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On stochastic recursive equations and infinite
server queues
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Abstract— The purpose of this paper is to investigate
some performance measures of the discrete time G/G/ �
queue under a general arrival process. We assume more
precisely that at each time unit a batch with a random size
may arrive, where the sequence of batch sizes need not be
i.i.d. All we request is that it would be stationary ergodic
and that the service duration has a phase type distribution.
Our goal is to obtain explicit expressions for the first two
moments of number of customers in steady state. We obtain
this by computing the first two moments of some generic
stochastic recursive equations that our system satisfies. We
then show that these class of recursive equations allow to
solve not only the

��������� � queue but also a network of
such queues. We finally investigate the process of residual
activity time in a

���	��� � queue under general stationary
ergodic assumptions, obtain the unique stationary solution
and establish coupling convergence to it from any initial
state.

Keywords: Stochastic processes/Queueing theory.

I. INTRODUCTION

Most explicit expressions for performance measures in
queueing networks are known under independence as-
sumptions on the driving processes (service and interar-
rival times). An interesting challenge is to obtain explicit
expressions for the case in which the independence is re-
laxed and only stationarity and ergodicity of some com-
ponents of the driving sequences are assumed. One line
of research that allows to handle stationary ergodic se-
quences is based on identifying measures that are insensi-
tive to correlations. For example, the probability of find-
ing a G/G/1 queue nonempty is just the ratio between the
expected service time and the expected interarrival time
(which follows directly from Little’s Law). The expected
cycle duration in a polling system (under fairly general
condition) too, depends on the interarrival, service and va-
cation times only through their expectations under general
stationary ergodic assumptions (see e.g. [5]). An example
of performance measures that depend on the whole distri-
bution of service times but is insensitive to correlations is
the growth rate of number of customers or of sojourn time

in a (discriminatory) processor sharing queue in overload
[4], [13].

In this paper we study a queueing problem under a sta-
tionary ergodic arrival process, in which the correlations
indeed influence the performance but in which despite the
dependence between arrival times, explicit expressions
are obtained for the two first moments of the stationary
number of customers. More precisely, we study the dis-
crete time G/G/ 
 queue in which at each time unit a ran-
dom a batch with a random size may arrive, where the
sequence of batch sizes is stationary ergodic and service
durations have a phase type distribution.

We first compute the two moments of some generic
stochastic recursive equations that our system satisfies.
These are simplified versions of stochastic recursions in-
troduced in [2] which already enabled us to study polling
systems [2], [12] and queues with vacations [2] in which
vacation times are correlated, and are related to branching
process with migration [1]. Yet this is the first time that
generic explicit expressions are derived for the first two
moments of such equations.

We then show that these class of recursive equations
allow to solve not only the ���������
 queue but also a
network of such queues.

We finally investigate the process of residual activity
time in a �������
 queue under general stationary ergodic
assumptions, obtain the unique stationary solution and es-
tablish coupling convergence to it from any initial state.

The infinite server queue which is the topic of our pa-
per has had various applications in teletraffic and in net-
working modeling. The output process of an M/GI/ 

queue has been used to model long range dependent traf-
fic, c.f. in video applicationskruntz. In [17] the connec-
tivity of ad-hoc networks on a line has been considered.
The distribution of distance covered by a connected set of
mobiles has been shown to correspond to a busy period
in the ������������
 queue and its distribution was com-
puted for various channel conditions. Furthermore the
distribution of the number of connected mobiles has been
computed using its correspondence to the number of cus-
tomers served in a busy period of a ������������
 queue.
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Finally, the infinite server queue has also been used in the
context of communication networks and distributed com-
puter systems, see e.g. [14].

The structure of the paper is as follows. We introduce
in Section II generic stochastic recursive equation corre-
sponding to a branching type process in non Markov ran-
dom environment with migration. The first and second
moments of the corresponding state variables are intro-
duced in Section III. The expressions obtained are shown
to further simplify for specific Markovian dynamics that
creates the correlation. This allows us to derive in Section
IV explicit performance measures for the ������� ��
 dis-
crete time queue and to provide a numerical example that
illustrates the role of correlation. An extension to a whole
network of infinite server queues ends this section. Fur-
ther stability results for the G/G/ 
 queue are presented in
Section V followed by a concluding section.

II. THE MODEL

Consider a column vector
���

whose entries are
����

, ���	�
������
��
where

� ��
take values on the nonnegative integers���

. Consider the following stochastic recursive equation:��� ��� ��� ������������� � (1)

where the � the element of the column vector � �������!� is
given by " � �������!�$# � � %&')( � *�+,&- ( �/. 0 -21' � ��34� (2)

where . 0 -1 ��34� , 56� 	�
879
;:<
�����
,
3 � 	�
879
;:<
�����

are i.i.d.
random matrices of size

�>=?�
. Each of its element is a

nonnegative integer. Denote @ " . 0 -1� ' ��34�$# �BA ' � . The
�

-
dimensional vector

�C�
is a stationary ergodic stochastic

whose entries
�D�� 
 �E� 	�
������
�� are nonnegative integers.� ����F�� has a divisibility property: if for some 5 ,

F �F<GE�HF���� ����� F -
where

F9I
are integers, then � ����F!� can be

represented as � ����F!� � -&� ( G � 0 � 1� ��F � �
where JK� 0 � 1�ML � ( G)NO�PN Q8NORORORON - are i.i.d. with the same distribu-
tion as � ���TSU� . Note also that � ���$V9� � V . The divisibility
property allows us to use the framework of [2] to charac-
terize the distribution of

� �
and its limiting behavior.

We shall understand below W -� ( � � � �YXZ� � X whenever5H[ 3 , and W -� ( � � � �YX\� �]� - � -_^ � ����� � � whenever 5H`3
.
We note that although (1) is not linear in

�\�
, it is linear

in expectation; if we let
F

be a column vector then@ " � ����F!�$# ��A F � (3)

Moreover, we have for ab` 	 by Wald’s equation

@ cd�ef 'g� ( � � 'hi ��F��Yjk �lA ' F (4)

We make the following assumptions throughout the
paper:

A1: m m Anm m�[ 	 and @ " o�p�q m m � G m m # [ 
 where m m Anm m stands
for the largest absolute value of the eigenvalues of A and
where m m � G m m stands for the maximum absolute value of
the elements of

� G .
Note that by Jensen’s inequality, a sufficient for@ " o�p�q m m � G m m # [ 
 is that @ " m m � G m m # [ 
 .
We recall the following property of our system:
Theorem 1: (i) For

3 ` V
,
���

can be written in the
form

��� �� ^ �&'8( G ef � ^ �g� ( � ^ ' � 0 � ^ ' 1� hi �$� � ^ ' ^ � ���sr � ^ �g� ( G � 0 G 1�lt ��� G � (5)

(ii) there is a unique stationary solution
�bu�

of (1), dis-
tributed like� u� �wvyx&'8( G ef � ^ �g� ( � ^ ' � 0 � ^ ' 1� hi �$�n� ^ ' ^ � � 
 3{z}| 


(6)

The sum on the right side of (6) converges absolutely � -
almost surely. Furthermore, for all initial conditions

� G ,m m ���D~�� u� m m�� V
, � -almost surely on the same probability

space. In particular, the distribution of
�\�

converges to
that of

� uG as
3 � 
 .

Proof. (5) is obtained by iterating (1). Theorem 2 and
Lemma 1 in [2] imply (ii).

III. FIRST AND SECOND MOMENTS

Denote by
F � and

F 0 Q 1� the first and second mo-
ment of the � th element of

� u�
. Denote �2��� ���b� � ' �@ " ����uG � � ����uG � ' #�~�F � F ' . Let � � and � 0 Q 1� denote the two first

moments of
�D��

. Denote �2��� � . �$�' - ��@ � . 0 G 1� ' . 0 G 1� - ��~ A ' � A - �and define the following
��=��

matrices:� � 5 � is the matrix whose ��a th entry equals @ " ���G � '- # ,
where 5 is an integer.��

is the matrix whose ��a th entry equals � � � ' ,�)��� �$��� is the matrix whose ��a th entry equals @ " ���G � 'G #!~� � � ' .
Define

�� � 5 ��� � � � 5 �Z~ ��
.
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A. General results

Theorem 2: (i) The first moment of
� u�

is given by@ " � uG # � � � ~ A � ^ � � 
 (7)

(ii) Assume that the first and second moments � � and � 0 Q 1� ’s
are finite. Define � to be the matrix whose (ij)th entry is

� � ' � %&- ( � F - � �2��� � . � -� ' � �
Then the matrix �2��� ��� u�� is the unique solution of the set
of linear equations:�2��� ���b� � �)��� �$����� x&� ( � � A � �� ���9����� A � �� ���9���	��
� A��2��� ��� � A � � � � (8)

The second moment matrix @ " ��� � # in steady state is the
unique solution of the set of linear equations:@ " �D� � # � @ " � G � �G #9� x&� ( � � A � � ���9����� A � � ���9��� � 
� A @ " � � � # A � � � ' � (9)

Remark 1: Note that the sums both in (8) as well as in
(9) are finite since the finiteness for all � of the second mo-
ments � 0 Q 1� implies that

� � a � are uniformly bounded and

since m m ��m m [ 	 . Note also that if for some � , � 0 Q 1� is infinite
then it follows directly from (1) that @ � " ����# Q� � is infinite
for all

3 ` V and thus also in the stationary regime.
Proof of Theorem 2. (i) Taking the first moment at

stationary regime of (1) we obtain (7).
(ii) To obtain the covariance, we first compute@ " � � G ��� G �P� � � � G ��� G �P� ' #� @ � @ " � � G ��� G �P� � � � G ��� G �P� ' m � G #Y�� @ � %&- ( � � -G A - � &I�( - � IG A ' I �� @ ef %&- ( � @ cd *���&� ( � *���&� ( � . 0 � 1- � . 0 � 1- '���� � -G jk hi� %&- ( � &I�( - A � - A ' I @ " � -G � IG #� @ ef %&- ( � @ cd *���&� ( � *���&� ( �PN ���( �9. 0 � 1- � . 0 � 1- ' ��� � -G jk hi

� @ ef %&- ( � @ cd * ��&� ( � . 0 � 1- � . 0 � 1- '���� � -G jk hi� %&- ( � &I��( - A � - A ' I @ " � -G � IG #� %&- ( � " ��F 0 Q 1- ~�F - �$# A � - A ' - � %&- ( � F - @ " . 0 G 1- � . 0 G 1- ' #� %&- ( � %&I ( � A � - A ' I @ " � -G � IG #9� %&- ( � F - �2��� � . � -� '
and, with � ^� � � �$� G 
 � ^ � 
 � ^ Q 
����� � we further compute

@ " ��� G � � � �G # � x&'8( G @��� � cd ef ^ �g� ( ^ ' � 0 ^ ' 1� hi �$� ^ ' ^ � � jk � � �G�� ��
� x&'8( G @ ef @��� � cd�ef ^ �g� ( ^ ' � 0 ^ ' 1� hi �$� ^ ' ^ � �Yjk � � �G � �� ������ �

^� hi
� x&'8( G @ � � A ' � ^ ' ^ � � � � �G 

� x&'8( G %&� ( � � A ' � � � � � a � 	 � ��N �

where the last equality follows from (4). Note that the last
sum is finite since the finiteness for all � of the second mo-
ments � 0 Q 1� implies that

� � a � are uniformly bounded and
since m m ��m m [ 	 . Next we compute

@ " � � G ��� G �P� � � �G # � @ � �P� � G ��� G �P� � � �G ��� � G 
 � G �� %&- ( � A � - @ " ��� G � - � �G #
� x&')( � � A ' � � a �!
 � N �

We thus obtain@ " � �G � 'G # ��@ " � �G � 'G #<� @ " � � G ��� G �P� � � 'G #� @ " � � G ��� G �P� ' � �G #� %&- ( � %&I ( � @ " � -G � IG # A � - A ' I � � � '
� @ " � �G � 'G #<� x&� ( � � A � � ���9����� A � � ���9��� � 
 � N '� %&- ( � %&I ( � @ " � -G � IG # A � - A ' I � � � '

which gives in matrix notation (9).
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We now rewrite (9) as�2��� ���b���MF<F �� �)��� �$����� ��l� x&� ( � � A � �� ���9����� A � �� ���9���	��
� A � � ~ A � ^ � ���� ��b� � ~ A � � ^ � A �� A��2��� ���b� A � A F<F � A � � � '
We now note thatF<F � � ��l� A � � ~ A � ^ � ��l� �� � � ~ A � � ^ � A �� A F<F � A
which is obtained after some elementary algebra and after
substituting

F � � � ~ A � ^ � � . We conclude that �)��� ��� � is
a solution of (8).

Next, we show uniqueness. Let
| � and

| Q be two so-
lutions of (8) and define

| � | � ~�| Q . Then
|

satisfies| ��A � | A . Iterating that we obtain that| � o������� x A � | � A � � � � V
where the last equality follows since m m Anm m4[ 	

. This im-
plies the uniqueness of the solution for (8). The unique-
ness of the solution of (9) is obtained similarly.

B. Example of a correlated processes

We assume in this Subsection that
� �

are random vec-
tors whose distribution depends on an underlying ergodic
Markov chain � � taking values in a finite space � . We
denote its transition probability by � . Let 	 be the
unique steady state probability of the Markov chain. Let
� �� � � � � � � �$� �� � � m � � �
� � , Let

�
� � be a matrix of sizem���m = � � whose � � th component
�
� �� � � � equals � �� � � � 	 � � � .

Let  be a row vector whose � th entry equals � , � z �4�
Then for a ` V , Our goal is to compute the quantities that
appear in (8) (in particular

� � 5 � ).
Lemma 1: In the Markov correlated model described

above, we have" � � 5 �$# � ' ��@ " � �G � '- # �� �� � � -_^ � " � ' # �  � � (10)

If we denote by � the column vector with appropriate size
whose entries are all ones, then we further have:" �� � 5 �$# � ' � �  ~ � � � � � �� � � -_^ � " � ' # � �  ~ � ' � � � � (11)

where � � ���������D@ " � �G m � G ��� # 	 � � � .1 Moreover." �)��� �$���$# � ' � &
� ��� 	

� � � �)� � " � � � �$# � ' (12)

�
Note that �������! �"$#&%&'(  is a row vector of dimension ) *+) whose , th

entry equals -�. /  � �0�  ) 1 �32 ,5476&�8,�% .

where �2� � " � � � �$# � ' ��@ " � �G � 'G m � G ��� # .
Proof: We have

� �$� �G � � 
 � '- ��9<m � � ��� � � � �� � � � &�;: ��� " � -_^ � # �;� : � ' � � ��< �
which implies

� �$� �G � � 
 � '- ��9 �� &
� �=� 	

� � � � �� � � � &�;: ��� " � -_^ � # �;�;: � ' � � � < �� &
� �=�

�
� �� � � � &�;: �=� " � -_^ � # �;�;: � ' � � � < �� " �� � � -_^ � � � ' � � # � � �

Hence
" � � 5 �$# � ' � � � � � � 9 " �� � � -_^ � � � # � � which gives

(10). The rest is direct.
Next, consider the special case that the

����
’s have only

values 0 or 1. Let > and
�> denote the matrices whose

� � 
 � �
entry equal, respectively, to > � � � � � � � �$� �� � 	 m � � �
� � and

�> � � � ��� � � �$� �� � 	 m � � �?� � ~ � �$� �� � 	 �
.

Let @ denote the matrix whose
� � 
 � � entry equals @ � � � � �

	 � � �/�> � � � � . Then (11) simplifies to�� � 5 � �A@B� -_^ � �> � (13)

C. The one dimension case

We next consider scalar stochastic recursive equations,
i.e.

� � 	
.
���

in (1) is then a scalar instead of a vector
and (2) simplifies to

� � ��� � � � * ,&- ( � . 0 -1 ��34� � (14)

. 0 -1 and A are scalar too with @ " . 0 -1 ��34�$# � A . Theorem
2 simplifies to:

Theorem 3: (i) The first moment of
��u�

is given by@ " � uG # � �	 ~ A 
 (15)

(ii) The variance of
� u�

is given by�DC � " � u # ��@ " ��� u � Q #!~�� @ " � u #Y� Q
� �EC � " � #9� x&� ( � � A � �� ���9��� � A � �� ���9� � � 
 � A �	 ~ A Q

Next, we shall further restrict to the Markovian setting
of Section III-B. We shall provide an explicit expression
for � x� ( � A � � ���9�

.
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Lemma 2: In the one dimensional state with the
Markov model for correlation, we havex&� ( � A � � ���9� ��A �  ~ � � � � �� " � ~ A � # ^ � � � �  ~ � � � �

(16)
Proof. We get using (11)A � � ���9� ��A �  ~ �$� � � �� " A � # � ^ � � � �  ~ � � � 


� x� ( � " A � # � ^ � is well defined since m Anm�[ 	
and since �

is a stochastic matrix. Define  � to be a row vector whose� th entry equals
� ��� � � 
 X\� , � z �\� . Then for any

X ` V ,
we have by the bounded convergence theorem:x&� ( � A �  � ~ � � � � �� " A � # � ^ � � � �  � ~ � � �

��A �  � ~ � � � � �� " � ~ A � # ^ � � � �  � ~ � � � �
(16) is then obtained by the monotone convergence theo-
rem.

We thus obtain the following:
Corollary 1: Consider the scalar case, and consider the

Markov model for the correlation process of Section III-B.
Then

�����
	 ����
� ������	 ���
����������� �"!�#%$'&� 	 ()�*�'+,�.-0/ � #1�����2�3$4#5�6�1�

7 �*�98

Moreover, in the special case that the
� ��

’s have only val-
ues 0 or 1, then we get�EC � " � u # � �DC � " � #<� 7 A @ � � ~ A � � ^ � �> � � A �	 ~ A Q (17)

IV. THE G/PH/ 
 QUEUE

We now consider a discrete time G/PH/ 
 queue. We
shall apply in this section the general theory of previous
sections in order to compute the steady state moments of
some performance measures. We shall then strengthen in
the following section the stability results (corresponding
to Theorem 1) while relaxing further the statistical as-
sumptions.

A. The model

Service times: Service times are considered to be i.i.d.
and independent of the arrival process. We represent the
service time as the discrete time analogous of a phase type
distribution: there are

�
possible service phases. The ini-

tial phase 5 is chosen at random according to some prob-
ability > � 5 � . If at the beginning of slot

3
a customer is

in a service phase � then it will move at the end of the
slot to a service phase a with probability � � ' . With proba-
bility

	 ~ � %')( � � � ' it ends service and leaves the system

at the end of the time slot. Let . 0 -1 ��34� , 5 � 	�
879
;:<
�����
,3 � 	�
879
;:<
�����

be i.i.d. random matrices of size
� ={�

.
Each of its element can take values of 0 or 1, and the ele-
ments are all independent. The ��a th element of . 0 -1 ��34� has
the interpretation of the indicator that equals one if at time3

, the 5 th customer among those present at service phase� moved to phase a . Obviously, @ " . 0 -1� ' ��34�$# � � � ' . � is a
sub-stochastic matrix (it has nonnegative elements and it’s
largest eigenvalue is strictly smaller than 1), which means
that services ends in finite time w.p.1. and that

� � ~ � � is
invertible.

Arrivals: Let
� � � �$� �� 
������
 � %� � � be a column vector

for each integer
3

, where
����

is the number of arrivals at
the

3
th time slot that start their service at phase � . � � is

assumed to be a stationary ergodic sequence and that they
have finite expectation.

The state and the recursive equation: Let
� ��

denote
the number of customers in phase � at time

3
. Then

�\�
satisfies the recursion (1) where � � is given in (2). In
particular, A � � and indeed we have m m Anm m [ 	

so that
Assumption A1 hold.

We can thus apply the results of the previous sections
to get the first two moments as well as the general distri-
bution at stationary regime.

B. Main results

Corollary 2: (i) Theorems 1 and 2 hold for the
G/PH/ 
 queue.
(ii) The first and second moments of the number of cus-
tomers at the system in stationary regime are given re-
spectively by � � � � ~ A � ^ � � and � � �)��� ��� � � , respectively,
where � is a column vector with all entries 1’s.

Remark 2: We present a simple interpretation of the
first moment of the number of customers at the system.
Denote by : the expected number of arrivals per slot.
Clearly :b� mO��m where mO��m is the sum of entries of the vector� . Define ; to be the expected service time of an arbitrary
customer and let <��=:>; . We shall first compute ; . The��a th element of the matrix

� � ~ A � ^ � has the interpretation
of the total expected number of slots that a customer that
had arrived at service phase a spent at state � . Thus the a th
entry of the vector � � � � ~ A � ^ � has the interpretation of
the total expected number of slots that a customer that had
arrived at service phase a spent in the system. and let the
vector ? be the vector whose � the entry is � � mO��m . Then

;D�
� � � � ~ A � ^ � ?
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and

<�� � � � � � ~ A � ^ � ? � mO��m/� � � � � ~ A � ^ � � 

which is our expression for the first moment of the number
of customers at the system. This relation is known to hold
in fact for general �������
 queues, see e.g. [6, p. 134].

C. Departure process

One can use the same methodology to describe the de-
parture process. To do that, we can augment the system
with a new ”phase” which we call ”d” (for departure), and
update the phase transitions as follows:

� � ' � � � ' 
 � 
 a z J 	�
������
�� L 

� � v � 	 ~ %&'8( � � � ' 
 � z J 	�
������
�� L
� v � � V 
 � z J 	�
������
��}
�� L

Quantities corresponding to the new system are denoted
by adding a bar. We set

� �� � � ��
for � � 	�
������
��

and� v� � V for all integers
3

. Since � is assumed to be sub-
stochastic, so is � . Note that in our new system, only cus-
tomers in phases 1,...,

�
correspond to those really present

in the original system, whereas customers at phase
�

are
already out of the system.

D. The case of geometric service times

We now study the special case of geometrically dis-
tributed service times. In that case the stochastic recursive
equation becomes one dimensional.

���
is a scalar and de-

notes the number of customers in the system. . 0 -1� has
the interpretation of the indicator that the 5 th customer
present at the beginning of time-slot

3
will still be there at

the end of the time-slot. Thus the probability that a cus-
tomer in the system finishes its service within a time slot
is precisely > � 	 ~ A . We can now apply directly the
results of Theorem 3.

E. Numerical results

We consider the following simple scenario. Service
times are geometrically distributed, the arrival process
depends on a Markov chain as in Subsection III-B, and
moreover, there can be either one or no arrival at a time
slot.

We consider a Markov chain with two states J�� 
�� L with
transition probabilities given by

� � r 	 ~�� > � >��� 	 ~���� t

� ` V
is a parameter that will be varied later in order to

vary the correlations. The steady state probabilities of this
Markov chain are

	�� 	 �
> �
� 
 >

> ���� �
Hence � ��@ " � # ��@ " � Q # � � >�� � > >�

> ��� 

(18)

�EC � " � # � ��� > � � > >�� �;���9� 	 ~ > � ��� > � 	 ~ >�� �P�� > ����� Q (19)

Note that 	 
 � 
 @ " ��Q2# and �DC � " � #
do not depend on

�
.

Applying the first part of Theorem 3 we get the follow-
ing expression for the expected number of customers in
the system in stationary regime:@ " � uG # � 		 ~ A = � >�� � > >�

> ��� �
Next, we wish to compute the variance of

�
. We have�> � � > � > � ~ >�� �

> ��� 
 �<� >�� ~ > � �
> ��� � 


@�� > �9� >�� ~ >�� �� > ����� Q � 	�
 ~ 	 � 

� � ~ A � � ^ � � 	� 	 ~ A �;� 	 ~ A �
�� > �
�/� A �= r 	 ~ A �
� A � � A >� A � 	 ~ A �
� A > t

We thus obtain

@ � � ~ A � � ^ � �> � (20)� > �<� > � ~ >�� � Q� 	 ~ A ���K� > ����� A �;� > �
�/� Q
Remark 3: If we consider �EC � " ��u)#

in (17), we see that
the dependence on

�
comes only through the term in (20).

Moreover, we see that for any value of A , this term, and
hence �DC � " ��u)#

, decrease with
�
. Large

�
means that the

Markov chain alternates rapidly between its two states,
which results in a lower overall effect of correlation. (20)
can precisely be used to determine this overall effect as it
can be viewed of the total weighted sum of correlations�� � 5 � , i.e.

@ � � ~ A � � ^ � �> � � x&- ( G @ � A � � - �> � � x&- ( � A -K^ � �� � 5 �
where we used (13).
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As an example, consider the following parameters: > �� � 	
, >��}� 	�
 >���� V ���

. Substituting these parameters
in (18), (19) and (20) and plugging these expressions into
(17), we obtain the following expressions�EC � " � u # � 	� 	 ~ A Q � 	 :	�� � 7 A	 ~ A � 7 � A � :� A � �
In Fig. 1 we plot the variance of the steady state number
of customers, �DC � " � u #

, while varying
�

and A .
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Fig. 1. var . ��� 4 as a function of � and of 	
Recall that for a fixed A , the expectation of

�bu
does

not depend on
�
. The variance of

� u
on the other hand

is seen to be quite sensitive to the correlation between the�n�
’s as determined by the parameter

�
. This sensitivity

is seen to increase as A increases and sensitivity is largest
when A approaches 1. As already mentioned in Remark 3
we see that

� � 	
gives the smallest value of @ " � u # and

that @ " ��u8# increases as
�

decrease. For A � V ���
we get

a difference of around 30% between the lowest and the
largest value of

�
, where as form AB� V ��


we obtain a
difference of 250%.

F. Extension to a network

Consider now � stations, each with infinite number of
servers. The service time at station � has a set  � of

� �
phases. Let

� � � � � ����� � ��� . For any a?� 	�
������
��
let 9 � a � denote the station to which a corresponds, i.e. ifa z  � then 9 � a � ��� .

If at time
3

a customer was at phase a in station 9 � a �
then it either moves to another phase at the same station or
moves to another phase in another station; the next phase5 (either at the same station or at another one) is chosen
with probability � ' - ; with probability

	 ~ � %- ( � � ' - the
customer leaves the system. Again we assume that the
choice of next phase are independent.

Let
�n� � �$� �� 
������
 � %� � � be a column vector for each

integer
3

, where
�D��

is the number of arrivals at the
3

th
time slot that start their service at phase � in station 9 � � � .� �

is assumed to be a stationary ergodic sequence.
With this description we see that we can identify the

whole network as a single server station problem with in-
finite number of servers and with

�
phases. Thus we can

apply all previous results.

V. RESIDUAL ACTIVITY TIME IN THE �������
 QUEUE

Define the residual activity time at a given instant as the
total time till the system empties from that instant onwards
if new arrivals do not occur.

We shall analyze in this section the residual activity
of a G/G/ 
 queue under weaker statistical assumptions
than those used so far. We shall obtain the existence of
a stationary regime as well as convergence to it in the
coupling-convergence sense (see e.g. Borovkov [7], [8]).

a) The model: The
3

th arrival event occurs at time� �
: a batch of

�C�
customers arrive. Denote � � � � � ��� ~� �

; they replace the fixed slots we had before. Let � � be
the largest service time required among the

� �
customers

that arrive at time
� �

. We shall assume that the joint se-
quence

� � � 
 � �!� is stationary ergodic and that @ " � G # and@ " � G # are finite and strictly positive. � � in particular, need
not have a ”phase type distribution” as before. Let � � be
the residual activity time just before

� �
. Then � � can be

written recursively as:

� � ��� � � ����� � � � 
 � ���Z~ � � 
 �
where

�YX\� �H� � ����� �YX 
 V9�
.

Iterating this relation gives:

� � ��Q� � ������� � ����� � � � 
 � � �4~ � � � � 
 � � ����� ~ � � ��� 
 �� ����� � ����� � � � 
 � �!�4~ � � ~ � � ��� 
 � � ��� ~ � � ��� 
 V 
 �
Further iterating directly yields:

� � � - � ����� � | � 
 |E� ��� 
��������
 | � � -_^ � 
 V9�
where | � � ����� � � � 
 � �!��~ -_^ �& � ( G � � ��� 
|E� � ' ��� � � ' ~ -_^ �& � ( ' � � ��� 
 a�� 	�
������
 5 ~ 	��



8

b) Stationary solution: We use the Loynes’ type
scheme [16] to obtain the stationary regime and the con-
vergence to it.

Theorem 4: � � converges a.s. to a unique stationary
regime that is given by

� u� � � ef
�����'�� � cd

� ' ~ � ^ �& � ( ' � � jk hi � � (21)

from any initial � G . Moreover � u� is � ~ C � 9 � finite.
Proof: Define on the same probability space as the pro-

cess � � the shifted processes � � I���
, where � are integers:

� � I��^ I � V 
 � � I��� ��� � � ����� � � � I��� 
 � � �2~ � � 
 � 
 3�� ~ � �
Then as before, we can write for

3 ` ~ � :

� � I��� � ef
�����^ I
	 '�� � cd � ' ~ � ^ �& � ( ' � � jk hi �

which monotonely increases to the sequence � u� given in
(21). Clearly � u� is a stationary ergodic process. We shall
show that it is � ~ C � 9 � finite. Indeed, since

� � � 
 � ��� is
stationary ergodic, the Cesaro sums converge to the ex-
pectation � ~ C � 9 � and hence there is some R.V.  G which
is finite � ~ C � 9 � such that for all a `  G ,

� ^ ' [�a�@ " � G # � : and

^ �&� ( ^ ' � � ` a 7 @ " � G # � :
Hence the term in brackets in (21) is negative for all

~ ab`
 G so that � uG is finite � ~ C � 9 . Due to stationarity this is
true for � u� for all

3
.

c) Coupling: We show that for any initial value � G
there is a time

� G which is finite � ~ C � 9 � such � � coin-
cides with � u� for all

3 ` � G . Indeed, fix � G and define� G � � ������ � � ����� � � G 
 � uG � [ � ^ �&� ( G � ��� �� G is clearly finite � ~ C � 9 � due to the ergodicity of � � .
Moreover, it is clear from the explicit expressions we have
for � G and for � uG that they coincide for

3 ` � G . Unique-
ness of the stationary regime follows from the fact that
coupling has been established for arbitrary initial state.

Remark 4: Our construction establishes in fact that we
have strong coupling convergence in the sense of [7], [8].

Remark 5: A stability result is already given in [6, p.
133] for a general G/G/ 
 queue. Namely, it is shown that� G is finite almost surely but the form of the stationary
regime and the convergence results are not given.

VI. CONCLUDING COMMENTS

In this paper we have studied and used stochastic re-
cursive equations to investigate the discrete infinite server
queue with batch arrivals where the size of the batches fol-
low a general stationary ergodic process. We obtained ex-
plicit expressions for the first and second moments of the
state variables appearing in the stochastic recursive equa-
tions and applied them to solve the infinite server queue
problem. We proposed then more specific Markov mod-
els for correlation that further simplify the expressions for
the first two moments. We extended the results of the in-
finite server queue to a whole network of such queues.

Other stochastic recursive equations have been used to
study the stability of the queue under even more general
probabilistic assumptions and convergence to a unique
stationary regime has been established.

The simple explicit expressions obtained makes our
results appealing to various applications of the infinite
server queue. For example, they can be used to represent
the first and second moments of the number of connected
mobiles at an arbitrary location in the one dimensional ad-
hoc network of [17], using the equivalence between the
ad-hoc network and an infinite server queue given in [17].
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