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Abstract— It is often desirable to monitor end-to-end proper-
ties, such as loss rates or packet delays, across an entire network.
However, active end-to-end measurement in such settings does not
scale well, and so complete network-wide measurement quickly
becomes infeasible. More efficient measurement strategies are
therefore needed.

Previous work, examining this problem from a linear algebraic
perspective, has shown that for exact recovery of complete end-
to-end network properties, the number of paths that need to
be monitored can be reduced to approximately the number of
links in the network. In this paper we ask whether measurement
strategies of even greater efficiency are possible. We recast the
problem as one of statistical prediction and show that end-to-end
network properties may be accurately predicted in many cases
using a significantly smaller set of carefully chosen paths than
needed for exact recovery. We formulate a general framework for
the prediction problem, propose a simple class of predictors for
standard quantities of interest (e.g., averages, totals, differences),
and show that linear algebraic methods of subset selection may
be used to make effective choice of which paths to measure. We
explore the accuracy of the resulting methods both analytically
and numerically, in the context of real network topologies of
varying size. The feasibility of our methods derives from the low
effective rank of routing matrices as encountered in practice,
which appears to be a new observation of interest in its own
right. The resulting framework, which is quite general, appears
to hold promise for studying and improving the efficiency of
monitoring of end-to-end-network properties.

I. INTRODUCTION

In many settings it can be useful to have a global view of
aggregate conditions across an entire network. For example,
network operators often monitor latency in their networks
via ping measurements between routers. Larger scale mea-
surement projects, such as the Internet End-to-end Perfor-
mance Monitoring project (IEPM) attempt to estimate regional
or network-wide averages of metrics including latency and
packet loss [1]. Such network-wide metrics can be useful for
gauging typical user experience over time (as in the IEPM
project), monitoring network performance during network
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failures, choosing alternate paths in an overlay, or gauging
the network’s response to exceptional events such as Y2K or
9–11.

Such systems are generally organized around all-pairs net-
work monitoring; each endpoint monitors the paths to all other
endpoints. However this architecture cannot scale up to the
level required for large-scale network or overlay monitoring,
since the number of measurements made scales with the
square of the number of network endpoints. Furthermore, this
approach involves highly redundant measurements; many links
in the network are repeatedly measured.

Earlier work in [2] and [3] has shown that it is possible
to reduce the number of end-to-end measurements to ap-
proximately the number of “virtual links” (identifiable link
subsets)—which typically grows much slower than the square
of the number of nodes—and yet still recover the complete
set of end-to-end path properties exactly. This result is based
on a linear algebraic analysis of routing matrices. A routing
matrix is a binary matrix that specifies which links appear in
which end-to-end paths. Such a matrix G has size (#paths)×
(#links), and Gi,j = 1 if and only if link j is found along the
route taken by path i. The results in [2] follow from the fact
that the rank of G, which is generally equal to the number of
independent paths in the network, tends to be much smaller
than the total number of paths. Since a maximal set of such
independent paths can be used to reconstruct any other path in
the network, it is sufficient to monitor only this set. A method
for choosing such a set, based on a linear algebraic method
of subset selection is given in [2].

More recently, Chen and colleagues have shown in [4]
that the number of paths needed for their method scales at
worst like a logarithmic factor times the number of nodes
in a collection of real and simulated networks. Furthermore,
they argue that this behavior is to be expected in internet
networks, due to the high degree of sharing between paths
as they traverse common routes in the dense core.

In this paper we ask whether network path properties may
be monitored approximately, as opposed to exactly, in an
accurate fashion using a further-reduced set of end-to-end
measurements. We are concerned in particular with approx-
imate summaries of delays or packet losses along all paths
in a network. These approximate network summaries may be



used in a variety of ways. They can be used to form per-
path averages so as to give an “average user experience”
measure. Furthermore, they may be used as a lightweight
monitoring system for detecting large changes in network
conditions, which can then trigger more expensive, detailed
network monitoring. Finally, such methods can be used to
efficiently decide between sets of alternative paths to remote
hosts, as is required for BGP-based route optimization [5], [6].

We show that it is indeed feasible to produce accurate
summaries of network-wide path properties based on a highly
reduced subset of end-to-end measurements—typically much
smaller than the number of independent paths. Typical results
show that it is possible to estimate metrics like network-wide
averages with relative error of less than 10%, while only
measuring about 20–30% of the paths needed by previous
methods.

To accomplish this, we recast the problem as one of statis-
tical prediction, based on sampling from a finite population.
We formulate a general framework for this prediction problem
and present a general class of linear predictors for common
network quantities of interest, such as averages, totals, and
differences.

Besides placing our work on a firm statistical footing, our
use of linear model theory provides insights into algorithms
that can assist in answering a key question: if we are only to
measure a subset of paths in a network, which paths should
we measure? We use the theory to motivate an algorithm for
path selection and show that it performs quite well in practice.

The success of our approach hinges on the observation that,
in practice, routing matrices have low effective rank. This
means that all the paths in the network can be approximately
constructed from a set of paths even smaller than the rank of
G. Using routing information from a variety of real networks,
we show that such routing matrices generally show effective
rank much smaller than their actual rank. We explore the
reasons for low effective rank, and argue that it is a remarkably
common property in routing matrices. The implication is that
certain links in the network are more important to measure
than others when forming an approximate, network-wide view.
This phenomenon is interesting in its own right, and has not
been remarked upon before in the networking literature.

The remainder of the paper is organized as follows. In
Section II, we provide background on the problem and explain
the importance of a routing matrix’s rank. In Section III, we
illustrate the phenomenon of low effective rank in routing
matrices, and explore reasons why this is the case. In Sec-
tion IV, we present our methodology for statistical prediction
of aggregate network path properties. A detailed numerical
evaluation of the methodology is given in Section V. Finally,
in Section VI we conclude and discuss future work.

II. BACKGROUND

Let G = (V, E) be a strongly connected, directed network
graph, where the nodes in V represent network devices, and
the (directed) edges in E represent links between those devices.
Additionally, let P be the set of all paths on the network. Let

nv = |V|, ne = |E|, and np = |P| denote the number of
devices, links, and paths, respectively.

Now consider a metric measured on the paths i ∈ P of
the network whose value y ∈ Rnp is linearly related to the
value x ∈ Rne of that same metric over the links j ∈ E . In
particular, we are interested in the case where np � ne and the
linear relation between y and x is given by y = Gx, where
G ∈ {0, 1}np×ne is a routing matrix whose entries simply
indicate the traversal of a given link by a given path, i.e.,

Gi,j =

{
1 if path i traverses link j

0 otherwise.
(1)

For example, letting α denote the packet loss probabilities
on paths, and β, the corresponding probabilities on links,
and assuming independence among loss-events on links, the
relation between the path-wise and link-wise loss probabilities
becomes y = Gx on a logarithmic scale, where yi = log(1 −
αi) and xj = log(1 − βj).

We take the monitoring of aggregate conditions on a net-
work to mean the knowledge of some summary statistic(s) of
values in y, such as averages, medians, standard deviations,
or quantiles. In this paper we will restrict our attention to
summaries that take the form of linear combinations lT y of the
elements of y, for some l ∈ Rnp . Three cases are of particular
interest. If li ≡ 1/np, then lT y is simply the network-wide
average. Conversely, if li = 1 for some fixed i and zero
otherwise, then lT y is the value of the metric on path i alone.
Finally, if li = 1/nA for paths i ∈ A, and li = −1/nB for
paths i ∈ B, for some subsets of paths A and B of size nA

and nB , then lT y is just the difference of the averages on these
subsets.

Of course, if one knows that one is interested in only a
specific path or handful of paths, then the optimal strategy
would be to simply monitor that path(s). Here we are in-
terested in strategies that allow for the capacity for whole-
network monitoring, such as in the form of a single network-
wide average or averages over various and possibly changing
subsets of the network. Our work is motivated by the simple
observations that (i) exact knowledge of lT y in such a setting
would seem to require measurement of the yi on all np

paths in P , and (ii) such a requirement quickly can become
prohibitive, since np = O(n2

v) and thus scales poorly with
the size of the network. Therefore, we might hope instead
to obtain sufficiently accurate approximate knowledge of lT y
through measurements on only some comparatively small but
representative subset of paths.

An initial solution to this problem is provided in [2], where
it is noted that in order to obtain the values of all elements yi of
y, the measurement of all np paths is unnecessary: one need
only measure an appropriate subset of q = Rank(G) ≤ ne

paths i ∈ P . To see this, let G̃ denote any matrix formed
from rows of G that span the row space Row(G), and let ỹ
denote the corresponding elements of y. Since y = Gx we
certainly have ỹ = G̃x, and so for any x̃ satisfying ỹ = G̃x̃
we have G̃(x̃− x) = 0. Furthermore, since every row of G is



a linear combination of rows of G̃ we have that G(x̃−x) = 0.
Thus any solution x̃ of the reduced system will be a solution
of the full system, which means that y may be obtained as
Gx̃ = y. Finally, recall that the dimension of the row space
of a matrix G is equal to its rank q, and hence q linearly
independent rows of G are sufficient to span Row(G). A more
extensive development of this argument may be found in [2],
and an algorithm based on the QR-decomposition is provided
for selecting the rows that form G̃. An analogous presentation
may be found in [7], in the context of Boolean algebras, for
the problem of detecting link failures.

Through the above argument, the rank q of the routing
matrix G is found to be an important quantity in regards to
the sampling of paths for network monitoring. However, often
it is the case that while a matrix technically has some rank q,
it effectively has some lower rank q′, sometimes significantly
lower. This means that some q−q′ rows (columns) of the ma-
trix are nearly (i.e., within some range of numerical tolerance)
linear combinations of the remaining q′. In such situations,
numerical procedures typically can be developed around the
use of just those q′ rows (columns) that are essentially as
accurate as those that use the full set of size q. With respect
to the present paper, the relevance of this observation is the
implication that networks with routing matrices G of effective
rank q′ � q may potentially allow for efficient monitoring
using a very small number of paths. We show in the remainder
of this paper that this is indeed the case.

Note that in using fewer than q paths we are giving up the
ability to recover y (and functions thereof) exactly. Viewed
abstractly, without the surrounding networking context, the
problem we are facing can be viewed profitably as one of
statistical prediction. Specifically, we wish to predict a linear
function lT y of the values y in a finite population, based on a
sample, say ys, of some subset of k of those values. From this
perspective, a number of fundamental issues, regarding which
paths to measure and how best to use the information in the
measurements, can be given natural statistical interpretations
in terms of statistical risk. We exploit this in developing our
methodology, as will be seen in Section IV. Of course, in
any statistical prediction problem, the degree to which useful
predictions may be made relies heavily on the amount of
predictive information there is in the measurements taken. In
the context of our present problem, this issue essentially boils
down to a question of how much sharing there is of links
among paths in the network. And the latter can be determined
through study of the routing matrix G.

III. ROUTING MATRICES AND EFFECTIVE RANK

As a motivating example, consider the Abilene high-
performance network which serves Internet2 (the U.S. national
research and education backbone). This network, depicted in
Figure 1, consists of 11 nodes located across the continental
United States. Note that there are only 15 · 2 = 30 directed
links. With so few links from which to choose, many paths
are forced to share. Intuitively, this suggests that many of
the rows in G should be similar. That is, for many paths

Fig. 1. Map of Abilene
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Fig. 2. Spectrum of the routing matrix G for Abilene.

i, i′ ∈ P , the entries Gi,j and Gi′,j should differ only for a
relatively few links j ∈ E . Therefore, the vectors Gi,· and Gi′,·
should be nearly dependent in many cases, which suggests
that the effective rank of G for the Abilene network should
be noticeably less than 30.

The singular value decomposition (SVD) is a standard
device by which the discussion of effective rank is made
more precise [8]. The SVD of a matrix M ∈ Rm×n is a
decomposition of the form M = U∆V T where U and V are
m×m and n× n orthogonal matrices, respectively, and ∆ is
an m × n diagonal matrix, whose diagonal entries δi ≥ δi+1

are known as the singular values. A key property of this
decomposition is the relation

Mvi = δiui (2)

between the columns ui and vi of U and V , respectively. As
a result, the columns of U and V provide a natural and useful
basis when working with M . The singular values themselves
give us insight into the structure of M . For example, the largest
i for which δi > 0 determines the rank of M , and the manner
in which the δi decay is useful in gauging the effective rank.
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Fig. 3. The energy in the first four distinct “highways” of an Abilene routing matrix.

We note that the SVD of a matrix M is intimately related to the
eigen-decomposition of MMT . In particular, the square root
of the eigenvalues of MMT are in fact the singular values of
M , and the collection of either is often called the spectrum of
the corresponding matrix.

Consider Figure 2, in which the singular values for a typical
routing matrix G from the Abilene network are shown. The
sharp decay is evidence of a non-trivial amount of linear
dependence (and hence similarity) among the rows of G.
Note that there is a sharp drop between the second and third
largest singular values that forms a ‘knee’ in the spectrum.
The effective rank of a matrix is determined by looking for a
large gap that separates the singular values into subsets of large
and small singular values [8]. Therefore, the drop in Figure 2
suggests that as little as two paths may be enough to recover
meaningful information about the rest of y.

The nature of the dependence among the paths in G is
captured by the singular vectors vi. Note that by (2), each
path in G is a weighted sum of the vis. Since the vis are
orthogonal, they capture independent patterns that arise among
the paths in G, and the magnitude of contribution of each vi

to the set of all paths in G is measured by δi. Thus the vis
corresponding to the largest δis represent the “highways” that
are most commonly used among the paths in G.

Figure 3 provides visual representations of the energy in
the first four distinct “highways” of an Abilene routing matrix,
which can be associated with roughly 70% of the total energy.
In this figure, we have plotted the link corresponding to each
vector component whose squared value is greater than 0.01.
The components plotted typically constitute 95% to 99% of
the energy in the singular vector. Each link is drawn with a
thickness that is roughly proportional to the magnitude of the
component.

Figure 3(a) shows v1, which is the strongest pattern present
in Abilene routes. The Indianapolis-Kansas City link has
greatest contribution, indicating that this link is heavily shared
among the paths in G, which befits its position as a central
link in the network. It is also notable that this “highway”
consists of a connected east-west path through the network.
The other singular vectors are similarly interpretable: the next
two (Figures 3(b) and (c)) capture modifications of this path, in
conjunction with addition of the most immediately connected
north-south links; and the fourth (Figure 3(d)) captures the
southern east-west path through the network.

We have found that the dominance of a small number of
heavily-used paths as exhibited by Abilene appears to be a
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Fig. 4. Spectra of G for five networks measured by Rocketfuel. The Abilene
spectrum from Figure 2 has been plotted for comparison. (Note: The spectrum
for each network has been rescaled by the largest singular value δ1 and the
indices re-scaled to the unit interval.)

common phenomenon in ISP networks. In fact, this effect
can be even more pronounced in larger networks. To assess
this effect in larger networks, we used data gathered by
the Rocketfuel topology mapping engine [9], [10]. In these
networks, nodes correspond to routers and links to inter-router
connections. We looked at five different ISPs, ranging in size
from 80 nodes and 147 links to 164 nodes and 328 links.

As with Abilene, we assess the effective dimension of these
networks from their spectra. Figure 4 presents the spectra for
these networks. For each network, a significant knee occurs
by the time we have gone through 20% of the singular values,
indicating an effective dimension much smaller than the rank
of the routing matrix.

The reason for the remarkable consistency in these results
across different networks is not obvious. It is clear that in
general, networks will be engineered such that paths tend
to share links, since link sharing amortizes investment and
increases traffic aggregation (improving manageability). How-
ever, it appears that even in networks that are not explicitly
engineered in this way, a high degree of path sharing can occur.
We illustrate this point using synthetic routing matrices.

To show that low effective rank in routing matrices may be
a remarkably common phenomenon, we illustrate its presence
in an extreme form of topology bearing little resemblance to
a network graph. We take the complete graph on 100 nodes,
i.e., K100, equip the

(
100
2

)
edges with weights that are drawn
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Fig. 5. Spectra for the routing matrices of ten K100 networks, based
on shortest-path routing with independent and identically distributed expo-
nential(1) edge-weights. Overlaid are the scaled spectra for the Rocketfuel
datasets.

independently and identically from an exponential distribution
with mean one, and route between all nodes using shortest
paths.

This experiment was repeated 10 times and the resulting
spectra are shown in Figure 5, along with the same ISP
spectra shown in Figure 4. It is evident that the spectra of
the random graphs are strikingly similar to those of the ISP
networks, despite the lack of any overt engineering involved
in the construction of the K100 graphs.

In summary, it is this decay in the spectra of routing
matrices that makes the methods we develop in this paper
efficient. It should be noted that, as far as the authors can tell,
this general phenomenon does not seem to have been remarked
upon in previous literature and in and of itself seems to warrant
further study.

IV. PREDICTION OF END-TO-END NETWORK PROPERTIES

In this section we describe a statistical framework for
prediction of end-to-end network properties. Our choice of
predictors and their properties, given a set of measured paths,
are described in Section IV-A. The problem of selecting which
paths to measure is addressed in Section IV-B.

A. Statistical prediction from sampled paths

Let G = (V, E) be a network graph, x a metric (such as
a function of delay or packet loss) on the set E of ne links,
G an np × ne routing matrix, and y = Gx the corresponding
aggregation of the metric to the set P of np paths, as defined in
Section II. If we define µ and Σ to be the mean and covariance
of x, respectively, we note that the corresponding values of
y are simply ν = Gµ and V = GΣGT , respectively. The
majority of the work that follows will be in terms of just the
first two moments of x and y, which allows us to avoid having
to make full distributional assumptions.

Now fix k ≤ Rank(G) and let ys denote the values
yi1 , . . . , yik

of the metric for k paths i1, . . . , ik ∈ P that

are to be sampled (i.e., measured). Similarly, let yr denote the
values for those np − k paths that remain. If we let Gs be
those rows of G corresponding to the k paths i1, . . . , ik, and
Gr, the remaining rows, then we may rewrite G in the form

G =
[
Gs

Gr

]
, (3)

and we may write y as

y =
[
ys

yr

]
=

[
Gsx
Grx

]
. (4)

Furthermore, the mean and covariance of y may be written as

ν =
[
νs

νr

]
=

[
Gsµ
Grµ

]
(5)

and

V =
[
Vss Vsr

Vrs Vrr

]
=

[
GsΣGT

s GsΣGT
r

GrΣGT
s GrΣGT

r

]
. (6)

Of special interest to us in what follows will be the case Σ =
σ2I , wherein the link measurements are uncorrelated and share
a common variance σ2 > 0. In this case, the expression for V
in (6) simplifies to terms proportional to products of Gs and
Gr.

Recall that our goal is to extract accurate, approximate
knowledge of a given linear summary of global network
path conditions (i.e., lT y) from the k sampled path values
in ys. This goal can be viewed as a particular instance of
the classical problem of prediction in the statistical literature
on sampling [11]. If the quality of a predictor, say p(ys) is
measured by its mean squared prediction error (MSPE), i.e.,
E[(lT y − p(ys))2], then it is known that the best predictor is
given by the posterior mean

E[lT y|ys] = lTs ys + E[lTr yr|ys] , (7)

where ls and lr are defined analogous to the other quantities
above.

Note that the optimal predictor in (7) is simply the sum of
the known component lTs ys and the optimal predictor of the
remaining component lTr yr. Unfortunately, the specific form of
the latter will depend on the joint distribution of the elements
of y, the determination of which often may not be evident in
practice. In such cases, it is common to restrict attention to
some smaller, simpler sub-class of possible predictors, with the
class of linear predictors of the form bT ys being a canonical
choice. In that case, the best linear predictor (BLP) of lT y
can be shown to be of the form

aT ys = lTs ys + lTr Grµ + lTr c∗(ys − Gsµ) , (8)

where c∗ is any solution of Vsr = Vssc
∗T . The derivation of

this result follows similarly to the analogous result for simple
linear statistical models in [12]. If Vss is invertible, it is natural
to set c∗ = VrsV

−1
ss ; otherwise, c∗ may be defined through

a generalized inverse. We note that whether or not Vss is
invertible, which without loss of generality we will assume
throughout most of what follows, depends on both G and Σ.



Unfortunately, the BLP in (8) depends on µ, which is
generally unknown in practice; therefore, the BLP is an ideal
that cannot be computed. However, since all of the elements
of y involve at least some fraction of the elements in x, it may
be possible to obtain a useful estimate of µ from the measured
values ys. Statistical theory suggests solving the corresponding
generalized least squares problem

min
µ

(ys − Gsµ)T
V −1

ss (ys − Gsµ) (9)

to obtain the estimate

µ̂ = [GT
s V −1

ss Gs]−GT
s V −1

ss ys . (10)

Here M− denotes a generalized inverse of the matrix M . The
choice of which generalized inverse to use is essentially a
choice of what values to assign to the unidentifiable values
in x. In later sections we will use the Moore-Penrose inverse
which has the effect of assuming links not part of a sampled
path have value zero, although this is not the only choice
possible.

The substitution of µ̂ for µ in (8) produces an estimate of
the BLP, say âT ys, that is a function of only the measurements
ys, the routing matrix G, and the link covariance matrix Σ.
Under certain conditions, estimated BLPs (E-BLPs) produced
in this manner will be unbiased, i.e., their expected values
will match that of E[lT y], and they will in fact be the best
among all linear, unbiased predictors, in the sense of having
minimum MSPE within that class [12]. Of course, it is easy to
see that in the current setting these properties will not hold: the
prediction of yi for a path i running entirely across links not
traversed by any of the measured paths i1, . . . , ik can clearly
be biased. Nevertheless, it is not unreasonable to expect that
âT ys may still be a useful predictor, and the numerical results
in Section V bear out this expectation.

For our numerical results, and indeed for most of the rest of
this paper, we focus on the case where Σ ∝ I . It is instructive
to first consider the BLP under this condition. Note that the
covariance among measured paths has the form Vss ∝ GsG

T
s ,

and therefore is invertible if and only if these paths correspond
to a set of independent rows in G. Assuming this to be the
case, the MSPE for the BLP is given by1

MSPE(aT ys) = σ2lTr Gr(I − Bs)GT
r lr , (11)

where Bs ≡ GT
s (GsG

T
s )−1Gs. We note that Bs is just an

orthogonal projection matrix, representing projection onto the
rows of Gs, and is thus symmetric and idempotent. Therefore,
the MSPE in (11) is just proportional to the square of the
(Euclidean) norm of the residual of GT

r lr after projection onto
the rows of Gs. For example, if lr consists of only a single
one, for some path i not in the sample, and zeros everywhere
else, then this MSPE simply measures the degree to which the
row in G for path i lies in the span of the rows in Gs.

1Formulas for MSPEs for the case of general link covariance Σ are
straightforward generalizations of those that we provide here and below, but
are less interpretable and instructive, and therefore are omitted for reasons of
space.

Now consider the construction of the E-BLP. With Σ ∝ I ,
the generalized least squares estimator µ̂ in (10) reduces to

µ̂ = [GT
s (GsG

T
s )−1Gs]−GT

s (GsG
T
s )−1ys. (12)

This expression may be further reduced in an informative
manner. In particular, since ys = Gsx, we find that µ̂ =
B−

s Bsx. Furthermore, if we choose to define the generalized
inverse B−

s through the Moore-Penrose inverse, which we
denote by M+ for an arbitrary matrix M , then properties of
the latter lead to the further reduction µ̂ = Bsx. Finally, noting
that the orthogonal projection of x onto Row(Gs) may also
be expressed as G+

s Gsx, we have that µ̂ = G+
s ys.

Therefore, the E-BLP when Σ ∝ I can be expressed as

âT ys = lTs ys + lTr GrG
+
s ys (13)

or, more compactly, as

âT ys = lT GG+
s ys. (14)

In other words, the E-BLP in this setting can be seen to be
the result of three steps: (i) estimating x by its Moore-Penrose
generalized inverse x̂ = G+

s ys, (ii) mapping that estimate to
a vector of predicted path values ŷ = Gx̂, and (iii) predicting
lT y by lT ŷ. It should be noted, of course, that in the case
of more general Σ such a simplification does not continue
to hold, although the relevant formulas are straightforward to
produce.

Seen in this light, the first step in our method involves
inference of network-internal conditions from end-to-end mea-
surements. This problem, known as network tomography [13]
[14], has been well studied and a range of methods have been
proposed for its solution. Our work differs in that we motivate
the particular solution we adopt starting from the theory of
sampling with linear models, and show how the tomography
problem fits into a sampling setting. Furthermore, we show
that using linear model theory drives us to make use of the
structure of the routing matrix to make informed choices about
which paths to sample (as described in the next section).
Thus, although the use of the generalized inverse is not as
sophisticated as some methods used for network tomography,
it focuses attention on the information needed for good path
selection. We also note that more sophisticated methods for
solving the network tomography step can certainly be used in
conjunction with our path-selection algorithms.

The MSPE for the E-BLP in (14) can be shown to have the
form

MSPE(âT ys) = E[(âT ys − lT y)2]

= MSPE(aT ys) + bias2(âT ys) ,
(15)

where

bias(âT ys) = −[(I − Bs)GT
r lr]T µ . (16)

In other words, the MSPE for the E-BLP can be expressed as
a sum of the MSPE for the BLP plus an additional bias term.
Note that the bias term consists of two parts: the link mean
µ and a multiplying matrix (I −Bs)GT

r lr. The latter consists



of the components of unmeasured paths relevant to lr that lie
orthogonal to Row(Gs). So we can see from examination of
(11) and (16), precisely how the choice of which rows are
included in Gs, and their relationship to the un-included rows
in Gr, plays a fundamental role in determining the accuracy
of our predictor âT ys. Therefore, we next turn our attention
to the matter of selecting these rows.

B. Path selection

Suppose we have resources to measure a total of k paths in
a network. Which k paths should be measured? In light of the
statistical framework we have just derived, a natural response
is that measurements should be taken on those k paths in P
that collectively minimize the expression for MSPE(âT ys) in
(15), among all subsets of k paths. However, this expression
depends on the unknown values µ and σ2, and so this min-
imization is not generally feasible in practice. Therefore, we
choose instead to minimize the expression for MSPE(aT ys)
in (11), which allows us to avoid this problem. This approach
is intuitively appealing, given that the two predictors are
equivalent up to knowledge of µ. Furthermore, the results of
the numerical experiment described in Section V-C confirm its
robustness across various changes in parameterization.

Now consider the relevance of the number of paths k
we wish to measure. For k = Rank(G), any set of paths
corresponding to k linearly independent rows of G will suffice,
since these rows will span Row(G) and the entire vector of
path values y may therefore be recovered. This observation
forms the basis of the work in [2], as explained in Section II.
Note that (11) will be zero in this case a priori. Motivated by
the results in Section III, our interest in this paper is in the
case where fewer than Rank(G) paths are to be measured—
possibly much fewer—and therefore not all of Row(G) will be
spanned. In that case (11) will be nonzero, and it may be seen
that in seeking to minimize this quantity we are faced with the
task of finding a subset of k paths such that the corresponding
rows span as much of Row(G) as possible.

From an algorithmic perspective, this task is equivalent to
the problem of subset selection in the field of computational
linear algebra. See [8, Ch 12], for example. This problem is
NP-complete and so exact, efficient algorithms for its solution
do not exist. However, a variety of methods have been pro-
posed for finding an approximate solution. Given a matrix M
and choice of integer k, these methods generally seek to find a
subset of k linearly independent rows (or columns) of M that
accurately approximate its first k singular dimensions and form
a well-conditioned submatrix. For calculating the numerical
results in Section V, we adapted the method described in
Algorithm 12.2.1 of [8, p. 574], which rests on the use
of a particular QR factorization2 with column pivoting. In
particular, to choose an efficient set of k paths to measure,
we first compute UT

(k)P(k) = QR, where U(k) is an np × k

2We note that [2] also propose the use of an algorithm based on a QR
factorization. However, the details of their algorithm differ from that used
here, essentially because they need not be concerned with the condition of
Gs, since their Gs will be of full rank, i.e., k = Rank(G).

matrix composed of the first k columns of U from the SVD
G = U∆V T , and P(k) is an np × np permutation matrix
defined by the column pivoting. We then take Gs to be the
submatrix formed by the first k rows of PT

(k)G. We refer the
reader to [8] for a more detailed motivation for and description
of the general algorithm.

Note that P(k) will depend on k, as indicated by our
notation, and therefore must be computed separately for each
choice of k. It therefore follows that the subsets of rows
selected from G for successively larger choices of k will not
necessarily be nested. In some settings it might be desirable to
have a nested sequence of subsets across k, such as when adap-
tively adding or removing paths in an online manner. In that
case, one solution to this problem is to first compute P(kmax),
where kmax is the largest number of paths of interest, and then
to successively form Gs from the first k rows of PT

(kmax)G for
all relevant k ≤ kmax. The comparative performance of the
nested and non-nested approaches is among the various issues
we explore in Section V.

In summary, for the particular predictor in (14), the alge-
braic method of subset selection should provide an effective
means for selecting a set of k paths, for given choice of k,
that approximately minimizes the MSPE in (11) among all
such sets. Overall, the complexity of the calculations behind
this E-BLP under this approach is O(n2

pne). This figure is
dominated by the calculation of the SVD of G, since the QR
factorization with column pivoting underlying our selection of
paths is of O(k2np) complexity, and the computation of G+

s is
only O(n2

ek). Note that this bound uses a general algorithm for
computing the full SVD; more specialized algorithms for the
SVD, such as those based on Krylov subspaces or other sparse
matrix techniques, may quite possibly improve performance.

V. NUMERICAL RESULTS

We conducted a series of numerical studies in order to
obtain a preliminary assessment of the merits of our proposed
framework for efficient monitoring of end-to-end network
properties. The results of these studies are presented in this
section, where we summarize a combination of analytic and
simulated quantities calculated in the context of the Abilene
network and the Rocketfuel topologies discussed in Section III.
We explore both prediction of the network-wide average, as a
case of canonical interest, and prediction of individual path-
wise metrics, as an arguably extreme case. The results of the
simulations show promise, which has been borne out by later
work with delay data from Abilene [15].

A. Efficient monitoring of a network average

The results in Section III suggest that measurements on
a relatively small number of paths should be sufficient for
summarizing network-wide end-to-end properties with some
accuracy. The linear prediction framework described in Sec-
tion IV-A yields a natural class of predictors for general
network summaries of the form lT y, and the quality of these
predictors, in the special case of Σ ∝ I upon which we focus,
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Fig. 6. Root mean squared prediction error for the E-BLP âT ys and the
sample mean ȳs using non-nested and nested row selection methods.

is found to be directly related to the choice of paths mea-
sured. The method of subset selection we propose to use for
choosing which paths to measure, as sketched in Section IV-
B, incorporates elements of the same SVD of the routing
matrix G that underlies our results in Section III. Putting
these three observations together, it is reasonable to expect
that, for predictions based on paths chosen in this manner,
the MSPE should decay fairly quickly as a function of the
number of paths chosen. In order to test this expectation, we
study the quality of the predictor âT ys through its statistical
risk MSPE(âT ys), as a function of k, in the case where lT y
is the network-wide average, i.e., lT = (1/np, . . . , 1/np).

We begin with the Abilene network, described in Section III,
for which calculations of the MSPE in (15) are shown in
Figure 6. Here and throughout the rest of this section, the
MSPE is shown on a square-root scale (i.e., RMSPE), so that
it may be interpreted in the same units as the measurements
themselves. As mentioned in Section II, the basic equations
y = Gx describe the relationship between link-based and
path-based measurements under a variety of metrics, including
packet loss. In the Abilene network typical link loss rates have
been observed to be around βj ≈ 0.1% [1], which corresponds
to values of xj = log(1−βj) around log(1−0.001) ≈ −0.001.
Therefore, we set the expected link values µj identically equal
to −0.001 for all links j. In addition, we chose to set the
common variance σ2 at (0.001)2, so that the standard deviation
σ is proportional to the mean.

Results in Figure 6 show the RMSPE of the E-BLP for both
the nested and non-nested methods of subset selection men-
tioned in Section IV-B. The former method was implemented
with kmax = 30, which is the rank of the Abilene routing
matrix used. Not surprisingly, results for the nested method
are worse than those for the non-nested method, although
interestingly, the methods become quite comparable by about
k = 15. The RMSPE for the E-BLP in the non-nested case
is seen to decay quickly until k = 10, at which point it is
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mum number of paths needed for âT ys to predict lT y without error.

roughly of the same order of magnitude as the individual link
means µj .

By way of comparison, we also show the performance of
the sample mean ȳs, a simple alternative linear estimator of
the network-wide average. Two points are worth noting. First,
under both methods of subset selection, the sample mean
never comes close to the level of accuracy achieved by the
E-BLP under either method by k = 15. That this should
be the case is not surprising, since these methods are geared
toward minimizing the MSPE of the E-BLP, and not that of the
sample mean. Second, by definition the sample mean cannot be
expected to have zero RMSPE by the time k = Rank(G), as
in the case of the E-BLP, which explains its elevated behavior
for large k. Based on the results of Figure 6, we use only
the E-BLP with non-nested path selection for the remainder
of this section.

In Figure 7 we show the same RMSPE calculations, with
the same settings for µ and σ2, for the three smallest3

of the Rocketfuel topologies encountered in Section III. To
facilitate comparison across networks, the RMSPE was scaled
by E[lT y] on the y-axis and the x-axis was rescaled to values
on the unit interval, thereby adjusting both axes for differences
in network size. The results for Abilene are shown as well.
The similarity across networks is somewhat remarkable, with
the relative RMSPE for all but the smaller Abilene network at
roughly 10% using only roughly 20% of the paths (Abilene is
seen to achieve this level just beyond 25%). Table I provides
an alternative representation of this point, in terms of actual
numbers of paths. Together, these results provide strong evi-
dence for our central point, namely that network-wide averages
of end-to-end properties may be predicted with high accuracy
from measurements on a relatively small fraction of carefully
chosen paths.

3Calculations for the other two topologies presented memory issues for the
machines used for this paper.



Network np Rank(G) RMSPE < 10%
Abilene 110 30 8
AS 1221 10716 306 65
AS 1755 7482 318 61
AS 3967 6162 280 66

TABLE I

COMPARISON OF NETWORKS IN FIGURE 7, SHOWING NUMBER OF PATHS

BY WHICH RMSPE IS LESS THAN 10% OF E[lT y].

B. Observed prediction error: a simulation study

The RMSPE is a measure of statistical risk and, as such, is
simply a single analytical summary of expected behavior of
our predictor over all possible network conditions specified in
connection with a given choice of µ and σ2. To gain insight
into the variation in this behavior over individual instances
of network conditions, we conducted a simulation study. A
vector of link values x was simulated 1000 times under each
of two models, the path values y = Gx were computed, and
the E-BLP (with non-nested subset selection) was calculated
each time. Each xj was drawn independently and identically
distributed as N(−0.001, 0.001) in the first model and as
−Exp(0.001) in the second model. These two distributions
share the same mean and variance, so the MSPE is the same
in either case. But their higher order moments (and hence
quantities like skewness and kurtosis) are markedly different.

The results for the normal distribution are shown in Fig-
ure 8, while those for the exponential distribution are shown
in Figure 9. In each case, boxplots are used to summarize
the prediction error âT ys − lT y over all 1000 trials of the
simulation, for each k, where again lT = (1/np, . . . , 1/np)
corresponds to the network-wide average. The boxplots for the
two simulations are quite similar, with the prediction errors
for the exponential distribution showing a slightly stronger
skewness and heavier tails. Their means mimic the values of
the RMSPE in Figure 6, and their variation decreases with
increasing k. Overall, they suggest that, for monitoring the
network-wide average, (i) the RMSPE is a reasonably accurate
summary of the sample-to-sample behavior of our predictor,
and (ii) that behavior is fairly robust to the underlying distri-
bution.

Note that although the results shown are only for the Abi-
lene network, similar results were observed for the Rocketfuel
networks; those results have been left out due to considerations
of space. Furthermore, to the degree that the results for Abilene
in Sections V-C and V-D are the result of properties common
to all our networks, as seen in the earlier experiments and
Section III, they can be expected to carry over to the larger
Rocketfuel networks.

C. Robustness of prediction to variation across links

We have seen in the previous two numerical studies that
it is possible to obtain quite accurate predictions of network-
wide behavior based on only a modest number of measured
paths. Yet clearly any predictor using only the information
from measured paths (i.e., ys) can be made to do arbitrarily
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poorly on unmeasured paths (i.e., yr) if the latter are composed
of sufficiently many links unseen by any path in the former and
the values xj on those unseen links are sufficiently extreme.
This can be seen clearly in the bias term (16) of the MSPE for
the E-BLP (14). Nevertheless, perhaps surprisingly, we have
found that prediction of the network-wide average appears to
be fairly robust to such imbalances.

Specifically, we conducted the following study with the
Abilene network. For each of k = 5, 10, 15, 20 and 25, the
set of paths selected by our algorithm was used to partition
the links in the network into two sets: those used in at least
one measured path and those used in none. For the links
included in the measured paths, we set µj = −0.001, as
in our previous studies. We then varied the value of µj for
the other links across four settings: −0.1, −0.01, −0.001,
and −0.0001. These values cover a fairly substantial range
of loss rates observed in real networks. For computational
convenience, we kept the variance σ2 fixed at (0.001)2 across
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all links. The RMSPE derived from (15) was then computed
for each of these four scenarios, across the five values of k.

The results are shown in Figure 10, where the RMSPE
has been standardized by E[lT y] in each case. The relative
RMSPE is seen to never rise above 1 in any of the cases
considered. The pattern observed is as would be expected,
where larger imbalances and smaller values of k lead to larger
relative error. For all but the case where the mean for links on
unmeasured paths is −0.1, the relative error has decayed to
less than 20% by k = 15. Closer examination reveals that the
vast majority of the links in the Abilene network are in fact
contained in at least one measured path from k = 15 onward,
which would seem to offer some confirmation of the sensibility
of the choice of paths made by our algorithm, despite the fact
that it is aimed at minimizing the MSPE in (11)—not (15)—
and therefore operates without knowledge of µ.

D. Prediction on individual paths

All of our studies so far have assumed that it is the network-
wide average that is being monitored, as a canonical quantity
of interest. In reality, interest might instead focus on totals
(which are simply rescaled averages) on sub-networks (e.g.,
overlays), or even differences between sub-network averages
or totals, any of which can be represented in the form lT y and
hence dealt with in our framework. As an extreme situation,
we consider the problem of predicting the measurement yi for
a single path i ∈ P , in which case lT = (0, . . . , 0, 1, 0, . . . , 0)
where the 1 is in the i-th component of l.

Of course, if one was only interested in the measurement
for a single path, then the most direct and accurate approach
would be to measure that path directly. However, measurement
might not be feasible for a given path, or even if so, it will
not be feasible for all paths simultaneously in networks of
realistic size. Furthermore, the single path values yi are the
building blocks of any other linear function lT y, and as such
their study helps to further our understanding of the extent to
which prediction may be done accurately.
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In Figure 11 is shown the relative RMSPE of the E-BLP
in (14), using non-nested selection of paths, for predicting the
path values yi individually for each path. Each RMSPE has
been standardized by the quantity E[lT y] again, which in this
case is just the sum of the means µj over the links j in path i.
The calculations were done for the Abilene network, using the
same parameter settings as in our first study (i.e., µi ≡ −0.001
and σ2 = (0.001)2 ). Boxplots have been used to summarize
the results across all unmeasured paths, for each k; measured
paths are ‘predicted’ with zero error and are not shown. Super-
imposed on this plot, for the purpose of comparison, is the
relative RMSPE for predicting the network-wide average (i.e.,
the lowest curve in Figure 6). That the boxplots sit above this
curve is to be expected, given that the MSPE for the network-
wide average is itself an average of errors that include the zero
prediction error for measured paths. While the performance
clearly varies among paths and improves with increasing k, the
overall plot communicates a strong message in showing that
the relative error—even when predicting metrics for individual
paths—is generally well below 1.

VI. CONCLUSION

In this paper we have argued that in any (sub)network in
which excessive sharing reduces the dimensionality of the
routing matrix it should be possible to monitor end-to-end
properties with reasonable accuracy, based on sampling a rela-
tively small number of paths. Our experimental results confirm
this assertion, showing that we can often obtain estimates with
relative error of less than 10% when sampling only 20–30%
of the minimum number of paths required for zero error. Our
approach holds promise for more efficient network monitoring
with a number of specific applications, including forming
estimates of network-wide conditions; lightweight monitoring;
and comparison of alternate paths to a set of destinations.

Our methods are based on the statistical theory of linear
prediction, from which we are able to formulate a general



framework for the problem of monitoring a certain class of
end-to-end network properties. Having done so, we are able
to motivate the use of algorithms from computational linear
algebra for the proper choice of paths to be monitored. More
generally, however, we believe that a fundamental contribution
of this paper is the observation and illustration of the fact
that end-to-end network monitoring can be profitably posed
as a problem of statistical prediction (i.e., of end-to-end
properties) in a finite population (i.e., of paths). As there exists
a rather sizable literature on this problem, in various degrees of
generality, it is clear that the basic statistical paradigm adopted
here can be extended in many ways.

For example, as mentioned in Section IV, although we
present results primarily for the case in which the link metrics
are uncorrelated and share a common variance, all of the
relevant analytical expressions extend without difficulty to the
case of arbitrary link covariance. However, the connections
with subset selection algorithms will be less obvious. More
generally, a fuller treatment using full distributional properties
of the link or path metrics (as opposed to just the first two
moments through µ and Σ), if it is felt that these may be
specified with some confidence, would in principle allow for
prediction using the optimal posterior solution in (7), although
likely at the cost of an increased computational burden. Lastly,
for network summaries that do not take a linear form, such
as standard deviations and quantiles, extensions beyond the
linear prediction framework are possible.

Critical to the feasibility of our framework is the addi-
tional observation that routing matrices generally exhibit the
phenomenon of low effective rank. This observation does
not appear to have been made in the literature to date. We
have explored this phenomenon in both real and simulated
networks, and shown that it is remarkably prevalent. In the
particular case of the Abilene network, we show how low
effective rank translates into well traveled “highways” that are
shared by many end-to-end paths.

The results in this paper are suggestive of a number of
valuable next steps. From a standpoint of basic investigation,
the reasons behind low effective rank of routing matrices are
worth exploring; an understanding of why this effect occurs
and what affects the degree to which it holds would help
inform future work in this area. We are currently exploring

this issue. We also intend to study the scaling properties of
our methods on larger ISP networks. Although our method
performs quite well on the moderate-sized Abilene network,
our experimental results suggest that it is possible that rel-
ative savings in measurement cost may be even greater on
medium to large sale networks. Actual online implementation
of our proposed framework will undoubtedly raise additional
interesting issues, such as how best to deal with changes in
routing, the failure of links, and networks with load-balanced
paths. Recently, we have applied an extension of our method
to delay data from Abilene, and examined the effect of routing
changes [15].
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