
Reduction of Quality (RoQ) Attacks on Dynamic Load Balancers:

Vulnerability Assessment and Design Tradeoffs
†

MINA GUIRGUIS AZER BESTAVROS IBRAHIM MATTA YUTING ZHANG

msg@txstate.edu {best,matta}@cs.bu.edu yzhang@allegheny.edu
Computer Science Department Computer Science Department Computer Science Department

Texas State University Boston University Allegheny College
San Marocs, TX 78666, USA Boston, MA 02215, USA Meadville, PA 16335, USA

Abstract—One key adaptation mechanism often deployed in
networking and computing systems is dynamic load balancing.
The goal from employing dynamic load balancers is to ensure
that the offered load would be judiciously distributed across
resources to optimize the overall performance. To that end,
this paper discovers and studies new instances of Reduction
of Quality (RoQ) attacks that target the dynamic operation
of load balancers. Our exposition is focused on a number of
load balancing policies that are either employed in current
commercial products or have been proposed in literature for
future deployment. Through queuing theory analysis, numer-
ical solutions, simulations and Internet experiments, we are
able to assess the impact of RoQ attacks through the potency
metric. We identify the key factors, such as feedback delay
and averaging parameters, that expose the trade-offs between
resilience and susceptibility to RoQ attacks. These factors could
be used to harden load balancers against RoQ attacks. To the
best of our knowledge, this work is the first to study adversarial
exploits on the dynamic operation of load balancers.

Index Terms—Security; Denial of Service; Load Balancing;
Performance Evaluation.

I. INTRODUCTION AND MOTIVATION

To deal with the open-access nature of the Internet, Web
applications and services typically employ different forms
of adaptation mechanisms to maintain a high-fidelity oper-
ation. Of the most commonly deployed forms of adaptation
mechanisms are admission controllers and load balancers.
Such mechanisms have grown to be very sophisticated in
their design, without the proper attention been given to their
security aspects. Recent work of ours have demonstrated an
instance of RoQ attacks on admission controllers [17]. In
this paper, we discover and assess another instance of RoQ
attacks on dynamic load balancers.

The Premise of RoQ Attacks: RoQ attacks are a relatively
new breed of attacks that target adaptation mechanisms
with the premise to hinder an adaptive component from
converging to steady-state. In an abstract way, resource
adaptation can be viewed as the process of measuring the
offered load and setting a price, based on a pricing function.
Consumer adaptation, on the other hand, would be the
process of observing the price and adjusting the demand
accordingly. A price is simply a measure of congestion. RoQ

† This work was supported by NSF awards CNS Cybertrust Award #0524477,
CNS NeTS Award #0520166, CNS ITR Award #0205294, and EIA RI
Award #0202067, and by grants from Fortress Technologies.

attacks are orchestrated in such a manner that would keep
disturbing the prices fed-back to the adaptation mechanisms,
resulting in a continuous operation in a transient state. The
impact of RoQ attacks is assessed through the “Potency”
metric, which reflects the trade-offs between the damage
caused by an attack to the cost of mounting the attack. For
more information on the theoretical grounds of RoQ attacks,
we refer the reader to our work in [16], [17].

Adversarial Exploits of Dynamic Load Balancing Mech-
anisms: Load balancers are integrated in the design of most
scalable and distributed applications and services. Typically,
they are embedded as part of the infrastructure supporting
these applications and services—e.g., as part of routers and
network switches [11], [12], routing protocols [15], firewalls
and traffic shapers [32], [14], HTTP and database server
farms [27], [26], [18], among others.

In general, load balancing mechanisms could be clas-
sified into two categories: static and dynamic. Static load
balancers either use static information (such as the IP
address/prefix of a client or a source) or else they use
a prescribed assignment strategy (such as round-robin or
weighted round-robin) to make load distribution decisions
[14], [11]. Dynamic load balancers, on the other hand,
rely on metrical statistics fed-back from the resources they
manage to dynamically adjust assignment decisions. There
is a large body of research (as well as empirical evidence)
that has established the poor performance of static load
balancers, especially for workloads that exhibit significant
variability and/or burstiness. Early examples of such studies
include [30], [13], [4]. This realization has led to a large
body of research works on dynamic load balancing such
as [5], [9], [10], [1], as well as products [19], middleware
software ad-ons [33], and entire industries [2].

Invariably, a dynamic load balancer will rely on de-
layed feedback from underlying resources—e.g., utilization,
response time, or average number of pending requests at
each one of the set of servers/links/routes it manages. Due
to the bursty nature of arrivals and service times of the
various requests in the workload, load balancers cannot
rely on metrical statistics computed over very short time
scales, but rather must rely on “smoother” aggregates, which
are typically computed over longer time scales, or through
Exponentially Weighted Moving Averages (EWMA). More-
over, the fact that the entities performing load balancing are
typically not collocated with the resources being managed
necessitates the existence of some delay between when

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

857

metrics are computed and when they are available for load
balancing decisions.

The feedback delay inherent in the design of any dynamic
load balancer constitutes the “Trojan Horse” through which
an a RoQ attack would be mounted. Consider a simple setup
of two servers and a load balancer. Upon arrival to the load
balancer, a request is forwarded to the least loaded server for
processing. Periodically, the servers relay their load to the
load balancer. To prevent oscillations between full load and
no load, the load value is smoothed out using a weighted
moving average. To unbalance the load, the attacker would
inject a burst of requests in a very short period of time. Due
to the delay it will take the load balancer to register the
load differential between the two servers, most of this burst
will likely be forwarded to one of the servers, pushing it
into overload. Eventually, the load differential will register
at the load balancer, resulting in all (legitimate) requests to
be routed to the other server. Given that one server cannot
handle all legitimate requests by itself—otherwise there will
be no need to load balancing in the first place—it is likely
that the second server will also be pushed into overload.
Once the two servers recover from the ill-effect of this
exploit, an attacker would simply repeat its attack.

In addition to the feedback delay, most current load
balancers employ a persistence feature (sticky connections)
to ensure that connections originating from the same client
would always “stick” to the same server, which is mandatory
in secure and commercial applications [34]. This feature,
however, can enable an attacker to bypass the load balancer,
by injecting a burst of requests that would go directly to
a single server.1 Of course, if the servers have public IP
addresses, the attacker can simply send the burst directly to
the intended server.

Throughout this paper, we limit our exposition to load
balancers employed in server farms. However, we believe
that the methodology we present in this paper can be ex-
tended to load balancing solutions deployed in other settings.

Paper Outline: In Section II, we assess the vulnerability of
dynamic load balancers against RoQ attacks, under different
load balancing policies. We present a dynamic feedback
model to inform load balancing decisions. We give an upper
and a lower bound on the impact of RoQ attacks. In Section
III, we confirm our analysis and simulation via Internet
experimental results. In Section IV, we discuss related work
and we conclude with a summary in Section V.

II. ANALYTIC VULNERABILITY ASSESSMENT

In this section, we assess the vulnerability of dynamic
load balancers against RoQ attacks. We start with a simple,
baseline model involving a static load balancer (i.e., without
feedback from the servers), which establishes an upper
bound on the impact of RoQ attacks. Next, we present
a more realistic, dynamic model that employs feedback
to inform load balancing decisions. Using that model, we
establish a lower bound on the impact of RoQ attacks.

1Notice, however, that a legitimate burst from multiple clients would be
load balanced across servers, unless least loaded policy is in use.

To assess the vulnerability of a RoQ attack, we follow our
definition of attack potency, π, proposed in [16], whereby
the potency of an attack is the ratio of the damage caused
by the attack to the attacker’s cost for mounting the attack.2

π =
Damage

Cost
=

D

C
(1)

A. An Upper Bound on Attack Potency

Consider a simple setup consisting of N identical servers
and a load balancer. Requests arrive according to a Poisson
process with an average rate of λ requests per second to
the load balancer. All requests are assumed to be identical
and each requires a fixed service time of Ts seconds.3 The
load balancer picks the server that is to handle an incoming
request based on some load balancing policy. By symmetry,
assuming that a static policy is used, the load balancer would
assign 1

N of the arrivals to each server. The offered load, in
terms of λ, should always be less than the total service rate
for all servers—otherwise the servers would not be able to
handle the load whether load balancing is used or not.

Under this static policy, the arrival rate for each server is
λ
N . According to an M/D/1 service discipline, the utilization,
ρ, for each server, is given by λ

N Ts and the steady state
average queue size for each server is simply given by [3]:

q =
ρ2

2(1 − ρ)
+ ρ (2)

the average response time, using Little’s law, is given by:

Tq =
q
λ
N

(3)

Following the illustrative example we alluded to in
Section I, consider a RoQ attack with an attack burst of
A requests arriving to one of the servers, which is repeated
every attack period T .4 Throughout this paper, T is chosen
to be large enough to allow the system to converge back to
its steady-state behavior before the next attack cycle. As a
result of this attack, the queue size of the server under attack
will jump instantly, from its average value q to q + A.

The victimized server will spend a period of time re-
covering from the ill effects of this burst, until its average
queue size converges back to its normal, steady-state value,
q. However, during this recovery time, newly arriving legiti-
mate requests will experience a larger queue size and delay.
We approximate this recovery time using a fluid-like model.
Thus, the time it takes the server to get rid of this burst and
return to its normal operating queue size q is given by:

T̂ =
A

1
Ts

− λ
N

(4)

2The definitions in [16] allow for an aggressiveness index Ω, which we
take to be 1.

3We relax this assumption in our experiments, where we use heavy-tailed
distributions for the service time.

4Due to sticky connections, an attacker can bypass the load balancer.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

858

Requests arriving during T̂ will experience, on average, a
queue size of:

q̂ =
A + 2q

2
(5)

and the number of these requests is T̂ λ
N .

These requests will experience a response time, T̂q,
which is lower-bounded by q̂ × Ts, thus:

T̂q > q̂ × Ts (6)

Notice that equation (6) represents a lower bound on the
response time for such requests since at least they have to
wait, on average, for the average queue before it is possible
to start their service. If we ignore the remaining service time
for the request being serviced at time of arrival, we arrive
to this lower bound. All other legitimate requests simply
experience Tq and the number of those requests is λT−T̂ λ

N .
Therefor the average response time, over the whole attack
period T , can be derived to be:

T́q =
T̂q × T̂ + Tq × (NT − T̂)

NT
(7)

We are interested in assessing the damage resulting from
this RoQ attack. A natural metric to use is the additional
delay that legitimate requests will experience. We instantiate
two different metrics for computing the damage.

Absolute Damage (DA): One can capture the damage
resulting from this attack by the additional delay legitimate
requests experience in comparison with their response time
when the attack is not launched. In that case the absolute
damage, DA is given by:

DA = (T́q − Tq) × Tλ (8)

Sensitivity Damage (DS): One can also capture the dam-
age resulting from this attack by the additional delay that
legitimate requests experience, in comparison with another
system where the attack burst would be smoothed over time
according to another Poisson Process with a different arrival
rate, through the load balancer. Thus this damage measures
the sensitivity of the response time to the burstiness of the
attack traffic, as opposed to the magnitude of the attack
traffic. In particular, the damage, DS is given by:

DS = (T́q − T̄q) × Tλ (9)

where T̄q is the average response time these requests would
have experienced, if the attack burst was smoothed over
time. In particular, T̄q is given by:

T̄q =
q̄

λ̄
(10)

where q̄ is given by:

q̄ =
ρ̄2

2(1 − ρ̄)
+ ρ̄ (11)

where ρ̄ is simply λ̄Ts and λ̄ is given by:

λ̄ =
λ

N
+

A

NT
(12)

Clearly, the absolute damage is larger than the sensitivity
damage, since Tq is always less that T̄q due to the absence
of attack traffic.

The cost (to the attacker) can be captured by several
metrics, including the attack magnitude, A, or the attack
rate, A

T . In this paper, however, we define the cost as the
time spent by the attack requests in service. This metrics
reflects the capacity (or “energy”) used by the system to
process the adversarial workload. In particular, the cost, C
is given by:

C = A × Ts (13)

Using the expressions for damage (D) and cost (C),
one can compute the attack potency using the definition in
equation (1), where D could be instantiated as the absolute
damage or the sensitivity damage (DA or DS).

Notice that our choice of both metrics, D and C, as
units of time enables us to have a unit-less metric (the
potency) which describes the trade-offs in time. For example,
a potency of 100, would mean that for every second, the
attack requests spend in service, 100 seconds of additional
delay get added to the response time for the legitimate
requests.

A Numerical Example: Consider a setup with two servers
and a load balancer with an average arrival rate of 15
requests per second, following a Poisson process. Each
request requires 0.1 seconds of service.5 Thus, the utilization
of each server is given by 15

2 × 0.1, which is 0.75 and the
average queue size is 1.875 as computed from equation (2)
and the average response time is 0.25 seconds as computed
from equation (3).

Now consider a RoQ attack with parameters, A = 100
and T = 50, arriving to one of the servers. The time it
takes the attacked server to get rid of this burst can be
computed from equation (4) and is equal to 100

1
0.1− 15

2
, which

is 40 seconds. During these 40 seconds, 40 × λ
2 (i.e., 300)

requests arrive. These requests will observe an average queue
size of 51.8 (equation (5)) with an average response time of
at least 5.18 (equation (6)). In the remaining 10 seconds,
the average response time is back to 0.25 seconds. So the
average response time, over the whole attack period, is 4.19
seconds.

To compute DS , we have to compute the average re-
sponse time when the arrival rate is λ

2 + A
2T , that is the

attack traffic is smoothed. For this case, the arrival rate is
8.5 requests per second (equation (12)). Thus ρ̄ is 0.85.
The average queue size is 3.258 (equation (2)) and the
average response time is 3.258

8.5 = 0.383 second (equation
(3)). Thus the sensitivity damage, DS , over the attack period,
is 1, 379. The cost of the attack, as defined in equation (13),

5Arrival rates are chosen large enough, not be handled by N −1 servers
and low enough, not to exceed the total service rate of all N servers.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

859

is A×Ts = 10, so the attack potency is 138 computed from
equation (1). That is, for every second the attack requests
spend getting service, 138 seconds get added to the waiting
time for legitimate requests.

If we are assessing the absolute damage, as defined by
equation(8), we get a DA of 1, 479 seconds giving an attack
potency of 148—worse than the sensitivity attack potency.

In our analysis, we used a fluid-like model deriving the
transient period as in equation (4). In practice, the arrival rate
during this period may change due to the stochastic nature
of the arrival process. We present here simulation results that
relax this assumption. To that end, we ran several simulation
experiments with the parameters above for 50, 000 requests.
We use their response time to derive damage when the
load balancer is under attack, when there is no attack, and
when the attack traffic is smoothed out. The attack potency
computed with the absolute damage was 158 and with the
sensitivity damage was 148. These values are obtained as an
average over 10 independent runs.

Notes: There are a few important points that should be
pointed out. (1) The above analysis indicates that static
balancing (as with a round robin policy) can result in a very
high attack potency, making it easy for the attacker to get
more mileage (damage) for its traffic. (2) Static balancing
(without feedback) tends to give an upper bound for the
attack potency. This is so because any other reasonable
balancing policy that utilizes feedback should be able to
shift some of the subsequent incoming requests to the other
under-loaded servers. (3) The difference between DA and
DS is relatively small. Indicating that the main contributor
to the potency is the sensitivity to burstiness as opposed to
the presence of the attack traffic.

Attacking more than One Server: The above analysis
demonstrates the case of the attacker sending its burst to
only one server. The question arises, is this the best attack
strategy, given a fixed attack budget of magnitude A? As it
turns out, this is the best attack strategy under static load
balancing. We omit the proof due to space limitation, but it
could be found in [24].

Figure 4(a) shows simulation results obtained from a
setup with 6 servers. We vary the number of servers attacked
(on the x-axis) from 1 to 6 and we plot the absolute potency
on the y-axis. Each point is averaged over 10 independent
runs. One can see that attacking one server is the best attack
strategy under static load balancing. As the results in this
paper will demonstrate, the use of feedback by a dynamic
load balancer will reduce damage, but will not eliminate it.
We establish this point analytically next.

B. Potency for Dynamic Load Balancing

We consider a dynamic discrete-time model, where
servers relay their load to the load balancer in order to
influence future balancing decisions. Let qn

i denote the queue
size, at time i, for server n. The queue size evolves according
to the following equations:

qn
i = qn

i−1 + αn
i λ − µn (14)

where αn
i is the percentage of requests admitted to server

n—a percentage that is set by the load balancer. µn is the
service rate for server n.6 Clearly,

∑N
n=1 αn

i at any time
instant, i, is 1. Equation (14) is bounded from below by 0.7

Ideally, servers should measure their load and report that
back to the load balancer. In our analysis, we use the queue
size (or a function thereof) as a load metric—the larger the
queue size, the more loaded the server is. We relax this
assumption in our experimental evaluation since we allow
requests to be of different sizes.

The instantaneous queue size will likely exhibit oscilla-
tions that would prevent it from being used directly as an
accurate measure of load, unless reported instantly to the
load balancer.8 However, due to the feedback delay coupled
with the overhead of communicating instantaneous queue
sizes to the load balancer, a more smoothed signal should
be used. One example would be to compute averages. We let
vn

i denote the average queue size for server n at time i. The
average queue size could be computed over a window of
time or using EWMA according to the following equation:

vn
i = (1 − γ)vn

i−1 + γqn
i (15)

where γ is the weight given to the instantaneous measure.

Periodically, servers will relay their loads to the load-
balancer. The load balancer would then adjust the admission
ratio for each server based on the load-balancing policy.
There are a number of load balancing policies that can
be used. We outline here few of the most-commonly used
mechanisms [14], [11]:

(1) Proportional-Control Balancing: Ideally, the load bal-
ancer should match the queue sizes. A simple controller
to achieve such a goal can be described by the following
proportional controller:

αn
i =

1
N

+ β

N∑
j=1

(qj
i−1 − qn

i−1) (16)

where αn
i is adjusted based on the differences between queue

sizes. β, a key parameter in the controller, is introduced to
smooth out the difference for stability reasons as we will
show below. One can easily see that when all servers have
the same queue size, αn

i will be 1
N . Also, at any time instant

i,
∑N

j=1 αj
i will be 1. Notice that here we didn’t need to use

the average value (vn
i−1) since β is taking care of smoothing.

(2) Weighted Balancing: If the load-balancer uses weighted
balancing, then αn

i would be adjusted according to the
following equation:9

αn
i =

1
vn

i−1∑N
j=1

1

vj
i−1

(17)

6Throughout this paper, we assume all N servers have the same service
rate µ, thus we occasionally drop the superscript.

7In our analysis, we assume infinite queue size.
8Indeed, if instantaneous load measures are reported instantly, the load

balancer could perfectly adapt to noisy/short-term changes. Communicating
instantaneous measures may not be feasible in practice.

9We add a small value ε to the average queue size for all servers to
prevent division by zero. We take ε to be equal to 1.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

860

(3) Least-Loaded Balancing: Under this policy, αn
i would

be adjusted according to the following equations:

αn
i =

{
1 vn

i−1 < vj
i−1 ∀j ∈ N, j �= n

0 otherwise
(18)

Numerical Solution: We now solve the above difference
equations numerically to capture the effect of RoQ attacks
on the above load balancing policies.10 For simplicity, we
ignore the stochastic effect of the request arrival process and
present results under a fluid model.

In a smooth fluid model, as long as the arrival rate is less
than the service rate, there will be no queuing. However,
if the arrival rate exceeds the service rate, queuing would
occur. We will also validate our model with simulation
results, which will show that despite the limitations of the
fluid model, the numerical solutions we derive still capture
the essential dynamics involved, enabling us to accurately
assess the damage inflicted by an adversary.

Due to the absence of stochastic effects, we cannot
differentiate between the case when the attack traffic is not
present versus when the attack traffic is smoothed, since
in both cases the queue size would be zero as the arrival
rate never exceeds the service rate. Hence, we give only
the damage as the increase in response time observed by
legitimate requests compared to observing an empty queue
(of size 0).

For simple illustrations, we take N to be equal to 2, and
we assume that requests arrive with a rate λ = 15 requests
per second, that the service time Ts is fixed to 0.1 seconds,
and that the attack burst of magnitude 100 arrives to one of
the servers and is repeated every attack period of 50 seconds.

0 20 40 60 80 100
0

20

40

60

80

100

120

Time (sec)

Q
ue

ue
 S

iz
e

Server 1
Server 2

Fig. 1. Simulation results under proportional control

Figure 1 shows the queue sizes for both servers as the
attack is launched on server 1, results are obtained using
a proportional-control balancing policy, with β chosen to
be 0.003. Unlike the static balancing policy, the attack had
an impact on both servers, even though only one of them
was targeted by the adversary. This is the result of the
dynamic load balancer’s diversion of subsequent requests
to the other server, which temporary exceeds its service rate
causing queuing. Notice that the attacked server was able

10We were able to derive closed-form solutions for the attack potency
when proportional control balancing is used, however, we do not present
the derivations here due to lack of space, but they can be found in [24].

to get rid of the burst and return to its normal operation at
around time 22 seconds (as opposed to 40 seconds, in the
static case with same parameters). However, for the other
server, the situation is different. It has to deal with the extra
load being diverted to it. That is why we see an increase
in its queue size before it can also get back to its normal
operation. The above attack resulted in an attack potency
of 65 using the absolute damage metric and 56 using the
sensitivity damage metric. These results are computed in
simulation experiments averaged over 10 independent runs.
The potency we got from the numerical solution was pretty
consistent at 73.

Similar conclusions are drawn under weighted balancing
policy and least-loaded policy, except that the least-loaded
policy resulted in higher oscillations due to the on/off nature
of the controller. The results are reported in [24].

Figure 2 summarizes the potency values computed as a
result of the above attack (simulations are averaged over 10
independent runs). In general, the numerical solution, despite
its limitation was able to give a reasonable approximation.
Indeed the static case gives an upper bound for any reason-
able load balancing.

Static Prop Weight Least Optimal
0

20

40

60

80

100

120

140

160
P

ot
en

cy
Simulation Absolute
Simulation Sensitivity
Numerical Solution

Fig. 2. Summarization of the attack potency for different balancing
policies. Simulation results are computed as an average value over 10
independent runs.

Attacking more than One Server: Figure 4(a) shows
simulation results obtained from a setup with 6 servers with
different values of the parameter β. The attack magnitude
A is distributed uniformly at random over the number of
attacked servers. One can observe that, with the same attack
magnitude, the optimal number of servers to attack is a func-
tion of the aggressiveness of the proportional load balancer.
When β is small, the performance of the proportional load
balancer gets closer to the static policy, indicating that it is
better to attack less servers. For example, with β = 0.0003,
attacking two servers is the best attack strategy. If β is large,
however, the proportional load balancer can recover quickly
and it is better for the attacker to distribute its attack burst
over all servers. Notice that in this case, the attacker does
not need to bypass the load balancer. As we will show in
the rest of this section, there is an optimal load balancer that
would achieve a lower bound on the attack potency.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

861

C. A Lower Bound on Attack Potency

Computing a lower bound on the attack potency is
equivalent to finding the optimal load balancing policy
(which is simply making instantaneous decisions based on a
clairvoyant knowledge of the RoQ attack parameters), even
if such a policy cannot be implemented in practice.

Consider our model with N servers. The attack burst
arrives to server a while we refer to any other server with
h. After the attack burst, server a has a queue size of around
A + q, thus the optimal load balancer would favor all other
servers for the incoming requests.11 So αa

2 at time instant 2,
will jump from its steady state 1

N to 0. For all other servers,
αh

2 , will jump from 1
N to 1

N−1 . The admission controller
will remain with such values, until all servers, including the
attacked server, reach the same queue size. At this point in
time, the optimal load balancer, would return to its steady
state giving each server 1

N of the arrival rate.

Let τ∗ denote the time it takes all servers to reach the
same queue size of value q∗ + q, given that all incoming
requests are being directed to the N − 1 servers evenly.
Thus, for any server h, we have:

q∗ = (
λ

N − 1
− µh)τ∗ (19)

The above equation simply states that the accumulation of
requests over time τ∗ that would result in each server, having
q∗ additional requests by time τ∗. For the attacked server a,
we have:

τ∗ =
A − q∗

µa
(20)

The above equation simply states that we have to drain A−
q∗ requests in τ∗ seconds in order to reach a queue size
of q∗ + q at time τ∗. Equations 19 and 20 could be solved
together for the values of τ∗ and q∗.

One can capture the damage for legitimate requests,
under this optimally-tuned load balancer, by the additional
delay that these legitimate requests would experience. Le-
gitimate requests suffer additional delays in two regions.
The first region is through the duration τ∗ where requests
start accumulating at the N − 1 servers. The total requests
arriving during this period is τ∗ × λ. The average queue
they experience is q∗+q

2 . Once the load balancer switches
the admission ratio back to 1

N , all servers will spend some
time draining their queues from q∗ back to q. This time is
equal to q∗−q

µ− λ
N

, which we denote by φ. λ×φ requests arrive
during this period and they observe, on average, a queue
size of q∗+q

2 .

We ran simulation experiments to assess the damage
under such an optimal (clairvoyant) policy. Figure 3 shows
how the queue sizes, for 2 servers, when server a is attacked.
The attack is launched with magnitude A = 100 requests,
repeated every T = 50. The above attack resulted in an
attack potency of 53 using the absolute damage metric and

11Notice that the ideal load balancing decision is not applied to the attack
burst A. As we alluded earlier, in practice, this is possible using sticky
connections, for example.

0 20 40 60 80 100
0

20

40

60

80

100

120

Time (sec)

Q
ue

ue
 S

iz
e

Server 1
Server 2

Fig. 3. Simulation result obtained from using the Optimal Balancing Policy
with parameters λ = 15, Ts = 0.1, A = 100 and T = 50

48 using the sensitivity damage metric. These results are
averaged over 10 independent runs. The potency we got
from the numerical solution was 48. Figure 2 shows the
comparison between all policies.

Attacking more than One Server: The above analysis can
be easily extended to the case the attacker distributes its
attack burst over Y servers. In particular, the optimal load
balancer would favor the N − Y servers for subsequent
legitimate requests until the all servers would have the same
queue size. So for any attacked server x, αx

2 will jump from
its steady state 1

N to 0. For the other N − Y servers, it
will jump from 1

N to 1
N−Y . The admission controller will

remain with such values, until all servers, including the ones
attacked, reach the same queue size. At this point in time, the
optimal load balancer, would return to its steady state giving
each server 1

N of the arrival rate. The best attack strategy
under optimal load balancing is to distribute the attack burst
over all servers. In that case, τ∗ would be 0 and q∗ would
be A

N . Again, the proof can be found in [24].

Figure 4(a) shows simulation results in the case of N =
6, the optimal curve shows the absolute potency obtained
from attacking different number of servers. One can see that
attacking all servers, is the best attack strategy, under optimal
load balancing.

D. Summary, Practical Considerations and Mitigation

The optimal (clairvoyant) policy we discussed above
presents a lower bound on the attack potency whereas the
static (inflexible) policy introduced early on in this section
presents an upper bound—with all other policies in between.

Notice that the dynamic models proposed do not capture
some of the factors that are present in real scenarios such as
the presence of feedback delay, the overhead from context
switching between requests and the possibility of thrashing
as the number of concurrent requests for a given server
shoots upwards. We have conducted a series of experiments
to quantify the potency of RoQ attacks in the presence of
such factors which we report in [24]. We briefly present here
some of those results.

Figure 4(b) shows the impact of a 10-sec feedback delay
on the absolute potency under the proportional load balancer
for different values of β. Notice that large β values that

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

862

1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

Attacked Servers

P
ot

en
cy

Optimal
Beta = 0.0015
Beta = 0.0009
Beta = 0.0003
Beta = 0.00015
Static

(a)

1 2 3 4 5 6
0

50

100

150

200

Attacked Servers

P
ot

en
cy

Optimal
Beta = 0.0015
Beta = 0.0009
Beta = 0.0003
Beta = 0.00015
Static

(b)
Fig. 4. Vulnerability assessment for proportional load balancer in comparison to the static and the optimal load balancing policies: Without feedback
delay (a) and With feedback delay of 10 seconds (b)

decreased the potency close to optimal when no feedback
delay was present (Figure4(a)), are now the ones maximizing
potency (β = 0.0015 and β = 0.0009). That is because the
load balancer is reacting in the wrong manner (aggressively),
in the wrong time (too late). In these cases, it is better
not to do dynamic load balancing and switch to static load
balancing. If β is small, however, the load balancer reacts
slowly and becomes less sensitive to the feedback delay, but
at the cost of a potency that is close to the upper bound.
Such trade-offs are very important to highlight. Notice also
that the damage inflicted is composed of the normal queuing
delay due to the additional attack traffic plus the extra
queueing delay resulting from the load balancer handling
this attack traffic.

In [24], we report on detecting RoQ attacks and the
possibility of adjusting some of the parameters online (such
as β) to reduce their impact.

III. INTERNET EXPERIMENTS

To validate the results we obtained analytically, numer-
ically, and via simulations, we have experimented with a
host of web server load balancing mechanisms. Notice that
despite the small-scale setup used in our experiments, our
results give evidence to the potency of RoQ attacks and they
are directly applicable to small-scale services.

Experimental Setup: Our setup consists of a machine
running the load balancer, and two machines running
MINIHTTPD[28], and several client machines generating web
traffic using HTTPERF[31]. All machines are of 1Ghz/256MB
AMD Athlon(tm) and running Linux 2.4.20. We modified
MINIHTTPD and HTTPERF to communicate with the load
balancer, which is responsible for selecting a server for
each client request. For each connection request, the load
balancer will select a MINIHTTPD server according to the
load balancing policy used. As a result, the client initiating
the request will establish a normal HTTP connection with the
selected MINIHTTPD server. The servers send their feedback
information to the load balancer periodically. Linux doesn’t
provide any system calls for applications to get the listen
queue size. Thus, we use the number of active requests
(accepted connections) as an approximation to the total
number of pending requests, which constitute the feedback
signal to the load balancer. This is similar to what most
software monitoring solutions report to load balancers in

practice. Since MINIHTTPD will fork a new thread for each
new accepted connection, the queue size is also the number
of currently running threads that deal with the requests in the
system. The multithreaded nature of MINIHTTPD implies that
multiple requests can be handled by different threads in a
round-robin manner (as opposed to the pure FIFO analytical
framework we used in Section II).

In each series of experiments, three scenarios are evalu-
ated: The first measures performance in the absence of RoQ
attacks; the second measures performance under a periodic
RoQ attack of magnitude A repeated every T seconds;
whereas the third measures performance when the attack
workload is smoothed out. Each run lasts for 310 seconds.
For simplicity, the attack requests are sent to one of the
server bypassing the load balancer.12 In our experiments,
the request service time follows a Pareto distribution to
reflect the highly variable nature of HTTP connection time—
e.g., due to the heavy-tailed nature of file size distributions
[4]. The parameters of the Pareto service time distribution
was set to (2,0.05) with an upper bound of 250 seconds
and a mean of 100msec. Request arrivals follow a Poisson
process with a mean rate of 15 requests/sec. The attack
workload was chosen to consist of 100 attack requests that
are injected every 50 seconds for five times. All experiments
are allowed to warm-up for 60 seconds before measurements
were collected.

Susceptibility of Various Load Balancing Policies to
Exploits: Figure 5 shows the average response time for
legitimate requests under the different load policies under
consideration, as well as the corresponding absolute and
sensitivity potencies. These results show that the perfor-
mance of proportional and weighted load balancing policies
are similar, and significantly better than that of the least-
loaded policy. In our experiments, the proportional policy
was slightly better than the weighted policy, especially when
the load balancer was under attack. This is due to the
feedback delay inherent in averaging the queue size (used
in the weighted policy).

Effect of Adaptive Feedback Update Period: In the previ-
ous experiments, the MINIHTTPD servers reported back their
feedback information to the load balancer every 1 second.
This timescale may pose significant overhead, necessitating

12As we noted earlier, attack requests can also go through the load
balancer using sticky HTTP sessions.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

863

Prop Weight Least
0

0.5

1

1.5

2

Period

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

No Attack
Smoothed Attack
Low−rate Attack

(a) Average Response Time

Prop Weight Least
0

20

40

60

80

100

Policy

P
ot

en
cy

Absolute
Sensitivity

(b) Potency
Fig. 5. Comparative performance and susceptibility to exploitation of the various load balancing policies examined.

the use of longer feedback update periods. The disadvantage
of longer update periods is the possibility of a less agile
load balancer (under normal legitimate workloads) as well
as an increased susceptibility to adversarial exploits. A
possible approach to reduce the overhead of feedback signal-
ing without compromising performance or susceptibility to
adversarial exploits, is for servers to send the feedback signal
to the load balancer whenever the measured signal changes
significantly (not periodically). Under proportional control,
for example, the instantaneous queue size information is sent
over whenever its current value differs from previously the
communicated value by more than a given threshold. This
threshold can be fixed, or else be a function of the observed
average queue sizes in steady state.

To evaluate the effects of the feedback update period
as well as this thresholding approach, we performed experi-
ments using fixed feedback delays of 1 second, 3 seconds, as
well as a variable feedback update period using a threshold
of 5 request differential. Figures 6(a) and 6(b) show the
average response times and potencies under these different
scenarios, respectively. Figure 6(c) shows the total number
of feedback back messages sent by the MINIHTTPD servers to
the load balancer. From theses results, we observe that using
a fixed feedback period of 3 seconds results in the worst
response time and highest potency, but with only 1/3 of
the number of feedback messages sent to the load balancer
(compared to the case with a fixed 1-second period). The
adaptive feedback period scheme achieves the best balance–
being competitive in terms of response time and potencies
with the 1-second fixed feedback period approach, and
competitive in terms of the number of feedback messages
with the 3-second fixed feedback period approach.

Effects of Server Overheads and Thrashing: In previous
experiments, the MINIHTTPD servers consumed only minor
CPU resources due to sending small files. Thus, the overhead
is mainly due to context switching, which is not very large in
general, especially when the number of concurrent threads is
limited by the thread pool. However, when requests need to
consume a large amount of memory or perform significant
(disk) I/O, extra overhead due to paging activities become
larger and start playing a role in the system performance
(and in susceptibility to adversarial exploits).

To evaluate such conditions, we required that each re-
quest would result in the execution of a CGI program,
which randomly reads and writes 6MB chunks of memory.

We use the same amount of attack traffic as before on a
cluster of 2.40GHz/1.2GB Intel Pentium(R), and we lock
640MB of memory–leaving a total of 560MB for use by the
system and for the CGI programs. In these experiments, the
average response time for legitimate requests were clocked
at 2,412msec when the system is under attack compared
to 486msec when the system is not under attack (and
1,046msec when the attack requests are smoothed out). This
yields absolute and sensitivity potencies of 192 and 128
respectively, highlighting the fact that server overheads and
thrashing would increase attack potencies dramatically.

IV. RELATED WORK

The work presented in this paper relates to three main
areas of research: (1) dynamic load balancing, (2) control
and queuing theory, and (3) security. In Section I we alluded
to a number of studies and products related to dynamic load
balancing. In this section, we focus on the latter two areas.

Queuing and Control Theory: There is a huge body
of queuing theory literature that studies different queuing
disciplines [3] in addition to other research efforts [23], [21]
that advance this area further. In this paper, we developed
a quasi-static M/D/1-based discrete-time model for load
balancing, where the system is assumed to reach steady-
state between successive bursts of RoQ attack. This steady-
state analysis allowed us to obtain performance measures
such as the average queue size at the time of the attack.
This is further complemented with transient analysis in the
time period immediately following the attack. We used a
continuous-time fluid model to obtain transient performance
measures such as the time it takes to re-balance the system.

Denial of Service (DoS) Attacks and other Exploits:
DoS attacks [7], [6], [8] pose a serious vulnerability for
almost every computing system. There are a number of
papers that classify various forms of DoS attacks; examples
include [29], [25]. Such attacks deny access for legitimate
requests by targeting the system’s capacity. In comparison
to DoS attacks, RoQ attacks do not necessarily result in
denial of access, but of service degradation, with an eye
on maximizing the response time for legitimate requests.
The work presented in this paper, captures current trends
in the way attackers are mounting their attacks in order to
evade detection. Recent work in [20], shows how attackers
are actually moving away from bandwidth floods to attacks

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

864

1 Second Adaptive 3 Second
0

0.5

1

1.5

Period

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

No Attack
Attack Smoothed
Attack

(a) Average Response Time

1 Second Adaptive 3 Second
0

20

40

60

80

100

Period

P
ot

en
cy

Absolute
Sensitivity

(b) Potency

1 Second Adaptive 3 Second
0

100

200

300

400

500

600

700

Period

of

 M
es

sa
ge

s

No Attack
Attack Smoothed
Attack

(c) Number of Feedback Messages
Fig. 6. Effect of feedback update periods

that mimic the web browsing of a larger set of clients in
order to escape detection. Other work include the low-rate
Shrew attacks [22], where low-rate attack traffic can shutoff
TCP traffic through targeting the timeout mechanism. That
is, in addition, to previous work of ours on the general class
of RoQ attacks [16], [17].

V. CONCLUSION

In this paper, we have exposed new vulnerabilities associ-
ated in the operation of dynamic load balancers against new
instances of RoQ attacks. In particular, we have shown that
due to the presence of feedback delay, RoQ attacks would
be able degrade significantly the performance of a dynamic
load balancer to the extent that it could be worse than a
static one. Persistent connection features, found on dynamic
load balancers, have also contributed to the practicality and
to the ease in mounting RoQ attacks. Our work examined a
number of load balancing policies (similar to the ones being
used in practice and those reported in literature) and we
assessed the impact of RoQ attacks based on factors, such
as the number of resource managed, the feedback delay and
the averaging parameters. We believe that such analysis is
very important in designing and deploying load balancers
as well as in building defense mechanisms against RoQ
attacks. Throughout this paper, we supported our analysis
with simulations and Internet experiments.

REFERENCES

[1] W. Aiello, A. werbuch, B. Maggs, and S. Rao. Approximate Load
Balancing on Dynamic and Asynchronous Networks. In Proceedings
of the ACM Symposium on Theory of Computing, 1993.

[2] Akamai. Performance Based Load Balancing. http://www.akamai.com
/en/html/services/gtm how it works.html.

[3] A. Allen. Probability, Statistics and Queueing Theory with Computer
Science Applications. Second Edition, Academic Press.

[4] M. Balter, M. Crovella, and C. Murta. On Choosing a Task Assign-
ment Policy for a Distributed Server System. Journal of Parallel and
Distributed Computing, Sep 1999.

[5] V. Cardellini, M. Colajanni, and P. Yu. Dynamic load balancing on
web-server systems. IEEE Internet Computing, 1999.

[6] CERT Coordination Center. CERT Advisory CA-1996-21 TCP SYN
Flooding and IP Spoofing Attacks. http://www.cert.org/advisories/CA-
1996-21.html. Original issue date: September 19, 1996.

[7] CERT Coordination Center. Denial of Service Attacks. http://www.cer
t.org/tech tips/denial of service.html.

[8] CERT Coordination Center. Trends in Denial of Service Attack
Technology. http://www.cert.org/archive/pdf/DoS trends.pdf.

[9] L. Cherkasova. FLEX: Load Balancing and Management Strategy for
Scalable Web Hosting Service. In Proceedings of ISCC, Jul 2000.

[10] J. Chuang. Distributed Network Storage Service with Quality-of-
Service Guarantees. In Proceedings of Internet Society INET’99, San
Jose, CA, June 1999.

[11] Cisco. Configuring Load Balancing on the CSS 11500.
http://www.cisco.com/ warp/public/117/methods load bal.pdf.

[12] Cisco. LocalDirector. http://www.cisco.com/warp/public/cc/pd/cxsr/
400/index.shtml.

[13] W. Kish D. Dias, R. Mukherjee, and R. Tewari. A Scalable and Highly
Available Web Server. In Proceedings of IEEE COMPCON, 1996.

[14] F5. BIG-IP Load Balancer Limited. http://www.f5.com/f5products/
products/bigip/ltm/lbl.html.

[15] B. Fortz and M. Thorup. Internet traffic engineering by optimizing
OSPF weights. In Proceedings of IEEE INFOCOM, 2000.

[16] M. Guirguis, A. Bestavros, and I. Matta. Exploiting the Transients of
Adaptation for RoQ Attacks on Internet Resources. In Proceedings
of the ICNP, Oct 2004.

[17] M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang. Reduction of
Quality (RoQ) Attacks on Internet End Systems. In Proceedings of
INFOCOM, Mar 2005.

[18] IBM. DB2 connection routing using Linux load balancing.
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-
0410wright/.

[19] IBM. High availability load balancing with IBM
WebSphere Edge Server for Lotus Workplace. http://www-
128.ibm.com/developerworks/lotus/library/edgehighavail/.

[20] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-Sale:
Surviving Organized DDoS Attacks That Mimic Flash Crowds. In
Proceedings of NSDI, Boston, MA, May 2005.

[21] L. Kleinrock and R. Muntz. Processor Sharing Queueing Models of
Mixed Scheduling Disciplines for Time Shared System. Journal of
the ACM, 1972.

[22] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial
of Service Attacks (The Shrew vs. the Mice and Elephants). In
Proceedings of ACM SIGCOMM, karlsruhe , Germany, August 2003.

[23] S. Lam and A. Shankar. Response Time Distributions for a Multi-
Class Queue with Feedback. In Proceedings of the International
Symposium on Computer Performance Modeling, Measurement and
Evaluation, May 1980.

[24] M. Guirguis. Reduction-of-Quality Attacks on Adaptation Mecha-
nisms. Ph.D. Thesis. Boston University.

[25] C. Meadows. A Formal Framework and Evaluation Method for
Network Denial of Service. In Proceedings of the 12th IEEE
Computer Security Foundations Workshop, June 1999.

[26] Microsoft. Network Load Balancing Technical Overview.
http://www.microsoft.com/technet/prodtechnol/windows2000serv/dep
loy/confeat/nlbovw.mspx.

[27] Microsoft. SharePoint Services. http://www.microsoft.com/resources
/documentation/wss/2/all/adminguide/en-us/stsf15.mspx.

[28] mini httpd: small HTTP server. http://acme.com/software/mini httpd.
[29] J. Mirkovic, J. Martin, and P. Reiher. A Taxonomy of DDoS Attacks

and DDoS Defense Mechanisms. Technical Report 020018, Computer
Science Department, University of California, Los Angeles.

[30] J. Mogul. Network behavior of a busy Web server and its clients.
Research Report 95/5, DEC Western Research Laboratory, Oct 1995.

[31] D. Mosberger and T. Jin. Httperf: A Tool for Measuring Web Server
Performance. In Proceedings of the First workshop on Internet Server
Performance (WISP ’98), Madison, WI, June 1998.

[32] Nortel. Alteon Web OS Traffic Control. http://www.nortelnet
works.com/products/01/webos/index.html.

[33] O. Othman and D. Schmidt. Optimizing Distributed system Perfor-
mance via Adaptive Middleware Load Balancing. In Proceedings
of ACM SIGPLAN Workshop on Optimization of Middleware and
Distributed Systems (OM), 2000.

[34] Cisco Systems. Sticky Configuration Methods on LocalDirector.
http://www.cisco.com/warp/public/117/local director/sticky config l
d.pdf.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

865

