wC ∈ pC

uC ,vC :

eφ /∈ MB(pC
uC ,vC) (6)

eφ /∈ MA(patch(wC)). (7)

Since MA ∪ MB = MA∪B and A ∩ B = ∅, we can rewrite
(6) and (7) as follows

eφ /∈ MA∪B(pC
uC ,vC) (8)

eφ /∈ MA∪B(patch(wC)). (9)

Combining (5), (8) and (9) yields finally that

eφ /∈ MA∪B(pC
u,v). (10)

B. Node-survivability case:
To consider node failures, we replace in the above proof
(i) “link-” with “node-” and (ii) “(edge) eφ” with “(vertex)
v∗”. Additionally require, when taking u and v in GL

sub, that
u, v 6= v∗. (The latter is the consequence of the condition
“Origin(uC) 6= v∗ and Origin(vC) 6= v∗” of Definition 7.)

IEEE INFOCOM 2005 11

With these modifications we obtain the proof of Theorem 2
for the node-survivability case.

�

Proof of Theorem 2:
A. Link-survivability case:
⇐ We know that the pair

[
GL, MA

]
is piecewise link-

survivable. Suppose that there exists a mapping M surv
EL\A,

such that the pair
[
GL↓A, Msurv

EL\A

]
is link-survivable. Then,

by Theorem 1, the pair
[
Origin(GL↓A), MA∪ Msurv

EL\A

]
=[

GL, MA∪Msurv
EL\A

]
is also link-survivable. So the mapping

Msurv
EL = MA ∪ Msurv

EL\A is a link-survivable mapping of GL

on Gφ.
⇒ Assume that a link-survivable mapping of GL on Gφ

exists, call it M surv
EL . Let Msurv

EL\A coincide with M surv
EL for all

links in EL\A:

Msurv
EL\A(EL\A) = M surv

EL (EL\A). (11)

We now show that the pair
[
GL↓A, Msurv

EL\A

]
is link-survivable.

Take any physical link eφ and any two vertices uC and vC

in GL↓A. According to Definition 7, we have to show that
there exists a path pL

uC ,vC ⊂ GL↓A between vertices uC and
vC such that eφ /∈ Msurv

EL\A(pL
uC ,vC).

Take any two vertices u, v in the logical topology, such that
u ∈ Origin(uC) and v ∈ Origin(vC). Since the pair[
GL, Msurv

EL

]
is link-survivable, there exists a path pL

u,v ⊂ GL

between vertices u and v, such that

eφ /∈ Msurv
EL (pL

u,v). (12)

Construct pL
uC ,vC by contracting in pL

u,v the logical edges that
belong to the set A:

pL
uC ,vC = pL

u,v ↓ A. (13)

(Call nodes in pL
uC ,vC after the nodes of GL↓A).

Since pL
u,v is a path in GL, and since the contraction an edge

merges its two end-nodes and thus preserves its continuity,
pL

uC ,vC is a path in GL↓A. Moreover, since u ∈ Origin(uC)

and v ∈ Origin(vC), the path pL
uC ,vC connects uC and vC .

Relations (11), (12) and (13) yield that eφ /∈ Msurv
EL\A(pL

uC ,vC),
which proves the claim.
B. Node-survivability case:
Apply the same two changes (i)-(ii) as in the proof of
Theorem 1-B, and additionally require, when taking uC and
vC in GL↓A, that Origin(uC) 6= v∗ and Origin(vC) 6= v∗

(as in Definition 7).

�

Proof of Theorem 3: [By induction]
A. Link-survivability case:
INITIALIZATION:
Initially GC = GL. Therefore the origin of any vertex vC ∈
V C is a single node in GL, and it cannot be disconnected.
Hence for every vC ∈ V C , the pair

[
Origin(vC), MA

]
is link-

survivable and consequently the pair
[
GL, MA

]
is piecewise

link-survivable.
INDUCTION:

Assume that after some iteration the pair
[
GL, MA

]
is piece-

wise link-survivable. We have to prove that after the next
iteration of the algorithm, the updated mapping M̂A will still
form a piecewise link-survivable pair

[
GL, M̂A

]
.

One iteration of the SMART algorithm consists of Steps 2, 3
and 4, which we recall here:
2. Find GC

sub = (V C
sub, B) and MB , such that the pair[

GC
sub, MB

]
is link-survivable.

3. M̂A := MA ∪ MB

4. ĜC := GC ↓ B
(For clarity we indicated the updated MA and GC by a hat:
‘̂’)
The updated contracted topology ĜC = (V̂ C , ÊC) was cre-
ated from GC by replacing GC

sub = (V C
sub, B) by a single node,

which we call v̂C
sub; the remaining nodes stayed unchanged. So

V̂ C = {v̂C
sub} ∪ V C\V C

sub. Take any v̂C ∈ V̂ C ; we have two
possibilities:
(i) v̂C = v̂C

sub: Since GC
sub = (V C

sub, B) was contracted into
v̂C
sub, their origins coincide: Origin(GC

sub) = Origin(v̂C
sub).

Since M̂A = MA ∪ MB, the pair
[
Origin(v̂C

sub), M̂A

]
=[

Origin(GC
sub), MA ∪MB

]
is link-survivable because of The-

orem 1.
(ii) v̂C 6= v̂C

sub: In this case v̂C ∈ V C\V C
sub, so v̂C = vC . By

piecewise link-survivability of the pair
[
GL, MA

]
, the pair[

Origin(vC = v̂C), MA

]
is link-survivable. Since M̂A =

MA ∪ MB, the pair
[
Origin(v̂C), M̂A

]
is link-survivable as

well.
Combining (i) and (ii), we have proven that for every v̂C ∈
V̂ C , the pair

[
Origin(v̂C), M̂A

]
is link-survivable. So, by

Definition 6, the pair
[
GL, M̂A

]
is piecewise link-survivable.

B. Node-survivability case:
In the proof above, replace “link-” with “node-”.

�

