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Abstract—We develop a simple stochastic fluid model that seeks « A video (live or stored) is divided into media chunks of

to expose the fundamental characteristics and limitation®f P2P about one second in duration, and the chunks are made
streaming systems. This model accounts for many of the esd& available at an origin server

features of a P2P streaming system, including the peers’ réa A int ted in viewina the vid t btai
time demand for content, peer churn (peers joining and leawig), ° peer, interested in viewing the video stream, obtains

peers with heterogeneous upload capacity, limited infrasticture from the system a list of peers currently watching the
capacity, and peer buffering and playback delay. The models video. The peer then establishes partner relationships
tractable, providing closed-form expressions which can beised (TCP connections) with the peers on the list.

to shed insight on the fundamental behavior of P2P streaming

o The peer requests media chunks from its partners and

systems. X

The model shows that performance is largely determined by (possibly) from.the server. But because the chunks have
a critical value. When the system is of moderate-to-large sé, playback deadlines, a peer only requests chunks that can
if a certain ratio of traffic loads exceeds the critical value the likely be received before their playback deadlines.
system performs well; otherwise, the system performs pooyl « Once a peer has obtained a chunk, it makes the chunk

Furthermo.re, large systems have .b.etter performance than s;{ll available for downloading by other peers.
systems since they are more resilient to bandwidth fluctuatins . . . L
caused by peer churn. Finally, buffering can dramatically m- /AN important characteristic of pull-driven P2P streamisighie
prove performance in the critical region, for both small andlarge  lack of an (application-level) multicast tree - a charastér
systems. In particular, buffering can bring more improvement particularly desirable for the highly dynamic, high-chir@P
than can additional infrastructure bandwidth. environment [18]. Although pull-driven P2P streaming has
similarities with BitTorrent, BitTorrent in itself is notfeasible
delivery architecture, since it does not account for thétiese

With the widespread adoption of broadband residentiakeds of streaming.
access, live video streaming may be the next disruptive IPSeveral pull-driven P2P streaming systems have been suc-
communication technology. As an indication of the potdntigessfully deployed to date, accommodating thousands of si-
of live video streaming, recently a commercial P2P stregmimultaneous users. Most of the these deployments have origi-
system broadcasted the 2006 Chinese New Year's celebraii@ted from China (including Hong Kong). The pioneer in the
to over 200,000 users over the Internet at bit rate in tHield, CoolStreaming, reported more th&r000 simultaneous
400-800 kbps range [9], generating an aggregate bit rateugers in 2003. More recently, a number of second-generation
the vicinity of 100 gigabits/sec. In the future, we expect tpull-driven P2P streaming systems have reported phendmena
see thousands of live video streaming channels available sutcess on their Web sites, advertising tens of thousands of
the Internet, each with a bit rate of 500 kbps or more, easimultaneous users who watch channels at rates between 300
supporting tens of users to hundreds of thousands of userkbps to 1 Mbps. These systems include PPLive [13], PPStream

There are several classes of delivery architecture for liyg4], VVSky [17], TVAnts [16] and FeiDian [8].
video streaming, including native IP multicast [6], apption- In P2P streaming systems, participating nodes are very
level infrastructure overlays such as those provided by CDiéterogeneous, particularly in terms of the amount of uploa
companies [1], [7], and P2P architectures. Requiring mathimbandwidth they contribute [9]. Today there are roughly two
infrastructure, the P2P architectures offer the possibif classes of peers participating in P2P streaming systeroadbr
rapid deployment at lowest cost. P2P streaming architestuband residential peers with DSL and cable access; andunstit
roughly fall into two categories:) multicast trees such as intional peers with high-bandwidth Ethernet access. In &idit
end-system multicast [3]i¢) and pull-driven P2P streamingto being heterogeneous, nodes churn, with peers randomly
such as CoolStreaming [18], PPLive [13] and PPStream [14dining the system, watching the video for a random period

Bearing strong similarities to BitTorrent [5], pull-drimd®2P of time, and then leaving the system. As the peers churn,
streaming architectures have the following charactessti  both the system’s demand for video as well as the system’s

I. INTRODUCTION



overall ability to supply video changes. Another importard. Related Work

characteristic of P2P live streaming systems is that they ca 1o our knowledge, this is the first paper that presents
allow for small buffering delays, which potentially mitiga an analytical model for P2P streaming systems (fluid or
against the short-term bandwidth variations due to peem:huotherwise). Here, we briefly describe other papers thatqzep
Broadly speaking, a P2P streaming system performs wellgifiig models for P2Pdownload systems. Qui and Srikant

all participating peers can continuously playback the #idg15] developed and solved a fluid model for BitTorrent-like
(without freezing or skipping) with a small playback delay. systems. The model accounts for churn, and views the number

In this paper we develop a simple stochastic fluid mod@f Séeds and leechers as fluid quantities. They develop simpl
that seeks to expose of the fundamental characteristics &Hgerential equations for the fluids and solve the equation
limitations of P2P streaming systems. This model accouri§ady state. Clevenot et al [4] develop a multiclass fluideho
for many of the essential features of a P2P streaming systdff, BitTorrent systems. The multiclass fluid model leads to a
including the peers’ real-time demand, peer churn (peéns jonon—llnear system of differential equations with s_pectah(s_
ing and leaving), peers with heterogeneous upload capacityfe- They prove the system of differential equations asimit
limited server upload capacity, and buffering and playba¢fique stable equilibrium, which is computed in closedsfor
delay. Additionally, the model is tractable, providing stal- The fluid mpdels in [15] and [4] are not apphcab_le to streagn_m
form expressions which can be used to shed insight on th¥Stems with heterogeneous upload rates, since there is no
fundamental behavior of P2P streaming systems. We J¥@lion of leechers transitioning to seeds.

the stochastic fluid model to seek answers to the following There is also recent work in modeling the time it takes to
questions. istribute a file from seeds to leechersdnurnless download

systems. Mundinger et al have studied this problem for beter

. What are the key parameters that determine the perf eneous peers with infinite download capacity, both for &hun

mance of the P2P streaming system? Is there a thresho‘:fgeOI and fluid-based systems [12]. Kumar and Ross derived

effect for which the performance switches from poor t&! explicit expression for the minimum download time in a
excellent as the threzhold is crossed? P general heterogenous fluid system with finite download rates

. It has been observed that large P2P streaming systemsey also extended this result to multi-class systems wigh fi

dand second-class leechers. Biersack et al used a chunét-base
generally perform better than small systems [9]. Why dg : . L X
large systems perform better? model to derive expressions for the distribution time for a
« What happens to performance as the system scales? ?I)]/eral practical overlay topologies [2].

particular, for a dynamic system with churn, what is the Il. MODELING P2P SREAMING

asymptotic performance of the system as the averagqp this section we provide our basic model and notation
number of participating peers become very large?  of p2p streaming. The video originates from a server node;

« Can buffering and playback lag significantly improvgjenote byu, (in bps) for the upload rate of the server. Let
performance? If so, by how much and in what circum: genote the rate (in bps) of the video. The video is to be
stances? streamed to all participating peers.

« Can we quantify the benefit of additional infrastructure e classify each peer as eithesaper peeior anordinary
resources? Will increasing the server upload rate signifizer Super peers provide high-speed access rates in excess of
cantly improve performance? _ ~afew Mbps; ordinary peers have residential broadband acces

« Finally, how can admission control be applied to prOVId@/picauy with upload rates of 500 kbps or less. In our model,
adequatg service to all peers while minimizing the numyy, super peers have the same upload capagityand all
ber of rejected peers? ordinary peers have the same upload capagityith us < u;.

Unless explicitly stated, we assume that< » < uy. In other

This paper is organized as follows. In Section 2 we intrawords, a super peer can upload at a rate higher than the video
duce the basic model for P2P streaming with peer churn. date, and an ordinary peer’s uploading capacity is sméilgn t
Section 3, we take a brief interlude and derive necessary ahd video rate. We often refer to super peers and ordinary
sufficient conditions for a churnless system. These camtiti peers as clask-and clas? peers, respectivelyAlthough we
are not only central to our stochastic model with peer chuare assuming only two classes of the peers, the theory and
but are also of independent interest. In Section 4 we returnresults presented here can easily be extended to any nurhber o
systems with churn. We first determine an explicit expressialasses, with each class having its own upload rédewever,
for the probability of degraded service. We then employ ame shall see that a two-class model suffices to expose many
asymptotic model to study large P2P streaming systems.dhthe key issues underlying P2P streaming.
Section 5 we explore the potential for improvement with Peers join and leave the P2P streaming system at random
playback buffering and lag at the peers. In Section 6 we uSmes. As in existing P2P streaming systems, whenever a peer
the results from Section 4 to develop an effective admissigoins the system and receives chunks of video, it is oblidjate
control scheme for P2P streaming systems. We summarize theedistribute the chunks it receives [18] [13] [14]. Dembly
contributions of this paper and conclude in Section 7. \; for the rate at which classpeers join the P2P streaming



system. Denote by/u; for the average amount of time a classso that all peers receive fresh bits at rateWe define the
1 peer views the video (and hence sojourns in the system). Wiaximum achievable rat® be the maximum value of such
make no assumptions on the distribution of the peer sojoutrat the system can perform universal streaming.
(viewing) times. Peers from the two classes join the system a
two independent Poison processes. Pgt) be the number of Theorem 1: The maximum achievable streaming ratg,
classi¢ peers in the system at time t. Clearfy; (t) and >(t)  is given by
are two independent//G /oo processes [10]. n

Having described the model for peer churn, we now turn Fmax = min{us, Us + 31 “i}_
to streaming. We adopt a fluid flow model and focus on the n
instantaneous rate at which peers receive and transfer bits
Initially we assume a bufferless system, that is, bits cannprgof: Denote
be buffered before playback or before copying to other peers
(In Section 5, we extend the model to allow for buffers and u(P) = Z“l
playback lag.) In this bufferless model, a peer can playhaek 1=t
video whenever it receives fresh content bits at ratévhen Clearly, the maximum streaming rate cannot exceed the aggre
all participating peers receive the video at rafave say that gate upload rate of the server; thutg,.x < us. Furthermore,
the system providesniversal streamingWhen the system is the maximum aggregate rate that bits can flow out the server
not providing universal streaming, we say that system dpsraand out of the: peers is bounded by, +u(P). This maximum
in degraded service mode aggregate rate, if it could be achieved, needs to be disadbu

At any given instant of time, whether universal streamin the n peers. Thus the maximum streaming rate to an
can be accomplished or not depends of number of super pdegividual peer is also bounded by, + u(P)/n. Combining
and ordinary peers in the system at timethat is, it is a these two bounds gives
function of P;(t) and P»(t). The more super peers in the . us + u(P)
system, the greater the average upload capacity per peer and Tmax < min{us, " }. (1)
the easier it is to accomplish universal streaming. Dengte b , .
®(P, (1), P,(t)) for the maximal rate at which the system caff "€mains to show that ifi) u, < (us +u(P))/n, then the
deliver fresh content t@ach of the peers when the systentréaming rate = u, can be supported; and {fi7) u, >
is in state(P; (t), P»(t). The functiond(-,-) depends on the (s + u(P))/n, then the streaming rate = (us + u(P))/n
efficiency or the distribution scheme in the pull-driven P2/aN be supported. _ _
streaming protocol. Universal streaming occurs at timé ~ SUPPOSes < (us +u(P))/n. Consider a video stream of
and only if ®(P, (1), P»(t)) > . To complete the stochasticrate_r = ug. Divide th|s_ video stream inta substreams, with
fluid model, we need to specif@(-,-), which we refer to as the ith substream having rate
the fluid function In the next section we provide an explicit Ui

expression fod(-, -) for an optimized system. % u(P)

n

ug forall . € P

Note that the aggregate rate of thesubstreams is equal to

: . _ ) _the rate of the stream, that is,
In this section we seek to derive the maximum streaming

rater for which universal streaming is possible for a churnless Z P
T s — .
i=1

IIl. UNIVERSAL STREAMING FOR CHURNLESSSYSTEMS

system, that is, for a system in with a fixed set of peers. We do
this for a system that is more general than that describduein t ) )
previous section - namely, we consider general heterogene$/e have the server copy thih substream to theth peer.
systems, with each peer having its own upload rate. Furthermore, becausg: — 1)s; < u;, we can have théth
The results derived in this section will play a central rol@€€r COPY its substream to each of the otherl peers. Thus
in the analysis of the stochastic system with churn. Howev&2Ch Peer receives a substream directly from the server and
they are also of independent interest, as they provide simgiSC réceives. — 1 additional substreams from the other- 1
and explicit expressions for the maximum rate of a churnleBE€rs: The total rate at which peereceives is
P2P streaming system. re = 8 + ZS’C = u,.
Denote byn for the number of peers in the system and let oy
u; denote of the upload capacity of peefori = 1,...,n.
Viewing bits as fluid, bits arrive to the server at rateAs the Hence the rate = u, can be supported. _
bits arrive to the server, they can be copied to one or moreNOW SUppose:; > (us+u(P))/n. Consider a video stream
peers. As bits arrive to a peer, they can also be copied to difdater = (us +u(P))/n. Divide this video stream inta + 1

or more of the remaining peers. The aggregate bit rate outPstreams, with théth substreamy = 1,...,n, having rate
the server cannot exceed; the aggregate bit rate out of asi = i/ (n — 1) and the(n + 1)st substream having rate
peer cannot exceed;, i = 1,...,n. The system can perform u(P)

universal streaming if it is possible to copy and route ths bi Sn1 = (s — n— 1)/”



Clearlys; > 0 for all i =1,...,n+ 1. Now have the server A natural question is, in steady-state, for what fraction of
copy two substreams to each peégethe ith substream and thetime do we have universal streaming? We refer to this fractio

(n + 1)st substream. The server can do this because of time as theuniversal streaming probability_et P; be the
n random variable denoting the number of active tygeeers in
Z(Si + Sng1) = Us steady state. It is well-known th#} has a Poisson distribution
i1 with meanFE[P;] = p;. From Corollary 1, we have

Furthermore, have each peérstream a copy of theth P(universal streaming= P (P, > cP; — u',) 4)

substream to each of the— 1 other peers. Each peércan

do this becausgn —1)s; = u; fori = 1,..., n. The total rate where T,

at which peer receives is I ST up—r

Ty = 8 + Spt1 + Zsk = (us + u(P))/n. SinceP; and P, are independent Poison random variables, we
ki can explicitly calculate the universal streaming proligbas
Hence the rate = (us + u(P))/n can be supported. follows. Let M = |7+ ]. We have

NE

!
We remark that this result can be extended to include finit@(Pl > cPy —ug) =

download rates at each of thepeers. In particular, suppose t

Il
=]

peeri has download ratel;. Let dyi, = min{d; : i = — PP, < M = PP > el — u \P(Ps — 1
1,...,n}. Then (P < )+l:%:+1 (Pr = cl —ug)P(Py = 1)

Tmax = min{us, ———=, dmin} @ =P <M+ > P(P > [cd—u,])P(Py =1)
We omit the proof of (2) for brevity; see [11] for a related 0o =M1

result concerning the minimum time to distribute a file to all= F,(M)+ Z (1=Fi([cl—ul])+ f1([el=ul])) f2(1) (B)

peers in a P2P system. I=M+1
A. Two-Class Model where
Let us now return to the original model in which every peer e Pipd -
i(n) = —— and F;(n) = i
is either a super peer or an ordinary peer. Denoterbynd film) n! (n) ; filn)

ne the number of super peers and ordinary peers in the P, . . :
streaming system. The following result is a consequence%}lz will return to this result when we present numerical rissul

Theorem 1 and will be used repeatedly in this paper: atthe end of this section.
A. Large System Analysis

Corollary 1: For any rater such thatus < r < uy, universal We now scale the system by lettipg — oo and ps — oc.
streaming is achievable by some fluid distribution schemelifis natural to consider scaling regimes in whigtyp, = K

and only if for some constanf. We consider here a more generalized
r < ¢(ni,ns) (3) regime in which
where p1 = Kpz + B/p2 (6)
. Us + N1U1 + Nous for some K > 0 and somes3 (positive or negative). We will
¢(n1,n2) = min{us, ny + no s see that this more generalized scaling will enable us tonglea
IV. P2P SSREAMING WITH PEER CHURN additional insight into the fundamental characteristit$2P

- : . _ . Streaming systems.
We now return to original model as given in Section 2 with g sy

peers joining and departing at random times. Dengte=
i/ ;. Recall that withP;(¢) denoting the number of active
type- peers at time, the two stochastic processgs (¢), ¢ >

Theorem 2:In an asymptotic regime with; = Kp2+ (3,/p2,
the asymptotic probability of universal streaming is gi\®n

0) and(Px(t), t > 0) are independent M/Gé processes with 1 K>c
arrival rates\; and A\, and departure rates, andu,. Recall lim P(P; > cPy—ul) = F(V%) K=c (7)
that to complete the stochastic fluid model, we need to specif 727> 0 K<e

a fluid function®(-,-). Henceforth, we us®(-,-) = (-, "), ) L .

where ¢(-, ) is given in Corollary 1. Thus, we assume atherel — F(-) is the distribution function of the standard
optimized P2P distribution scheméle remark, however, that "0rmal random variable.

the theory developed in this paper can be easily extended to _ _ _

any relevant fluid functiomd(-,-) < ¢(-,-). For example, we Proof: Define the normalized random variables

could use®(-,-) = .8 - ¢(+,-), modeling a P2P distribution X, — P —pm X, — Py —p2

scheme that is only 80% efficient. Coum T U,
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Note that

P(Py > cPy—u}) = P(\/p1 X1+ p1 > c(v/p2Xo+ p2) — ul)

:P(,/K+\/%X1+(K—c)\/p—2+ﬁzcxg—

Now, asps — oo, clearly this probability goes to if K > ¢
and goes td) if K < c¢. Now consider the cas& = c. As

p2 — oo, this probability goes to

P(NKZ, — cZy > —f3)

/

u

S

NG

provides universal streaming. This critical thresholdlays an
important role in the design and operation of P2P streaming
systems. We say that when /p» =~ ¢, we say that system
operates in theritical region.

Theorem 2 also leads to useful and simple approximation
for medium and large systems when operating in the critical
region Givenp, p2 andc = (r —us)/(u; — ), we setk = ¢
and solve forg in (6):

g PLcp
NG

We then plug this expression fgrinto F(—5/v/c + ¢?) from

Theorem 2 and obtain the explicit approximation:

p1 — cp2/\/P2

P(universal streamingy F(——————).

a2 (8)

B. Numerical Results and Insights

We now explore how the equation (5) and the approximation
(8) can be used to study the performance of P2P streaming
systems. We do this for two systems: a “small system” with a
number of concurrent peers in the vicinity of 75; and a large
system with the number of concurrent peers in the vicinity of
7,500.

For both the small and large systems, we use the rate8,
ue = 1 andus = 7. These rates could be, for example, in units
of 100 kbps. The chosen rates reflect current streaming, rates
residential upload rates, and enterprise/universitysrak®r
this choice of rates, the video rate is three times the upiated

whereZ; andZ; are two independent standard normal randopf the ordinary peers; and the upload rate of the superpde/ers
variables. But since a linear combination of independeiittimes that of the ordinary peers. (For example, most PPLive
normal random variables is also a normal random variablg)annels are currently in the vicinity of 400 kbps, which is

we have

P(VKZ, —cZy > —f3) = F(

_—B

\/c—|—02) -

about 2-4 times the upload rate of many residential broadiban
peers. University access rates vary, depending on traffic an
university-to-ISP bandwidths; for most cases, we expegt

to be in the 5 to 20 range.) These values give 0.5 for the
critical factor.

Theorem 2 indicates that P2P streaming systems exhibit dn these numerical examples, we use different server rates
critical threshold. For a large systemyif/p2+¢ < ¢, then the g, all multiples of theu,. By using different multiples for the
performs poorly, rarely providing universal streaming. tha server rate, we explore how additional infrastructure ueses
other hand, ifp1/p2 > ¢ + ¢, then the system almost alwayscan potentially improve performance.
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Fig. 3. Tandem Fluid Queueing Model for P2P Streaming Buffering

We set throughout /p; = 1/ue = 0.5 hours. Thus, we the system is scaled from small to large. For this we fix
suppose that super peers and ordinary peers sojourn in phép. = 0.54. As before the small size system is chosen to be
system on average for 30 minutes. For the small and largggh A2 = 100. The given ratigp; /p2 = 0.54 yields A\; = 54.
system, we fix the arrival rate of the ordinary peexs, and From this the system is linearly scaled with a scaling factor
vary the arrival rate of the super peers in vicinity)af/2. For increased from 1 to 100 in multiples of 10. Figure 2 shows
the small system, we set the arrival rate of ordinary peersttte probability of degraded service with respect to thidisga
A2 = 100/hr, so that the average number of ordinary peefactor. We again see that the role of the server upload rate
in the system ig2 = A2 /2 = 50 and the average number ofdiminishes as the system scales.
super peersyy, is in the vicinity of 25. For the large system, As mentioned in the Introduction, it has been observed that
we set the arrival rate of ordinary peersXte = 10,000/hr, P2P streaming systems with large peer populations perform
so that the average number of ordinary peers in the systenbéter than systems with small populations [13]. This gaher
p2 = A2/p2 = 5,000 and the average number of super peerslaim is collaborated by Figures 1 and 2. For example,
p1, is in the vicinity of 2, 500. consider the case @f, = 7. For the large system withy /po >

Figure 1(a) shows the probability of degraded service as}. Universal streaming is essentially always provided. How-
a function of p; /p, for the small system. Three curves ar&Ver, for the small system, withy /p, = .53, degraded service
shown: one for the approximation and two for the exact val@ecurs more than 25% time; even @t/p, = .68, degraded
with two different server rates. As expected, performan&8rvice occurs more than 5% time for the small system. Thus,
improves as the arrival rate of super peers increases @quie large system provides universal service over a muchrwide
lently, asp;/p» increases). We observe that by doubling thExnge of system parameters. This can be explained as follows
infrastructure resources for a server bandwidthupf= 7 to When a super peer leaves the system, the impact will be
us = 14, we can obtain significant performance gains. Thegglatively small in a large system as there is an averaging
improvements, however, diminish when operating outside 8fféct due to the large number of super peers in the system.
the critical region (for example, when either/p, > 0.7 or HOwever, in a small system, the loss of a super peer can have
p1/p2 < 0.3). We also observe from this figure that althougR dramatic effect, moving the system from the critical regio
the approximation (8) follows the general performancedyén t0 the overloaded region.
significantly over estimates the probability of degradedise V. BUFFERING AND PLAYBACK LAGS
throughout the critical region. This is to be expected, sinc

th imation is derived f | . toli In Section 4 we observed that one of the fundamental
anealillzipsmx'ma Ion IS derived from a large-system asymp OTéharacteristics of P2P streaming systems is that peer churn

introduces fluctuations in the available upload bandwidth.
Figure 1(b) shows the probability of degraded service @$ traditional client-server streaming applications, fbtihg
a function of p;/p, for the large system. Four curves argng playback delays are commonly used to mitigate against
shown: one for the approximation and three for the exactevalfjyctuating available bandwidth. In this section, we inifest
with three different server rates. As expected, perforreangate whether buffering can also improve performance in P2P
improves as the arrival rate of super peers increases @qu'ytreaming systems.
lently, asp:/ps increases). For the large system, the critical The basic idea of buffering in P2P streaming systems is to
region is very pronounced. For each of three valueg.9f puild up reservoirs of content in the peers’ playback buffer
whenp; /p2 < .47 the system almost always operates in thghich is consumed when the upload rate falls below the
degraded service mode. Whery p, > .47, the system almost jive streaming rate. Unlike in video-on-demand systems, th
always provides universal service. Figure 1(b) also shéas t yp|oad rate in a P2P streaming system is not only constrained
doubling or tripling the infrastructure resources (thats) by its aggregate uploading capacity + u1 P (t) + usPs(t)
have little impact on performance. For this large system, gt also by the rate at which fresh content is generated. For a
need to increase; by a factor of 10 to 100 to get significant|jye streaming session, fresh content is generated by theso
gains. Finally, the figure also shows that the approximaBonat 5 fixed rate-. If all peers want to have real-time playback,
very accurate for large systems. In fact, the approximasonthe uploading rate of new content to a single peer can never
accurate even outside of the critical region. exceedr. In order to have reservoirs of content at the peers, it
We also investigate the probability of degraded service @&stherefore necessary for peers to have playback lags so tha
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Fig. 4. Buffering: Degraded-Service probability for small anddarsystems

they canpre-fetchcontent before playback when the averac - 045 oo
uploading rate in the system exceeds £ 040 —abuffor - 30

To illustrate the potential benefits of buffering, we nov g S Y U
extend the system of Section 4 by placing at each peel £ 0'30 Tbdter= 0
playback buffer that can hold up @ seconds of video. We § 0.25 | e
also introduce a server upload buffer. The buffered systeg . |
operates as follows. The server is feed content atraed 3 .. |
uses the P2P system to distribute the content to all peegmof
Before starting playback, each peer first fills its playbac& . |
buffer. Once playback starts, each peer playback buffer e . v o .

drained at rater and the server buffer continues to be fe 0 10 20 30 40 5 60 70 8 90 100
at rater. Under the optimized content distribution algorithn Scaling Factor

described in the previous section, the maximum rate at wdoicn

peer can download new content, both directly from the ser\)%?é g;,st
and indirectly from other peers, at tintds

¢(t) = min {u us +uPi(t) + ua Po(t) }

Buffering: Degraded-Service probability withy /p2 = 0.54 fixed.
em size is scaled in multiples of 10.

©) will be skipped. One mechanism to achieve content skipping

Pi(t) + Pa(t)
: . . is to set the server buffer size dp and to have the server drop
We call ¢(t) the available bandwidth for a peer at time t rater — ¢(t) from the headof the buffer when the server

¢(t) is also the rate at which the server can pump out NQW e is full. In thi that all th tent i
content to the whole P2P streaming system. Ngtg is not utier is ufl. In nis way, we ensure u a a” € content In
t|1|e server uploading buffer is always “fresh” enough to meet

the aggregate rate of traffic uploaded from the server to %t' \ i .
peers. For example, if the server simultaneously uploads i peers playback deadlines. Our extended system uses thi

two peers at the full live streaming ratethe aggregate traffic mechanism.

rate is2r, but the aggregate new content rate pumped into tneUnder the optimized content .dlstrlbunon algorithm and
system is just- omogeneous peer playback policy, all peers download and

When the available bandwidth(t) is belowr, the server playback content synchronously. The interaction betwéen t

cannot pump out new content at the full video rate. coffontent buffer level on the server and the playback buffezlle

sequently, the server buffer level increases at rate ¢(t). on ar:jy single peer in the_”stream|gg_ sylé_stem %a'_]rﬁ_e modele(:] as
At the same time, a peer's video download rate is Iow&ta?l _edm queue _syste:jm lfs:]rate n |gl|1red. IS sysgeyn a
than the video playback rate. Therefore, the peer playbatEfYP uid queues in tandem: the server upload queue and a peer

buffer level decreases at the same rate ¢(¢). Thus, as the playback queue. Denote b(t) andq(t) for the contents in

reservoir in the peer's buffer decreases, the reservoihén 1€ SErver queue and the peer queue, respectively. Ther serve

server’s buffer increases. If later the available bandwitlt) queue 1s filled in at the constant v!deo source ratand is
becomes greater than then content in the server’s reservoildrameol at ratej(t) Whef‘ the buffer is non-empty and at the
is transferred over to the peer buffer. In this manner, binfte rate r when the puﬁgr s empty; thus the output rate of the
at the server can help to mitigate the effects of a ﬂuctuatir?&rver queue at timels
upload bandwidths(¢) due to peer churn. I(t) = ¢(t)1(qs(t) > 0) + r1(gs(t) = 0).

We require that a peer always keep the same playback lag
In other words, content that arrives to a peer after its deadl As discussed above, when the server queue is full and



r > ¢(t), content is removed from the head of the server Du:ra(t)'on Bugeéf 0 Bmfg;: 20 BUfge;gz 00
gueue while fresh content continues to join the tail of the €(0,18] 0.0065 0.00056 0.00047
queue. The content is removed from the server queue at rate | € (18, 36] 0.007 0.00086 0.00068
D(t) = [r — ¢(t)]1(gs(t) = d). Note that we always have TABLE |

qs(t) + q(t) = rd after playback begins. Under the optimized SMALL SIZE SYSTEM: FIRST COLUMN SHOWS DEGRADEBSERVICE
DURATION INTERVALS. OTHER COLUMNS SHOW PROBABILITY OF THE

SYSTEM BEING IN THAT PARTICULAR DEGRADEDSERVICE INTERVAL FOR
DIFFERENT BUFFER SIZESALL TIME UNITS ARE IN SECONDS

distribution algorithm, all peers download new contentthbo
directly from the server and indirectly from other peers, at
the output rate of the server queue, namely, at féte The
peer queue is drained at the playback ratehen the buffer

is non-empty. Skipping occurs if(t) = 0 and I(t) < 7. Duration | Buffer =0 | Buffer =30 | Buffer = 60
pty. Skipping i(t) (t) e L s e
_ _ ) € (0, 18] 0.023 0.0017 0.0012
A. Simulation Results and Insights € (18, 36] 0.009 0.0011 0.0009
TABLE II

ThIS tand,em ﬂUId que,ue SyStem exactly mOdeIS our ﬂUId LARGE SIZE SYSTEM: FIRST COLUMN SHOWS DEGRADEBSERVICE
P2P streaming system with peer playback buffers and a servgfyrarion iNTERVALS. OTHER COLUMNS SHOW PROBABILITY OF THE
uploading buffer. It is of interest to compare the performn SYSTEM BEING IN THAT PARTICULAR DEGRADEDSERVICE INTERVAL FOR
of this buffered system to that the bufferless system stuidie ~ D'FFERENT BUFFER SIZESALL TIME UNITS ARE IN SECONDS
in Section 4. The buffered system does not appear to be
analytically tractable, so we instead appeal to simulation

For the simulation results reported here, we use the sage
parameters used in Section 4:= 3, us = 1, us = 7, and ) ) } i _ o
1/p1 = 1/ps = 0.5 hours. We fix the server bandwidth to Using our simulation tool, we also investigate the distri-
us = 7 in these experiments. bution of the degraded-service durations for both buffsrle

Figure 4(a) shows the probability of degraded service ford{d buffered systems. We fix the ratja/p, = 0.5 and

small system at different buffer capacities of 0, 30, 60 arfyth System parameters of the small and large systems as
120 seconds of video. We observe that the system enj@Rfore, we simulate the fraction of time the system spends in

significant performance gains by adding only a 30 seco graded-s_e_ryice of gliff_erent durations. Table | and Ilwsh(_)
lag to the playback. Additional gains are possibly by furthdn€ Probabilities of finding the system in degraded-service
increasing the playback lag. Comparing 4(a) with 1(a) wekration of (i) = 0 (universal streaming), (ii) duration been
see that playback lags can achieve the same performafl@d 18 seconds and (iii) duration between 18 and 36 seconds.
gains as infrastructure increases without the cost of addE@ese probabilities are shown for three different buffeesi
infrastructure. of 0 seconds (bufferless), 30 seconds and 60 seconds. One
Figure 4(b) shows the probability of degraded service f&AN observe that_ the probability o_f finding the system (both
a large size system at different buffer capacities. We (vbsellarge and sma_lll) in degraded Service decreases by a fgctor of
that in the critical region, playback lags can bring a dramatlo_ by Increasing thq buffer sizes. Further, the probab.dfty
improvement in performance. For example, when operatiH&'Versal streaming increases substantially as buffessie
at pi/ps = ¢ = 0.5, without buffering the probability of 'ncreased.
degraded service is approximately 50% With buffering, this
probability drops to approximately 5%. We also observe that
a 30-second lag is sufficient to obtain almost all the poéknti We learned in Section 4 that, at any instant of time, a P2P
buffering gains from buffering. Furthermore, on comparingtreaming system operates in one of three regignshe over-
4(b) and 1(b), we observe that having a small lag of 30 secormipacity region for whichy; /p2 > c+e; (i7) the critical region
is more effective than deploying 10 times the server capacfor which p;/p2 = ¢; (ii7) and the under-capacity region for
for this large system. which p1/p2 < ¢+ €. The value ofe depends on the size of
We also investigate the probability of degraded service ti% system, being smaller for big systems.
the system is scaled from small to large. For this we fix Over larger time scales, the valuesmafand p. will likely
p1/p2 = 0.54. As before the small size system is chosechange, possibly causing the system to drift from one of the
to be with A\ = 100. The given ratiop; /ps = 0.54 yields three regions to another. From Section IV we learned that
A1 = 54. From this the system is linearly scaled with a scalingghen in the over-capacity region, system performance shoul
factor increased from 1 to 100 in multiples of 10. Figure be universally good. We showed in Section V that system
shows the probability of degraded service with respecti® tiperformance is also good in the critical region when bufigri
scaling factor. We again observe the advantage of deployiagd playback lags are employed. However, in the under-
even small size buffers while the system is operating in tlbapacity region, even with large buffers, performance will
critical region. (When the system gets very large, we opdérat generally be poor, with universal streaming rarely ocegri
the under-loaded region, in which the probability of degdhd When operating in the under-capacity region, we have a
service becomes almost zero with and without buffering.) number of options including:

Distribution of Degraded-Service Durations

VI. THE UNDER-CAPACITY REGION



« Apply admission control to peers which provide relatively 2) The performance of the system is largely determined by

little upload capacity (ordinary peers in our two-class

model). This requires detecting when the system begins
to enter the under-capacity region, and then rejecting an
appropriate fraction of the low-bandwidth peers that want
to join the system.

Apply some form of scalable coding technique, so that 3)

the rate of the vide@ decreases as the system begins to
enter the under-capacity region. Both layered video and
multiple-description video are possibly candidates fer th

scalable video. 4)

Provide good service to as many of the low-capacity peers
as possible. We design the distribution scheme so that
high-capacity peers always get the video at ratave

a critical value. For systems of moderate-to-large size,
if the ratio of average number of super peers to average
number of ordinary peersp{/p2) exceeds the critical
valuec, the system performs well; otherwise, the system
performs poorly.

Big systems have better performance. Big systems are
more resilient to bandwidth fluctuations caused by peer
churn. Big systems therefore have robust performance
over a wider range of traffic loads (that s,/ p2 values).
Buffering can dramatically improve performance in the
critical region, for both small and large systems. It
can bring more improvement than that provided with
additional infrastructure bandwidth.

also try to provide as many low-capacity peers as possibleb)

with rater. The remaining peers receive nothing.
Designing robust schemes to handle transitions from one
operating region to another remains an important research
problem and will be considered in a future paper.

Special attention must be given when operating in the
under- capacity region. Both admission control and
scalable video hold promise for dealing with the under-
capacity region.
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