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Abstract—This paper deliberates on various critical aspects in
evaluating searching networks. Existing metrics either draw
biased conclusions regarding search performance or provide
wrong guidelines for algorithm design. We, therefore, define a
unified criterion, Search Efficiency (SE), to objectively address
search performance in a comprehensive manner. The goal of §E
is to better characterize performance of searching networks than
existing metrics do as well as to guide the design of future ounes.
We first validate the correctness of SE in performance evaluation
in an ideal graph, strictly binary tree, by analyzing SE for two
typical search methods, breadth first search and random walk.
We further show its strength in performance characterization in
the real-world topology, power-law random graph, under various
network conditions. We finally design an algorithm, dynamic
search, based on SE analysis. Its proved outstanding
performance demonstrates the strength of SE to provide
guidance for the future design of searching networks.

Keywords—performance evaluation, complex networks, search
algorithms, peer-to-peer networks

1. INTRODUCTION

Searching networks, including social networks and
computer networks, play an increasingly important role in
human activity. A significant example is the recently popular
peer-to-peer {(P2P) file-sharing systems, e.g. Gnutella and
KaZaA, where every peer collaboratively forms a searching
network to locate desired files by a real-time search. In the
social context of searching networks, people search their
acquaintances for a particular item or expertise in a speeific
domain. Their acquaintances in turn report whether they have
the desired item (expertise) or subsequently deliver this query
to their next-step acquaintances. In this fashion, a social
searching network or so called human acquaintanceship
graph (8] 15 formed. Thus, a searching network is a system
where each participant contributes to the network and
collaborates to help others search targeted resources.

In a searching network, cne of the critical 1ssues is to
maximize search performance by choosing or designing
algonthms used to perform the search process. Novel
algorithms {5, 6, 7] have been proposed to address different
search aspects, such as success rate, search cost, coverage, or
number of hits, but an objective and comprehensive
evaluation metric 1s missing. As a result, these algorithms tend
to be designed with biased considerations and evaluated in
limited dimensions.

Breadth-first search (BFS) and random walk (RW) [5] are
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two basic and typical search methods in searching networks.

BFS inherently maximizes the search speed and coverage but

risks generating search queries in an uncontrolled (exponential)
manner. RW, on the other hand, minimizes search cost but
generates limited search coverage and results. As a result, one
might draw distinct conclusions about algorithm performance,
if different metrics are concerned. For example, Gkantsidis et
al. [12] claimed RW performs better than BFS in terms of
number of hits and failure probability give the same search
cost for BFS and RW, but implicitly assumed an infinite
search time for RW, which 15 clearly unfair. Jiang et al. [9]
evaluated their proposed search scheme only by search
coverage and message cost, leaving search speed and success
rate unchecked. Lv et al. [5] provided a spectrum of aspects
on evaluation, but analyzed them individually and still lacked
an overall consideration.

Our work, therefore, deals with these one-sided
perspectives and synthesizes a unified search cniterion, Search
Efficiency (Section II), which is critical particularly in P2P
endeavors, to objectively evaluate search algorithms and
provide overall guidance for the design of searching networks.

With the unified metric SE, we first validale its correctness
by deriving its mathematic formulas for BFS and RW in a
simple topology, strictly binary tree (SBT), and analyzing
whether the performance indicated bv SE is reasonable.
Furthermore, we extend the results of Newman [1] and
Adamic [2] and further consider “redundancy™ to analytically
approximate SE for BFS, M-BFS [14], and RW in a
power-law random graph (PLRG), which is shown to be the
real topology of current searching networks. We thus validate
SE in comparison with previeus simulation works [5, 9, 11],
deliver the unique performance characterization of SE, and
provide in-depth analysis.

Throughout the analysis in this paper, we compare various
existing metrics with SE to address their limitation and
strength. We show that no matter in SBT or PLRG, existing
metrics draw  biased conclusions regarding search
performance; they either provide one-sided considerations or
deliver wrong guidelines for algorithm design. Moreover, they
fail to characterize performance varance under distinct
network conditions, such as object replication ratios (Section
II1) and object distnbutions (Section VI).

In the final analysis, we propose a new algorithm, dyvnamic
search, based on the results of SE analvsis. We prove this
algorithm outperforms existing ones and SE effectively
provides guidance for algorithm design.
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In summary, our contributions are stated as follows:

s We propose a unified and objective metric, Search
Efficiency, for evaluating searching networks and
characterizing search algorithms.

* We mathematically amalyze critical performance
metrics—search coverage, cost, success rate, number of
hits, and SF—in searching networks. )

« We analvtically evaluate various algoritiuns, including
BFS, M-BFS., RW, and a novel search, in SBT and
PLRG under uniform and non-unifortn object
distributions.

s We devise a new search algorithm, dynamic search,
based on the knowledge from temporal SE analysis. It is
shown to outperform other existing ones., thus SE
proved to provide solid guidance for algorithm design.

The rest of this paper first follows with the definition and
explanation of Search Efficiency in Section II. We then
analytically derive the general forms of SE and provide
in-depth discussion on the performance of BFS and RW in
SBT in Section III and PLRG in Section TV. Section V
presents the novel algorithm, dvnamic search. We analyze
algorithms under non-uniform object distribution in Section
VI, then finally conclude in Section VII.

[I. SEARCH EFFICIENCY

We argue that to best characterize the efficiency of any
system is t0 measure its ability to transfer its input t0 generate
meaningful output, which is applicable in the evaluation of
search methods performed in any network. In a social network,
the input of a search largely involves the cost required for
querying process including costs of phone calls, transportation,
and even consulting. As for output, it should be measured by
searchers’ satisfaction in terms of the chance of success, the
response speed, and quality of responsive resuits. To clarify
the definitions of and relations between these inputs and
outputs in the context of searching networks, we start a seties
of discussions about Search Efficiency with Query Efficiency
(CF).

A. Querv Efficiency

In general, the most critical aspects of search performance
involve the extent of search coverage (output) [2] and the cost
required to cover the network (input) {3]. By search coverage,
denoted as Coverage or C, we mean the number of distinct or
effective peers visited by search queries. 1.e. we do not count
the repeatedly visited ones. In addition, by cost, denoted by
OueryMisg, we mean the number of queries incurred, forit is a
representative factor to which other cost factors (e.g. computer
processing power or costs for phone calls and transportation)
tend to be proportional. Thus it is trivial to say a search which
uses S query messages to traverse distinct S nodes is perfectly
or 100% efficient in terms of query generation Additionally,
we can define a sort of efficiency as Coverage / Querviisg.
However, the end goal of searching is not to cover as many
nodes in the network as possible. Rather, its ultimate goal is to
search out the desired targets or objects, in which covering is
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only one of the adequate conditions {(e.g. cache or previous
experience) for that end. This is true when the searching
network is well-designed, e g. Chord f13], such that large
search coverage is not necessary, or when objects are
intentionally depioyed in which directed search is preferred.
We will show performance difference between Coverage and
QueryHits under non-uniform object distrtbution in Section
VI,

Thus, we define Querviits(r) as the number of desired
objects found “at™ search time ¢, which is measured by the
number of hops or depths, to quantify the yiclds of a search.
We introduce the factor search time 1 for the purpose of future
discussion. Again, we might define the efficiency of queries as
Y QuervHits(£)/QuervAdsg. However, this definition is
sensitive to ihe population of desired objects, which is
irrelevant to the performance of search algorithms themselves
and should be factored out. For this purpose, we introduce the
notion of object replication ratio R defined as the mtio of the
number of targeted objects to the network size (V). To cancel
the population factor out, we normalize it with respect 1o R
and thus formulate Query Efficiency (QF) as
Z Quenytits) 100%

Querviisg R
where 771 refers to the termination condition of searches,
measured in hops. To exemplify, we supposc a search
consuming 100 messages to find 1 targeted object in a
network with R of 1%, which reveals that 1% of nodes have
the desired object. By (1), QF = 100% and we thus call it a
perfectly query-efficient search. Furthermore, if the objects
are uniformly distributed in the network, we can reasonably
claim that the search effectively covers 100 nodes (from 1/1%
= 100) and this provides a clear view of the perfect efficiency.

Query Efficiency(%)= )

B. Responsiveness

One of the goals of seatching, as addressed previously, is to
find out possible objects while the other is to find them as
soon as possible. We define search response time, denoted by ¢,
measured by discrete numbers of hops, to evaluate the speed
of searching objects, or responsiveness of a search. If a search
finds Q desired objects in its A% step or in its A™-nearest
acquaintances, we denote it as QuervHits(=h)=0.

We argue that a search getting hits in a faster fashion
delivers better users’ experience and should be gauged as
higher reputation. More specifically, responsiveness of a
search should be inversely proportional to the response time ¢,
To consider this factor for SE, we may simply divide OF by
the weighted rtespomnse time, which is computed by
Y frQuervHits(f)] / Y,QueryHits(f). However, this method
would generate unjust results. For example, we assume a
search that uses 1000 messages to get 99 hits at += 1 and 1 hit
at = 100 with R = 10%, resulting in a weighted response time
of ¢{1-99+100-1¥100 or 1.99. According to QF in (1). if we
don’t count the hit at ¢ = 100, the search is 99% query efficient,
but it dramatically reduces to 50.23% efficiency due to
dividing by response time 1.99 when that hit is calculated,
This method unreasonably emphasizes the slow search hit. We
argue that any query hits contribute positively to the search
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Fig. 1. Astrictly binary tree with the requester at the root

itself despite long response time. We thus aggregate these
responsive hits rather than divide by the averaged response
time to give efficiency as
ZZL QueryHits(1) ! t N 100%
QuervMsg R
The efficiency of this example becomes 99.01% rather than

50.25%. where the last found hit contributes 0.01% to
efficiency. rather than severely reducing it.

C. Reliability

The last concern is reliability, which is measured by
SuccessRate in our design of SE. We introduce it so as to
further consider the satisfaction of user experience. Counsider
two searches (A and B), each performing two runs, as shown
in Table I. We assume all objects are found at the same
response time. The success rate of Search A is 50% while B is
100%.

TABLE 1
SEARCH DATA FOR ILLUSTRATING SUCCESSRATE
| Search A Search B
QuervMsg | QuervHits | Quenifsg | OuervHits
Runl 100 2 100 1
Run2 100 0 100 1

Note that if we compute efficiency without SuccessRate, we
will gain the same result for Search A and B. However, one of
the runs in Search A (Run 2) fails and thereby we neglect to
measure the penalty of user experience in Run 2. By
introducing the term SuccessRate, SE of Search B remains the
same, but SE of A is halved. In this manner, it successfully
addresses the user satisfaction level while the two searches get
the same number of hits at the same message costs. In sum,
the term SucecessRate is aimed to successfully measure the
satisfaction level from users’ perspective. Finally, we define
the overall criterion for evaluating searching by

21]“ QueryHits(t)/t N SuccessRate

QuervMsg R
where TTL stands for the limit of search covering.

Search Efficiency = (2)

D. Limitations of Search Efficiency

The design goal of SE is to capture a simple but
representative view of scarch performance. As a result, it is
possible t0 consider more complex considerations for search
evaluation. We list three possible aspects that are not covered
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by SE

1) In the comtext of computer searching networks, the
implementation of caches or DHT would significantly
improve the search performance, which SF could reflect.
However, SE doesn’t consider the additional resources
(processing  power ©Of  meEmory) required by
performance-boosted mechanisms, such as hash functions or
caches, thus potentially overestimating the efficiency of
algorithms adopting these additional mechanisms.

2) The costs of searching each computer or peer shouid not
be equally weighted. Consulting an institution for
recommendations is clearly more costly than asking a close
friend, although we only assume they are equally costly,

3) We make a limited measure of responsiveness by the
factor ¢. In some applications, such as peer-to-peer telephony,
(Skype), search response time is highly concerned while in
others not. Therefore, it would be more flexible using £, a > 0,
to adjust the extent to which search responsiveness is
corcerned.

By means of Search Efficiency, we can objectively evaluate
performance of algorithms in searching networks. In the
remaining of this paper, therefore, we aim to characterize
various existing secarch algorithms in terms of SE and
demonsirate the biased view of existing search metrics
compared with SE. In the following sections, we will
mathematically derive the formulas for SE in the context of
three basic search approaches, BFS, RW and M-BFS, the
vanation of BFS, in two representative topologies, the strictly
binary tree (SBT) as well as the power-law random graph
(PLR@), in ordet to demonstrate the strength of SE.

III, STRICTLY BINARY TREE

We assume an N-vertex strictly binary tree whose depth is
about log.V and that the requester is at the root such that the
response time () of a query hit is the same as the depth (d)
where the target object is located. This tree is shown in Fig, 1.
Maoareover, for simplicity of analysis, we assume objects are
uniformly distributed in the tree or graph until Section VL.

Before analyzing specific algorithms, we first prepare two
common factors for the derivation Firstly, the number of
objects searched out (QuervHits) is proportional 1o the search
coverage C. Thus, we have

QueryHits =RxC . (3)

Secondly, the success rate of a search is also relevant to the
search coverage. To begin with, we know that each node owns
the target object with a probability of R; that is, cach node
lacks the object with a probability of 1-R. Suppose a search
covers C vertices and thus the probability these C nodes share
no targeted object is (1-R)°. Inversely, the probability these C
nodes share one or more objects, or equivalently SuccessRate,
is determined by

SuccessRate=1—(1— R)C . )
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Fig. 2. Search Efficiency for BFS terminated by incremental T7Ls (Depth)
in a strictly binary tree with various replication ratios R

A. Breadth First Search in Strictly Binary Tree (SBT)

Analytic Derivation: Breadth-first search (BFS) performs
by broadcasting the received queries to all neighbors except
where the received query came from. Therefore, by the regular
structure of a strictly binary tree, the search coverage
terminated at depth 777 is given by

Coverage (C)= ZTTL 2 (5)
Furthermore, the number of messages required to traverse
the tree is the same as the quantity of its search coverage due

to the very nature of BFS. Thus, QuervMsg = C = ¥, 2"
According to (1), (3). and (5), we attain
R-z}"_sz’ . 100%
r=1 L2 R

Surprisingly, the formula of QFges vields a constant, 1 or
100%, regardless of the replication ratio R or the termination
depth TTL. By the definition of QF, this means that BFS is a
perfectly query-efficient search in the context of a binary tree;
that is, BFS generates no redundant messages while traversing
a binary tree. The idea of redundancy will be further defined
and discussed in the next section

Finally, the general formula of SE defined in (2) for BFS in
a binary tree is

QueryEfficieny, . = =100%. (6)

[I—(I—RJEQ‘IT}. (7)
t=]

The derived SEgqs is complex for one to gain insight of its
properties due to the running variable f and various possible
values of R, To deliver a clearer understanding, we assume the
replication ratio R << 1, which is true in real searching
networks, and approximate (7) as
ZTTL 9!

sh-l-r s <

SEprs = T fr.8)

Tl At
1=1 2

Search Efficiency Analysis: To exemplify SEprs, we set R
= (.1% (far less than 1) and obtain by (8) SErm-; = 0.2%,
SErm-2 = 04%, and SErp-3; = 0.67%. Note SE is strictly
increasing with respect to 77.—SEpy -2 is exactly twice of
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SErm-; and SErm -, is more than three times of SErz-,. The
reasons are two-fold. Firstly, as formula (6) shows, BFS in a
binary tree is perfectly query-efficient, which means every
query positively contributes to its search coverage and in turn
produces promising increase in SE, Secondly, the speed at

- which query hits are returned is faster than the decay factor of

response time ¢/ Furthermore, formula (8) tells that the
benefits from BFS arc increasingly proportionally to 2° while
the factor ¢ is used to compensate the demerit of long search
time, where the factor 2" tends to dominate. Thus we conclude
every query or every additional covered depth makes a
positive contribution to the overall performance despite the
compensation of time, given that the replication ratio is much
smaller than unity.

We present analvtically-derived data of SEpgs. without
approximation, by (7) with a spectrum of parameters, Rs and
TTLs, in Fig. 2. Firstly, we note that SFEg. for all Rs
approaches some fixed level in the long run. This fixed level,
obtained by (7) for large ¢, is determined by the characteristic
of the searched topology—strictly binary tree—that is
irrelevant to R. Second, the short-term increase of SE for high
R (10% or 5%) results from the perfect query efficiency and
popularly distributed objects, while the long-term decrease is
due to the compensator of response time f. If we use the
notion £ suggested in Section I1.D, where « is 0 or small for
some application scenarios and responsiveness is of little
concern, SE in (7) will increasingly grow to some fixed level.
Third, as for low R (0.1% or 0.5%), the results in Fig. 2 are
reflective of the discussions in the above paragraph—SE is
consistently increasing.

Note that, however, if we take T7L as infinity in (7), it gives
zero seemingly contradicting our notion. In reality, however,
TTL cannot be infinity but is generally 7~10, in which SE still
gencrates a fixed level of performance reflecting the
characteristics of SBT.

Metrics Analysis: We compare two metrics, SE and
Coverage in this scenario. The results of Covergge of BFS can
be referred to in Fig. 3(¢). If we take only Coverage (C) into
consideration, it produces the same performance in spite of
different extents of object replication (different values of R)
since C by (5) is independent of R. Hence, Coverage fails to
characterize the performance variance in searching networks
with different replication ratios. On top of this, if the design
goal is to maximize C, then one may conclude that the choice
of termination condition 77L is the larger the better—an
impractical conclusion. On the other hand, if we only inspect
CuervMsg, we will get entirely opposite conclusions.
Therefore, Coverage and QueryMsg draw contradictory
conclusions and fail to provide comprehensive guidance.

In fact, by the indication of SE in Fig. 2, TTL should be
small when R is large in order to avoid unnecessary message
propagation when R is large and to generate satisfactory
results when R is small. In sum, SE better characterizes
performance and provides a better guideline of 77L design
than Coverage and Quervhisg.
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B. Multiple Random Walks in Strictly Binary Tree

When it comes to RW search, we use multiple “walkers” to
traverse the network and the number of walkers is denoted by
k. Each walker independently searches the network and
randomly chooses one of the next-hop neighbors to continue
its journey to the limit of 777 hops.

Analytic Derivation: To begin with, we consider Coverage
to derive SE. We know each vertex at depth ¢ is visited by a
random walker with equal probability, 1/2°. Morcover, each
random walker independently makes its own decisions to
traverse the topology. Thus, the probability that all & walkers
don’t visit a certain vertex is (1-1/2')". As a result, at depth ¢,
the average number of nodes visited (Coverage per Depth) by
& random walkers is given by the expectation

E(X), =2‘[1—(1—%I)“] ©)

By (3). QuervHits(f) = RE(X), Moreover, the query
messages of random walk are generated per hop for each
walker until terminated by the 777 limit, hence

QuervMisg = kTTL.
As a result, QF of k-random walk is

(10)
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QL] = -
Ol k-TTL R k-TTL
Furthermore, from (4), we obtain

SuccessRate =1 (1= RYC = 1- (1= RYZ E&) (12
Therefore, Search Efficiency for k-random walks is

SR, 1t <TTLE(X),
SE :Wx[l—(l—ft) rEC ] {13)
where F(X), is determined by (9).

Search Efficiency Analysis: Assuming R 1%, we
generate a series of performance results of SE in terms of
various numbers of walkers k. We thus plot these results of S
(13), SuccessRate (12), Coverage (9), and QuerviMsg (10) for
RW and BFS in Fig. 3.

In Fig, 3(a). we observe that all SFs of RW consistently
increase with respect to the depth or search time. Nevertheless,
they all are smaller than that of BFS due to too many
(redundant) query messages in the local search, and the slow
covering and low SwccessRate in the long-term search.
Therefore, they fail to utilize the regular structure of SBT. As
for the number of walkers k. a too large (e.g. 50} or too small
(e.g. 2) value of & gives degraded performance, thus resulting
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in strong sensitivity in the choice of k.

Metrics Analysis; By merely inspecting Fig. 3(b) for
SuccessRate or (c) for Coverage, one may jump to a
conclusion that the number of walkers 4 is the larger the better.
This aspect disregards the fact that larger ¥ would generate
larger search cost, shown in Fig. 3(d). and potentially
redundant query messages. In fact. comparing RW of & = 50
and of £ = 20, we find that their values of SuccessRate or
Coverage during depth 7 = 1~4 are alimost the same while the
former generates 2.5 times more search cost-—the latter search
uses less search cost to produce similar search fruits. In
consequence, in the short-teri search, the latter one should be
gauged as better search, Thus the conclusion larger k& is betier
for RW would be fallacious. Therefore, we argue that neither
SuccessRate nor Coverage is a good performance indicator,

Moreover, the long-term performance will inherent the
short-term so that SE in Fig. 3¢a) well characterizes the better
petformance for RW of & = 20, Besides. RW of k£ = 2 would be
the best search in Fig. 3 if we try to minimize QueryMsg and
scalability is the most concerned issue. Yet. this would be a
specious conjecture since it entirely flies in the face of the
final end of search—to find the results responsively.

C.  Summary of Search Efficiency in SBT

By the discussion in this section, we validate SF by
showing 1) the 100% QOFprs indicates that BFS perfectly
utilizes the regular structure of SBT and generates no
redundant messages, 2) the sagging SFry reveals RW fails to
take advantage of the structure of SBT. and 3) the fixed level
of SEges in long-term  scarch effectively reflects the
characteristics of SBT. The first two results can be confirmed
by intuition and thus venify the correctness of SE. The third
observation further demonstrates the superiority of SE in
characterizing search performance under specific topologies.

Through metrics analysis, we have demonstrated that
existing metrics, Coverage, QuervAfsg, and SuccessRate, are
one-sided and may lead to biased conclusions. They cannot
distinguish performance variance in searching networks when
replicatton ratios are distinct, and cannot provide reasonable
guidance in the design of parameters 777 and k while SE can.

IV. POWER-LAW RANDOM GRAPH

In a random graph or a realistic network, its topology is not
structurally organized but formed in an ad-hoc manner.
Adamic’s work {3] demonstrated that the current Internet
follows a power-law degree distribution where a few web
pages or web sites are extremely highly-connected while
others ar¢ weakly linked. In a power-low random graph
(PLRG), the probability a vertex has degree & is p,
proportional to &° where 7 > 0. In this and the following
sections, we will use PLRG as the network topology to
explore the efficiency of various search algorithms.
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A. Review of Generating functions

To mathematically describe a power-law random graph, we
use the generating function formalism introduced by Newman
et al. [1] with arbitrary degree distributions. We first let (Go(x)
be the generating function for the distribution of the vertex
degree & in a random graph. Then

Gy(o)=% pkxk (14
k=0
where p; i the probability that a randomly chosen vertex on
the graph has degree £.
For a graph with a power-law distribution with exponent
minimum degree &£ = | and an abrupt cutoff at m = &, the
generating function is then given by

m E
Go(x)=c Sk "x
k=1
with ¢ a normalization constant, depending on » and 1 to
satisfy the normalization requirement G1) = 1.
The average degree of a randomly chosen vertex is given by

m
Z;=<k>= kak = Glo(l) (15)
x=1
Another important quantity is the distribution of the degree
of the vertex which we arrive al by following a randomly
chosen edge. Such an edge armrives at a vertex with probability
proportional to the degree of that vertex, and the vertex thus
has a probability distribution of degree proportional to kp;. By
[1], the distribution of outgoing edges (except the one we have
come from) of that vertex, one of the first or immediate
neighbors, is generated by the function
Gy =20 _ L
Gy A
The generating function for probability distribution of the
number of second-nearest neighbors of the original vertex can
be written as Gy(Gi(x)) in the limit of large N (¥ is the
network size). Hence, the average number z; of second
neighbors is

zy= [% Go(Gy (x)):| 3} = Go()Gy(D) (16)

Furthermore, the work in [1] generalizes (16) so that the
average number z, of the /™ nearest neighbors is

TS
2=[Gm] G a7
Besides, according te approximation in [2], we have
1 —~ 1 - 2-T
Go(l)zz(l m ) (18)
and
1 m3—l’
Gz —- . 19
RREPTOYER)) 4

assuming 2 <7< 3,
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Fig. 4. A random graph for itlustrating “redundancy™

B. Redundancy in Power-law Random Graph

Equation (17} equivalently tells us that the average number
of the A" neighbors is strictly the product of the average
degree of each vertex, G'»(1). and the average outgoing degree
of venices arrived by a randomly chosen edge, G'|(1), to the
(h-1)" power, given the graph size N is infinity. However, in
reality—when N is not infinite—it is simply not the case
specified in (17) where the mumber of /#" neighbors is
geometrically increasing. In other words, z, should not be
geometrically increasing due to the “redundancy” in random
graphs. By redundancy we mean edges of any vertex that
leads to repeatedly visited vertices, resulting in a fewer
effective number of vertices reached by edges than the number
of traversed edges. Thus, to express in the terms of search
networks, we use a definition similar to [10]:

“A search network N has ‘redundancy’ if there exists a link
(edge) in N that can be removed without reducing any vertexs
search coverage, which is generated by certain search
algorithm.”

To quantify the redundancy of a graph by centain search
algorithm, we define “redundancy™ as
No. of Vertices Effectively Reached

No. of Edges Ever Traversed

Note that redundancy may actually be useful to improve the
faunlt tolerance of the system, since if one peer fails, another
can perform its processing. Moreover, redundancy may be
useful fo reduce response time if a peer stands at a redundant
edge closer to the searcher. Thus, fault tolerance and search
latency tradeoff with efficiency when redundancy is
concerned.

We illustrate this notion of redundancy by Fig. 4, in which
we draw a graph with 13 vertices and 15 edges where the
black node is the scarch originator, gray nodes are the first
neighbors of the originator, and the white nodes are the second
neighbors. Arrows show the directions and paths of message
forwarding by BFS. Inspecting this graph, we have the
number of first neighbors of the black node, G'y(1) = 3, and
the degree of outgoing edges of each first neighbor, G'j(1) = 4.
Nevertheless, the effective number of second neighbors is 9,
not simply the product of G'y(1) and G',(1), 12, as specified by
(16). Thus, we obtain the redundancy by (20) as 1 - (3+9) /
(3+12), or 1/5, which means in this case one-fifth (20%) of the
edges are redundant by a BFS search.

Redundancy =1- (20)
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C. Breadth First Search in Power-law Random Graph
Analytic Derivation: To analytically quantify the
redundancy of a random graph, we first derive the number of
second neighbors z; covered by BFS, which it is ideally
Go(1)G1(1) by (16). However, according to the discussion in
Section VB, z, will be lower than the ideal value when A is
not infinite due to the graph redundancy. To derive z. it is
largely equivalent to solve the problem that what the number
of balls (vertices) ever chosen (or inversely left not chosen) is
when choosing G',(1) balls out of N balls and put them back,
and repeat this procedure G'(1) times, with G (1) < N. For
simplicity, we first assume the probability each ball (vertex) to
be chosen is uniform. Thus the probability that cach ball is
un-selected is 1 — [G'(1¥N] after one time of this procedure.
After G'o(1) times of the procedure, the probability each bail

sclected becomes
Gl

1-[1-G" ())/ N|
Hence, if we assume ali balls are chosen uniformly and the
expectation of the effective number of chosen balls (second
neighbors) is

N g :
21—[1—6'1(1)/N}G°“)=N{ 1—[1—G'1(1)/N]G°(D}.
i=1
when neglecting the chance to repeatedly reach the first
neighbors.

However, vertices are arrived at by edges with probabilities
proportional to their degrees [1], rather than uniformly, as
previously stated (Section V.A). Suppose the probability each
vertex to be reached by certainedge is p; fori=1,2, ... Nand
pt+ pr ..+ py =1 In a power-law random graph, the
probability p; of vertex / is proportional to its degree and
equivalently given by

m %l/f

21

1Yt <N :
A4 Zi:l%llf
sucf:h that };p; = 1, where m, the maximum degree, is set by
N [4].

If ignoring the chance to revisit the first neighbors, we
could approximate the effective number of second neighbors

N ]

Z{ ]_..-[1_ Di G'l(l)f 0(1)}’

i=l

where we assume p; << 1 as G'(1) << N, which is true in
general cases. Note that the term p G'(1) approximately-
represents the expectation of vertex i to be visited with G';(1)
independent selections, each of which only selects one vertex
among the N ones (with returning back). This term is surely
not the exact expectation of second neighbors (the actual
value should be a little smaller), but an approximation, which
holds when p; -G’|(1) is much smaller than unity.

To generalize it, the effective mumber of vertices arrived at
the #™ depth or hop (Coverage per Depth or C;) for h > 2
could be approximated by

N
Ch=z;=%

i=]

pi=

as

{1—[1— B GLH }
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Nonetheless, this formula doesn’t consider the possibility the
scarch revisits previously reached wertices, which is
significant when the search is in the deeper depth. To
eliminate this problem, we first let J;, be the event that a
vertex is visited at the 2™ depth or hop, then the probability
vertex i is visited at the #™ hop is

. p; - Go(), for =1
= 1-[1-p, -Gy ()]

Therefore, the average number of non-repeatedly visited
vertices at the 4™ hop by BFS in PLRG is

(22)
Jforh 22

N

S R;,), forh=1

i=1

N h-1

STI [1—3({/])]-13,.(1@,) forh > 2,

i=] j=1

where P{J}) is given by (22). Intuitively, Coverage or C is
given by 2 4Ch.

To derive the redundancy, we Iet the number of edges
traversed or equivalently the number of queries generated at
the #™ hop (depth) be e;,. That is, QuervAsg is given by

‘o), forh=1
e, = 24)
G\ () 2y, forh =2,
Thus, the redundancy of BFS terminated at » = 7717 is
determined by
ZTTL z,
h=l
Redundancy|, .. = Em : (25)
=1 %h

Note that QFgrs is equivalent to 1—Redundancy. Furthermore,
according to (2), (3), (4) and (25), we obtain

TGtk
Z;, 1eh

where C, is specified by (23) and e, by (24).
A variation of BFS is Modified-BFS {(M-BFS) {14], which
adopts a fraction parameter fto serve as the probability that

SE| x[1- (1= R)Z+= * | 100% ,(26)

BFS
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Search Efficiency for M-BFS in PLRG

——{=1.0(8FS)
g [=0,7

20

Search Efficiency (%4}

Hep
Ftg. 6. Search Efficiency for M-BFS of various fraction parametersf'in a
power-law random graph with R = 1%

cach search agent uses to forward the query message to its
neighbors. For example, if = 0.5 and certain search agent has
10 neighbors, then it will forward the received query message
to 0.5:10 or 5 of its neighbors (randomly). Since its operation
is similar to BFS, the formula of SE specified by (26) still
holds for M-BFS, where C,, is given by (23), except
By =1-[1- 1 5, -G O],
)= p -G,
and ey, = £G(1) Cpy and e, = fG(1).

Performance Analysis: We use the following parameters
throughout this paper for the power-law network: N = 10,000,
exponent T = 2.1, R = 1%, and m = N'" ~ 80. These
parameters are similar to those used in [2]. By (18) and (19).
G'o(1y = 3.55 and G'1(1) = 16.21. Therefore, we present the
performance results, through a series of calculations of (21),
(23). (25), and (26), in Fig. 5.

Note that OF in Fig. 5 is not as perfect as that in a binary
tree, but decays dramatically duning # = 3~5, where the
redundancy comes from the exponentially generated messages,
which approves the results in [5] and [9]. Furthermore, SE in
PLRG is significantly high compared with that in a strictly
binary tree with the same R in the short-term search, while SE
in the tree is superior to that in PLRG in the long term. In sum,
BFS performs better in the local and inefficiently in the global,
when deploved in the power-law random graph. Similar
conclusion is drawn in the work [11] by its simulation results.

For M-BFS, we generate the data of SE of various fraction
parameters with the same settings used for BFS (¥ = 10,000
and 7 = 2.1) and plot them in Fig. 6. We find that the fraction
parameter controls the extent to which performance increases
in the local or decreases in the global—the larger the
parameter f is the more greatly the performance changes.
Hence, if the search is aimed to gain great performance
increase in the short term, we should take larger £ on the other
hand, smaller f5 give relatively consistent SE by
compromising the fast performance increase in the short-term
search. Therefore, the choice of the fraction parameter
depends on whether the short-term satisfaction or long-term
efficiency is more concerned.

(27)
(28)
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D. Multiple Random Walks in PLRG

The property of random walk is dramatically different from
BFS. The former traverses a graph in a random and
unpredictable fashion while the latier operates rather regularly.
In particular, the concept of depth used in BFS is not
applicable in random walk in that the walkers may go “back
and forth” in the graph so that we could only describe them
with respect to sop rather than depth. Therefore, we represent
search coverage in texms of Coverage per Hop (Cy).

Analytic Perivation: To derive the amalytic formulas of
performance metrics, we first obtain the mumber of
“candidates” that RW might traverse at the /# hop, which is
conceptually similar to the number of K neighbors of BFS, z;,
except RW doesn’t have the concept of “depth.” We denote
that for RW as r,,. Let R, be the event a vertex is the candidate
of RW at hop » (in the H neighbors of RW), then the
probability vertex i is the candidate of RW at hop / is

p;-G'oQ), fork=1
fi ()= {1~[1—p, G W] forh 22, (
Then, the average number of candidates of RW at hop % is
=30 P(Ry), (30)
where P{R;)1s given by (29).

Since random walkers have the behavior similar to those in
the binary tree if the forwarding candidates are kmown, we

i

29)

apply the line of reasoning in the binary tree for PLRG Hence.

the probability vertex i is visited at hop 4 for RW is
Py =B, N Ry) = B(Ry)- B3| Ry)

3
=P J1-11-1
cro -4
To deal with the phenomenon vertices may be revisited, we

apply the line of reasoning in BFS in PLRG Therefore, the
formula of C;, in (23) still holds for RW except using P{17) of

Gh
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RW (31). Thus, S£ for mandom walk with & walkers is given
by

_Ze, 1-(-RFES

=k kTTL R

where (; specified is by (23), in which P(1,} is formulated by
(3.

Search Efficiency Analysis: By the same conditions for
BFS, we plot SE for RW of various numbers of walkers & and
re-plot SE for BFS for comparison in Fig. 7. This figure shows
RW generates consistently increasing performance in most
cases of &, which can be answered by its controlled fashion of
message generation and granular coverage that have been
suggested in [5]. In addition, the curve of k¥ = 2000
reasonably explains the redundancy generated by too many
walkers despite its fine properties in PLRG Inspecting the
curveé of BFS, it outperforms RW in the local search but
mversely in the global (#>5), which confirm the simulation
results in {11].

In sum, SE well characterizes the delayed performance.
increase of RW and its consistent long-term performance.

E. Summary of Search Efficiency in PLRG

Based on the unified metric SE and i1s temporal analysis,
we better characterize that, in PLRG BFS gains its excellent
performance in the local search space but decays rapidly in the
long-term search, M-BFS controis its performance increase or
decrease by the- fraction parameter f and RW performs
consistently in the global search space while its performance
increase in relatively slow in the short-term search.
Furthermore, by the analysis of SE and QF, we can explain
the causes behind the ostensive phenomena: the great
short-term performance of BFS stems from its aggressive
search to deliver responsive results while keeping little
redundancy in the local and the long-term performance suffers
from the overwhelming search cost gencrated while it still
retrieves satisfactory results in the global. On the other hand,
the delayved performance increase of RW is due to its
conservative search and redundancy in the local while its
conservatism trades for relatively little redundancy and thus
consistent performance in the global.

In particular, our work for PLRG strongly reflects previous
works (simulations) in various respects and in turn is validated
for its ability of characterizing, especially in terms of temporal
analysis. Besides, SE analysis indicates the choice of the
fraction parameter depends on whether the short-term
satisfaction or long-term efficiency is more concerned.

Thus far, we have shown the potency of SE in performance
characterizing and reasoning, We will further demonstrate its
strength in guiding the design of search algorithms by
inventing a mew search based on SE and validate the
performance improvement of the new search, in the following
section.



V. DYNAMIC SEARCH: AN ALGORITHM DESIGNED BASED ON
SEARCH EFFICIECY

Evaluation metrics are critical in judging secarch
performance. If Coverage is the only metric concemned, one
may conclude that BFS is the best search algorithm despite the
overwhelming search cost. It overlooks the system load and
the aspect of operation efficiency. Moreover, if search cost is
the most important criterion of a searching network, RW
would be the best appropriate algorithm for that system.
However, it fails to evaluate the ability to achieve the final
end of scarching networks—to search out targeted results
responsively. In consequence, biased metrics may draw biased
conclusions and provide wrong guidelines for system design.
Thus, we endeavor to devise a new search based on the
comprehensive metric, SE, in order to demonstrate the
strength of SE. In addition to its strength in performance
characterization and reasoning, we show the strength of SE to
serve  as  the design  guidance of the invented
algorithm~-dvnamic search.

We attempt to utilize the merits of the three analyzed
algorithms from the viewpoint of SE for the new search
Accordingly. on the basis of the conclusions drawn in Section
IVE, the new algorithm should resemble BFS in short-term
searches, mimic RW for long-term propagation, and be able to
fine tune the performance through certain parameters as used
in M-BFS. Therefore, we separate the search process into two
phases. In the threshold phase (local space), the search is
similar to BFS with some dynamic tuning forwarding
probabilities, in the ultimate phase (long-term space), it
operates as the random walk search to consistently retain the
performance gained from the threshold phase. The detailed
operations are described in the following subsection.

A. Operation

Dynamic search staris as a probabilistic search with
dvnamic fraction parameter f; at different hops # when 7 < n.
For # > n, it switches to the random walk search. In the
threshold phase, it operates as M-BFS but with dynamic f;, for
h=1,2, ..., n. For example, for dynamic search withn =2, /|
=1, and /5 = 0.5, the search agents at # = 1 perform BFS,
performi M-BFS with = 0.5 at 4 = 2 and operate as random
walk for # > 3, Moreover. in the random-walk phase, the
number of walkers ¥ is determined by the outstanding query
messages or the effective search agents covered at the #™ hop,
that 1s, C,,.

Hence, the behavior of dynamic search changes
dynamically in terms of time (hop) to adapt to the appropriate
search properties in differcnt phases. Hopefully, in terms of SE,
it would outperform other algorithms in each phase thanks to
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TABLE II

PARAMETER DESIGN FOR DyNAMIC SEARCH N FIG 8
n| h | B 5

Dynamic-1 | 2 | 1.0 [ 1O | N/A
mamic-2 | 3 | 10 [ 10| 03

the fine-tuned design.

B. Performance Analysis

To analyze the characteristics of dynamic search, we use the
knowledge we have learned in previous sections where we
mathematically formulate SE. In this section, we analyze only
in the PLRG The general form of SE in (26) applies for
dynamic search and C,, is given by (23), except e, = f1-G'5(1),
€2ancn = G (1) Cha, €hop = Chep, and

PWy=|fu pi-G'o(l), forh=1 (32)
11~ fy- i -Gy (D] for 2 <h<n

E(Rh)'{l_(l_%r)k} forh>n,

where #, is specified by (30).

As for the parameter design, we refer to the observation in
Fig. 6, where BFS performs the best in the first two hops and
lower f5 for M-BFS achieve more consistent performance in
the long-term search. Thus, we design two sets of parameters:
the first one, Dynamic-1, performs BFS in the first two hops
and random walks in the following phase (» = 2); the second
one, Dynamic-2, performs BFS in the first two hops, M-BFS
with /= 0.3 at the third hop, and then random walks (n = 3).
The mumber of walkers & is in RW is dynamically determined
by the number of outstanding queries at hop #, i.e. Cp—,. The
detailed parameters are shown in Table II.
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We gencrate SE of Dynamic-I and -2 and make
performance comparison with BFS, M-BFS (f= 0.3), and RW
(k = 100) in Fig. 8. We take M-BFS with /= 0.3 in order to
compare with Dynamic-2, which uses f3 = 0.3. And we use
100 as the number of walks for RW since it generates the best
performance (in Fig. 7).

In Fig. 8, we can observe that dynamic searches outperform
other algorithms e¢specially in the long-term search. They
resemble BFS within A<2 as expected and perform
consistently as random walk does, thus outperforming others
in long-term search as we design. Note that Dynamic-2 trades
its performance at 2 = 3 for its long-term efficiency by using a
low probability /= 0.3, and vice versa for Dynamic-1.

VI. NON-UNIFORM OBJECT DISTRIBUTION

Throughout our analysis, for simplicity we had assumed the
object distribution as uniform. However, this assumption leads
to the concluston that QuervHits equals to R-Coverage. which
violates our argument in Section ILA that Coverage is only
one of the condittons to produce QueryHits. To support our
argument and justify our consideration of Queryfits in SE
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rather than Coverage, we analyze SE under a non-uniform
object distribution as proposed in [11].

In this object distribution, the probability a scarch agent
(vertex) owns certain object is proportional to its degree d. Let
O be the event that certain scarch agent owns the targeted
object, then the probability agent / has the object is
determined by
R-N.d,

N 4

=17
such that ¥,P(0) = R'N, where d;=m / i'" [4].

Analytic Derivation: Since the object distribution is not
uniform, we cannot simply uwse R-Coverage to represent
OueryvHits, which in fact is formulated by

QueryHits(h)

B(O)ed; = (33)

>

N
3 P(0)-P(},), forh=1

i=1 (34)

N k-1
> T1[1-ROEBE) |- BOEBY,), forh22,
=1 j=1



where P(17,) is givenby (22) and P{O) by (33).

For SuccessRate. we generalize the form 1-(1—-R)" in (4)
for the uniform distribution to deliver the one in non-uniform
distnbution:

N h
SuccessRate =1-TT [1[1- BB )] (35)
=] j=1
Now. equations (34), (35), and (24) suffice to solve SE defined
by (2) for BFS.

For RW, QueryHits(h) follows formula (34) derived in BFS
and SuccessRate follows (33) in BFS, where P,(I}) is given by
(31) and P{O) by (33).

Search Efficiency Analysis: We plot analvtic data in Fig. 9,
where the dashed-lines represent the datz under non-uniform
(NU) object distribution. We use the same colors to represent
searches with identical parameters. We find that S¥ in Fig. 9(a)
is significantly increased under NU distribution for both BFS
and RW. The performance increase is around 75% ~ 250% for
RWat A =7 and 250% for BFS at # = 2. This can be explained
by the graph property thai vertices tend to connect 1o those
with higher degrees [1, 2], which has been validated by
simulations in [11j,

Metrics Analysis: Fig. 9(c) indicates that every search in
question generates identical Coverage under different object
distributions, and Fig 9(d) draws the same conclusion for
Queryhfsg. Therefore, these two metrics totally fail to
distinguish the performance variance under NU distribution.
Moreover, in Fig. %(b), Query Efficiency, defined by
QuervHits/(QueryMsg-R). explains the performance increase
by indicating more QueryHits found given that same number
of QuervMsg. In consequence, SE, in which QF is a critical
element, well characterizes the performance difference in the
two scenarios.

VII. CONCLUSION

This paper defines a unified metric, Search Efficiency (SE),
addressing performance in searching networks in terms of
Querv  Efficiency,  responsiveness, and  reliability.
Mathematical formulas and approximations of SE and other
existing metrics are derived to characterize performance and
provide in-depth analysis for various search algorithms. We
justify the correctness of SE in performance evaluation by
analyzing it in an ideal topology, strictly binary tree. We
further demonstrate its ability to characterize search
performance in a large-scale PLRG the real-world network
topology.

We conclude that existing metrics either leads to biased
conclusions regarding performance or fail to reflect
performance variance when network conditions change.
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Moreover, thev tend to provide wrong guidelines for the
design of various algorithin parameters (e.g. 777, k., and f).
The proposed metric, SE, effectively characterizes the
performance variance under different network conditions and
deiivers objective and in-depth performance analysis.

In the final analvsis, the ouistanding performance of
dvnamic search, the new algorithm devised based on the
guidance of SE, manifests the efficacy of SE to conduct design
of search algorithms. Therefore, our proposal of SE
contributes to providing guidance for the future design of
searching networks.
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