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Abstract-This paper deliberates on various critical aspects in 
evaluating searching networks. Existing metrics either draw 
biased conclusions tvgarding search performance ar provide 
w~rong guidelines for algorithm design. We, therefore, define a 
unified criterion, Search Efficiency (SE), to objectively address 
search performance in a comprehensive manner. The goal of  SE 
is to better characterize performance of searching networks than 
existing metrics do as well as to guide the design of future ones. 
We first validate the correctness of SE in performance evaluation 
in an ideal graph, strictly binarj tree, by analyzing SE for two 
typical search methods, breadth first search and random walk. 
We further show its strength in performance characterization in 
the real-world topology, power-law random graph, under various 
nehvark conditions. We finally design an algorithm, dynamic 
search, based on SE analysis. Its pmved outstanding 
performance demonstrates the strength of SE to provide 
guidance for the future design of searching networks. 

Keywor&-performance mduation, complex networks, search 
algorithm, peer-to-peer networks 

I. INTRODUCTION 

Searching networks, including social networks and 
computer networks, play an increasingly important role in 
human activity. A significant example is the recently popular 
peer-lo-peer F2P) file-sharing systems, e.g. Gnutella and 
KaZaA, where every peer co~laborativelp forms a searching 
network to locate desired files by a real-time search. In the 
social context of searching networks, people search their 
acquaintances for a particular item or expertise in a specific 
domain. Their acquaintances in turn report whether they have 
the desired item (expertise) or subsequently deliver th~s query 
to their next-step acquaintances. In this fashion, a social 
searching network or so called human acquaintanceship 
graph [8] is formed. Thus, a searching network is a system 
where each participant contributes to the network and 
collaborates to help others search targeted resources. 

In a searching network, one of the critical issues is to 
masimize search performance by choosing or designing 
algorithms used to perfom the search process. Novel 
algorithms [5 ,  6,  71 have been proposed to address different 
search aspects, such as success rate, search cost, Coverage, or 
number of hts, but an objective and comprehensive 
evaluation metric is missing. As a result, these algorithms tend 
to be designed with biased considerations and evaluated in 
limited dimensions. 

Breadth-first search (BFS) and random walk (RW) [5] are 

two basic and typical search methods in searching networks. 
BFS inherently maximizes the search speed and coverage but 
risks generating search queries in an uncontrolled (exponential) 
manner. RW, on the other hand, minimizes search cost but 
generates limited search coverage and results. As a result, one 
might draw distinct conclusions about algorithm performance, 
if different metrics are concerned. For example, Gkantsidis et 
al. [12] claimed RW performs better than BFS in terms of 
number of hits and failure probability give the same search 
cost for BFS and RW, but implicitly assumed an infinite 
search time for RW, which is clearly unfair. Jiang et al. [9] 
evaluated their proposed search scheme only by search 
coverage and message cost, leaving search speed and success 
rate unchecked. LV et al. [SI provided a spectrum of aspects 
on evaluation, but analyzed them individually and still lacked 
an overall consideration. 

Our work: therefore, deals with these one-sided 
perspectives and synthesizes a unified search criterion, Search 
Eflcienc), (Section Il), which is critical particularly in P2P 
endeavors, to objectively evaluate search algorithms and 
provide overall guidance for the design of searclung networks. 

With the unified metric SE, we first validate its correctness 
by deriving its mathematic formulas for BFS and RW in a 
simple topology, strictly binary tree (SBT), and analyzing 
whether the performance indicated by SE is reasonable. 
Furthermore, we extend the results of Newman [l] and 
Adamic [2] and further consider "redundancy" to analytically 
approximate SE for BFS, M-BFS [14], and RW in a 
power-law random graph (PLRG), which is shown to be the 
real topology of current searching networks. We thus validate 
SE in comparison with previous simulation works [5,  9, 111, 
deliver the unique performance characterization of SE, and 
provide in-depth analysis. 

Throughout the analysis in this paper, we compare various 
existing metrics with SE to address their limitation and 
strength. We show that no matter in SBT or PLRG, existing 
metrics draw biased conclusions regarding search 
performance; they either provide one-sided considerations or 
deliver wrong guidelines for algorithm design. Moreover, they 
fail to characterize performance variance under distinct 
network conditions, such as object replication ratios (Section 
111) and object dstributions (Section VI). 

In the final analysis, we propose a new algorithm, &naniic 
search, based on the results of SE analysis. We prove this 
algorithm outperforms existing ones and SE effectively 
provides guidance for algorithm design. 

This work was supported in part by Taiwan National Science Council 
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In summary~ our contributions are stated as folIows: 
We propose a unified and objective metric, Search 
EfJicknyt for evaluating searching networks and 
chancterizing search algorithms. 
We inathematicaily analyze critical performance 
metrics-search coverage; cost, success rate, number of 
hits. and SE-in searching networks. 
we analytically evaluate various dgoritlms, includi’ng 
BFS, M-BFS, RW, and a novel search in SBT and 
PLRG under uniform and non-uniform object 
distributions. 
We devise a new search algorithm. &nuriiic search, 
based on the knowledge from temporal SE analysis. It is 
shown to outperform other existing ones, thus SE 
proved to provide solid guidance for algorithm design. 

The rest of this paper first follows with the definition and 
eqdanation of Search Eficier?cv in Section 11. We then 
analytically derive the gened forms of SE and provide 
in-depth discussion on the performance of BFS and RW in 
SBT in Section 111 and PLRG in Section IV. Section V 
presents the novel algorithm, dvnamic search. We analyze 
algorithms under non-uniform object distribution in Section 
VI, then finally conclude in Section VII. 

LI. SEARCH EFFICIENCY 

We argue that to best characterize the efficiency of any 
system is to measure its ability to transfer its input to generate 
meaningful output, which is applicable in the evaluation of 
search methods performed in any network. In a social network, 
the input of a search largely invotves the cost required for 
queq-ing process including costs of phone calls, transportation 
and even consulting. As for output, it should be measured by 
searchers’ satisfaction in terms of the chance of success, the 
response speed and quality of responsive results. To clanfy 
the definitions of and relations between these inputs and 
outputs in the context of searchng networks, we start a series 
of discussions about Search Eflciency with Query Eflciency 
(QO. 

A.  Query Eflciency 
In gened. the most critical aspects of search performance 

involve the extent of search coverage (output) [2] and the cost 
required to cover the network (input) IS]. By search coverage, 
denoted as Coverage or C, we mean the number of dstinct or 
effective peers visited by search queries. i.e. w e  do not count 
the repeatedly visited ones. In addition, by cost, denoted by 
QuetyLfsg we mean the number of queries incurred, for it is a 
representative factor to which other cost factors (e.g. computer 
processing power or costs for phone calls and transportation) 
tend to be proportional. Thus it is trivial to say a search which 
uses S query messages to traverse distinct S nodes is perfectly 
or 100% efficient in terms of queq generation Additionally. 
we can define a sort of efficiency as coverage / QuepWsg. 
However, tlie end goal of searching is not to cover as many 
nodes in the network as possible. Rather. its ultimate goal is to 
search out the desired targets or objects, in wluch covering is 

only one of the adequate conditions (e.g. cache or previous 
experience) for that end. This is true when the searclung 
network is well-designed, e.g. Chord [13], such that large 
search coverage is not necessay, or when objects are 
intentionally deployed in which directed search is preferred. 
We will show performance difference between Coverage and 
QueyHits under non-uniform objecl distribution in Section 
VI. 

Thus, we define QusvHits(r) as the number of desired 
objects found “at“ search time t. whch is measured by the 
nuniber of hops or depths, to quamfj the yields of a search 
We introduce the factor search time f for the purpose of future 
discussion. Again we might define the efficiency of queries as 
~uer? /H i ts ( r ) /ouewn. rsp .  However, this definition is 
sensitive to the population of desired objects, whch is 
irrelevant to the performance of search algorithms themselves 
and should be factored out. For this purpose, we introduce the 
notion of object replication ratio R defined a5 the mtio of the 
number of targeted objects to the network size (N). To cancel 
the population factor out, we normalize it with respect to R 
and thus formulate Query E’ciency (QE) as 

where TTL refers to the termination condition of searches, 
measured in hops, To exemplify, we suppose a search 
consuming 100 messages to find 1 targeted object in a 
network with R of 1%: which reveals that 1% of nodes have 
the desired object. By (I), QE = 100% and we thus call it a 
perfectly query-efficient search. Furthermore, if the objects 
are uniformly distributed in the network, we can reasonably 
claim that the search effectively covers 100 nodes (from 1/1% 
= 100) and thls provides a clear view of the perfect efficiency. 

B. Responsiveness 
One of the goals of searching, as addressed previously, is to 

find out possible objects while the other is to find them as 
soon as possible. We define search response time, denoted by f, 
measured by hscrete numbers of hops, to evaluate the speed 
of searching objects, or responsiveness of a search If a search 
finds Q desired objects in its h” step or in its h9neares-t 
acquaintances, we denote it as Queg2fits(t=h)=Q. 

We argue that a search getting hits in a faster fashion 
delivers better users’ experience and should be gauged as 
higher reputation. More specifically, responsiveness of a 
search should be inversely proportional to the response time f. 
To consider this factor for SE, we may simply divide QE by 
the weighted response time, which is computed by 
~ [ t . Q u e ~ H i t s ( t ) ]  / w u e r y H i t s ( t ) .  However, this method 
would generate unjust results. For esample, we assume a 
search that uses 1000 messages to get 99 hits at f = 1 and 1 hit 
at t = 100 with R = lo%, resulting in a weighted response time 
of (1-99+100.1)/100 or 1.99. According to QE in (l)% if we 
don’t count the hit at t = 100, the search is 99% query efficient, 
but it dramatically reduces to 50.25% efficiency due to 
dividing by response time 1.99 when that hit is calculated. 
This method unreasonably emphasizes the slow search hit. We 
argue that any queT hits contribute positively to the search 
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Requester A 

Search A Search B 
grervA4sg QueryKm euelyMsg OuewHiLr --- - 

Run1 100 2 100 1 
Run? 100 0 100 1 

Depth 2 

Depth 3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Fig. 1. A strictly binary tree with the requester at the root 

itself despite long response time. We thus aggregate these 
responsive hits rather than divide by the averaged response 
time to give efficiency as 

Q'NelyHits(l) / t 100% 

QueVMsg R 
X-. 

The efficiency of this example becomes 99.01% rather than 
50.25%. where the last found hit contributes 0.01% to 
efficiency. rather than severely reducing it. 

where TTL stands for the limit of search covering 

D. Limitations of Senrch Eflciency 
The design goal of SE is to capture a simple but 

representative view of search performance. As a result. it is 
possible to consider more complex considerations for search 
evaluation We list three possible aspects that are not covered 

by SE: 
1)  In the contest of computer searching networks, the 

implementation of caches or DHT would significantly 
improve the search performance. which SE could reflect. 
However. SE doesn't consider the additional resources 
(processing power or memory) required by 
performanceboosted mechanisms. such as hash functions or 
caches. thus potentially overestimating the efficiency of 
algorithms adopting these additional mechanisms. 

2) The costs of searching each computer or peer should not 
be equally weighted. Consulting an institution for 
recommendations is clearly inore costly than asking a close 
friend. although we onIy assume they are equally costly. 

3) We make a limited measure of responsiveness by the 
factor t. In some applications. such as peer-to-peer telephony. 
(Skype). search response time is highly concerned while in 
others not. Therefore. it would be more flexible using P. a > 0, 
to adjust the ex%ent to which search responsiveness is 
concerned. 

By means of Search EflcienT, we can objectively evaluate 
performance of algorithms in searchug networks. In the 
remaining of this paper. therefore. we aim to characterize 
various existing search algorithms in t e m  of SE and 
demonstrate the biased view of existing search metrics 
compared with SE. In the following sections, we will 
mathematically derive the formulas for SE in the context of 
t h e  basic search approaches, BFS, RW and M-BFS. the 
variation of BFS. in two representative topologes, the strictly 
binary tree (SBT) as well as the power-law random graph 
(PLRG), in order to demonstrate the strength of SE. 

111. STRICTLY BINARY TREE 

We assume an &vertex strictly binay tree whose depth is 
about log2N and that the requester is at the root such that the 
response time ( t )  of a query hit is the same as the depth (d) 
where the target object is located. This tree is shown in Fig. 1. 
Moreover, for simplicity of analysis, we assume objects are 
un@rmly distributed in the tree or graph until Section VI. 

Before analyzing specific algorithms, we first prepare two 
common factors for the derivation Firstly, the number of 
objects searched out (QuetyHirs) is proportional to the search 
coverage C. Thus, we have 

QueryHits = R xC . (3) 
Secondly, the success mte of a search is also relevant to the 

search coverage. To begm with, we know that each node owns 
the target object with a probability of R; that is: each node 
lacks the object with it probability of 1-R. Suppose a search 
covers C vertices and thus the probability these C nodes share 
no targeted object is (1-R)'. Inversely. the probability these C 
nodes share one or more objects, or equivalently SuccessRak, 
is determined by 

SuccessRate = 1 - (1 - R) . (4) C 
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Fig. 2. Seurch EAjciency for BFS terminated by incremental TTLs (Depth) 
in a strictly binary tree with various replication ratios A 

il. Breadth First Search in  Sb+ct(y BinaT T i e  (SB7) 

Analytic Derivation: Breadth-first search (BFS) performs 
by broadcasting the received queries to all neighbors except 
where the received queq came from. Therefore, by the regular 
structure of a strictly binary tree, the search coverage 
terminated at depth TTL is given by 

Coverage (c) = 2'. ( 5 )  
Furthermore, the number of messages required to traverse 

the tree is the same as the quantity of its search coverage due 
to the very nature of BFS. Thus, QuetyAkg = C = 2'. 
According to (11, (3): and IS), we attain 

Surprisingly, the formula of QEBm yields a constant. 1 or 
100'%% regardless of the replication ratio R or the termination 
depth TTL. By the definition of PE, tlus means that BFS is a 
perfectly query-efficient search in the context of a binary tree; 
that is, BFS generales no redundant messages while traversing 
a binay tree. The idea of ~dundancv will be further defined 
and discussed in the next section 

Finally, the general formula of SE defined in (2) for BFS in 
a binary tree is 

The derived SE,, is complex for one to gain insight of its 
properties due to the running variable t and various possible 
values of R. To deliver a clearer understanding, we assume the 
replication ratio R << 1, which is me in real searchng 
networks, and approximate (7) as 

Search Efficiency Analysis: To exemplify SEBm3 we set R 
= 0.1% (far Iess than 1) and obtain by (8) SEm=, = 0.2%, 
SETIL=? = 0.4%$ and SEmx3 = 0.67%. Note SE is strictly 
increasing with respect to TTL-SEm,z is exactly twice of 

SEmz1 and is more than three times of SEm=,. The 
reasons are two-fold. Firstly as formula (6) shows, BFS in a 
binaT tree is perfectly quey-efficient, which means eve? 
quey positively contributes to its search coverage and in turn 
produces promising increase in SE. Secondly, the speed at 
which query hits are retuned is faster than the decay factor of 
response time f. Furthermore, formula (8) tells that the 
benefits from BFS are increasingly proportionally to 2l while 
the factor t is used to compensate the demerit of long search 
time. where the factor 2'tends to dominate. Thus we conclude 
ever?; quety or eveT additional covered depth makes a 
positive contribution to the overall performance despite the 
compensation of time, given that the replication ratio is much 
smaller than unity. 

We present analytically-derived data of SEBm. without 
approximation, by (7) with a spectrum of parameters, Rs and 
V L s ,  in Fig. 2. Firstly. we note that SEBE for all Rs 
approaches some fixed level in the long run. This fixed level, 
obtained by ( 7 )  for large t, is determined by the characteristic 
of the searched topology-stnctly binary tree-that is 
irrelevant to R. Second, the short-tenn increase of SE for high 
R (10% or 5%) results from the perfect query efficiency and 
popularly distributed objects, while the long-term decrease is 
due to the compensator of response time t. If we use the 
notion P suggested in Section IID, where a is 0 or small for 
some application scenarios and responsiveness is of little 
concern, SE in (7) will increasingly grow to some fixed level. 
Third, as for low R (0.1% or OS%), the results in Fig. 2 are 
leflective of the discussions in the above paragrrrph-SE is 
consistently increasing. 

Note that, however, if we take 7TL as infinity in (7): it gives 
zero seemingly contradicting our notion In reality, however. 
7TL cannot be inftnity but is generally 7-10, in which SE still 
generates a fixed level of performance reflecting the 
characteristics of SBT. 

Metrics Analysis: We compare two metrics, SE and 
Coverage in this scenario. The results of Coverage of BFS can 
be referred to in Fig. 3(c). If we take only Coverage (C) into 
considemtion, it produces the same performance in spite of 
different extents of object replication (different values of R )  
since C by (5) is independent of R. Hence. Coverage fails to 
characterize the performance variance in searching networks 
with differenl replication ratios. On top of this, if the design 
goal is to maximize C, then one may conclude that the choice 
of termination condition 7TL is the larger the better-an 
impractical conclusion. On the other hand, if we only inspect 
QueyMsg, we will get entirely opposite conclusions. 
Therefore, Coverage and QuevMsg draw contradictory 
conclusions and fail to provide comprehensive guidance. 

In fact, by the idcation of SE in Fig. 2, TTL should be 
small when R is large in order to avoid unnecessal). message 
propagation when R is large and to generate satisfactory 
results when R is small. In sum. SE better characterizes 
performance and provides a better guideline of TTL design 
than Coverage and Queryhlsg. 
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Fig. 3. Performance comparison by various metria--(a) Search Eflcienry, (b) SuccessRaie, ( c )  Coverage, and (d) QtrepWsg-fm RW of various number of 
walkers k and for BFS in a strictly binary tree with R = 1% 

B. Multiple Random Wdks in Strictlv Binary Twe 
When it comes to RW search we use multiple "walkers" to 

traverse the network and the number of walkers is denoted by 
k. Each walker independently searches the network and 
randomly chooses one of the next-hop neighbors to continue 
its journey to the limit of 77" hops. 

Analytic Derivation: To begin with, we consider Coverage 
to derive SE. We know each vertex at depth t is visited by a 
random walker with equal probability, 112'. Moreover, each 
random walker independently makes its own decisions to 
traverse the topology. Thus, the probability that all k walkers 
don't visit a certain vertex is (1-1/23'. As a result, at depth t ,  
the average number of nodes visited (Coverage per Depfh) by 
k random walkers is given by the expectation 

E ( X ) ,  = 2' [I- ( l - p ] .  (9) 

By (3), QueryHits(t) = R,E(X),. Moreover, the query 
messages of random'walk are generated per hop for each 
walker until terminated by the 7TL limit, hence 

As a result, QE of k-random walk is 
QueyMsg = k.TTL. (10) 

Furthermore, from (4), we obtain 

&"Rate= l-( l-Rf = l-(l-R)'zE(x)l .(12) 
Therefore, Search Eflciency for A--random walks is 

where E(X), is determined by (9). 
Search Efficiency Analysis: Assuming R = 1%, we 

generate a series of performance results of SE in terms of 
various numbers of walkers k. We thus plot these results of SE 
(13), SuccessRafe (12), Coverage (9); and QueryMg (10) for 
RW and BFS in Fig. 3. 

In Fig. 3(a). we obsewe that all SEs of RW consistently 
increase with respect to the depth or search time. Nevertheless, 
they all are smaller than that of BFS due to too many 
(redundant) query messages in the local search and the slow 
covering and low SuccessRate in the long-term search. 
Therefore, they fail to utilize the regular structure of SBT. As 
for the number of walkers k. a too large (e.g. 50) or too small 
(e.g. 2) value of k gives degraded performance, thus resulting 
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in strong sensitivity in the choice of k. 
Metrics Analysis: By merely inspecting Fig. 3(b) for 

SuccessRate or (c) for Coverage, one may jump to a 
conclusion that the number of walkers k is the larger the better. 
This aspect disregards the fact that larger k would generate 
larger search cost, shown in Fig. 3(d). and potentially 
redundant query messages. In fact. comparing RW of k = 50 
and of k = 20. we find that their values of SuccessRare or 
Coverage during depth r = 1 4  are almost the same while the 
former generates 2.5 times more search cost-the latter search 
uses less search cost to produce similar search fruits. In 
consequence, in the short-term search, the latter one should be 
gauged as better search Thus the conclusion larger Ir is better 
for RW would be fallacious. Therefore, we argue that neither 
SuccessRate nor Coverage is a good performance indicator, 

Moreover. the long-term performance will inherent the 
short-term so that SE in Fig. 3(a) well characterizes the better 
performance for RW of k = 20. Besides, RW of A. = 2 would be 
the best search in Fig. 3 if we tq to minimize QueyMyg and 
scalability is the most concerned issue. Yet. this would be a 
specious conjecture since it entirely flies in the face of the 
final end of search-to find the results responsively. 

C. 
By the discussion in this section we validate SE by 

showing 1) the 100% Q E B ~  indicates that BFS perfectly 
utilires the reguIar structure of SBT and generates no 
redundant messages, 2) the sagging SE,, reveals RW fails to 
take advantage of the structure of SBT, and 3) the fixed level 
of SE,, in long-term search effectively reflects the 
chamcteristics of SET. The first two results can be confirmed 
by intuition and thus ven& the correctness of SE, The third 
observation further demonstrates the superiority of SE in 
characterizing search performance under specific topologies. 

Through metrics analysis. we have demonstrated that 
existing metrics. Coverage, QueyMsg, and SuccessRate: are 
one-sided and may lead to biased conclusions. They cannot 
distingush performance variance in searching networks when 
replication ratios are distinct, and cannot provide reasonable 
guidance in the design of parameters 7TL and k whle SE can 

Summar?; ofsearch Epciencv in SBT 

IV. POWER-LAW RANDOM GRAPH 

In a random graph or a realistic network, its topology is not 
structurally organized but formed in an ad-hoc manner. 
Adamic's work 131 demonstrated that the current Internet 
follows a power-law degree distribution where a few web 
pages or web sites are extremely 1ughIy-connected while 
others are weakly linked. In a power-low random graph 
(PLRG), the probability a vertex has degree k is pk 
proportional to k" where T > 0. In th~s and the following 
sections, we will use PLRG as the network topology to 
eqlore the efficiency of various search algorithms. 

A .  Review of Generutiingftrr7ciions 
To mathematically describe a power-law random graplz we 

use the generating function formalism introduced by Newman 
et al. [I] with arbitrary degree dismbutions. We first let G&) 
be the generating function for the distribution of the verfes 
degree k in a random graph. Then 

m 

G,(4 = PkXk (14) 
k=O 

where p ~ .  is the probability that a randomly chosen vertex on 
the graph has degree k. 

For a graph with a power-law distribution with ehTonent T. 
minimum degree k = 1 and an abrupt cutoff at 171 = k,-? the 
generating function is then given by 

m 
G o ( ~ ) = c C k - ~ x ~  

k=l 
with c a normalization constant, depending on m and T to 
satisfj. the nonnalization requirement Go( 1) = 1. 

The average degree of a randomly chosen vertex is given by 
??l 

z l = < k > =  C k . p k  = Gi(1)  (15) 
x= 1 

Another important quantity is the distribution of the degree 
of the vertes which we amve ai by following a randomly 
chosen edge. Such an edge arrives at a vertex with probability 
proportional to the degree oJthat vertex, and the vertex thus 
has a probability distribution of degree proportional to kpk. By 
[ 11, the distribution of outgoing edges (except the one we have 
come from) of that verteK one of the first or immediate 
neighbors, is generated by the function 

The generating function for probability distribution of the 
number of second-nearest neighbors of  the original vertex can 
be written as G,(G,(x)) in the limit of large N (N is the 
network size). Hence, the average number z2 of second 
neighbors is 

Furthermore, the work in [ I ]  generalizes (16) so that the 
average number zh of the h* nearest neighbors is 

Besides, according to approsimation in [2], we have 

and 

assuming 2 < z < 3. 
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6 First neighbors 
0 Second neighbors 

Fig. 4. Arandom graph for illustrating "redundancy" 

B. Redurtdanq in Power-lmv Random Graph 
Equation (1 7) equivalently tells us that the average number 

of the !I* neighbors is strictly the product of the average 
degree of each vertes, G'o( 1). and the average outgoing degree 
of verlices arrived by a randomly chosen edge, G'l(l): to the 
(h-1)" power. given the graph size AT is infinity. However, in 
reality-when AT is not infnite-it is simplv not the case 
specified in (17) where the number of h' neighbors is 
geometrically increasing. In other words. z), slmuld not be 
geometrically increasing due to the "redundancy" in random 
graphs. By redundanq we mean edges of any vertes that 
leads to repeatedly visited vertices, resulting in a fewer 
effective number of vertices reached by edges than the number 
of traversed edges. Thus, to express in the tenns of search 
networks, we use a definition similar to [lo]: 
'2 search network N km 'redundancy' ifthere exists a link 

(edge) i)? N that can be removed without reducing any vertex S 
search coverage, which is generated by certain search 
algorithm. '' 

To quantify the redundancy of a graph by certain search 
algorithm we define ''redundancy" as 

(20) 
No. of Vertices Effectively Reached 

No. of Edges Ever Tmversed 
Redundunqv = 1 - 

Note that redundancy may actually be useful to improve the 
fault tolerance of the system, since if one peer fails, another 
can perform its processing. Moreover, redundancy may be 
useful to reduce response time if a peer stands at a redundant 
edge closer to the searcher, Thus, fault tolerance and search 
latency tradeoff with efficiency when redundancy is 
concerned. 

We illustrate this notion of redundancy by Fig. 4, in which 
we draw a graph with 13 vertices and 15 edges where the 
black node is the search originator. gray nodes are the fust 
neighbors of the originator. and the white nodes are the second 
neighbors. Arrows show the directions and paths of message 
forwarding by BFS. Inspecting this graph we have the 
number of fmt neighbors of the black node, G'dl) = 3 ,  and 
the degree of outgoing edges of each first neighbor, Gfl( 1) = 4. 
Nevertheless, the effective number of second neighbors is 9, 
not simply the product of G',,( 1) and GIl (1): 12? as specified by 
(16). Thus, we obtain the redundancy by (20) as 1 - (3t9) / 
(3+12), or 11.5, which means in this case one-fifth (20%) of the 
edges are redundant by a BFS search. 

C. Breadth First Search in Power-law Rnndom Graph 
Analytic Derivation: To analytically quanti& the 

redundancy of a random graph we first derive the number of 
second neighbors z2 covered by BFS, which it is ideally 
G;( 1)G', (1) by (16). However, according to the discussion in 
Section VB. z2 will be lower than the ideal value when A' is 
not infinite due to the graph redundancy. To derive z2. it is 
largely equivalent to solve the problem that what the number 
of balls (vertices) ever chosen (or inversely left not chosen) is 
when choosing G'](l) balls out of A' balls and put them back, 
and repeat this procedure G'*( 1) times, with G',( 1) < IV. For 
simplicity: we first assume the probabiliv each ball (vertex) to 
be chosen is uniform. Thus tlie probability that each ball is 
un-selected is 1 - [G'1(1)/1Vl after one time of tlus procedure. 
After G'o(l) times of the procedure, tlie probabiliw each ball 
selected becomes 

1- [1-G I, (I)/ Ar]c'oi') 

Hence, if we assume all balls are chosen umformly and the 
expectation of the effective number of chosen balls (second 
neighbors) is 

when neglecting the chance to repeatedly reach the first 
neighbors. 

However. vertices are arrived at by edges with probabilities 
proportional to their degrees [l], rather than uniformly. as 
previously stated (Section YA). Suppose the probabilily each 
vertex to be reached by certain edge is p ,  for i = 1.2. ,.,, h'and 
p1 + p2 +...+ p~ = 1. In a power-law random graph, the 
probability p z  of vertex i is proportional to irs degree and 
equivalently given by 

such that zip, = 1? where m, the maximum degree. is set by 

If ignoring the chance to revisit the first neighbors. we 
could approximate the effective number of second neighbors 

PiT [4]. 

as 
J 

wheere we assume pl  << 1 as G;(1) << iV? whch is true in 
general cases. Note that the term p;Gf1( 1) approximately- 
represents the expectation of vertex i to be visited with Gf,( 1) 
independent selections, each of which only selects one vertex 
among the N ones (with returning back). Ths term is s w l y  
not the exact expectation of second neighbors (the actual 
value should be a little smaller), but an approsimation, which 
holds whenp, G'] (1) is much smaller than unity. 

To generalize it, the effective number of vertices arrived at 
the h~ depth or hop (Coverage per Depth or Ch) for h 2 
could be approximated by 
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Fig. 5 .  Pzrformance results in percentage of QE. SucressRare. and SE in 
PLRG and SE in a strictl? binary tree for BFS d t h  R = 1% 

Nonetheless. this fonnula doesn't consider the possibility the 
search revisits previously reached vertices, which is 
significant when the search is in the deeper depth. To 
eliminate t h s  problem we first let Vh be the event that a 
vertex is visited at the h~ depth or hop. then the probability 
vertex I is visited at the hh hop is 

( p ,  .G'*(l). forh=l 

Therefore, the average number of non-repeatedly visited 
verbces at the h* hop by BFS in PLRG is 

[?<pi), forh=l  

where PXPi) is given by (22). Intuitively. Coverage or C is 
given by Z h C h .  

To derive the redundancy, we let the number of edges 
traversed or equivalently the number of queries generated at 
the h* hop (depth) be eh, That is, QueryMsg is given by 

(24) 
G'* (l), for h = 1 

e* = {  G'l(l).zh-l, forh 2 2. 

Thus, the redundancy of BFS terminated at h = TTL is 
determined by 

TTL 

cTTL h=l ' h  
(25) 

Ch=i =h Redundancy/gFS = 1 - ~ 

Note that QEp,s is equivalent to l-Redundoncv. Furthermore, 
according to (2). (3), (4): and (25), we obtain 

T l  
m 

SElBFS = ch 'h~[ l - ( I -R)Ck ick ]x100%, (26)  xz eh 

where c h  1s specified by (23) and eh by (24). 
A variation of BFS is Modified-BFS (M-BFS) [14], which 

adopts a fraction parameter f to serve as the probability that 

Search Emciency far M-BFS in PLRG 
35 1 

30 +f=O 7 - 4 - f = I . O B F S )  

+ f - 0 5  

0 i- 

1 2 3 4 5 6 

Hop 
Fig. 6. Search Eflciency for M-BFS of various fraction parametersfin a 

power-law random graph with R = 1% 

each search agent uses to forward the query message to its 
neighbors. For example? iff= 0.5 and certain search agent has 
10 neighbors, then it will forward the received query message 
to 0.5.10 or 5 of its neighbors (randomly). Since its operation 
is similar to BFS, the formula of SE specified by (26) still 
holds for M-BFS, where c b  is given by (23): except 

c ( I ; h > 2 ) = l - [ l - f . p ,  -G'l(l)]c"' (27) 
6 (vh=ll= f ' Pi ' G b (I), (28) 

and eh?? =fG'l( I). Ch-1 and eh=) =fG'o( 1). 
Performance Analysis: We use the following parameters 

throughout this paper for the power-law network: N = 10,000, 
exponent T = 2.1, R = I%, and m = N'" - 80. These 
parameters are similar to those used in 12J. By (18) and (19), 
Gb(1) = 3.55 and GII(l) = 16.21. Therefore. we present the 
performance results, through a series of calculations of (21), 
(23): (25), and (26), inFig. 5. 

Note that QE in Fig. 5 is not as perfect as that in a binary 
tree, but decays dramatically during h = 3-5, where the 
redundancy comes from the exponentially generated messages, 
which approves the results in [5] and [9]. Furthermore, SE in 
PLRG is significantly high compared with that in a strictly 
binaq tree with the same R in the short-term search while SE 
in the tree is superior to that in PLRG in the long term. In sum, 
BFS performs better in the local and inefficiently in the global, 
when deployed in the power-law m d o m  graph. Similar 
conclusion is drawn in the work [ 111 by its simulation results. 

For M-BFS, we generate the data of SE of various fraction 
parameters with the same settings used for BFS (N = 10,000 
and T = 2.1) and plot them in Fig. 6 .  We find that the fraction 
parameter controls the extent to which performance increases 
in the local or decreases in the global-the larger the 
parameter is the more greatly the performance changes. 
Hence, if the search is aimed to gain great perfonnance 
increase in the short term we should take largerj on the other 
hand, sinaller ji give relatively consistent SE by 
compromising the fast performance increase in the short-term 
search. Therefore, the choice of the fraction parameter 
depends on whether the short-term satisfaction or long-term 
efficiency is more concerned. 

1497 



5 

D 
I 3 4 5 6 I 

HOP 

Fig. 7. Search Eflciency for RW of various number of wikers k and for 
BFS in a power-law random graph with R = 1% 

D. Mulripie Random CVulks in PLRG 
The property of random walk is dramatically different from 

BFS. The former traverses a gmph in a random and 
unpredictable fashion while the latter operates rather regularly. 
In particular, the concept of depth used in BFS is not 
applicabie in random walk in that the walkers may go “back 
and forth” in the graph so that we could only describe them 
with respect to hop rather than depth. Therefore, we represent 
search coverage in terms of Cowrage per Hop ((3). 

Analytic Derivation: To derive the analytic formulas of 
performance metrics, we first obtain the number of 
“candidates” that RW might traverse at the h hop, which is 
conceptually similar to the number of hh neighbors of BFS, zh, 

except RW doesn’t have the concept of “depth” We denote 
that for RW as rh. Let Rh be the event a vertex is the candidate 
of RW at hop h (in the A* neighbors of RW), then the 
probability vertex i is the candidate of RW at hop h is 

I (p i  . G In (I), for h = 1 

The& the average number of candidates of RW at hop h is 

where P,&) is given by (29). 
Since random walkers have the behavior similar to those in 

the binay tree if the forwarding candidates are known, we 
apply the line of reasoning in the binary tree for PLRG Hence: 
the probability vertex i is visited at hop h for RW is 

4 (T’h) = 4 (ti n Rh) = 8 (Rh)  . (Vh 1 Rh ) 

To deal with the phenomenon vertices may be revisited, we 
apply the line of reasoning in BFS in PLRG Therefore, the 
formula of Ch in (23) still holds for RW except using Pi(Vh) of 

RW (3 1 j. Thus, SE for random walk with k walkers is gwen 
by 

where CA specified is by (23),  in which P,{Pi) is formulated by 

Search Efficiency Analysis: By the same conditions for 
BFS. we plot SE for RW of various numbers of walkers k and 
re-plot SE for BFS for comparison in Fig. 7 .  This figure shows 
RW generates consistently increasing performance in most 
cases of h-, which can be answered by its controlled fashon of 
message genemtion and granuiar coverage that have been 
suggested in [j]. In addition, the curve of k = 2,000 
reasonably explains the redundancy generated by too many 
walkers despite its fine properties in PLRG Inspecting the 
curve of BFS, it outperforms RW in the local search but 
inversely in the global (h>5), wluch confirm the simulation 
results in 1111. 

In sum, SE well characterizes the delayed performance. 
increase of RW and its consistent long-term performance. 

(31). 

E. Su )man ,  of Search Eflciency in PLRG 
Based on the unified metric SE and its temporal analysis, 

we better characterize that, in PLRG BFS gains its excellent 
performance in the local search space but decays I-apidly in the 
long-term search, M-BFS controls its performance increase or 
decrease by the. fraction parameter J and RW performs 
consistently in the global search space while its performance 
increase in relatively slow in the short-term search. 
Furthermore. by the analysis of SE and QE. we can explain 
the causes behind the ostensive phenomena: the great 
short-term performance of BFS stems from its aggressive 
search to deliver tqmnsive results while keeping little 
redundancy in the local and the long-term performance suffers 
from the overwhelming search cost generated while it still 
retrieves satisfactory results in the global. On the other hand, 
the delayed performance increase of RW is due to its 
conservative search and redundancy in the local while its 
conservatism trades for relatively little redundancy and thus 
consistent performance in the global. 

In particular, our work for PLRG strongly reflects previous 
works (simulations) in various respects and in turn is validated 
for its ability of characterizing, especially in tenns of temporal 
analysis. Besides, SE analysis indicates the choice of the 
fraction parameter depends on whether the short-term 
satisfaction or long-term efficiency is more concerned. 

Thus far, we have shown the potency of SE in performance 
characterizing and reasoning. We will further demonstrate its 
strength in guiding the design of search algorithms by 
inventing a new search based on SE and validate the 
performance improvement of the new search in the following 
section 
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DkTJ.4MIC SEARCH: hi ALGORITHM DESIGNED B.4SEI3 ON 
SEARCH EFFICIECY 

n f ; h  h 

Evaluation metrics arc critical in judging search 
perfarmance. E Coverage is the only metric concerned, one 
inay conclude that BFS is the best search algorithm despite the 
ovenvfielming search cost. It overlooks the system load and 
the aspect of operation eficiency. Moreover. if search cost is 
the most important criterion of a searching network, RW 
would be the best appropriate algorithm for that system. 
However. it fails to evaluate the ability to achieve the final 
end of searching networks-to search out targeted results 
responsively. In consequence, biased metncs may draw biased 
conclusions and provide wrong guidelines for system design, 
Thus: we endeavor to devise a new search based on the 
comprehensive metric, SE. in order to demonstrate the 
strength of SE. In addition to its strength in performance 
characterization and reasoning? we show the strength of SE to 
s e w  as the design guidance of the invented 
algorithm-&numic search. 

We attempt to utilize the merits of the three analyzed 
algorithms from the viewpoint of SE for the new search. 
Accordingly. on the basis of the conclusions drawn in Section 
N E :  the new algorithm should resemble BFS in short-term 
searches, mimic RW for long-term propagation and be able to 
fine tune the performance through certain parameters as used 
in M-BFS. Therefore, we separate the search process info two 
phases, In the threshold phase (local space), the search is 
similar to BFS with some dynamic tuning forwarding 
probabilities; in the ultimate phase (long-term space), it 
operates as the random walk search to consistently retain the 
performance gained from the threshold phase. The detailed 
operations are described in the follobing subsection. 

A .  Uperation 
Dynamic search starts as a probabilistic search with 

dynamic fraction parameterh at different hops h when h 5 n. 
For h > I?, it switches to the random walk search. In the 
threshold phase. it operates as MBFS but with dynamicfh, for 
h = 1, 2, . ... n. For example, for dynamic search with n = 2 , f ;  
= 1, a n d h  = 0.5, the search agents at h = 1 perform BFS, 
perform M-BFS with f = 0.5 at h = 2 and operate as random 
walk for h 2 3. Moreover. in the random-walk phase, the 
number of walkers k is determined by the outstanding quev 
messages or the effective search agents covered at the h* hop. 

Hence. the behavior of dynamic search changes 
dynamically in terms of time (hop) to adapt to the appropriate 
search properties in different phases. Hopefully, in terms of SE. 
it wodd outperform other algorithms in each phase thanks to 

t h t  1s. ch. 
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the fine-tuned design. 

B. Perfomn” .4nalvsis 
To analyze the characteristics of dynamic searcl& we use the 

knowledge we have learned in previous sections where we 
mathematically formulate SE. In this section, we analyze only 
in the PLRG The general form of SE in (26) applies for 
dynamic search and C, is given by (23), except eh-] =fi.G’o(l), 
e 2 4 9  =h.G’l(I)* Ch-1, ehm = Ch=n,  and 

( 3 2 )  

where f j ,  is specified by (30). 
As for the parameter design we refer to the observation in 

Fig. 6,  where BFS performs the best in the first two hops and 
lower& for M-BFS achieve more consistent performance in 
the long-term search Thus, we design two sets of parameters: 
the first one, Dy~mic-1 ,  performs BFS in the first two hops 
and random walks in the following phase (n = 2); the second 
one, Dynamic-2, performs BFS in the first two hops, M-BFS 
withf= 0.3 at the third hop, and then random walks (n = 3). 
The number of walkers k is in RW is dynamically determined 
by the number of outstanding queries at hop n, i.e. &,. The 
detailed parameters are shown in Table 11. 
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Fig. 9.  Pafonnance comparison bs various merrics-a) Search Eficiency, (b) Orrery Eficiency, (c)  Coveruge, and (d) Qustyhfsg-for RW of various number 
of walkers k and for BFS in PLRG vdhA = 1% under uniform and non-unifomi (NU) object distribution. Solid lines represent data of uniform distribution and 

dashed-lines reprzsent non-uniform distribution. 

We generate SE of Dynamic-I and -2 and make 
performance comparison with BFS. M-BFS (f= 0.3), and RW 
(k = 100) in Fig. 8. We take M-BFS withf= 0.3 in order to 
compare with Dynamic-2, which uses5 = 0.3. And we use 
100 as the number of walks for RW since it generates the best 
performance (in Fig. 7). 

In Fig. 8, we can observe that dynamic searches outperform 
other algorithms especially in the long-term search. They 
resemble BFS witlun h i 2  as expected and perform 
consistently as random walk does, thus outperforming others 
in long-term search as we design Note that Dynamic-2 trades 
its performance at 12 = 3 for its long-term efficiency by using a 
low probabilityf= 0.3, and vice versa for Dynamic-1. 

VI. NON-UNIFORM OBJECT DISTRIBUTION 

Throughout our analysis. for simplicity we had assumed the 
object distribution as uniform. However, this assumption leads 
to the conclusion that QzteryHirs equals to R-Coverage. which 
violates our argument in Section I1.A that Coverage is only 
one of the conditions to produce QueryHits. To support our 
argument and  jus^ our consideration of QueryHits in SE 

rather than Coverage, we analyze SE under a non-uIuform 
object distribution as proposed in [ 111. 

In ths object distribution, the probability a search agent 
(vertex) owns certain object is proportional to its degree d. Let 
0 be the event that certain search agent owns the targeted 
object, then the probability agent i has the object is 
determined by 

( 3 3 )  
R . N . d ,  

1=1 J 
C ( O ) . c d  = ' CN d ' 

such that C,PJ{O) = R N ,  where d, = m / i'" [4]. 
Analytic Derivation: Since the object distribution is not 

uniform, we cannot simply use RCoverage to represent 
Queqdfits, which in fact is formulated by 

QueryHits( h j 
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whereP,{Vh) is givenby (22) andPj(0) by (33). 
For SuccessRate. we generalize the form 1-(3-Rf in (4) 

for the uniform distribution to deliver the one in non-uniform 
distribution: 

N h 
SuccessRate = 1 -n n [I - 4 { O ) e  ( P y j ) ] .  (35) 

Now. equations (34). (35) ,  and (24) suffice to solve SE defined 
by (2) for BFS. 

For RW. QuelyHits(h) follows formula (34) derived in BFS 
and SuccessRate follows (35) in BFS, where Pi( Yh) is given by 
(3 I )  and PXO) by (33). 

Search Efficiency Analysis: We plot analytic data in Fig. 9, 
where the dashed-lines represent the data under non-uniform 
(NU) object distribution. We use the same colon to represent 
searches with identical parameters. We find that SE in Fig. 9(a) 
is significantly increased under NU distribution for both BFS 
and RW. The performance increase is around 75% - 250% for 
RW at h = 7 and 250% for BFS at h = 2. Ths  can be explained 
by the graph property that vertices tend to connect to those 
with higher degrees 11: 23, which has been validated by 
simulations in [ll]. 

Metrics Analysis: Fig. 9(c) indicates that every search in 
question generates identical “ 2 g e  under different object 
distributions. and Fig. 9(d) draws the same conclusion for 
Que@.zSg. Therefore, these two metrics totally fail to 
distinguish the performance variance under NU distribution. 
Moreover, in Fig. 9(b), Q u e y  Ef i c i e iq ,  defined by 
o.er.yHits/(~ue.vil.Iss.li>, explains the performance increase 
by indicating more QueyHits found given that same number 
of QuepVsg. In consequence, SE9 in which QE is a critical 
element, well characterizes the performance difference in the 
two scenarios. 

i=l /=I 

VII. CONCLUSION 

This paper defines a d i e d  metric, Search Eflciency (SE). 
addressing performance in searching networks in terms of 
Query Eflciency, responsiveness, and reliability. 
Mathematical formulas and a p p r o h t i a n s  of SE and other 
existing metrics are derived to characterize performance and 
provide in-depth analysis for various search algorithms. We 
justify the correctness of SE in performance evaluation by 
analyzing it in an ideal topology, strictly binary tree. We 
further demonstrate its ability to characterize search 
performance in a large-scale PLRG the red-world network 
topQlogy 

We conclude that existing metrics either leads to biased 
conclusions regarding performance or fail to reflect 
performance variance when network comhtions change. 

Moreover, they tend to provide wrong guidelines for the 
design of various algorithm parameters (e.g. 7TL. k. andf). 
The proposed metric. SE. effectively characterizes the 
performance variance under different network conditions and 
deiivers objective and in-depth performance analysis. 

In the final analysis: the outstanding performance of 
dvnaprric search. the new algorithm devised based on the 
guidance of SE, manifests the efficacy of SE to conduct design 
of search algoritluns. Therefore. our proposal of SE 
contributes to providing guidance for the future design of 
searclung networks. 
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