
Efficient and Scalable Query Routing for
Unstructured Peer-to-Peer Networks

Abhishek Kumar Jun (Jim) Xu Ellen W. Zegura
College of Computing,

Georgia Institute of Technology,�
akumar,jx,ewz � @cc.gatech.edu

Abstract— Searching for content in peer-to-peer networks is
an interesting and challenging problem. Queries in Gnutella-like
unstructured systems that use flooding or random walk to search
must visit ������� nodes in a network of size � , thus consuming
significant amounts of bandwidth. In this paper, we propose a
query routing protocol that allows low bandwidth consumption
during query forwarding using a low cost mechanism to create
and maintain information about nearby objects. To achieve this,
our protocol maintains a lightweight probabilistic routing table
at each node that suggests the location of each object in the
network. Following the corresponding routing table entries, a
query can reach the destination in a small number of hops
with high probability. However, maintaining routing tables in
a large and highly dynamic network requires non-traditional
mechanisms.

We design a novel data structure called an Exponentially
Decaying Bloom Filter (EDBF) that encodes such probabilistic
routing tables in a highly compressed manner, and allows for
efficient aggregation and propagation. The search primitives
provided by our system can be used to search for single keys
or multiple keywords with equal ease. Analytical modeling of
our design predicts significant improvements in search efficiency,
verified through extensive simulations in which we observed an
order of magnitude reduction in query path length over previous
proposals.

I. INTRODUCTION

The mechanisms for searches in peer-to-peer (p2p) networks
are severely constrained due to the distributed nature of
content indices and highly dynamic membership of hosts in
the network. In the context of peer-to-peer networks, searching
is equivalent to routing a query to a node in the network
that hosts content matching the query. Routing in traditional
networks has endeavored to achieve deterministic and com-
plete routing in the face of (relatively infrequent) network
changes. On the other hand, content-based routing for peer-
to-peer networks has to grapple with the large size of routable
content and frequent changes in the network membership. This
rules out the conventional solution of building and maintaining
a per-destination (object) routing table through an exchange of
routing updates. However, relaxing the requirements of com-
pleteness and determinism in routing enables some interesting
solutions that we explore in this paper.

The existing solutions to achieve content-based routing
can be divided into two broad families. The first family of
structured p2p networks consists of solutions that impose a
particular structure on the overlay network (e.g., [1], [2], [3],
[4], [5]). The regularities in this structure are then exploited

to efficiently maintain and query a global data-structure such
a Distributed Hash Table (DHT).

The second family of unstructured p2p networks comprises
Gnutella-like networks that do not impose any structure on the
overlay network [6]. The default search mechanism in Gnutella
is to blindly forward queries to all neighbors within a certain
number of hops. Although this mechanism handles network
dynamics very well, search through blind flooding is quite
inefficient. This has motivated a host of studies proposing
various enhancements to search in unstructured networks.
Major improvements include replacing the blind flooding with
a random-walk [7] or an expanding ring search, tailoring the
network construction to achieve properties of small world
graphs [8], reflecting the capacities of heterogeneous nodes
in topology-construction [9], and caching pointers to content
located one hop away [9]. All of these proposals (except
for caching) retain the “blind” nature of query forwarding
in Gnutella. In other words, the forwarding of queries is
independent of the query string and does not exploit the
information contained in the query itself. The keywords in
the query are used only for searching the local content index.

The objective of this work is to design an efficient query-
routing mechanism for unstructured peer-to-peer networks.
We propose to build probabilistic routing tables at nodes,
constructed and maintained through an exchange of updates
among immediate neighbors in the overlay. These routing
tables use a novel data structure — the Exponential Decay
Bloom Filter (EDBF) — to efficiently store and propagate
probabilistic information about content hosted in the neighbor-
hood of a node. The amount of information in an EDBF (and
the number of bits used to store this information) decreases
exponentially with distance. Such exponential decrease in
information with distance restricts the impact of network
dynamics to the neighborhood of any departing or newly
arriving node. The Scalable Query Routing (SQR) mechanism
we design uses hints obtained from these probabilistic routing
tables to forward queries. The use of probabilistic hints pro-
vides a significant advantage over the completely blind nature
of existing mechanisms, translating into large reductions in
the average number of hops over which a query is forwarded
before it is answered.

We evaluate our design through both analytical modeling
and simulations. Our analysis provides good insight into the
complex process of probabilistic information dissemination in

information
StrongMediumLow

Noise informationinformation

Noise

Noise Content Host
(Origin of information)

Fig. 1. Exponentially decaying information in the neighborhood of a node.
Arrow sizes represent the amount of information or awareness about content
hosted at the node on the right extreme of the figure. Notice how the noise,
depicted as small arrows, is present everywhere but is dominated by the
information as we get closer to the host.

random graphs and its use for efficient routing. Using the
analytical model, we derive expressions for query success
probability and the expected query path length. Predictions
from this model closely match our observations of the system
in simulation.

Our simulations cover a number of proposed systems and
demonstrate the performance advantages of using a proba-
bilistic routing mechanism like SQR. SQR achieves one to
three orders of magnitude reduction in query path-length over
the existing and proposed systems. These improvements are
observed to be consistent over a range of content replication
models.

The rest of this paper is organized as follows. An overview
of SQR is presented in the next section, followed by a detailed
description of its design in section III. Our model of SQR
and its analysis is presented in section IV. In section V, the
predictions from our analysis are verified and the performance
of SQR is studied through extensive simulations.We also
study the benefits of coupling SQR with various topology
adaptation mechanisms. A brief discussion of our solution
being an instance of a more general paradigm for information
processing in dynamic networks is presented in section VI. We
review related work in section VII and conclude in section VIII
with pointers to future work.

II. OVERVIEW

In this section we present a brief overview of our solution,
deferring a detailed description to the next section. The key
idea of our Scalable Query Routing (SQR) scheme is captured
in Fig. 1. SQR propagates awareness about content hosted at
a node in the neighborhood of the node, with the amount of
information decreasing exponentially with the distance from
the hosting node. The node on the extreme right of the figure
is hosting a piece of content and originating information about
it. As a consequence, nodes close to the origin have strong
information about the content at the origin. The strength
of this information decreases with distance until it becomes
indistinguishable from noise towards the extreme left of the

figure. As we will show, this exponential decay not only
reduces the amount of communication overhead to a minimum,
but also has a blind decay feature that allows the aggressive
compression of the route update, making the scheme highly
efficient. Surprisingly, even such a small amount of route
information can significantly improve the search operation.

This concept of propagating highly compressed information
regarding contents is realized through the design of a novel
data structure called Exponential Decay Bloom Filter (EDBF).
Intuitively, the EDBF is a data structure that allows us to vary
the number of bits used to store probabilistic information.
As the distance from the node hosting the object (source
of information) increases, fewer bits are used to represent
information about the direction in which the object is located.
At sufficiently large distances the number of bits used becomes
much smaller than 1 and is dominated by random noise due to
collisions in hashing, thus effectively restricting the size of the
“aware” neighborhood1. Section III-A describes the design of
EDBF in detail and discusses its succinct encoding of routing
information.

Routing in general, has two major components, the first
of which is concerned with the construction and maintenance
of routing and forwarding tables. In SQR the routing table
is a set of EDBF’s, one corresponding to each link. Nodes
send route advertisements during the setup of (overlay) links.
Incremental updates are used to maintain the consistency of
advertised information. The second component of routing is to
use these routing/forwarding tables to forward queries. While
forwarding a query, the EDBF corresponding to each of the
neighbors is examined. The query is forwarded to the neighbor
advertising the maximum amount of information about the
queried object. Within the aware neighborhood, this action
propels the query towards the node hosting the queried object.
Since EDBF is a “noisy” data structure, at nodes outside
the aware neighborhood, the maximum information is just a
random accumulation of noise and following this random noise
corresponds to a random walk. Thus from a global view, each
query follows a random walk until it hits a node within the
aware neighborhood, and then quickly gravitates towards the
node that is originating information about the target object.
The cost of each query decreases as the size of the aware
neighborhood increases.

Through our design of SQR in this paper, we make a case
for discarding the maintenance of precise routing information,
in favor of approximate, but considerably efficient, proba-
bilistic routing information maintained through EDBFs. Our
evaluation through analysis and simulation establishes the scal-
ability of SQR and paves the way for wide-area deployment of
query routing with propagation of routing updates. The next
section gives a complete description of the various components

1Aside from its use in SQR, EDBF can have a number of independent
applications. Just as a Bloom Filters can efficiently represent a set, an EDBF
can efficiently represent a fuzzy set (i.e., a set with probabilistic membership).
Such a data structure can be used in situations where probabilistic information
needs to be efficiently represented, e.g. stochastic inference algorithms in
network measurement, distributed web-cache coherence, etc.

of our solution and their synthesis to provide scalable query
routing.

III. DESIGN

In this section we describe the details of our query routing
mechanism. We begin with the design of the Exponential
Decay Bloom Filter (EDBF), a data structure for space-
efficient representation of probabilistic information. We then
describe the routing protocol that builds and maintains routing
tables using EDBFs and end this section with a description of
the use of these probabilistic routing tables for forwarding
queries. An expanded version of the design, including a
detailed description of implementing keyword searches and
discussions of several additional issues, is presented in our
technical report [10].

A. Design of the Exponential Decay Bloom Filter

The EDBF is an extension of the traditional Bloom filter
(BF) [11] to encode the probabilistic forwarding table. In
particular, it encodes the approximate hop-count distance from
the node to any given object in the network. In the following,
we introduce EDBF after a brief review of the design of
traditional Bloom filter.

A Bloom filter is a data structure for approximately answer-
ing set membership questions. It employs a fixed number ()
of hash functions and an array of bits
 initialized to all 0
at the beginning. When inserting an element � in a BF, all 	
hash functions ��
�������������������������� are evaluated simultaneously
over � and the bits in
 indexed by � �!�"��� , #%$'&(��)*���+�,�,��	 , are
set to 1. A query for the element - in a BF looks at the bits in
 indexed by �
 �.-/�0����������� � �.-/� and returns a yes if and only
if all these bits are 1.

An EDBF uses a fixed number �1	/� of hash functions �
 ,�32 , ..., � � too. As in a normal Bloom filter, all 	 hash
functions are used for insertion. However, given a query for an
object � , EDBF simply returns 43�"���5$7698�#06
;: � � �.� �=<>$?&(�@#A$&B��)/���,�+�,��	 C�6 , the number of 1’s in the filter. How to interpret
this number 43�.� � is application-specific. When EDBF is used
to encode the probabilistic forwarding table in SQR, 43�.� �!DE	
roughly indicates the probability of finding � along a specific
link in the overlay.

The ED part of the name EDBF comes from the fact that,
when there is no noise, the number of bits 43�.� � decays expo-
nentially (at a constant rate &�D�F) with its distance (in terms
of hops) from the node where the object � is stored. In other
words, when there is no noise, at a node one hop away from
the object � , 43�.� � is approximately 	 bits, at a node two hops
away, 43�"��� is approximately 	3DEF , and so on. While advertising
routing information to downstream neighbors, nodes reset each
of the bits in the EDBFs received from upstream neighbors
with a probability ��&�G;F�� , thus achieving an exponential decay
by a factor of F . The forwarding scheme (described later)
implements the semantics of following the strongest signal,
thus implicitly retracing the trail of the exponentially decaying
bits advertised by the node hosting the object. Note that noise
does exist due to collisions in hashing, i.e., some of the 	 bits

indexed by �
��"��� , � 2 �"��� , ..., �����.� � can be set to 1 by other
objects hashed to the same index. Therefore, the noise will
impact our accuracy of predicting this distance, which will be
studied in section IV.

Note that exponential decay is not the only conceivable
type of decay. Other alternatives exist, e.g., linear decay in
which the 43�"��� value reduces linearly with distance from the
node that hosts � . We however choose exponential decay for
SQR because only it has an essential property of “blindness”.
Specifically, the process by which bits are flipped from 1 to
0 is totally independent of the association of that bit with any
particular object � . In other words, the decision on whether
to decay a bit or not is independent of the information as
to which objects cause a bit to be set at what distances, and
therefore such information need not be remembered by EDBF.
This blindness property leads to extraordinary succinctness of
EDBF and reduces the communication costs for route updates
by orders of magnitude as compared to previous attempts at
using Bloom Filters for content based routing [12], [13], [14],
as discussed in section V. It will be clear that the Exponential
Decay part is a critical innovation to overcome the scalability
barrier of Bloom Filters without compromising the goal of
achieving routing efficiency.

B. Creation and Maintenance of Routing Tables

SQR employs bandwidth-efficient (and therefore scalable)
mechanisms for encoding and maintaining the probabilistic
forwarding tables using EDBFs (see figure 2). At a node
with degree H , its forwarding table consists of H EDBF data
structures of the same array size, each of which corresponds to
one of its neighbors and contains highly-compressed summary
information regarding contents that can be reached through
that neighbor. As shown in the next section, information
contained in these EDBF tables will allow the query for an
object � to be forwarded to the correct neighbor (on the
shortest path to �) with high probability. In addition to these
EDBF’s, each node also keeps a list of contents that it hosts
locally.

We have mentioned before that to make the scheme scalable,
information regarding content � will decay exponentially with
the hop-count distance to the node that hosts � . This is
achieved by each node only propagating &IDEF of its information
(its EDBF’s and EDBF encoding of its local contents) to
its neighbors, through a blind decay process. As discussed
before, the blind decay allows the encoding and propagation of
route updates to be very bandwidth-efficient. This bandwidth-
efficiency of route updates is further improved by using two
known techniques with adaptations: (1) compressed EDBF
mentioned above (2) delta compression, i.e., a full route
advertisement at the beginning (when a new link is set up)
and periodic “delta updates” thereafter.

1) Route Update Creation: Each node sends a route ad-
vertisement (in the form of an EDBF) to its neighbors at the
time of connection setup, and maintains its consistency by
periodic updates. The initial advertisement is created by taking
the union of all advertisements received from neighbors other

Create Local EDBF (given local content J):
// Populate local EDBF K .

1. LBMONPJ
2. Set bits KAQ R�SUT,MBVXW , ..., KAQ R(YIT+MBV�W to 1;

Create Update (for neighbor Z):
// Copy all the bits from the local EDBF K into
// the update [(\ .

1. [(\^]'K ;
// Decay the information received from all neighbors
// other than Z by a factor of _ , and add the
// surviving bits to [(\ .

2. LB`3NOacb!`Xd�REegf�h ij`.k�l=m1`�no Z
3. LBh^Nqp�r�m@s�s@scmut�v
4. `.wcT,K>x�Q h�W oyo r!V
5. with probability r!zU_ , [(\BQ h�W�]{r ;
6. Return [(\ ;

Fig. 2. Algorithms for creating updates in SQR.

than the target neighbor, allowing this combined advertisement
to decay by the decay factor F , and finally taking a union
of the result with the local EDBF. Subsequent updates are
created by periodically creating a fresh route advertisement for
each neighbor and using delta compression to communicate
the difference of this fresh advertisement with the actual
information previously communicated to the neighbor.

The baseline algorithm for constructing the route update
from a node to one of its neighbors | through link H is shown
in Fig 2. Procedure Create Local EDBF takes the list }
of keywords (or content labels) corresponding to locally hosted
content and inserts it into an EDBF2
 . In procedure Create
Update, information received in the form of EDBFs from
neighbors other than | is first aggregated by merging all such
EDBFs into a single EDBF through a bitwise-OR operation.
The bits in this “Union EDBF” are randomly reset to zero so
that only &�D�F of of the bits survive this decay operation. In
other words, the union of updates received from all neighbors
other than ~ is computed and “attenuated” by a factor of F
before propagation. The local EDBF is propagated without
attenuation.

Note that in our merging operation above, information
(EDBF) received from a neigbor ~ will not be advertised
back to ~ . This is analogous to “split horizon with poisoned
reverse” in classical distance vector routing [15]. In fact,
poisoned reverse in SQR is even more important because
while in the distance vector algorithm the poisoned reverse
makes a difference only when there is a node/link failure, in
a P2P network the routable entities are shared objects that
exhibit significantly higher dynamics. However, split horizon
does not protect against all forms of loops. Fortunately, the
exponentially decaying nature of information in SQR implies
that the count to infinity problem manifests itself as a “decay
to infinitely small amount of information”, thus significantly
restricting the impact of routing loops.

2The local EDBF is created when the node first joins the network and
modified suitably whenever the set of locally hosted objects changes.

2) Update Compression and Transmission: Delta compres-
sion is the standard approach to further reduce the information
that needs to be communicated between neighboring nodes for
route updates. In SQR, nodes keep track of the cumulative
information conveyed to their neighbors. Updates can be
composed by taking just the difference between the EDBF
table up to the last update and the freshly composed EDBF
using the procedure Create Update.

Recent work on Compressed Bloom Filter by Mitzen-
macher [16] has shown that if we reduce the number of hash
functions 	 slightly but make the array much larger (resulting
in a much sparser array) such that after compression the size
remains � , the false positives in such a compressed Bloom
filter can be much better than the optimal in a non-compressed
version. This result also applies to EDBF as the sparseness of
the array, caused by a sharp decay factor, produces an ideal
candidate for compression. For example, if the decay factor F
is 8 then only about 1/8 of the bits in the array are 1. Using
Arithmetic Coding [17], an uncompressed EDBF of size � ,
with a fraction � of total bits set to 1, can be compressed to a
size ��$������1��� , where � is the entropy function given by���1���^$'G����,�B� 2 �qG��@&�G������,�B� 2 �@&�G���� . This can be seen as
the communication cost of the first update received by a new
node joining the network.

The procedure to send updates first inspects if the neighbor
is a new one, in which case it sends the complete update.
For existing neighbors, an incremental update3 is sent by
computing the }���� of the current update �%� with the
previously sent information. All updates are compressed using
arithmetic coding [17] before being sent reliably using TCP.
The Delta updates are likely to be much more sparse than
the initial updates, and hence, will benefit even more from
arithmetic coding before final transmission of the update. At
the other end, the procedure to receive updates first inspects
if an EDBF
 � corresponding to the neighbor # exists. If not,
this must be a new neighbor and the update is simply stored
as
 � . Otherwise, the update is treated as an incremental one
and
 � is modified suitably by computing its bitwise XOR
with the new update.

The above design achieves our primary objective of effi-
ciently maintaining probabilistic information about the content
stored in the neighborhood. Due to the random resetting of bits
during forwarding of advertisements, the impact of a node’s
advertisements on another node’s routing table reduces expo-
nentially with the distance between the two. An initial update
is sent whenever a node acquires a new neighbor. Incremental
updates for each neighbor ~ are created periodically but sent
asynchronously only when the delta update contains at least �
bits that are 1, where � is a parameter to be tuned.

Forward Query (given query �):
// Forward previously seen queries to neighbor ` , .
// chosen randomly from neighbor list.

1. `.w (Seen Query(�))
2. Deliver Query(� , `);
3. else

//Forward previously unseen queries to the neighbor
// with the maximum information about this query.

4. ��] Lookup (�);
5. Pick ` such that ��x o tP��M�TX�yV ;
6. Deliver Query(� , `);

Lookup (given query �):
1. LB`3N neighbor list
2. L(��Nqp�r�m@s�s@scm1��v
3. ��xu� o K�x�Q R�� T+¡ V�W ;
4. Return � ; /* � o p���x=v */

Fig. 3. Algorithms for forwarding queries in SQR.

C. Query Forwarding

The algorithm for forwarding queries in SQR is summarized
in figure 3. If the query is satisfied locally, it is answered.
Otherwise, if the TTL of the query has not expired, the current
node has to pick a neighbor to whom the query is forwarded.
Our solution can be seen as a simple greedy algorithm with
enhancements for loop avoidance and tie-breaking. If the
query was previously seen, it is forwarded to a randomly
chosen neighbor. Otherwise, the query is processed as follows.
The query string � is looked up in the EDBF associated
with each neighbor of the node. For each neighbor # , the
result of this lookup is an “indicator” value 4B� , which is
the total number of bits set to 1 in locations indexed by���(�"�����=~£¢¤&B�,�,� 	 . The query is forwarded to the neighbor with
the highest indicator value after decrementing the TTL by
1. Ties are broken randomly. In an ideal situation, with the
aware neighborhood extending throughout the network, and
an exponentially increasing number of bits pointing towards
the origin of the information about any object, queries will
follow the shortest path to their destination. However, due
to limited aware neighborhood size (to save on the cost of
creating and maintaining the routing tables), and false positives
in the EDBF, some additional issues need to be addressed
before our description of the forwarding algorithm is complete.

The first issue we need to consider is that of “noise” in the
indicator values as computed from the EDBF data-structure.
Due to collisions in hashing, some of the bits that contribute
to a total of 4�� in advertisement
P� , could be caused by other
unrelated keywords hashing to the same locations as ��¥��"-*� .
When the query is far away from the origin of information
about an object, the information would have decayed to much
less than one bit, and almost all bits corresponding to the
query are likely to be such false positives. The neighbor with
the largest 4 -value is likely to be a local maximum for such

3Even in the absence of content dynamics, the randomness of the decay
process will cause different bits to be reset each time an update is constructed.
To avoid this problem, we use pseudo-random decay that ensures consistency
in the decay process.

random noise. Thus forwarding to the neighbor with the high-
est indicator value is equivalent to forwarding to a randomly
chosen neighbor while outside the aware neighborhood.

Even inside the aware neighborhood, where the number of
bits due to the source of the information is non-negligible,
the noise due to false positives might sometimes overwhelm
the correct information, thus leading to a wrong forwarding
decision. We develop an analytical model in section IV that
captures this behavior and derive expression for the probability
of making such mistake at various distances from the node
hosting the target object.

We assume that queries contain unique identifiers (as in
Gnutella [6]) that are cached4 at intermediate nodes when seen
for the first time. Thus, queries revisiting a node can be easily
identified. As discussed above, the behavior of SQR outside
the aware neighborhood is equivalent to random walk. It is
possible that nodes are visited multiple times in such a random
walk. To correctly implement the behavior of random walk,
such “loop-back” queries should be forwarded to a randomly
chosen neighbor.

Another way to understand the intuition behind this behavior
is to look at it from the perspective of an intermediate node
that sees a loop-back query. The first time this query was seen
at this node, it must have been forwarded to the neighbor with
the maximum number of bits corresponding to the query. Now,
since the query has somehow propagated back to this node,
the previous routing decision was wrong. In such a case, the
amount of information in the routing tables is too low to make
any inference about the location of the queried object, and a
randomly chosen neighbor is as good a candidate as any to
receive this query5.

IV. ANALYSIS

In this section we develop an analytical model of SQR. The
main purpose of this model is to answer through analysis two
questions: (1) Where does the performance gain in routing la-
tency come from? and (2) At what communication cost? These
will be answered in sections IV-B and IV-C respectively, after
a discussion in section IV-A of the underlying topology that we
assume. The proofs of all theorems in this section are omitted
due to lack of space.

A. P2P network topology for our study

Both metrics under study, the routing latency and the com-
munication cost, are functions of the underlying P2P network
topology. In this section, we describe a typical topology (close
to a random regular graph), that will be assumed in the rest of
the paper. We emphasize, however, that our analytical methods
and insights from the analysis are orthogonal to this topology
and can be easily adapted to other topologies.

4The cost of storing id’s of recently seen queries is negligible even at nodes
with a high query throughput.

5In our experiments, we tried more sophisticated alternative mechanisms
like choosing the neighbor with maximum bits among the untried neighbors,
but did not observe any performance improvement over the much simpler
protocol of randomly forwarding all loop-back queries.

We model the underlying network topology as a graph of �
vertices, with average degree ¦ at each node. We make a further
simplifying assumption that for small # , the number of nodes
exactly # hops away from an arbitrary node is ����$§¦E�"¦(G;&I� �"¨�
 .
These assumptions are not precisely accurate unless the graph
is a tree rooted at the arbitrarily chosen node, but they are
a good approximation in the region where # is chosen so
that © ��!ª>
 � �£«¬« � . Note that we could model the network
as a regular graph, which will make the above assumption
exact. However, we feel that the random topology mentioned
above is close to the actual Gnutella topology in which peers
randomly attach themselves to a set of other nodes. Therefore,
our analysis is only an approximation when assuming this
random topology. For ease of exposition, we make a second
simplifying assumption in setting the size of content index
(i.e., the list of content labels) at each node be a constant.
This assumption does not hold in real peer-to-peer networks,
but the distribution of content index sizes is orthogonal to our
analysis and abstracting it out simplifies the modeling exercise.

B. EDBF – Impact on routing latency

Since SQR uses an enhanced random walk, the latency of
query routing is proportional to the number of hops traversed
by the query from its source to a node that hosts matching
content. Our model of routing latency is thus clearly dependent
on the accuracy of the forwarding tables stored in the form of
EDBFs. The accuracy of EDBFs in turn is reflected in the false
positive rate of the EDBF under system parameters. Once we
model the probability of false positives, we use it as a building
block to construct a Markovian model of the overall process
of query routing.

1) False positives in an EDBF: Let the number of hash
functions used in the EDBF be 	 and and the decay factor beF , as before. Let ­ be the total number of bits at all nodes
in the network caused by one piece of content at node ® . In
other words, ­ is the total cost of all updates that originate
at ® and propagate throughout the network. With the above
assumptions, ­ is given by:

­�$���
�	q¯�� 2 	F ¯��±° 	F 2 ¯���² 	F ° ¯§�����³ �´�!ª�
 � � 	F �0¨�
 ¯ 	F � µ¶ ��G �´�!ª�
 � ��·¸ (1)

Due to the symmetry of the model, the total number of
bits at all other nodes caused by a node ® , is equal to the
total number of bits caused by all other nodes at node ® . Let� be total size of the array storing the EDBF. Since ® has¦ neighbors, each of the ¦ EDBF’s representing probabilistic
routing tables have ­�D�¦ uniformly random bits set to 1. By
Whang statistics [18], we get the total number of 1’s in each
of the EDBF’s to be:��
5$��º¹(&»G�¼ ¨ ½B¾�¿=À�Á (2)

0 1 2 3 4 5α α αα 1 α2

1
5β

2 43 ββ
β

1β

543

Fig. 4. A Markov chain model of routing using SQR.

The fraction of bits set to 1 is given by �Â$Ã�Ä
�D��Å$Æ &�G¤¼ ¨ ½B¾�¿=ÀPÇ . We will use this value of � to compute the
probabilities of false positives.

States in the Markov chain. The probabilistic nature
of routing using SQR can be modeled as a Markov chain.
The Markov chain in our model, shown in figure 4 has six
states, numbered 0 through 5. For any satisfiable query (i.e.,
one for which the corresponding object is hosted by some
node in the network) we classify all � nodes in the network
as being in exactly one of these states. A node is in state #
if its shortest distance from the node hosting the object is #
hops, with all nodes farther than 5 hops away also counted
as being in state 5. Let the number of nodes in state # be �>� ,
with �±È�$É�ÊGÄ© ²�,ª�Ë � � . Our choice of 6 states represents the
approximation that at a distance of 5 hops from a node hosting
an object, the amount of information about this object in EDBF
based routing tables is negligible. In other words nodes 5
or more hops away from the node hosting the object have
approximately the same (negligible) amount of information
about the location of this object. This assumption is valid
as long as 	3DEF ² «¬« & , i.e.. the average number of bits that
survive 4 successive decays by a factor of F , out of the 	 bits
set at the origin node, is much smaller than 1.

Transition probabilities. Forwarding operations in SQR
correspond to state transitions in the Markov chain in figure 4.
Recall that the forwarding rule in SQR is to pick the neighbor
with the strongest signal for a new query, and to forward
previously seen queries to a randomly chosen neighbor. At
a node } , the information from the upstream neighbor }
 is
stronger than the noise6 from all other neighbors } 2 �!}Ê°B������� ,
then the query is forwarded to }Ì
 and the system makes a
transition from state # to #>GÍ& . The probability for this event
is Î>� . Theorem 1 derives an expression for calculating the
value of Î>� . If the noise from a non-upstream neighbor of} dominates the signal from the upstream neighbor (with
probability Ï��Ð$Ñ&ÌGÂÎ��), the query gets forwarded to a
neighbor at an equal or higher distance from the node hosting
the object. Due to the uniform random nature of noise in
EDBF, the source of this misleading noise is equally likely
to be in any of the states # and above. Hence, we distribute
the total transition probability Ï � out of state # into Ï �9� going

6If the information is exactly the same as the noise from l Ò�r neighbors
but stronger than the noise from all other neighbors, the query is forwarded
to J S with probability r!z�l o r . This case is also covered by theorem 1.

to state ~��+~ÔÓÐ#�� in proportion to the node population of each
of these states, such that © Ï����O$§Ï�� .

Justifications for the use of Markovian modeling. For
our design to qualify as a Markov process, we need to show
that the forwarding process is memoryless in the sense that
the forwarding operation performed on a query is independent
of the path it has traversed. This is mostly true except in
the case when a query visits the same node a second time.
Since queries are never returned to the node they are received
from, the probability of such a loop is quite small. Recall that
such queries are forwarded to a randomly chosen neighbor.
The randomness of this choice minimizes the impact of this
memory, allowing us to ignore this situation and make the
assumption of memorylessness in our model.

Computing the transition probabilities. The following
theorem formulates a way to calculate the values of different
transition probabilities in our model.

Theorem 1: The transition probability from state # to #3G¤& ,#^ÓÕ& , denoted by Î>� is given by:Î � $ Ö´× ª�Ø &Ù GÚ|y¯§& Û Ü�Ý : }ßÞÐà¬< × ¨±

¯
× ¨±
´ á ª�
 &â ¯§& Ü�Ý : }ã$Õà�< á Ü�Ý : }ßÞÍàq< × ¨ á ¨±
Uä (3)

Where : Ù ��|U< is the range of possible node degrees, and} and à are binomial random variables, picked from the
binomial distributions åæ�u	���&IDEF �"¨�
 ¯Ì�çGÔ��DEF �"¨�
 � and åÌ�u	 �U���
respectively.

Corollary 1: The transition probability from state # to states~ÔÓÐ# and above is given by Ï��9�O$ èEéèEêXë�ì,í Ï�� , where Ï���$Â&%GÌÎ>�
and � á Ø0�jî�$§�±�3¯��±�,ï�
�¯§�����I¯�� È .
C. Computing the cost of forwarding using SQR

Using the model developed above, we can compute the
number of steps required to route a query to its destination.
Let åð$ñ�u|��"ò � � be a óÌôÄó matrix representing the transition
probabilities among various states. In this matrix, | �"ò �"¨�
 $Î � �gõ #ÌÓö& and | �9� $ÃÏ ��� ��õ�#÷Óö&(�1~øÓù# . Since nodes are
associated with different states corresponding to their shortest
distance from the origin, there can be no transition from state# to state #�G�) and below. Thus | �9� $ûú , õ/~ ³ #>GÚ) . Finally
queries reaching state 0 are answered correctly and stay in this
state hereafter7. Thus |UË@��$ü|��@Ë�$üú , õ*~Éý$üú and |�Ë�Ë�$ã& .
The entries of matrix å are summarized in figure 5.

Let þ �.ò Ë , #%$Â&B��)/���,�+�,��ÿ , denote the number of steps it takes
for a query that starts at a node in state # , to first encounter
the target (i.e., state 0). Let þ denote the number of steps for
a query that starts at a node chosen uniformly at random, to
first encounter the destination. Since the probability of a query
originating in state # is ���=D�� , it is easy to verify that

� : þ�< $ È´ �,ª�
 �±�� � : þ �.ò Ë < (4)

7Our model considers a query successfully answered from the point where
a query reaches the first node that has matching content.

1 0 0 0 0 0� S ��SgS ��S�� ��S�� ��S�� ��S��
0 � � � �	� � �
� � �
� � �	�
0 0 � � � �	� � �	� � ���
0 0 0 � � ���	� �
���
0 0 0 0 � � � �	�

Fig. 5. The matrix B.

Parameter Symbol Value
Filter Width t � S�� o �������Ie=`,l"k

No. of hash functions � 64
Decay Factor _ 8

TABLE II
PARAMETERS OF EDBF USED IN SQR

Now it remains to compute
� : þ �.ò Ë < . Let �ã$Ã�"¦ �.ò � � be a

6x6 matrix such that all its entries are identical to those of å ,
except that ¦ Ë�ò Ë = 0 (note that | Ë�ò Ë = 1). The values of

� : þ �.ò Ë <
are characterized by the following theorem:

Theorem 2: Let the matrix � $'�uF �"ò � � be defined as
� $��Ê�u®qG��¬� ¨±
 �"®;G��¬� ¨�
 . Then

� : þ �"ò Ë < $ÕF �.ò Ë .
V. EVALUATIONS

In this section we present a simulation-based evaluation of
SQR and compare its performance with other mechanisms
for query routing in unstructured peer to peer systems. The
various systems covered by our simulations are summarized
in table I. We broadly classify the systems as either having a
flat topology or a hierarchical topology. Within these broad
classes, different mechanisms for query forwarding can be
used, giving rise to a large number of combinations. The set
of systems we study is by no means complete, but our choices
are representative of the body of prior work in this area and
cover both existing systems as well as recent ones proposed
in the research literature.

The parameters for the EDBF used in SQR are listed in
table II. The simulations use a 2,500 node network, unless
noted otherwise. The primary performance results can be
summarized as follows. For the same routing overheads, the
query response rate improves by up to two orders of magnitude
for flat topologies (section V-A), matching very well with
the previous analysis. Simulations over hierarchical topologies
(in section V-B demonstrate the compatibility of SQR with
various topology construction and maintenance mechanisms.
The drastic reductions in the overheads of routing table
construction and maintenance achieved through SQR’s use
of EDBF are hilighted in section V-C). Finally, a study of
the impact of content replication in section V-D suggests that
the benefits of SQR carry over to various models of content
replication.

A. Query response rate

The original Guntella protocol (version 0.4) constructs a
topology with relatively similar node degrees, with clients ac-
tively seeking neighbors till they have at least ��#=� �±¼�#��/� (=3

System Topology Search mechanism # neighbors per node
[min,max]

Flood flat (Gnutella V0.4) Scoped flooding [3,8]
Random flat (Gnutella V0.4) Random Walk [3,8]
OHR flat (Gnutella V0.4) Random Walk with one hop [3,8]

replication of pointers
SQR flat (Gnutella V0.4) This paper [3,8]
Ultrapeer explicit hierarchy (Gnutella V0.6) Scoped flooding Leaf � Ultrapeer [1,3]

among Ultrapeers Ultrapeer � Ultrapeer [3,8]
Ultrapeer � Leaf [1,100]

GIA implicit hierarchy (GIA) Random walk with [3,128]
biased forwarding

SQR+GIA implicit hierarchy (GIA) SQR with [3,128]
heterogeneous nodes

TABLE I
SYSTEMS USED IN OUR EVALUATION.

in our simulations) neighbors and accept neighbors till they
have at most � Ù � �±¼ #��/� (=8 in our simulations) neighbors.
We use this flat topology to evaluate a number of systems.
The first system, Flood, uses flooding to propagate queries.
We also simulate the system Random that replaces flooding
with random walk. Random walks have been proposed as
a more efficient replacement for scoped flooding [7], with
the assumption that the Gnutella V0.4 topology resembles a
random graph. Replication of pointers to content hosted one
hop away [9], [13] is another enhancement to Gnutella V0.4.
The system OHR in our simulations uses random walk with
One Hop Replication of pointers.

To obtain a common metric that captures the resource usage
of both flooding and random walk based approaches, we use
a generalization of TTL called Hop Limit (HL). For random
walk based systems, that do not create multiple copies of a
message, HL is the same as TTL. However, if scoped flooding
is used, and a query with hop limit � is received at a node with�

neighbors, it is forwarded to the remaining
� GÚ& neighbors

with a hop limit of �1�qG�&I�!D*� � G�& � appropriately rounded up
or down8 so that the hop limit of all the flooded messages
adds up to �ÔGÍ& . The use of Hop Limit allows us to capture
the cost of both random-walk and flooding based mechanisms
on a common scale.

The set of object labels and queries are picked at random
from a uniform distribution. We only simulate queries for
content actually hosted in the network, with the understanding
that queries for non-available content will fail after using up
the maximum allowable hops, irrespective of the search mech-
anism in use. While all query routing mechanisms achieve
a 100% success rate with sufficiently high hop limits, only
the superior query routing mechanisms can achieve successful
delivery of queries with low hop limits. Varying the hop limit
allows us to study the profile of resource usage by various
systems required to achieve different query success rates.

Figure 6 shows the plot of number of queries answered
vs. the initial hop limit. Figure 6(a) and 6(b) are for flat

8More precisely, the hop limit of each of the messages forwarded to
neighbor ` , where `AN�p�r�m@s!s�s(mgw��÷r�v , is set to �jR���r!z�w���r	 y�Är if `! TXR"�Ôr!V tOf�_¬TXw#�Ôr!V and to �+R#�£r!z�w#�ær	 ��r otherwise.

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000

%
 o

f q
ue

rie
s

an
sw

er
ed

Hop Limit

SQR (Analytical)
SQR (Simulation)

(a) Normal scale.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

%
 o

f q
ue

rie
s

an
sw

er
ed

Hop Limit

SQR (Analytical)
SQR (Simulation)

(b) Log scale on x-axis.

Fig. 7. Comparison of analytical predictions with simulations.

Metric Analysis Simulation
Mean 232 221

Median 161 130

TABLE III
COMPARISON OF ANALYTICAL PREDICTIONS & SIMULATION RESULTS.

topologies and figure 6(c) shows the results for hierarchical
topologies (discussed further in section V-B). Log scale is
used on the � -axis in figures 6(b) and 6(c) to better capture the
difference in the amount of resources consumed by different
mechanisms. Among the systems with flat topology, flooding
is the most inefficient, followed by plain random walks. One
hop replication of pointers improves the efficiency by an order
of magnitude and using SQR improves the efficiency by an
additional order of magnitude.

Comparing analytical predictions with simulation re-
sults. Figure 7 compares the predicted behavior of SQR
from our model in the previous section with the observed
performance of system in simulation. The analytical curve
corresponds to numerical computations based on theorems 1
and 2. The simulation curve is the same as in figure 6(b),
described in section V-A. Recall that the analysis in section IV
models the performance of SQR in random graphs. This is
an approximation of the topology constructed by Gnutella

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%
 o

f q
ue

rie
s

an
sw

er
ed

Hop Limit

SQR
OHR

Random walk
flooding

(a) Flat topologies.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1e+06

%
 o

f q
ue

rie
s

an
sw

er
ed

Hop Limit

SQR
OHR

Random walk
flooding

(b) Flat topologies, log scale on x-axis.

0

20

40

60

80

100

1 10 100 1000

%
 o

f q
ue

rie
s

an
sw

er
ed

Hop Limit

SQR+GIA
GIA

Ultrapeer

(c) Hierarchical topologies, log scale on x-
axis.

Fig. 6. Number of queries answered vs. hop limit, with one query per node.

Capacity 10000x 1000x 100x 10x 1x
Fraction 0.1% 4.9% 30% 45% 20%

TABLE IV
CAPACITY DISTRIBUTION OF CLIENTS IN HIERARCHICAL TOPOLOGIES.

V0.4, used in our simulations. In spite of this approximation,
and other simplifying assumptions made during the modeling,
the two curves have a close fit. Similarly, in table III, the
values of the mean and median of the query length distribution
obtained from our simulations are quite close (within 20%) to
the analytical predictions.

B. Query response rate for hierarchical topologies

The second class of systems we simulate includes GIA [9]
and Gnutella with Ultrapeers [19], [20], that have the explicitly
stated design goal of exploiting the heterogeneity in node
capacities, in terms of processing capabilities and/or network
bandwidth. They try to build a topology that reflects the
capacity of a node in the degree of connectivity of the node,
with higher capacity nodes corresponding to high degree
vertices in the overlay graph. The topology of Gnutella V0.6
can be seen as a two layer hierarchy with a strongly connected
layer of Ultrapeers (high capacity) that provide a flooding
based search service to a large number of directly attached
leaf nodes (low capacity). The topology adaptation algorithm
of GIA [9] also achieves a similar situation of a small number
of well connected high capacity nodes to which a large
number of low capacity nodes attach themselves. Table IV lists
the capacity distribution of nodes in hierarchical topologies.
This distribution is derived from a measurement study of
node capacities [21], and has been used in previous work on
hierarchical topologies [9]. For Gnutella V0.6, the nodes with
capacities Ó 1000x are chosen as Ultrapeers.

Figure 6(c) shows the query response rate of various
systems that use advanced topology adaptation mechanisms
to construct hierarchical topologies. SQR+GIA is SQR with
GIA’s topology adaptation mechanism. The simulations in [9],
verified independently by our own simulations, demonstrate

Mechanism SQR OHR Rhea et al. [14]
Overhead (Bytes) 187 262 30,000 to 90,000

TABLE V
ROUTING OVERHEADS PER OBJECT

the superiority of GIA’s topology construction9 over that
of Gnutella V0.6. The superior performance of SQR+GIA
supports our claim that the efficiencies of SQR carry over
to any network irrespective of the topology.

C. Routing overheads

Table V summarizes the overheads of various mechanisms.
The routing overhead of SQR is the cost of building and
maintaining the EDBF based routing tables. An upper bound
on ­ — the number of bits propagated across all links in the
network by one object — was derived in equation 1. Assume
that the fraction of bits that are one in the EDBF’s, defined
as � , is 0.1. If the average degree of nodes (¦)is 5, the total
number of hash functions () is 32 and the decay factor (F)
is 8, the value of ­ from equation 1 is 320 bits. Since � , the
fraction of bits in the EDBF’s, is 0.1, for every bit that is 1,
nine others have to be zero, bringing the cost up by a factor of
10 to 3200 bits. However, since updates are compressed using
arithmetic coding, the actual cost is about $()BúBúB� �u��� bits,
where � is the entropy function. For �æ$ 0.1, ���u����$§ú3� %có'& ,
and this cost evaluates to 1500 bits or 187 bytes per object.
We emphasize that this is the total cost of routing updates
caused by one object over the entire network and not the cost
of a single update.

The cost of one hop replication of pointers to content
hosted at each node is higher. An empirical analysis of 1.3
million file names traced from query responses on a Gnutella
network shows that the average file name is 52.4 bytes long10.

9The gap between the curves for GIA and Ultrapeer increases for larger
sizes of the simulated network. However, routing tables in SQR make the
simulations very memory intensive and do not scale to large sizes easily. For
the sake of uniformity, we simulate a network of 2,500 nodes for all systems.

10This is closely linked to the fact that searches in Gnutella are keyword
searches over content filenames

10

100

1000

10000

1 (0.04) 2 (0.08) 5 (0.2) 10 (0.4) 25 (1)

H
op

 li
m

it
fo

r 9
0%

 q
ue

ry
 s

uc
ce

ss

Number of Copies of each object (Replication rate in %)

OHR
GIA

Ultrapeer
SQR+GIA

Fig. 8. Hop limit for 90% query success vs. replication rate. Notice the
log-scale on both axes.

Replicating these filenames at each neighbor in a network with
average degree of 5 will cost ÿ ô÷ÿ()*� %;$§)Eóc) bytes.

Rhea et al. [14] propose the use of Bloom Filters to enhance
the search performance, assuming that the basic search func-
tionality is provided by a deterministic location and routing
mechanism, such as an idealized directory service or a DHT-
based search. The proposed protocol creates an attenuated
Bloom filter – which is just a collection of F Bloom filters,
with the # th Bloom filter at a node being associated with
content published by nodes # hops away from the node. While
forwarding a query, the # th filter associated with each link is
examined. If a match is found in an attenuated Bloom filter,
the query is forwarded on the corresponding link. Otherwise,
the �.#ç¯ & � th Bloom filters at each link are examined. On
finding no match in any of the F Bloom filters, the default
search algorithm is used. Routing updates are flooded to nodes
up to F hops away from each source of content. The costs
of propagating this information is 30 to 90 kilobytes per
object [14]. We emphasize that although this was an acceptable
cost for the target application in [14], such high cost renders
infeasible the option of using or extending this work to provide
an underlying global query routing service11.

D. Impact of Replication

Having multiple instances of the same object at different
locations in the network improves the efficiency of all query
routing mechanisms by cutting short the average query path.
In this section, we demonstrate that SQR benefits equally from
the effects of replication. The first model of content replication
we use assumes a uniform (constant) rate of replication for all

11The update mechanism designed by Rhea et al. [14] has to remember
several bytes of information for each individual bit in the Bloom filter, such
as the ID of the source node and its distance from the current node. Object-
deletions in their mechanism are quite complex and potentially even more
expensive than insertions. EDBF was specifically designed with properties of
“blindness” and exponential decay, which in turn enables a simple update
protocol that can handle both insertions and deletions of objects with equal
ease and yet is cheaper by more than two orders of magnitude.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

l q
ue

rie
s

Hop limit

SQR+GIA
GIA

Ultrapeer
OHR

Fig. 9. Success rate of queries vs. hop limit in a network with replication
according to the Zipf distribution. Notice the contrast with figure 6(b).

content in the system. While this is quite unlikely to occur in
a real system, choosing a uniform replication rate allows us to
isolate the effect of specific rates of replication over different
systems. For simplicity, the content popularity model in these
simulations is the same as the content replication model.

Figure 8 demonstrates the effect of replication on different
query routing systems. The � -axis represents the number of
copies of each object (the uniform replication rate) in a 2500
node network. The - -axis represents the resource usage to
attain a 90% query success rate in such a network. Curves
for all systems have an almost constant negative slope in
this log-log plot. The relative advantages for different systems
are roughly maintained across different replication rates12 ,
supporting our claim that SQR benefits equally from the
effects of replication.

The second model we use for replication of content is based
on the Zipf distribution, frequently used to model the replica-
tion of objects on the web and in peer-to-peer systems [22]. In
a set of objects replicated according to the Zipf distribution,
the # th most replicated object has &�DI# times as many replicas
as the most replicated object. In our experiments, we use a
replication rate of 10% for the most replicated object. The
success rate of queries is plotted against the initial hop limit
in figure 9. Notice how the lower half of the curves differ
from those in figure 6. The faster initial growth in success
rate can be attributed to the large number of replicas of the
most replicated item. However, the top end of the curves look
the same as in figure 6. This portion corresponds to the queries
that take a lot of steps to get answered, most of them being
queries that target rare or unreplicated objects with low rank

12In figure 8, the system Ultrapeer shows a faster performance improvement
with increasing replication rate. This is an artifact of the relatively small
number of Ultrapeers in the simulated topology (5% of 2500 nodes), where
the explicitly hierarchical topology of Gnutella V0.6 starts looking like a
client-server system at high replication rates. These advantages are absent
at network sizes above 10,000 nodes and we observed Ultrapeer to perform
worse than GIA in simulated networks of such sizes.

in the Zipf distribution.

VI. DISCUSSION

In this section, we briefly discuss a new paradigm of
Distributed Coordinated Data Streaming. Our design of
SQR is an application of this paradigm to the problem of
query routing. Data streaming13 has been touted as a viable
solution for measuring and monitoring of high-speed links in
large networks [24]. We believe that the scope of networking
problems to which Data-Streaming can be applied, can be
expanded to include highly dynamic environments such as
peer-to-peer and sensor networks. A common scenario in such
networks is that each node produces a large number of events,
not all of which can be efficiently advertised to all nodes
of the network14. Frequent changes in the membership of
individual peers or content hosted by them in peer-to-peer
networks, and consecutive observations at a sensor node in
a sensor network are examples of such large event streams.
The information associated with this event stream can be
seen as a data-stream. In coordinated data streaming, the
stream of data from each node is filtered and compressed
by its neighbors, the neighbors’ neighbors, and so on. Each
node performs such streaming locally, over the data provided
by its neighbors, and maintains a synopsis data structure
to store the streaming results. Querying this synopsis data-
structure provides local solutions which can then be composed
to perform complex operations in the overall network. Local
forwarding decisions using the EDBF tables in SQR can be
seen as instances of such local queries, which when composed,
implicitly through the handoff of the query to the neighbor
with the strongest information, perform the complex operation
of query routing in a distributed fashion. Coordinated data
streaming has applications in large and dynamic environments,
and we plan to work on some of them in our future research.

VII. RELATED WORK

Structured p2p networks (e.g., [1], [2], [3], [4], [5]) have
been proposed to solve the problem of efficient searching by
imposing a particular structure on the overlay network and
exploiting this structure to efficiently maintain and query a
global data-structure such a Distributed Hash Table (DHT)
storing a unique key associated with each data item through
hashing. Proposals like pSearch [25] associate each piece of
content and query with a vector in a Cartesian space embedded
in the structured network.

The use of Bloom filters to store and propagate informa-
tion about distributed content in overlay networks has been
proposed earlier in various contexts [12], [13], [14], [26].
The work in the Gnutella development community [12], [13]
has focused on specifying and implementing a protocol for
constructing and maintaining a Bloom Filter based routing

13As a note of clarification, the term data streaming here has no connection
with the transmission of multimedia data known as media (audio and video)
streaming [23].

14Flooding all the data to all the nodes is clearly not scalable and
bandwidth-efficient.

table for keyword queries. This body of existing work, al-
though pioneering the idea of using Bloom Filters to represent
routing information, suffers from a limited understanding of
the effects of propagating such routing information. Indeed, the
authors of [13], while specifying the Query Routing protocol
for Gnutella, conclude by highlighting the need for a careful
study before propagation of query routing tables is switched
on. We argue that the Gnutella Query Routing protocol in
its current form is not amenable to propagation of routing
information, as the overheads will exceed the cost of flooding
based search in even moderately dynamic networks.

GIA is a comprehensive framework for increasing the
scalability of Gnutella-like systems by exploiting the hetero-
geneity in node capacities to build an implicit hierarchy in
the system [9]. GIA has components for dynamic topology
adaptation, active flow control, biased random walk for search
and one hop replication of pointers to content. High capacity
nodes have a higher degree and have pointers to a lot of
content due to one hop replication of pointers and are visited
preferentially due to the biased random walk. The danger of
congestion at such high capacity nodes is mitigated by the ac-
tive flow control mechanism. Our efforts, have been focussed
on disseminating information about content as efficiently as
possible, and then exploiting this partial information to route
queries efficiently. The mechanisms for topology adaptation
and flow control in GIA are orthogonal to our design and can
be easily assimilated into an SQR based system. The routing
tables in SQR have significantly larger amount of information
than one hop replication of queries in GIA, and are cheaper to
construct and maintain. Our evaluation shows that replacing
the replication of pointers and biased random walk in GIA
with SQR produces a system that retains all the benefits of
GIA while improving the efficiency of query routing.

The use of routing indices in peer-to-peer networks was
proposed by Crespo et al. [27]. Their scheme assumes that
the content is classified under “topics” and nodes index the
number of documents under each topic reachable through each
of their immediate neighbors. History based systems typically
cache some information from previous queries to “route”
future queries more intelligently. For example, the adaptive
probabilistic search mechanism proposed by Tsoumakos et
al. [28] uses an adaptive “learning” algorithm to associate
success probabilities for various queries along each of the
immediate neighbors of the node. The use of probabilistic
query forwarding, instead of deterministic flooding to all
neighbors, is another way of reducing duplicate queries in the
network and has been proposed by Kalogeraki et al. [29].

VIII. CONCLUSIONS

Routing in networks is a complex problem. But for the
success of hierarchical routing, it would be impossible for the
Internet to reach its present scale. Unfortunately the prerequi-
sites for hierarchical routing such as prefix aggregation and a
hierarchy in the network topology, are absent from the domain
of query routing in peer-to-peer networks. In this work, we

have explored the approach of spreading probabilistic informa-
tion about the location of hosted content in its neighborhood,
and then using this information for forwarding queries. The
simple design of SQR makes it possible to analytically model
the mechanisms for propagation of information and its use in
forwarding, thus enabling better understanding of the design
ideas and also allowing us to predict the performance of
SQR. Simulation based comparison with various query routing
mechanisms, under a wide variety of scenarios, establish the
performance advantages of SQR and demonstrate the ease with
which SQR can inter work with other system components
such as topology construction. We expect a similar ease of
integration with other system components such as flow control.
While providing a set of mechanisms for query routing, SQR
imposes little restriction on the possible policies that can
be implemented. A case in point is the ease with which
the semantics of keyword searches can be composed using
SQR. The framework provided by SQR presents interesting
possibilities of implementing high level semantics of trust,
reliability, etc. using routing and forwarding policies. These
are interesting issues that merit further exploration.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Appli-
cations,” in Proc. of ACM SIGCOMM ’01, 2001.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” in Proc. of ACM SIGCOMM,
2001.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), 2001.

[4] B. Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An Infrastructure
for Fault-tolerant Wide-area Location and Routing,” U.C. Berkeley Tech.
Report UCB/CSD-01-1141, Tech. Rep., 2001.

[5] A. Kumar, S. Merugu, J. Xu, and X. Yu, “Ulysses: A Robust, Low-
Diameter, Low-Latency Peer-to-Peer Network,” in Proc. of IEEE ICNP,
2003.

[6] “http://gnutella.wego.com.”
[7] C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-to-peer

networks,” in Proceedings of IEEE Infocom, 2004.
[8] S. Merugu, S. Srinivasan, and E. W. Zegura, “Adding structure to

unstructured peer-to-peer networks: the role of overlay topology,” in
Proceedings of Networked Group Communication (NGC)., 2003.

[9] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,” in Proc. of ACM SIG-
COMM’03. ACM Press, 2003, pp. 407–418.

[10] A. Kumar, J. Xu, and E. W. Zegura, “Efficient and scalable query routing
for unstructured peer-to-peer networks,” Georgia Institute of Technology,
Tech. Rep., 2004, available at http://www.cc.gatech.edu/ akumar.

[11] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
CACM, vol. 13, no. 7, pp. 422–426, 1970.

[12] M. T. Prinkey, “An efficient scheme for query process-
ing on peer-to-peer networks,” aeolus Research, Inc.,
http://aeolusres.homestead.com/files/index.html.

[13] C. Rohrs, “Query routing for the gnutella network,” lime Wire LLC,
http://www.limewire.com/developer/query routing/keyword routing.htm.

[14] S. C. Rhea and J. Kubiatowicz, “Probabilistic location and routing,” in
Proc. of IEEE Infocom’02, Mar. 2002.

[15] C. Huitema, Routing in the Internet. Prentice Hall PTR, 1999.
[16] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans. Netw.,

vol. 10, no. 5, pp. 604–612, 2002.
[17] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data

compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987.
[18] K. Whang, B. Vander-Zanden, and H. Taylor, “A linear-time probabilistic

counting algorithm for database applications,” ACM Transactions on
Database Systems, 1990.

[19] T. Clingberg and R. Manfredi, “Gnutella0.6,” June 2002.
[20] A. Singla and C. Rohrs, “Ultrapeers: Another Step Towards Gnutella

Scalability,” 2002, version 1.0.
[21] S. Saroiu, K. Gummadi, and S. Gribble, “A Measurement Study of

Peer-to-Peer File Sharing Systems,” in Multimedia Conferencing and
Networking, Jan 2002.

[22] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker., “Web caching
and zipf-like distributions: Evidence and implications,” in Proceedings
of IEEE Infocom, Mar. 1999.

[23] D. S. Phatak and T. Goff, “A novel mechanism for data streaming across
multiple IP links for improving throughput and reliability in mobile
environments,” in Proc. IEEE INFOCOM, June 2002.

[24] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm
for finding frequent elements in streams and bags,” ACM Transactions
on Database Systems (TODS), vol. 28, pp. 51–55, 2003.

[25] C. Tang, Z. Xu, and M. Mahalingam, “pSearch: Information Retrieval
in Structured Overlays,” in ACM HotNets-I, Oct. 2002.

[26] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content
delivery across adaptive overlay networks,” in Proceedings of the ACM
SIGCOMM ’02 Conference, Aug. 2002.

[27] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer
systems,” in Proc. of the 22nd International Conference on Distributed
Computing Systems(IEEE ICDCS02), 2002.

[28] D. Tsoumakos and N. Roussopoulos, “Adaptive probabilistic search in
peer-to-peer networks,” in Proc. of 3rd IEEE Intl Conference on P2P
Computing, 2003.

[29] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, “A local search
mechanism for peer-to-peer networks,” in Proc. of the 11th ACM
Conference on Information and Knowledge Management, 2002.

