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Abstract—Unstructured networks (like ad-hoc or peer-to-peer
networks) are networks without centralized control of their
operation. Users make local decisions regarding whether to follow
the network protocol or not. While providing scalability benefits,
this degrades the performance, which is compounded by the
potential presence of Malicious Users. In general, these users are
trying to disrupt the operation of the network, and prevent the
legitimate users from achieving their objectives. More specifically,
they could try to break the connectivity of the network, or waste
the resources of the legitimate users.

In this work we use game theory to examine the effect of
Malicious Users. All users are modeled as payoff-maximizing
strategic agents. A simple model, fictitious play, is used for
the legitimate user behavior, but no limits are imposed on
the Malicious Users strategies. We look for the worst case
equilibrium: the one that gives Malicious Users the highest payoff.
We identify the importance of the network topology.

I. INTRODUCTION

We call unstructured networks those networks that have no
hierarchy, and in which all users are equal when it comes to
duties or responsibilities. We do not assume anything about
the topology, except that the users are connected to each other
either directly or through others. With each such network, there
is an associated protocol which is the way that the network is
supposed to operate.

We abstract the role of users of unstructured networks in
the following way: They can choose whether to participate in
the operation of the network or not and, if yes, to what degree
(all the time? some of the time?). Moreover, there is a cost
associated with choosing to participate, so, in general some
users will decide to participate and some not.

For example, in the case of a wireless ad-hoc network,
participation means forwarding other users packets. The in-
centive is the expectation the user has that other users will also
participate, i.e., forward his packets. The disincentive is that
the very action of transmitting data reduces a users available
energy, which is scarce in such networks. Moreover, the user
wastes his bandwidth, which he could be using to forward his
own data.

Although wireless networks are our initial motivation and
our running example in this paper, similar considerations
apply to other types of unstructured networks. In peer-to-
peer networks (P2P), file sharing protocols depend on the
cooperation of the users to succeed: As an extreme example,
if all users want to download files but no one wants to
upload any, then the network collapses. The incentive for
participation (uploading) is the increased total availability of

files, from which everyone benefits. The disincentive is the
increased usage of upload bandwidth, and also, potentially, the
unwillingness to continue uploading after ones own download
is complete (see also Section II). The salient features of our
model are: A protocol that the users can follow or break, a
benefit that comes from participating in the protocol, and a
cost associated with that participation. The benefit increases
with the number of other cooperating users, while the cost
reflects the resource usage that participation requires.

Note that the benefit of cooperation is somewhat more
abstract, global, and indirect than the cost. So, it could be
argued that some of the Good users may behave selfishly,
and as a result will not take very seriously the incentive that
a globally desirable outcome presents. But we consider that
users are either Good or Bad, not selfish or unselfish. In
particular, all Good nodes behave equally unselfishly in the
sense that, in principle, they value the network benefit more
than their individual cost. This will be explained in greater
detail in the discussion on the user model (Section II), but it
should not be taken to mean that Good users unconditionally
cooperate. If, for instance, none of a Good users neighbors
cooperate (i.e., they do not forward his packets, or they do
not upload anything to him), then the Good user will stop
cooperating despite being Good.

We use a game theoretic model for the above situation,
described in detail in Section II. We consider Malicious1 users
whose objective is to disrupt the operation of the network, and
waste the resources of the Good users. In particular, they are
defined as aiming to do the exact opposite of what the Good
users want. We consider a repeated game framework. That is,
the time is divided in slots and players choose in every slot
whether to cooperate or not. In general, they can base their
decision on what has already transpired. In our case, we will
assume that the Good users aggregate the information about
the past in a particular way, namely fictitious play [1].

In the literature, this situation has been studied for selfish
users, and how to provide incentives to make them cooperate.
To the best of our knowledge, there has been no game theoretic
modeling of Malicious Users as we describe them here. The
work by Blanc, Liu, and Vahdat [2] is an example of providing
incentives for users to cooperate (another example is Buttyán
and Hubaux [3]). However, they are modeling Malicious Users
as “Never Cooperative”, without any further sophistication,

1We will use the terms Malicious and Bad interchangeably.



since their main focus was discouraging selfish free-riders.
There is no degree of selfishness that can approximate the
behavior of our Malicious Users. For example, Félegyházi,
Hubaux and Buttyán [4] assume that the payoff function of
a user is non-decreasing in the throughput experienced by
the user. Our Bad users do not care about their data being
transmitted. For the same reason, the model proposed by Urpi,
Bonuccelli, and Giordano [5] does not apply (as the authors
themselves point out).

In other related work, Srinivasan, Nuggehalli, Chiasserini,
and Rao [6] are using a modified version of Generous Tit For
Tat (for an early famous paper in the history of Tit for Tat see
[7]), but they have no notion of topology and, consequently,
of neighborhoods. In their setting, each user is comparing
his own frequency of cooperation to the aggregate frequency
of cooperation of the rest of the network. Altman, Kherani,
Michiardi, and Molva [8] proposed a scheme for punishing
users whose frequency of cooperation is below the one dictated
by a certain Nash equilibrium. Aimed particularly against free-
riding in wireless networks is the work by Mahajan, Rodrig,
Wetherall, and Zahorjan [9], and also the one by Feldman,
Papadimitriou, Chuang, and Stoica [10].

Malicious users and attacks have been mostly considered
from a system perspective for particular protocols or algo-
rithms (e.g. securing Distributed Hash Tables [11], or from a
cryptographic viewpoint: key exchanges, authentication, etc.).
For a summary from the perspective of P2P networks, see
Ref. [12].

II. MALICIOUS AND LEGITIMATE USER MODEL

The network is modeled as an undirected graph G = (V,L),
where each node in V corresponds to one user. An edge
(i, j) ∈ L means that there is a communication link between
the users corresponding to nodes i and j. The set of neighbors
of user i, denoted Ni, is the set of users j such that there exists
an edge (i, j):

Ni = {j ∈ V |(i, j) ∈ L}. (1)

The neighbors of user i are also called adjacent nodes to i.
Since the graph is undirected, the neighbor relationship is sym-
metric: j ∈ Ni ⇔ i ∈ Nj . The assumption for an undirected
graph can be dropped, in order to model asymmetric links, but
we believe the extension to be straightforward. We denote the
set of Bad users by VB , and the set of Good users by VG. It
holds that VB ∩ VG = ∅ and VB ∪ VG = V . We will be using
the term type of a user for the property of being Good or Bad.

Users have a choice between two actions: C (for Cooperate),
and D (for Defect). When all users choose their actions, each
user receives a payoff that depends on three things: his own
action, his neighbors’2 actions, and his own type (but not his
neighbors’ types). The payoff is decomposed as a sum of
payoffs, one for each link. Each term of the sum depends on
the user’s own action, and the action and type of his neighbor
along that link. Observe that the user is playing the same action

2In-neighbors’, if the graph is directed.

Good

Bad
C D

C N − E,E −N −E,E
D 0, 0 0, 0

Good

Good
C D

C N − E,N − E −E, 0
D 0,−E 0, 0

Fig. 1. The two games that can take place on a link: Good versus Bad and
Good versus Good.

against all neighbors. As an extension, a user’s actions could
be different for different links. The whole issue is about how
much granularity of control each user has. If all the user can
(or wants to) do is turn a switch ON or OFF, then the only
model that can be used is a single action for all neighbors.

The payoff of user i is denoted by Ri(ai|ti), when i’s action
is ai and i’s type is ti. We extend and slightly abuse this
notation to denote by Ri(aiaj |ti) the payoff for i when j is
a neighbor of i and j’s action is aj . So, the decomposition of
i’s payoff can be written as:

Ri(ai|ti) =
∑
j∈Ni

Ri(aiaj |ti) (2)

We assume there are no links between any two Bad users.
The Bad users are supposed to be able to communicate and
coordinate perfectly; hence, there is no need to restrict their
interaction by modeling it in these terms. Moreover, the Bad
users know exactly both the topology and the type of each user
in the network. Good users only know their local topology,
e.g., how many neighbors they have and what each one of
them plays, but not their types.

We explain the payoffs as follows: In the example of
a wireless network, a C means that a user makes himself
available for communication, that is, forwarding traffic of other
nodes through himself. A link becomes active (i.e., data is
exchanged over it) only when the users on both endpoints of
the link cooperate, that is, play C. Playing C is in line with
what Good users want to achieve – good network operation
– but it costs energy, since it means receiving and forwarding
data. So, when both players on a link play C, the Good
player (or both players, if they are both Good) receives N
(for Network) minus E (for Energy) for a total of N − E.
We assume N > E > 0, otherwise no player would have an
incentive to play C. On the other hand, when a Good player
plays C and the other player D, then the Good player only
wastes his energy since the other endpoint is not receiving or
forwarding any data. For this reason, the payoff is only −E.
The Bad user’s payoff is always the opposite of the Good
user’s payoff. In particular, we do not assume any energy
expenditure when the Bad users play C.

The payoffs are shown in table form in Fig. 1 for the two
pairs of types that can arise (Good versus Good, and Good
versus Bad). Using the R-notation, the payoffs for a Good



player would be:

Ri(CC|G) = N − E (3)

Ri(CD|G) = −E (4)

Ri(DC|G) = 0 (5)

Ri(DD|G) = 0, (6)

while for a Bad player they would be:

Ri(CC|B) = E −N (7)

Ri(CD|B) = 0 (8)

Ri(DC|B) = E (9)

Ri(DD|B) = 0. (10)

In a peer-to-peer network, a C would mean uploading high
quality content (as well as, of course, downloading), and a D
would be the opposite (e.g. only downloading). The benefit
of cooperation is the increased total availability of files. The
cost of cooperation E could be, for instance, the hassle and
possible expense associated with continuing to upload after
one’s download is over. In a general social network, edges
would correspond to social interactions, a C would mean
cooperating with one’s neighbors toward a socially desirable
objective (like cleaning the snow from the sidewalk in front
of your house), and a D would mean the opposite of a C. The
cost E and benefit N are also obvious here.

We consider that the game is played repeatedly with an
infinite horizon, and time is divided in rounds t = 1, 2, 3, . . ..
Actions and payoffs of round t are denoted with a superscript
t: at

i and Rt
i . The objective of the players in a repeated game

is to maximize a function of the sequence of payoffs that they
accumulate over the infinite course of the game. In this paper,
we consider the average of the payoffs to be the payoff for
the whole game:

Ri = lim
T→∞

1
T

T∑
t=1

Rt
i. (11)

For other payoff functions, and for repeated games in general,
see [13] or [14].

In repeated games, the players are allowed to have full or
partial memory of the past actions. Here, we allow the Bad
users to have all information about the past (their own moves,
as well as everybody else’s moves since the first round). On
the other hand, the Good users follow a fictitious play process,
that is, they assume that each of their neighbors chooses his
actions independently and identically distributed according to a
probability distribution with unknown parameters (Bernoulli in
this case, since there are only two actions available: C and D).
So, at each round they are choosing the action that maximizes
their payoff given the estimates they have for each of their
neighbors’ strategies. For example, if player i has observed
that player j has played c Cs and d Ds in the first c + d
rounds, then i assumes that in round t = c + d + 1, j will
play C with probability c

c+d and D with probability d
c+d . We

denote by qt
j the estimated probability that j will play C in

round t + 1, which is based on j’s actions in rounds 1, . . . , t.

Let us now calculate the expected payoff for each of the
two actions of a Good user. We assume that t rounds have
been completed, and Good user i is contemplating his move
in round t + 1.

Ri(C|G) =
∑
j∈Ni

{
qt
jRi(CC|G) + (1− qt

j)Ri(CD|G)
}

=
∑
j∈Ni

{
qt
jN − E

}

= N ·
∑
j∈Ni

qt
j − |Ni| ·E

Ri(D|G) = 0.
(12)

So, in order to decide what to play, user i has to compare the
expected payoff that each action will bring. Action C will be
chosen if and only if Ri(C|G) ≥ Ri(D|G), that is, iff

∑
j∈Ni

qt
j ≥ |Ni|E

N
. (13)

Therefore, the Good user will add the estimates for his
neighbors and compare to the quantity |Ni|EN to decide
whether to play C or D. This makes the implementation of the
Good user behavior particularly simple, since they only need to
keep track of one number for each neighbor, as opposed to the
whole history of actions observed. Our main aim in this paper
is to see what the Bad users can do against this strategy3. On
the one hand, perhaps they can exploit its simplicity to gain
the upper hand against the Good users. On the other hand,
the fact that the Bad users have full knowledge of the history
and can achieve perfect coordination in their actions may not
be very useful here. The reason is that Good users only care
about the frequencies of the actions that they observe (see
Eq. (13)), and the Bad users will achieve nothing by more
elaborate strategies. This point is worth repeating: The only
relevant decision that the Bad users can make is to choose
the frequency of their Cs and Ds. Nothing more elaborate
than that will be noticed by the Good users. So, we will
be assuming that the Bad players can only choose a fixed
probability with which they will be playing C.

The choice of payoff that we made (Eq. (11)) implies that
only the steady state matters when discussing the sequences
of actions of the users. In particular, it allows us to talk about
frequencies instead of probabilities, since frequencies will
have converged in the steady state. Initial (a priori) estimates
will not matter. What does matter, however, is our assumption
that the Good users start out by playing C. If that is not
the case, the game will in general converge to an equilibrium
where all users are playing D.

As a justification for the choice of fictitious play as the
process that the Good users follow, we note that very similar
behavior assumptions have been done when computing trust
and reputation values. In our paper, a user’s reputation cor-
responds to the probability that he plays C. An example is

3A strategy is, in the case of a repeated game, a function that maps histories
up to round t to probabilities of actions for round t + 1.



the work by Buchegger, and Jean-Yves Le Boudec [15], who,
in summary, are assuming that a user can misbehave with
an unknown probability θ. This probability is then estimated
by gathering observations and updating a prior distribution (a
Beta distribution) through Bayes’ law. The Beta distribution
function has also been used in Ismail and Jøsang’s work [16].
It is particularly useful because it can count positive and
negative events, which are often used to represent a user’s
behavior in a network, and then compute his reputation.

III. SEARCHING FOR A NASH EQUILIBRIUM

In game theory, the solution concept we are dealing with
most frequently is the Nash Equilibrium. The Nash Equilib-
rium is a tuple of strategies, one strategy for each player,
with the property that no single player would benefit from
changing his own equilibrium strategy, given that everybody
else follows theirs. In our case, we have already restricted the
Good players’ strategies to fictitious play, as shown in Eq. (13),
so the Nash Equilibrium will be restricted in this sense.

More formally, the Nash Equilibrium in our case would be a
vector �q ∈ [0, 1]|V |, where qi is the frequency with which user
i plays C. The subvector �qG corresponding to the Good users
will contain only 0s and 1s, according to whether Eq. (13) is
false or true, respectively. For example, if Eq. (13) is false for
user i, then the ith element of �q will be zero. The subvector
�qB corresponding to the Bad users will contain values in [0, 1]
such that no other value of qi would increase the payoff of
Bad user i. The payoff of Bad user i when he is playing C
with frequency qi is computed as follows:

Ri(qi|B) =
∑

j∈Ni:qj=1

{qiRi(CC|B) + (1− qi)Ri(DC|B)}

+
∑

j∈Ni:qj=0

{qiRi(CD|B) + (1− qi)Ri(DD|B)}

=
∑

j∈Ni:qj=1

{qi(E −N) + (1− qi)E}

+
∑

j∈Ni:qj=0

{qi · 0 + (1− qi) · 0}

= (E −Nqi)|{j ∈ Ni : qj = 1}|
(14)

Note that since a Bad user only has Good neighbors, and Good
users only play always C or always D, the qj (j ∈ Ni) will
all be either 0 or 1.

The problem with the equation we just wrote is that it is not
immediately obvious what the cardinality of the set {j ∈ Ni :
qj = 1} is. This set contains the neighbors of a Bad user that
play C. In general, what a Good user plays will be affected by
the choice of frequencies by all the Bad users. Actually, it will
not just be affected: it will be completely determined. Given
a choice of frequencies �qB by the Bad users, we describe an
algorithm (see Fig. 2) to compute the optimal responses of the
Good users, which will in turn determine the payoffs for every
user (Good or Bad). Our purpose in presenting this algorithm
is to show how Good users’ actions would affect one another

and Ds would propagate through the network. It is not claimed
to be the most efficient to compute what the equilibrium is.

In a few words, the algorithm starts by assuming that all
Good users play C. Then, they check the validity of Eq. (13),
and some start playing D. Then, the ones who started playing
D may cause their Good neighbors who are still playing C
to also start playing D. The set S contains these users who
still need to (re)check Eq. (13), since its validity may have
changed.

EQUILIBRIUM(G, �qB)
� All Good users are initialized to playing C,
� i.e., �qG contains only 1s.
� S contains users that may switch from C to D.

1 S ← VG

2 while S �= ∅
3 do i← REMOVE(S)
4 if SUM(i) < E

N |Ni|
5 then
6 qi ← 0
7 S ← S ∪ {j|j ∈ Ni ∧ j ∈ VG ∧ qj = 1}

Fig. 2. The algorithm EQUILIBRIUM computes the optimal actions (C or D)
for the Good users, given the subvector �qB of the Bad user frequencies. The
procedure SUM(i) returns the sum of the frequencies of i’s neighbors. Since
a Good user switching from C to D could cause other Good users to switch
from C to D, the while-loop needs to run until there are no more candidates
for switching.

In general, a change in the frequency qi of a Bad player
i will affect the payoffs of other Bad players, too, since it
will change the optimal responses of Good users that could,
e.g., be common neighbors of i and other Bad users. So, the
definition of the Nash Equilibrium we gave earlier could be
expanded to regard the Bad players as a team that aims to
maximize the total payoff, rather than each Bad user trying
to maximize his own individual payoff. In Section III-A, we
will see a case when local maximization by each Bad user is
equivalent to maximization of the sum of all the Bad users’
payoffs. In Section III-B we will examine more closely why
the two objectives are in general different and will describe a
heuristic for the general case.

A. The Uncoupled Case

Let us look at the case of a single Bad player in the whole
network. Since no other Bad players exist, the choice of the
Bad user will only affect his own payoff. We will see what
he has to do (i.e., with what frequency to play C) in order to
maximize his payoff, in a tree topology where the Bad player
is at the root of the tree. In Figure 3 we see the root (Bad
user) and the one-hop neighbors only.

Assume that the Bad user – labeled user 0 – has k neighbors,
labeled 1, . . . , k. We also assume that all the Good users will
start by playing C, and will only change to D if they are forced
by the Bad user. Applying Eq. (13) for each neighbor, we see
that each expects to see a different sum of frequencies from
his own neighbors in order to keep playing C. User i expects
to see a sum of frequencies that is at least E

N |Ni|. Since all of



Fig. 3. Single Bad user maximizes his own local payoff.

i’s neighbors except user 0 are Good, they will at least start
by playing C, so user i will see a sum of frequencies equal
to |Ni| − 1 + q0 (q0 is the frequency with which the Bad user
0 is playing C). So, in order to make user i continue playing
C, the Bad user should play C with frequency

q0 ≥ E

N
|Ni| − (|Ni| − 1) = 1− |Ni|(1− E

N
) ≡ ti, (15)

which is decreasing with |Ni|, since E < N . We call this
quantity the threshold ti:

Definition 1: The threshold ti of a Good user i with g Good
neighbors is the sum of frequencies of Cs that his |Ni| − g
Bad neighbors need to play, so that he keeps playing C. We
assume that all his Good neighbors play C.

ti = max
{

E

N
|Ni| − g, 0

}
(16)

Without loss of generality, we assume that the Bad user’s
neighbors are labeled in increasing order of ti. So, t1 < t2 <
. . . < tk. By choosing q0 = tk, the Bad user guarantees that all
his neighbors will be playing C. The payoff that he receives
by playing q0 = tk can be calculated using Eq. (14) to be
equal to R0(tk|B) = k(E − Ntk). In general, the following
holds:

R0(tj |B) = j(E −Ntj). (17)

It does not make sense for the Bad user to choose any value
for q0 other than one of the tj , since it would not make any
difference to the Good users; it would only reduce the payoff
of the Bad user. So, the aim of the Bad user is to find the
value of tj that maximizes the payoff. Note that as j increases,
the first term of the product increases, but the second term
decreases. This gives a bound on the acceptable values that q0

can take. It cannot be higher than E
N , since that would make

the payoff negative, when the Bad user can always guarantee
a payoff of at least 0 by choosing q0 = 0. In order to find
the optimal tj we compare the payoffs for all values of j, and
pick the maximum. For two values of q0, say tl and tm with

l < m, the comparison boils down to:

R0(tl|B) > R0(tm|B)⇔ l(E −Ntl) > m(E −Ntm)

⇔ tm >
l

m
tl + (1− l

m
)
E

N
(18)

When the Bad user chooses a value for q0, some of his
neighbors will play C and some D. The ones who play D
may cause their own neighbors to start playing D, and so on,
in a spirit similar to the algorithm described in the previous
section. However, the Ds cannot, by propagating, influence
other neighbors of the Bad user: That is a consequence of the
tree topology that we have assumed, since the only path that
goes between two one-hop neighbors of the Bad user, goes
through the Bad user.

What happens when there are multiple Bad users in a
general topology? We will examine the circumstances under
which the maximization of the total sum of Bad users payoff
is achieved through the local maximization of each Bad user’s
payoff. This local maximization is done as we have just
described in Eq. (18). We call “Uncoupled Case” the situation
described by these circumstances.

We will find it useful to define the notion of the tolerance
of a Good user.

Definition 2: The tolerance of a Good user is the largest
number of his one-hop neighbors that can play D, before he
starts playing D himself.

The tolerance of a Good users is a function of E
N . To

compute the tolerance of user i, assume that n of his neighbors
play D, and |Ni|−n play C. From Eq. (13), for user i to play
C the following needs to hold:

|Ni| − n ≥ |Ni|E
N
⇔ n ≤ |Ni|(1− E

N
) (19)

The tolerance is the largest integer n for which this equation
holds, i.e., nmax = �|Ni|(1− E

N ).
To show that local maximization is equivalent to global

maximization, we need to make sure that Good players who
start playing D do not cause, recursively, “too many” other
Good users to play D so that the payoffs of other Bad users
are affected. Going back to the algorithm EQUILIBRIUM, we
can see that this will happen if and only if the nodes that play
D because of a Bad user B1 are separated by at least two nodes
(three hops) from the nodes that play D because of any other
Bad user. In other words, there needs to be a layer of nodes at
least two nodes deep that have large enough tolerances so that
they will not start playing D themselves. Since, for a fixed
E
N , the tolerance of a user depends only on the number of
his neighbors, nodes with a high degree that are connected to
each other would provide the highest resistance to playing D.
In graph theoretical terms, the greatest “aggregate” tolerance
is achieved, for a given number of nodes, when the nodes are
connected in a clique (maximum connectivity).

We now apply these considerations to a specific example,
shown in Fig. 4. There are two Bad users, labeled B1 and B2,
and eleven Good users. Shown in the picture are the thresholds



Fig. 4. The Uncoupled Case. Shown next to each node is its threshold: The
frequency of Cs it expects to see from the neighboring Bad user. It is equal
to E

N
|Ni| − (|Ni| − 1), since each Good user happens to have at most one

Bad neighbor.

of the Good users who are neighbors of a Bad user. Remember
that the threshold of a Good user is the frequency of Cs that
the Bad neighbor should play if the Good user is to play C,
assuming that all the other neighbors of the Good user play
C.

The thresholds of B1’s neighbors are, in ascending order:
4 E

N −3, 3 E
N −2, 2 E

N −1, E
N . These, along with the value 0, are

the options that B1 has for choosing his qB1 . To keep things
simple, we assume that E

N is such that all the above thresholds
are positive. In particular, this translates to E

N > 3
4 .

The table below shows the choices that B1 can make and
the associated payoffs. The thresholds are computed using
Eq. (16), and the payoffs using Eq. (14).

frequency payoff
0 0

4 E
N − 3 3(N − E)

3 E
N − 2 6(N − E)

2 E
N − 1 5(N − E)

E
N 0

So, to maximize his own payoff, B1 should play C with fre-
quency 3 E

N −2. On the other hand, the maximizing frequency
for B2 is 4 E

N − 3, which brings him a payoff of 3(N − E).
How will the Good users react to these choices? In effect,

we will now go through what the algorithm EQUILIBRIUM in
Fig. 2 would do. Users 5,6, and 9 will play C, and users 1,2,
and 10 will play D because B1’s choice is above or below
their thresholds, respectively. User 4 will play C because of
B2’s choice.

For the two-hop neighbors of the Bad users, we will have
the following: User 8 will obviously play C, since both his
neighbors (5 and 9) play C. For users 3 and 11, the situation
is identical: They have five neighbors each (hence they need to
see a sum of frequencies equal to 5 E

N to play C), and exactly
one of their neighbors is playing D (2 and 10, respectively).
So, each sees a total sum of frequencies equal to 4, and they

Fig. 5. The General Case. Shown next to each node is its threshold: The
frequency of Cs it expects to see from the neighboring Bad user. It is equal
to E

N
|Ni| − (|Ni| − 1), since each Good user happens to have at most one

Bad neighbor.

will play C if 4 > 5 E
N ⇔ E

N < 4
5 . Although we have

constrained E
N to be greater than 3

4 , there is still a range of
values for E

N , namely 3
4 < E

N ≤ 4
5 , for which users 3 and

11 will play C. The only remaining user is user 7, who will
obviously play C, since all his neighbors are playing C.

So, to recapitulate, we have verified that the individual
maximization of each Bad user’s payoff results, in this case,
in the global maximization of the sum of the payoffs of the
Bad users.

B. The General Case and a Heuristic Solution

In this section, with the help of Fig. 5, we will see that
local maximization of Bad user payoffs does not always
correspond to maximization of the sum of their payoffs. This
case particularly applies when a Good user has two or more
Bad neighbors.

The situation for Bad user B1 has not changed compared
to Fig. 4. The maximizing frequency is still 3 E

N − 2, and the
payoff is still 6(N−E). As far as B2 is concerned, we can see
that the maximizing frequency is also 3 E

N −2, which will bring
him a payoff of 4(N−E). However, if we apply the algorithm
of Fig. 2, we will find that if B1 sets qB1 = 3 E

N − 2 and B2

sets qB2 = 3 E
N − 2, then things will not go “as planned” by

the Bad users. Namely, user 2 will start playing D, because
his threshold is not satisfied. As a result, user 3 will see a
total sum of frequencies equal to 0 + 1 + 3 E

N − 2 = 3 E
N − 1,

which is lower than the total sum of 3 E
N that he expects, and

so he will start playing D. Therefore, B2’s payoff will be
diminished. If we carry the calculations further, we will see
that, after 3 starts playing D, neither user 6 sees the total sum
of frequencies he needs to keep playing C – he only sees
0 + 1 + 1 + 3 E

N − 2 = 3 E
N < 4 E

N . So user 6 will also start
playing D, which will diminish B1’s payoff, too. Eventually,
all Good users except 5,8, and 9 will play D.

One could argue that a Malicious User would be happy with
a situation like that, i.e., when most of the Good users are



playing D. In that case, the network ceases to operate, which
is supposed to be what a Malicious User wants. However,
by playing D, the Good users do not use up their energy.
Remember that another aim of the Bad users is to deplete the
energy of the Good ones. Although we have not incorporated
this in our model, we could set a finite limit on the amount
of energy that the Good users can use. Then, it makes more
direct sense for the Bad users to try and deplete the Good
users energy, which seems to be infinite in our current model.
Moreover, we could constrain the life of the Bad users to
some finite (or probabilistic) length of time (after which they
get caught, for example, and the network operates smoothly).
Then, again it would make more direct sense for the Bad users
to “hurry up” and waste the energy of the Good users, so
that the network will not be able to operate for very long,
even after the Bad users are caught. Even in a non-wireless
network, where energy is not a concern, Bad users would still
try to exploit the cost of cooperation. Remember that the cost
of cooperation is a fundamental characteristic of the situations
we are modeling.

We now look at what the Bad users should do, in order to
maximize the sum of their payoffs. We keep referring to Fig. 5.
In general, either one of two options is likely to achieve the
optimal sum: Either one of the two nodes sacrifices his own
payoff to a small or large extent, so that the other one can
keep playing his maximizing frequency, or they both sacrifice
a part of their individually maximum payoffs, in such a way
that the sum of payoffs is maximized.

We observe that the Bad user B2 has two choices for his
frequency: either 0, or 3 E

N − 2, which do not coincide since
3 E

N − 2 > 3 3
4 − 2 > 0 (we keep assuming, as previously, that

E
N > 3

4 ). If B2 plays 0, then both his neighbors (3 and 7)
will start playing D, and so B2 will get a zero payoff. As
a result, user 2 will expect a total sum of frequencies equal
to 2 E

N from B1, which is more than the absolute maximum
frequency of E

N that a Bad user needs to play in order to keep
his payoff positive. So, user 2 would also play D. Moreover,
because of users 3 and 7 playing D, user 6 would need a larger
frequency of Cs from B1. We could continue this analysis, but
it has become clear that the Bad users are worse off with this
choice of B2.

If B2 chooses 3 E
N −2, then both 3 and 7 will play C, if they

are not affected by the choice of B1. The payoff for B2 would
then be 4(N−E). We have already seen that if B1 chooses his
maximizing frequency 3 E

N − 2, then many users will end up
playing D, thus ruining the payoffs of the Bad users. So, we
turn to the next best local option for B1, the frequency 2 E

N −1,
which gives him a payoff of 5(N−E). We see that this keeps
all neighbors of B1 at C except user 1. Therefore, the rest
of the network is not affected, and everybody keeps playing
C. The sum of payoffs for the two Bad users is now 5(N −
E)+4(N −E) = 9(N −E), which is the maximum sum that
can be achieved (remember that the sum of the two individual
maximum payoffs is 6(N−E)+4(N−E) = 10(N−E), and
we have seen that this payoff cannot be achieved in a stable
equilibrium).

We now propose a heuristic for finding a payoff as close
as possible to the maximum sum of payoffs. The heuristic
maximizes the payoff of the “most promising” Bad users first.
In other words, the idea is to find the node whose maximum
individual payoff is the largest among all individual payoffs
and let him play his maximizing frequency. Then, re-evaluate
the individual payoffs attainable by all other Bad users in the
new situation, and again choose the “most promising” one.
Finally, repeat this process until no other Bad users are left.
In effect, this sacrifices the payoffs of the “least promising”
Bad users for the sake of the “most promising” ones. Note
that in the uncoupled case, this heuristic performs optimally.

In the topology depicted in Fig. 5, our heuristic would
choose B1 as the most promising Bad user, since his maximum
individual payoff is 6(N −E), for a maximizing frequency of
3 E

N − 2. That would cause Good users 1, 2, and 10 to play D
because their thresholds would not be satisfied. Now, we come
to what B2 can do in the new situation. as we have already
seen, he cannot play his individual maximizing frequency. The
heuristic would make B2 play whatever frequency is necessary
to prevent the Ds from spreading to other Good users. For
instance, to prevent user 3 from playing D, B2 will need to
play the maximum possible frequency (qB2 = 1), despite the
fact that B2 would incur a negative payoff by doing that. Then,
user 3 would see a total sum of frequencies of 2, and, if his
expected sum of frequencies, 3 E

N , is lower than that, then he
would play C. So, we see that the performance of the heuristic
depends on the value of E

N . It can be shown that the lower
that value is, the better the heuristic performs. If E

N is low
enough, we get the uncoupled case, for which we know that
the heuristic coincides with the optimal solution.

IV. CONCLUSION AND FUTURE WORK

Unstructured networks, like wireless ad-hoc or peer-to-peer
networks, depend on the cooperation of their users to operate
successfully. However, users have incentives and disincentives
to cooperate, both of which we model in a game theoretic
fashion, with appropriate payoffs (N and E). The main
contribution in this paper is the modeling of Malicious Users
in the same game theoretic framework by assigning payoffs to
them, and not just modeling them as, e.g., “Always Defect”.
We consider a repeated game to emphasize the duration of
the network operation, and we model the Good user strategy
to follow fictitious play, versions of which have appeared in
previous work on trust and reputation calculations.

In the future, we plan to elaborate on how the topology
and the relative values of the parameters E

N affect the optimal
equilibrium payoffs for the users. We also want to make a
more rigorous and general evaluation of the performance of
the heuristic, compared to the optimal solution. Two more
general extensions worth pursuing are: First, enable the users
to play different actions against different neighbors. Second,
associate an actual cost with the Bad users’ attempt to attack
the network. This second extension, suggested by one of the
reviewers, seems to require a genuine change in the modeling
of the Bad users, since in the current model the Bad users do



not incur any direct cost. More important, any combination of
actions could be called an attack, so it is not clear when the
Bad users would have to pay the extra cost and when not.
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