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Abstract: We study fairness among sessions sharing a common bottleneck link, where
one or more sessions use a multiplicative increase multiplicative decrease (MIMD) algorithm.
Losses or congestion signals occur when the capacity is reached but could also be initiated
before that. Both synchronized as well as non-synchronized losses are considered. In the
non-synchronized case, only one session suffers a loss at a time. Two models are then
considered to determine which source looses a packet: a rate dependent model in which the
loss probability of a session is proportional to its rate at the congestion instant, and the
independent loss rate model. We first study how two MIMD sessions share the capacity in
the presence of general combinations of synchronized and non-synchronized losses. We show
that, in the presence of rate dependent losses, the capacity is fairly shared whereas rate
independent losses provides high unfairness. We then study inter protocol fairness: how the
capacity is shared in the presence of synchronized losses among sessions some of which use
additive increase multiplicative decrease (AIMD) protocols whereas the others use MIMD
protocols.
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Sur I’équité dans les algorithmes de controle de
congestion A.M.D.M

Résumé : Nous étudions 1’équité lorsque plusieurs sources utilisant l’algorithme des
accroissements multiplicatifs et de la décroissance multiplicative (A.M.D.M.) de TCP part-
agent un goulot d’étranglement. On dit que les pertes de paquets sont synchronisées lorsque
toutes les sources subissent une perte au méme instant. Chiu et Jain ont démontré que
AM.D.M était inéquitable lorsque les pertes de paquets étaient synchronisées. Dans un
premier temps, nous étudions le partage de bande passante entre deux sources A.M.D.M. lor-
sque les pertes de paquets sont non-synchronisées. Nous démontrons que la bande passante
est partagée équitablement lorsque les pertes de paquets sont dépendantes du débit de la
source alors que le partage est inéquitable lorsque les pertes de paquets sont indépend-
antes du débit de la source. Ensuite, nous étudions ’équité entre les sources A.A.D.M.
(des accroissements additifs et de la décroissance multiplicative) et les sources A.M.D.M qui
partagent un goulot d’étranglement lorsque le processus de pertes est synchronisé.

Mots-clés : Equité, A.M.D.M, pertes synchronisées et non-synchronisées, stabilité
stochastique
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1 Introduction

In the Internet, data transfer protocols use different congestion control algorithms to achieve
rate control. Until now, the AIMD algorithm was found to provide satisfactory performance.
However, in high speed networks, MIMD algorithm (e.g., [1, 2]) has been proposed in order to
efficiently utilise the network capacity. Therefore, in the future, situations may arise where
different sessions using these two algorithms would compete for the same network resource.
The share of the capacity obtained by each of these sessions will depend on the various
parameters specific to the algorithms. The sharing of a resource gives rise to the question
on how fairly is this resource shared. Fairness issues have been addressed in several previous
works. In [3], the authors consider a class of rate control algorithms under the assumption
of synchronized control signals, and show that the AIMD algorithm converges to fairness.
In [4], the authors consider MIMD algorithms under the more realistic assumption of state
dependent losses, and argue that MIMD algorithm also converges to fairness. In [5] the
convergence to fairness of the different flavours of TCP are studied both analytically and
using simulations. Loguinov et al. [6] study the monotonic convergence to fairness for
algorithms in rate-based TCP-friendly applications. In [7], the authors mention that for
sessions with different round trip times(RTT), Scalable TCP (which uses MIMD algorithm)
is extremely unfair. They propose a new algorithm to improve fairness.

Losses or congestion signals (these terms will be used interchangeably) occur when the
capacity is achieved but could also be initiated before that. Losses are said to be synchronized
when all the sessions sharing the link suffer a loss at the same time instant. In the non-
synchronized case, only one session suffers a loss. Both synchronized losses as well as non-
synchronized losses are considered as well as their combination. Two types of models are
then considered to determine which of the sources looses a packet: (1) the rate dependent loss
model in which the loss probability of a session is proportional to its rate at the congestion
instant [8], and (2) the independent loss rate model, in which the session to which a signal
is sent is independent of the session’s rate.

We first study how two MIMD sessions (with either the same RTT or with different
RTTs) share the capacity in the presence of general combinations of synchronized and non-
synchronized losses. We show that, in the presence of rate dependent losses, the capacity
is fairly shared between the two sessions whereas rate independent losses result in high
unfairness even when sessions are symmetric. In the second part we study how the capacity
is shared among several sessions, each of which either uses an additive increase multiplicative
decrease (AIMD) or a MIMD algorithm in presence of synchronized losses only. We show
that the AIMD session obtains a share which is independent of the link capacity, and that
the rest of the capacity is utilized by the MIMD session.

The rest of the paper is organised as follows. In Section 2 we present a brief overview
of the model and mention the contribution of this work. In the first part of the paper
(Sections 3 and 4), we analyze the fairness of two MIMD sessions sharing a common link in
the presence of rate dependent losses. In the second part of the paper (Section 5 and Section
6), we study fairness of AIMD and MIMD sessions sharing a common link. We present the
conclusions in Section 7.
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4 Altman, Avrachenkov, & Prabhu

2 Overview

We use the following notation. A function from R to R will be denoted using sans serif font,
such as x(). For example, x(t) denotes a function defined for all real values of t. A function
from Z to R will be denoted using italic fonts as x(). Usually, z(n) would be the value of
x(t) at the n'" sampling instant. A vector a will denote a row vector. Its transpose will be
denoted by a'. Also, we use the term session to mean an instance of a given algorithm. The
term user will be used for someone who makes use of one or more instances (i.e., sessions)
of the same algorithm.

The following model is mainly based on the model in [3]. Consider two flows which
share a link of capacity C. Let x(t) = (x1(t),x2(t)) be the rate vector at time ¢, where x;(t)
and x,(t) denote the instantaneous rates of session 1 and of session 2, respectively. The
set of feasible rate vectors, {(x1,x2)[x1 + x2 < C;x1,%2 > 0} is shown in Fig. 1. The line

Xz

Figure 1: The rate allocation vector

x1(t) + x2(t) = C is called the efficiency line. On this line the available capacity is fully
utilized. The line x;(t) = xo(t) is called the fairness line. On this line both the sessions
obtain the same rates, and hence the bandwidth sharing is said to be fair. The sessions
react to control signals by adapting their rates in the following way.

| brz(n)+a; for an increase signal,
s(n+1) = { bpz(n) + ap for a decrease signal,

where ar, by, ap and bp are constants and the sampling is done just after the control
instants. (In TCP Reno for example, arrivals of ACKs can be considered as increase signals
and arrivals of duplicated ACKs or a time-out is considered to be a decrease signal.) In
[3] it has been argued that for convergence to the fairness line, the increase algorithm has
to be multiplicative and additive (i.e., a; > 0 and by > 1) and the decrease algorithm has
to be multiplicative (bp < 1 and ap = 0). The authors assume that the control signals
are synchronized for both the sessions, and that the control signal is the same for both the
sessions. That is, both the sessions receive control signals at the same instant and both

INRIA



Fairness in MIMD Congestion Control Algorithms 5

of them either increase, or decrease their rates simultaneously!. Indeed, under these two
assumptions, the rate vector for MIMD algorithm stays on a line joining the origin to the
initial rate vector, and hence does not converge to fairness. In [4], the authors show that
under more realistic assumption of rate dependent control signal, MIMD algorithm also
converges to the fairness line. In the first part of the paper, we first show that, for sessions
with the same RTT, MIMD algorithm converges to fairness when the control signals are
rate dependent. We obtain the expressions for the long term fairness index, the rate of
convergence to the steady state distribution and the mean time to achieve fairness. In [7]
it was argued that for sessions with different RT'Ts, Scalable TCP (or, MIMD algorithm) is
extremely unfair. We show that, even for sessions with different RTTs, a certain degree of
fairness can be achieved by introducing sufficient number of asychronous losses. We then
show, through simulations, that the results obtained for two sessions also hold for n sessions.

In the second part of this paper, we consider several sessions sharing a common link on
which losses are due to buffer overflow and are, therefore, synchronized. In [5] such a scenario
was considered for session only using AIMD algorithm. Loguinov et al. [6] provide fairness
and packet-loss scalability analysis and simulations for session using more general binomial
algorithms. In [7], fairness issues were considered for high-speed networks. The RTT-
fairness was compared for different proposals of TCP in high-speed networks. Here, too,
the fairness was studied between sessions using the same algorithm. However, we consider
a heterogeneous scenario where different sessions may use different algorithms. This type of
scenarios may be of interest in the future when, for example, sessions using Scalable TCP
and standard TCP will share the same link. We analyze the equilibrium throughput and
the window size of the sessions and compare them with simulations. We note that, as was
pointed out in [6], the window-based notation can be converted to a rate-based notation
using the relation z(n) = w(n) LY, where w(n) is the window at the n*" sampling instant,
M is the packet size in bits and RT'T is the round trip time in seconds. Therefore, we shall
use the rate-based notation in the first part of the paper, and the window-based notation in
the second part of the paper.

3 Fairness in MIMD sessions (equal RTTs)

We consider two sessions which share a link of capacity C. At time ¢, the rates obtained by
the two sessions are denoted by x(t) = (x1(¢),x2(¢)). At each control instant, the controller
sends a control signal to each source. This signal either informs on no congestion (a 0 signal)
or sends a congestion (a 1) signal. In the absence of congestion, the sources increase their
rate exponentially, i.e.,

xi(t+7)=a™/™ x(t), i=1,2,

where 79 is the time constant (for example, the RTT) for the sessions, and a > 1 is the
increase factor. The above formulation is a continuous time equivalent of a multiplicative

IThese assumptions are validated in [9] by simulations for AIMD versions of TCP, with approximately
the same RT'Ts, and we validate them later for MIMD and AIMD versions of TCP (see, e.g., Fig. 5 and its
discussion).
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Table 1: Reaction to control signals

control vector | x1(t;+) | x2(t;+)
(0,0) x1(t;) xa(t5)
(0,1) x1(t;) B - x(t;)
(1,0) B -x(t;) xa(t;)
(1,1) B - xu(t;) B-xt))

algorithm in which, for every RTT without congestion signal, the sender multiplies the
window by a factor of . This can be seen by substituting ¢ = n7y. The control signals
to the two sources are assumed to be synchronised, i.e., they receive control signals at the
same instant. However, unlike the model in [3], the two sources can receive different control
signals. Let 3 < 1 be the decrease factor. Let the j** control signal be received at time ;.
Then, the four possibilities for the rate vector, x(¢;+), just after ¢;, are given in Table 1.
The source continues with the increase algorithm on the reception of 0 signal. On the other
hand, when a source receives a 1 signal, it instantaneously reduces its rate. We assume that
whenever the link capacity is attained then either a synchronized or a non-synchronized loss
occurs. Furthermore, non-synchronized losses may occur before attaining the capacity. We
note that if there were only synchronized losses then z;(n) = x;(0), i = 1,2, for all integers
n so that any initial unfair sharing would remain forever. Therefore, if MIMD protocols are
used then it is essential to provide a stream of non synchronized congestion signals using,
for example, some queue management scheme.

3.1 Instantaneous throughput ratio process

We now study the instantaneous throughput ratio process. It is shown to be a Markov
chain with a countable state space; we shall show that this chain could be stable or unstable
depending on the asynchronous loss process.

X1 n X
(b) State space, S, of x

(a) Rate vector, x

Figure 2: Geometric interpretation.
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Fairness in MIMD Congestion Control Algorithms 7

In Figure 2(a), we show the geometric interpretation of the response to the different
control signals. Let § be the slope of the line joining the origin and the current vector, x(t).
That is,

xa(t)
xi(t)”

If there are no control signals in the interval (¢, + 7) then the rate vector at time (¢ + 7)
will be a7/7 (x4 (t),x2(t)). This vector also lies on the line with slope 6. If a (1,1) signal
was generated at ¢, then the vector after the response, x;(t+), is B(x1(t—),x2(t—)). This
vector also lies on the line with slope 6. Therefore, the rate vector remains on the line of its
slope as long as the control vector is either (0,0) or (1,1), or there are no control signals.
However, it can be seen that the rate vector moves to the line with slope /3 when a control
signal of (1,0) is generated. Similarly, the rate vector moves to the line with slope 83 when
a control vector of (0,1) is generated. Therefore, given an initial slope of g, the slope of
the line along which the rate vector lies just after the n** control signal can be written as
8,, = 0y/3* for some i € Z, where Z is the set of all integers. For any given initial slope, 6y,
we can find a unique A € (3'/2,3-1/2) and j € Z such that 6, can be expressed in terms of
X as 8y = A\3?. For convenience, we will define 6,, in terms of A. The state space of 6, is a
countably infinite state space defined by

S ={\g",Vi € Z}.

A geometric interpretation of S is shown in Fig. 2(b). We note that the line A =1, =0 is
the fairness line. The continuous time increase and instantaneous decrease of the algorithm
allows us to obtain the above formulation.

In the rest of this section, we assume that A = 1. This assumption is equivalent to saying
that the initial vector has a slope of 3. If X is not equal to 1 then, by any combination
of control signals, the instantaneous rate vector can only get close to the fairness line by
getting to A. The rate vector can not, however, be on the fairness line.

Let s(t) = {i : i € Z} be the process which denotes that the rate vector at time ¢ lies on
a line with slope 3*. We embed this process at instants of arrival of the control signals. Let
t, denote the time instant when the n'* congestion occurs. Then, s, = s(t,+) = s(n).

We shall assume below that congestion signals occur only when capacity is reached, and
that at these events a non-synchronized loss is generated with a probability 0 < e < 1. We
shall later show that the qualitative results obtained carry also to the case of congestion
signals sent also before capacity is attained.

3.2 Rate dependent loss model

Next, we consider the rate dependent loss model in which the loss probability of a session is
proportional to the session’s rate at the congestion instant. In particular, we assume that

the probability of loss for session 4 at the n'” loss instant is given by %

RR n° 5312



8 Altman, Avrachenkov, & Prabhu

Proposition 3.1 {s,,n > 0}, is a discrete state-space Markov chain with transition prob-
abilities given by

, lil
1+1 wp. 61fgli\
Snt1|(sn =1) = i—1 wp. eﬁﬂm, 1>0
1 w.p. 1—¢€
+1 w.p. €/2
Snt1|(sn =0) = -1 wp. €/2 (1)
0 w.p. 1—¢€
. lil
t—1 w.p. f#gm
sn-}-ll(sn:i) = Z+]. w.p. G%ﬁli\’ 1<0
1 wp. 1—¢€

Remark 3.1 So far we have excluded losses that occur before capacity is reached. Consider
now the case that non-synchronized losses are gemerated occasionally independently of the
rates of the connections. Synchronized losses occur whenever capacity is reached. Let t,, be
the nth instant in which a non-synchronized loss occurs. Then Proposition 3.1 still holds
with € = 1. Therefore the stability conditions we shall obtain will also hold for this scenario.

We are interested in finding the steady state distribution of the Markov chain, and the
mean first passage time to the state ¢ = 0 starting from a random state. The state i = 0
corresponds to the fairness line. Therefore, the mean first passage time from a random state
to the state ¢ = 0 gives an indication of the mean time before the rate vector reaches the
fairness line. In general, the first passage time to state ¢ = 0 gives the first passage time
to A. If A # 1, s, cannot be on the fairness line, and so the above performance measure
corresponds to first passage time to the state closest to the fairness line for this particular
process.

The fairness index at the n'” control instant, F,,, is defined as follows

_ 1(@1(n) + 22(n))?
T2 21(n)? + 22(n)?

n

We can write F, in terms of 3* as follows

1 ¢ N
Fn = — Z P(Sn :Z)Tﬂm
1=—00
The long term fairness index, F,, can be obtained by taking the limit n — co. We assume
that the process s, converges to its stationary limit, so..2 Then, F, can also be expressed

2We establish this later. In cases that the Markov chain is null recurrent (Subsection 3.3) we shall
understand the steady state distribution to correspond to the compactification of the state space in which
—oo and oo are added to the state space and each will have a stationary probability of 0.5.

INRIA



Fairness in MIMD Congestion Control Algorithms 9

as
ﬂi

T+ )

1 ,
Fyo = 5+ Z P30 =1)
1=—00
Stability. The existence of the limiting distribution, s, can be ensured by proving
that the Markov chain s is positive recurrent. A Markov chain is positive recurrent if it

satisfies the Foster’s criterion [10] which is stated below.

Theorem 3.1 (Foster) An irreducible Markov chain s, on a countable state Z, is ergodic
if and only if there exists a positive function f(a), a € Z, a number pn > 0 and a finite set
A such that

E[f(snt1) = f(sn)lsn = 1] < —p, P ¢ A, (4a)
E[f(snt+1)|sn =1] < oo, 1€ A (4b)

Let f(i) = |i],i € Z and A = {0}. Let Af; be define as Af; := E[f(snt+1) — f(8n)|$n = 1].
First, we show that condition (4a) is satisfied. For 4 # 0, from (2), we have

l4]
Afi = eilfﬂmquﬂ)
[
we(1= 157 ) G- D+ @ =l -1

B B
(ol 1) e (12,2,

which is strictly negative for any 3 € [0,1). Therefore, condition (4a) is satisfied. To
check for (4b), for ¢ = 0 we have

. € €
E[f(sn+1)|sn =1 = §| -1+ §|1| =€ < 0.

Therefore, the Markov chain s satisfies the conditions of Theorem 3.1 and, hence, is positive
recurrent.

3.3 The independent loss rate model

If the session to which a congestion signal is sent is independent of the rates then the
transition probabilities become

i—1 wp. 3
Sny1|(8n=1)=1¢ i+1 wp. 3, Vi (5)
1 wp. 1—¢€

We show that this results in instability. We use the following theorem from [10].

RR n° 5312



10 Altman, Avrachenkov, & Prabhu

Theorem 3.2 For an irreducible Markov chain s to be null recurrent, it suffices that there
exist two functions f(z) and Y(x), © € Z, and a finite subset A € Z, such that the following
conditions hold:

1) f(z) 20, ¢(z) 20, Vz € Z.

2) For some positive a, v, with 1 < a < 2,

f(z) <A[p(z)]*,Vz € Z.

3) lim t(z;) = 00 and supyg4 f(x) > sup,c 4 f(z). 4)

T;—00

0) Elf(snt1) = f(s2) lsn =] 20, @ ¢ 4
b) El(sns1) = (sa) lsn =] <0, @ ¢ 4

&) sup Ell(sn11) — B(sn)|* |50 = 2] = C, < o0.
zeX

Let f(z) = 2%, ¢¥(z) = |z|, A = {0}, v = 1 and a = 2. Conditions 1, 2 and 3 of the above
theorem are satisfied with these assumptions. For condition 4(a),

Af; = g((x+ 1)% — 22) + %((x —1)2—2?) =€ > 0.
For condition 4(b),
A = S((Jal +1) = la) + 5((Jal = 1) = ) = 0.
For condition 4(c),

E[|¢(3n+1) - ¢(3n)|2 |5n = «T] =
5 (2 +1) = [2])* + 5 ((Jo] = 1) ~ |a)* = ¢ < o0.

Hence, the Markov chain s is null recurrent. Since s is null recurrent, and the discrete
state space has two accumulation points, (C,0) and (0,C), on the line x; + xo = C, the
probability of being in any small vicinity of each point is % The mean time to go from one
extreme to another will be co and, therefore, one connection will get the whole capacity.
This suggests that rate independent losses are not sufficient to improve the fairness whereas
rate dependent losses can indeed provide a fair share of the capacity.

In the sequel, we thus focus on the rate dependent loss model.

3.4 Steady state distribution

The Markov chain s is positive recurrent, and, therefore, the steady state distribution
P(ss = 1) exists. Since s, is symmetric about the state 0, we can consider a Markov

INRIA



Fairness in MIMD Congestion Control Algorithms 11

chain, {y,,n > 0}, on the state space {0,1,2,...}, in order to obtain the steady state distri-
bution of s. The transition probabilities at the n** control instant for this random walk are
given by

1+ 1 w.p. e€q;

Ynt1l(yn=1) = { i—1 wp. €e(l-q) ,i>0,
1 w.p. 1—c¢
o 1+1 w.p. € .
ol =) = {7 VR0 iso
where ¢; = % Let y., denote the steady state process to which y, converges. Let p;
denote the probability of y., being in state 4. Then
Proposition 3.2
i—1
4
pi=p || T——- (6)
' ]1;[0 1—¢gjt1

po can be obtained from the equation Z;’io pi = 1.

Proof 3.1 Let p, =0, Vn < 0. The balance equation for this walk can be written as

pi = (1—e€)pi+eqi_1pi—1 +€(1 — giy1)Pit1
= ¢-1pi-1+ (1 — giy1)Pit1 (7)

These are the balance equations for a birth-death process with state dependent transition
probabilities. The solution for this type of process is known to be of the form in (6)[11].

Note that p; can also be written as p; = po**~1/2(1 4 §%). Since #* — 0 as i — 00, the tail
of p; can be seen to decrease as Bi2 which is a very fast decrease. In particular, this means
that the process is around the fairness line most of the time.

The steady state distribution of s can be obtained from the following relations

. 1P(yoo = |i]), fori#0
— — 2 )
Plseo =1) = { Py = |i]),  fori=0.

The long term fairness index, Fi,, can be computed numerically using Eqns. (3) and (6).
In Table 2 we give the fairness index for different value of 5.

Table 2: Fairness index for different values of 5.
B 1095 [0875] 0.75 | 0.6 | 0.5 | 0.1

Fo, | 0.987 | 0.97 [ 0.942 [ 0.91 | 0.88 [ 0.777

RR n° 5312



12 Altman, Avrachenkov, & Prabhu

3.5 Convergence to steady state distribution

The second largest eigenvalue of a matrix gives the rate of convergence to the steady state
distribution. Therefore, we can get an indication of the rate of convergence of the Markov
chain y by looking at the eigenvalues of its transition probability matrix, P. P can be
written as

0 1 2
0 1—e€ € 0
1| e(l—aqr) 1—e¢ €1 .-
P=9 0 (l—g) 1—€¢ ... ®)

Let ¢; denote the i** eigenvalue of P such that (; > (; for i < j, and ¢ = 1. We can obtain
the following lower bound on (.

Proposition 3.3 Fori>0,1-e¢<(; < 1.

Proof 3.2 Since y, is irreducible, the multiplicity of eigenvalues at 1 is 1. Therefore, (; < 1
fori>0.
We can rewrite P as
P=(1-¢€)I+eA 9)

where I is the identity matriz and A is a transition matriz of a pure birth-death process with
up transition probability q; and down transition probability 1 — q;. A is a stochastic matriz
and, therefore, all its eigenvalues belong to the interval [0,1]. Let u; be the ith eigenvalue of
A and let v; be the corresponding left eigenvector. Then, from (9) we get

vu P o= (1 — 6)1)1' + ev; A = ((1 — 6) + 6/,1/1')1)2'.

Therefore, v; is also the left eigenvector of P, and the corresponding eigenvalue is (1—€)+ep;.
Since p; > 0, we get the inequality ¢; > 1 — €.

Therefore, 1 — € gives a lower bound on the rate of convergence of the Markov chain to the
steady state.

3.6 Mean first passage time

In this section we compute the mean first passage time to the state 0 starting from a random
state. This gives us an estimate of the first time the rate vector reaches the fairness line
starting from a given initial random state. We note that the Markov chain s is a birth-death
process which is symmetric about the state 0. If the initial state is positive, the Markov
chain will stay in the set of positive states before visiting state 0. Similarly, if the initial
state is negative, the Markov chain will stay in the set of negative states before visiting state
0. Therefore, we can obtain the mean first passage time to state 0 for s by obtaining the
mean first passage time to state 0 for y.

INRIA



Fairness in MIMD Congestion Control Algorithms 13

Let p= (po p1 --.) be the steady state probability vector of P, the transition probability
matrix of y, as given by (8). Its i** component, p;, is given by Eqn. (6). Let m = (mq ms ...)
denote the mean first passage time vector with m;, j > 1 denoting the mean first passage
time to the state 0 starting from state j.

Proposition 3.4 m;,i > 2 can be obtained from the following recursion: mg = 0,

11—
my = -2 (10)
€ Do
1
€EM; — €—=M;_1 — 1
miy1 = - 1+Zi : . (11)
€115

Proof 3.3 Let P, be the transition probability matriz conditioned on y not being in state 0.
We can rewrite P as

0

0f1—€¢ a
pP=. , (12)

. b P1
where the vector a is given as a = ( e 0 ... ) and the vector b is defined as b =

(1-8 0 ...)"
The vector m satisfies the equation [12]

(I—-P)m'=1', (13)

where 1 is vector of ones. Since Py is a tridiagonal matriz, we can rewrite the above equation

as 1
€Em; — erﬂim,',l -1

miy1 = 5 5 ) Z 2, (14)
e
with the definition mg = 0.
Let the vector r be defined asr = ( p1 P2 --- ) Since p is the steady state probability
vector of P, we have pP = p. We can rewrite the above equation using (12).
w (' h )= (15)

Solving for v, we get r(I— Py) = po-a. Multiplying the above equation by m', and substituting
for (I — Py)-m' from Eqn.(13), we obtain
r-1'=py-a-m.
Substituting r - 1' = 1 — pg in the above equation, we obtain
1—po _ /
——=a-m.
Po
The vector a has € in its first column and O elsewhere. Therefore, the above equation reduces
to (10). (14) together with (10) give the desired recursion.
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14 Altman, Avrachenkov, & Prabhu

We note that the steady state probabilities are independent of ¢ whereas the mean first
passage times are inversely proportional to €.

4 Fairness in MIMD sessions (unequal RTTs)

In this section we assume that the two sessions have different time constants. Let 7 and
7o be the time constants of session 1 and of session 2, respectively. The rate evolution for
session ¢ in the absence of control signals can be written as

xi(t+7) = ()™ i =1,2.

We now make the following transformation

2(t) = log [28] . (16)

We consider again both synchronized losses as well as non-synchronized ones. In the absence
of non-synchronized losses, the evolution of z(¢) becomes

z(t + 1) = z(t) + T,

1

n)' If a control signal arrives at ¢, then z(¢t+) can be written as

where v = log[a] (}2 -
z(t) signal is either (0,0) or (1,1)

z(t+) = ¢ z(t) +log[B] signal is (0,1)

z(t) —log[B] signal is (1,0)

The evolution in time of z is shown in Figure 3. Here we assume that « is positive, i.e.,

z(t) |

71

Figure 3: Evolution in time of 2(t). 7o < 71.

T < 71. Therefore, if there were only synchronized signals then there would be a drift in
time towards 4+o0o. This suggests that the rate for session 1 would approach 0. Similarly, if
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~ were negative, i.e., 79 > 71, there would be a drift towards —oo suggesting that the rate
for session 2 would approach 0. It can also be seen that if the slope were to be 0, i.e., 7
were to be equal to 72, the dotted lines would be parallel to the time axis. In this case z(¢)
would remain constant in the absence of non-synchronized losses which was also observed
in the previous section. We conclude that some buffer management scheme that creates
non-synchronized losses is necessary in order to have some fairness.

We therefore assume in the sequel that some buffer management scheme occasionally
creates rate dependent non-synchronized losses. Let {a,,n > 0} denote the time between
the n'* and the (n + 1) such signals. The process a,, is assumed to be i.i.d. Let z, = z(t,)
be the process embedded just before the arrival of a non-synchronized control signal. The

probability that the n*® such signal is for session i can be rewritten as e,nl o for session 1,
e*n

e*n +1

and for session 2.

Proposition 4.1 The process {zn, n > 0} is a Markov chain with state space R, and it
follows the recursive equation

Zntl = Zn + Yan + Cn, an

where ¢, is defined as

:{ —log[B] w.p. e“;IT

+log[f] w.p. o T

4.1 Stability

We are interested in knowing the arrival rates for which the process z(t) does not have a

drift towards oo as t — co. Let u, = va,, and let U(-) and v be the distribution function
dU(-)

and the mean, respectively, of u,. We assume that the density function, —~*, of u is a
non-increasing function. Let b = —log[3]. We note that b is a positive number since § is
less than 1.
Proposition 4.2 The Markov chain z defined by (17) is positive recurrent if

v <b. (18)

Proof 4.1 To show the positive recurrence of the Markov chain we use the following theorem
from [15].

Theorem 4.1 ([13]) For some “small”® set W € B(R), some constant h < co, u > 0, and
an extended real-valued function V : R — [0,00], z is stable if

AV(z) = /R P(a,dy)V(y) = V(z) < —p+ hlw(z), (19)

3 A set W is called a “small” set if there exists a measure ¢, ¢(R) > 0, such that
P(z,A) > ¢(A), =z € C,A € BR).
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16 Altman, Avrachenkov, & Prabhu

where P(x,-) is the one step transition probability matriz of z.

To check for the drift condition of this theorem, we consider V(y) = |y|, and the set W =
[=b,b]. The LHS of (19) becomes

AV(z) +a| = /yER 1 jez ly|dU(y — (z + b))
" /yER 1 -T—Iez lyldU(y — (= — b))
- /:(Hb) 1 jem ly|dU(y — (z + b))

- /y:”) 1 _e:ez lyldU(y — (z = b))

= [ s+ G+ 0l

oo ez
—b)|dU
+ [ s+ @ ni)

< [ ol + 1o+ phave)

oo ez
+ [ S+l - hav)

AV(z)+|z] < v+ / |z + b|dU (y)
0

1+e®

oo ez
—b|dU (y). 20
+ [ sk - (20)

For x € W, (20) can be rewritten as

([ + [p))dU (y)

<
AV@ kel < vt [

14+ e*
AV(z) < v+b <oo.

+Am “(Je| + U (y)

For x € W¢, (20) can be rewritten as

(] + b)dU (y)

A < S
V(z)+|z| < v+/0 T ool

o lal
+ [ el =niv )

AV(z) < v+ —r
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Let x* be the value of x for which

1—e€”
AV (z) < b=—pu.
() <v+ e I
Then, z* = log bb_"EZiﬁ) For b > v+ p, there exits a x* € R for which the AV (z) < —p.
If x* is less than b then the drift condition is satisfied for the W = [—b,b]. However, if x* is
greater than b then we can consider the set W = [—b,x*|. Hence, for W = [—b, max(b, z*)],

the drift condition (19) is satisfied. It follows from Lemma 4.1 that W is indeed a small set.

Lemma 4.1 For any d such that —b < d < oo, the set W = [—b,d] is a “small” set.

Proof 4.2 Forxz e W,

P@A) = r [ UG- (@+)
yeA
ez
+ P /AdU(y—(x—b))
ye
e.’L‘
> T e /AdU(y+b—x)) (21)
IS

Since %EL”) was assumed to be a non increasing function in u. Then, fyeA dU(y+b—x)

is non decreasing function in x. Also
we can rewrite (21) as

em . . . . . .
) Tier 1S an increasing function in x. Since x > —b,

€_b

1+e?

P(z, 4) > / dU(y +2b) > B(A), (22)
yeEA

where ¢p(A) = 1-?% J dU(y + 2b). Since there ezists a measure ¢ such that P(z, A) >
yeA
¢(A), ze€W,AeBR), aclosed and bounded set W = [—b,d] is a small set.

Since W is a “small set” when b > v, from Theorem 4.1 we can conclude that, for b > v,
the Markov chain z is positive recurrent.

We note that b > v is a sufficient condition for positive recurrence. Let % be the mean time

between losses. Then % = % From Prop. 4.2, for z to be positive recurrent

> % (23)

Therefore, to achieve some fairness, the arrival rate of the losses process has to be greater
than 1.
b
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18 Altman, Avrachenkov, & Prabhu

4.2 Simulation results

In this subsection we present the results of simulations. Our objective is to verify the
analytical result obtained in Prop. 4.1 which noted that sufficient number of asynchronous
losses are required so that sessions with different RTTs can share the capacity fairly. In
the simulation scenario, nine Scalable TCP sessions shared a link of 200Mbps. Sessions 1,2
and 3 had a RTT of 50ms. Sessions 4,5 and 6 had a RTT of 90ms, and sessions 7,8 and
9 had a RTT of 140ms. The simulations were performed using ns-2(version 2.26)[14]. In
Fig. 4, the window size is plotted as a function of time for different values of € (i.e., packet
drop probability). We note that e = 0 corresponds to only congestion losses which are seen
to be not always synchronous. Therefore, in Fig. 4(a) there are asynchronous as well as
synchronous losses even though ¢ = 0. However, during periods of synchronous losses (which
have been pointed out in the figure) there is short-term unfairness. Even though there are
asynchrounous losses due to congestion, the window sizes of the sessions with larger RT'Ts go
to 0. We now induce further asynchronous losses by dropping each packet with probability
€ # 0. In Figs. 4(b) and 4(c) there is a marked improvement in the throughput obtained
by sessions with larger RTTs as the loss probability is increased. For small loss probability,
there is still some unfairness between sessions with different RTTs. However, for sessions
with RTT of 50ms, there is no short-term unfairness as was observed when there were no
induced asynchronous losses. For a larger loss probability (i.e., ¢ = 0.0003), sessions share
the capacity fairly. This confirms the analytical result which stated that the fairness in
MIMD sessions with different RT'Ts can be achieved by introducing sufficient asynchronous
losses.  Let 71, 2 and n3 be the total throughput of sessions with RTT of 50ms, 90ms

Table 3: Throughput for each RTT class and overall efficiency
¢ | m(Mbps) | no(Mbps) [ n3(Mbps) [ BB

0 178 2.8 1 0.91
0.00015 148 25.5 7.14 0.905
0.0003 101 48 28.4 0.89

and 140ms, respectively. In Table 3, the values of throughput and the overall efficiency are
given. We note that, for ¢ = 0.0003, the ratio of the throughputs of two different classes,
"’_, are almost in proportion of the respective RTTs. Therefore, we can say that a certain
degree of fairness has been acheived at the cost of marginal decrease in efficiency.

5 Inter protocol fairness (Same RTT)
In the second part of this paper, we study the fairness issue when sessions using two different
congestion control algorithms share a common link. Recently, Scalable TCP, which uses

MIMD algorithm, has been proposed as an enhancement for TCP in high-speed networks.
Situations may, therefore, arise in which a user with Scalable TCP shares a link with a user
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with standard TCP. Specifically, we study the equilibrium behaviour of the window size,
and the throughput obtained by a session of each algorithm at equilibrium in the presence
of synchronized losses only. We also look at conditions under which a user of one algorithm
can obtain a better throughput than a user of the other algorithm. Previous work (e.g., [5],
[7]) mainly studied the behaviour of sessions using the same protocol.

In this section, we assume that each session has the same RTT, 7. As mentioned in
Section 2, window-based notation is equivalent to rate-based notation. In the rest of this
paper, we use the window-based notation since we are interested in obtaining the equilibrium
window sizes for the sessions.

5.1 System Model

Consider [ sessions which share a link of capacity C bits/s. Each session transmits data
using packets of size M bits. Let A be the bandwidth-delay product (BDP) network. We
assume that the RTT is mainly determined by the propagation delay and, hence, can be
considered to be a constant.

Let x(t) = (x1(t) x2(t) ... x;(t)) denote the vector of window sizes of the k sessions at
time t. A synchronized loss (i.e., a loss for each session) is assumed to occur at time ¢ if

l

D xilt) > A (24)

=1

The above condition is equivalent to saying that a synchronized loss occurs when the total
number of outstanding packets in the network exceeds the total number of packets that the
network can handle.

Without loss of generality, let sessions 1,2, ..., k use the MIMD congestion control algo-
rithm and the rest of the | — k sessions use the AIMD congestion control algorithm. In the
absence of losses, the two algorithms increase the window in the following way

x(t)as" for1<i<k

25
x(t)-{-aa%, fork+1<i<]l, (25)

xi(t+A):{

where a,, and «a, are the increase parameters of the MIMD and the AIMD algorithm,
respectively. For example, a,, = 1.01 for Scalable TCP, and o, = 1 for standard TCP.
Let t, denote the time instant when the n** congestion signal is received. We note that a
congestion signal is generated when a synchronized loss occurs. In response to a congestion
signal the two algorithms decrease the window in the following way

(tH) = Brmx(tn) for 1 <i<k,
M=\ Bax(ts)  fork+1<i<l,

where (3,, and 3, are the decrease parameters of the MIMD and the AIMD algorithm,
respectively. For example, 3, = 0.875 for Scalable TCP, and 3, = 0.5 for standard TCP.
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Let z(n) denote the window-size vector embedded just after the n** congestion signal is
received, i.e, z(n) = x(t,+). Let 8, denote the time between two congestion signals. Since
all the sessions are assumed to receive congestion signals at the same instant, we can write
the following recursive equation for z(n).

_f Buzi(n)ai” for 1 < i <k,
iln+1)= . 26
zin+1) { Ba (zi(n) + al2) fork+1<i<L. (26)

5.2 Bandwidth Sharing

The transient behaviour of the window sizes can be obtained by solving Eqns (26) and
(24). Given the initial window vector z(0), the time to the first loss ¢t; and, hence, z(1)
can be computed. This way we can recursively compute z(n). This allows us to obtain the
behaviour of the window-size vector and the loss instants before the equilibrium is reached.
At equilibrium, é,, and z(n) will converge to their steady state values denoted by é* and 1,
respectively. We are interested in finding the window size, v;, of each session at equilibrium.
Then, 1; together with 6* will allow us to obtain the throughput for session i. At equilibrium
z(n) would be identical to z(n + 1), z(n + 2), and so on. Therefore, for each session i, we
can obtain 1; from Eqn (26) as follows.

i = 5m¢iaf;/f for1 < i'S k, (27)
Ba(hi + @gé*/7) fork+1<i<lI.

The [ equations in (27) are fixed point solutions of the corresponding equations in (26). We
now have n + 1 variables in ¢,;,1 < ¢ < n and 6*, and n equations. The final equation can
be obtained by noting that a loss occurs when condition (24) is satisfied. Therefore, the
(n 4+ 1)t" equation is obtained as

k 1
v P
Vi 3 i, (28)
25" 25

i=k+1 "¢

We note that from any one of the first k£ equations in (27) we can obtain the value of
6*. The variables ¥,;,1 < ¢ < k cannot be uniquely determined from these k equations.
They will depend on the window vector just after the first synchronized loss. This result is
equivalent to the result obtained in [3] where the rate vector of symmetric MIMD sessions
was dependent on the initial rate vector. However, the equilibrium window size for the
AIMD sessions can be uniquely determined from (27). Therefore,

log am
_ Ba_ log[1/Bm] ,
v = aamlogiam E+1<i<l. (30)

(29)
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From (28) we can, however, obtain the sum of the equilibrium window sizes of the MIMD
sessions.

k 1
Swi=bad =5 Y (31)
i=1 ¢ j=k+1

In order to compute the throughput, 7;, for session ¢, we divide the time interval 7 in slots
of length 6*. We note that, just after a loss instant, the window size for session ¢ is ;. In
between two loss instants, the window size for each session increases using the algorithm
given by Eqn. (25). Also, in every RTT (i.e., in every slot), session 4 transfers packets
equivalent to its present window size. Therefore, in between two loss instants, the total
number of packets that are transferred by session ¢ can be obtained by summing the window
sizes during the §*/7 RTTs. As before, we can obtain the throughput n; for each AIMD
session whereas we can obtain the total throughput, 7,,, for all the MIMD sessions.

k [& ) +1
M am” -1
m = — P 2
U 5 ;le p— (32)
Ma, Zl4+1
m = —“<¢i+aa%) kr1<i<l. (33)
.

We note that the throughput expressions are approximate since the number of packets
transferred in an RTT is an integer whereas ¢; can take non integer values. Also, the number
of packets transferred in the RTT in which a loss occurs may not be equal to |1;].

We can make the following observations from Eqns. (29)- (33). The equilibrium value
of the time between two loss instants, 6*, is independent of the parameters of the AIMD
algorithm. It is determined by the RTT, 7, and the parameters of the MIMD algorithm
only. The equilibrium window size of the AIMD sessions depends only on the increase
and decrease parameters of the two algorithms. Also, the AIMD sessions have the same
equilibrium window behaviour and, hence, obtain the same throughput. The rest of the
capacity is utilized by the MIMD sessions.

Simulations: We now compare these observations with simulations performed using ns-2
(version 2.26). Unless stated otherwise, the simulation had the same set of parameters. The
MIMD sessions used Scalable TCP, and the ATMD sessions used TCP New Reno. The packet
size, M, for each session was set to 1040 bytes (1000 bytes of data + 40 bytes of header).
The propagation delay, o, was taken to be 100ms. The increase and decrease parameters for
the two algorithms were set to a.,, = 1.01, a, = 1.0, 8,, = 0.75, and 3, = 0.5. Since the 1;
for AIMD increases with decrease in 3,,, we set 3., to a value smaller than its recommended
value so that the AIMD sessions also obtain a certain throughput. From Figs. 5(a) (3
MIMD sessions and 3 AIMD sessions) and 5(b)(6 MIMD sessions and 6 AIMD sessions), we
note that the AIMD sessions indeed converge to the same equilibrium window size whereas
the equilibrium window size of an MIMD session depends on its window just before the
first synchronized loss. The 9; for AIMD sessions remains the same even though the link
capacity is increased from 200Mbps to 300Mbps and the total number of sessions is increased
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Figure 5: Window evolution of sessions.

Table 4: Several MIMD and several AIMD sessions.

Link Speed 6 Nm, Na Vg
(Mbps) (s) (Mbps) (Mbps) | (packets)
1=6. k=3 200 2.83 (3) | 164(151) | 3.5(3.4) | 29 (27)
[=12. k= 6. 300 2.83 (3) | 238.6(218) | 3.5(3.4) | 29 (27)

from six to twelve. Let 1, and v, denote the throughput and the equilibrium window size
of any one of the AIMD sessions, respectively. In Table 4, the analytical and simulation
values of 6*, N, Na, and 1, are given. The simulation values are given in parentheses. As
predicted in the analysis, the equilibrium window size and the throughput of the AIMD
sessions remains unchanged even when the capacity is increase from 200Mbps to 300Mbps,
and the total number of sessions is increased from six to twelve.
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5.3 Throughput Comparison

We now study the scenario where one MIMD user and AIMD user share the same link. We
note that each user can initiate several sessions of the same algorithm. We are interested in
knowing the conditions under which the AIMD user can obtain better throughput than the
MIMD user.

First, we consider the case in which each user initiates only one session. In such a scenario,
the window size and the throughput of each session is obtained from Eqns. (30)-(32) with
[=2and k=1.

From (32) and (33), as A — oo (i.e., C — 0), the ratio of the throughputs, 2, goes to
0. This suggests that in high-speed networks, the MIMD user will get most of the capacity.
On the other hand, if the BDP of the network is small, the MIMD user will obtain lower

throughput compared to the AIMD session.

Proposition 5.1 Let A; denote a threshold BDP below which an AIMD session will get
better throughput compared to a MIMD session. The threshold value, A, is given by

A= (%6* (57 + 1) K+ ﬂi) , (34)

2T o

am—1
Qm—fBm

where k =

Proof 5.1 The above relation can be obtained using the fact 11 < mo together with Eqn.

(31).

The value of A; depends only on the increase and decrease parameters of the two algorithms.
Table 5 gives the values of A; for different 3, with «,,, = 1.01 and o, = 1.

Table 5: A; for different values of 3,,.
Bm | 0.875 | 0.75 | 0.5

A; [ 47-34 ] 106.6 | 282.73

In Fig. 6(a), the window evolution is plotted for the two sessions for C = 13Mbps
and 3, = 0.5. The BDP, A, is less than the A;. The AIMD algorithm obtains a better
throughput in this case. In the next set of simulations, we set 3,, to its recommended
value of 0.875. In Fig. 6(b), the corresponding window evolution is plotted. The effect
of increasing 3, is to reduce the share of the AIMD session. In Table 6, a comparison of
the values obtained from analysis and simulations is presented. A good match is observed
between the analysis and simulations.

From (33), it was observed that the throughput obtained by each AIMD session remains
constant whereas the total throughput of the MIMD sessions increases with increase in
capacity. An AIMD user may want to obtain throughputs similar to a MIMD user. In this
case, the AIMD user may open several sessions in order to improve its observed throughput.
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Figure 6: Window evolution for one MIMD session and one AIMD session.

Table 6: One MIMD and one AIMD session. 7 = 140ms.

Link Speed m M2 U P2
(Mbps) (Mbps) (Mbps) (packets) (packets)
3 2.22 (2.36) | 0.6 (0.52) | 66.2 (70.7) | 13.41 (11)
B=05 5 405 (4.1) | 0.75 (0.71) | 96.82 (98) | 13.41 (12)
10 8.86 (8.74) | 0.92 (0.86) | 173.39 (173) | 13.41 (12)
13 473 (5.19) | 4.92 (5.64) | 69.09 (67) | 69.6 (69)
B =0875 15 6.08 (6.62) | 5.04 (5.65) | 86.59 (84) | 69.6 (68)
30 16.64 (16.95) | 5.47 (5.86) | 217.83 (211) | 69.6 (69)

Since each AIMD session gets the same throughput independent of the number of AIMD
sessions (assuming there is sufficient capacity), an AIMD user can improve its observed
throughput by opening multiple sessions.
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Proposition 5.2 The smallest number of sessions, v, with which an AIMD user will obtain
a better global throughput compared to single MIMD user is given by

i (3]

5*
where h = Y.y, EJLZTOJ 7, ¥q 18 the equilibrium window of any one of the AIMD sessions
and is defined in (80), and k is as defined in (34).

Note that v depends only on A and the increase and decrease parameters of the two algo-
rithms. Table 7 gives the value of v for different values of A for 3,, = 0.875.

Table 7: v for different values of A.

m = | A | 100 | 500 | 1000 | 10000 | 50000
v| 3 18 37 372 1863
Bm = | A | 100 | 500 | 1000 | 10000 | 50000
v 1 3 7 71 358

Similar to the AIMD user, a MIMD user may also try to improve its observed through-
put by opening several sessions. Since, from (33), the AIMD user will get a throughput
independent of the number of MIMD sessions, the observed throughput of an MIMD user
will not improve by opening several sessions. This result is in contrast to the result obtained
in (35) where we noted that an ATMD user can improve its observed throughput by opening
several sessions.

6 Inter protocol fairness (Different RTTs)

In this section we study the effect of having a different RTT for each session on the equilib-
rium window behaviour. The notation used and the scenario is the same as in Sec. 5. We
assume that there exists a BDP, A, such that there is a synchronized loss when condition
(24) is satisfied. Let 7; be the RTT of session i. Then, we can rewrite (27) as follows.

Ui = Bmthal,/", 1<i<F, (36)
Vi = Ba(tsi + 6" /1), k+1<i <L (37)

The expressions for throughput are as follows.

sy
My, st ad, for 1<i<Fk,
1

Mpaa 3,09 j fork+1<i<l.

N =
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For (36) to be consistent §* has to be equal to §* = % minq<i<x 7. Therefore, among
the MIMD sessions, only the session with the least RTT will have an equilibrium window
size different from 0. The equilibrium window of the other MIMD sessions will go to 0. We
can, therefore, consider the case where there is only one MIMD session and several AIMD
sessions.

For k =1, from (36) and (37), we obtain

6* — 7_1 log[l/ﬁm]
log am
v = oy Lle MBl/Bdm oy g

“1—B, loga,
Bm
1= BnA -0 I
@ =2

The inter-loss time depends entirely on the parameters and the RTT of the MIMD
session. The effect of different RT'Ts for the AIMD sessions is to scale ; by a factor of 7.
Therefore, an AIMD session with lower RTT can obtain a better throughput.

6.1 Several MIMD

If there are [ MIMD sessions with different RTTs sharing a link, then the session with the
smallest RTT will get all the capacity and the windows for other sessions will go to 0. This
result was also mentioned, for two sessions, in [7]. However, if the sessions have the liberty
to choose their increase and decrease parameters then each session can obtain some share
of the capacity. Let au,; and (,,; be the increase parameter and the decrease parameter,
respectively, of the i** MIMD session.

Proposition 6.1 [ sessions with different RTTs will have a behaviour similar to | sessions
with the same RTT if
 1g[1/Bn]
* log[ami]

The inter-loss time, 6*, will then be equal to a.

= a (a constant). (39)

Proof 6.1 We note that with this value of 6*, (36) is consistent. Therefore, an equilibrium

solution exists. Let x(0) is the initial window vector. The time to the first synchronized

tl/‘l'i
mi

loss, t1, can be computed using the condition Zi:o z;(0)a = A. We can now compute

zi(1) = ﬂmixi(o)agf". The next loss will occur after a time 6*. This can be verified by

noting that Zé:o % = A, and to = & given by (39) satisfies Zi:o xi(l)afi/r = A. From
this we obtain to = 6*. Since t,, is the equilibrium value of the inter-loss time, z;(1) will
also be the equilibrium value of ;. Now, the system will be similar to the same RTT case
where the equilibrium window vector is the same as the window vector just after the first
synchronized loss.
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Therefore we can obtain a condition on setting the increase and decrease parameters of
MIMD algorithm as a function the RTT in order not to be extremely unfair.

7 Conclusions

In the first part of the paper, we studied the fairness in sessions (with either the same
RTT or different RTTs) using MIMD congestion control algorithm. For the sessions with
the same RTT, it was observed that there was extreme unfairness even in the case of rate
independent asynchronous losses. It was shown that fair sharing could be achieved by
introducing a stream of rate dependent asynchronous losses. For the case of sessions with
different RTTs, it was observed that the arrival rate of these rate dependent asynchronous
losses had to be greater than a certain minimum rate in order to achieve fairness. Therefore,
in networks with sessions using MIMD algorithms, a stream of rate dependent asynchronous
losses, using, for example, some buffer management scheme, would be necessary to ensure
fair sharing. In the second part of the paper, we studied capacity sharing between MIMD
sessions and AIMD sessions. It was noted that for a given set of parameters, AIMD sessions
got a throughput which is independent of the BDP, and that the rest of the capacity was
utilized by the MIMD session. In networks with BDP less than a threshold value, it was
observed that one AIMD session obtained better throughput than one MIMD session. It
was also observed that an AIMD user could open multiple sessions in order to improve
its observed throughput whereas for the MIMD user the throughput was invariant to the
number of sessions it opened.
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