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Abstract— We consider the scenario of distributed data ag-
gregation in wireless sensor networks, where each sensor can
obtain and estimate the information of the whole sensing field
through local data exchange and aggregation. The intrinsic
trade-off between energy and delay in aggregation operations
imposes a crucial question on nodes to decide optimal instants
for forwarding their samples. The samples could be composed of
the information from their own sensor readings or an aggregation
of information with other samples forwarded from neighboring
nodes. By considering the randomness of the sample arrival
instants and the uncertainty of the availability of the multi-
access communication channel due to the asynchronous nature
of information exchange among neighboring nodes, we propose
a decision process model to analyze this problem and determine
the optimal decision policies at nodes with local information.
We show that, once the statistics of the sample arrival and the
availability of the channel satisfy certain conditions, there exist
optimal control-limit type policies which are easy to implement
in practice. In the case that the required conditions are not
satisfied, we provide two learning algorithms to solve a finite-
state approximation model of the decision problem. Simulations
on a practical distributed data aggregation scenario demonstrate
the effectiveness of the developed policies, which can also achieve
a desired energy-delay tradeoff.

I. INTRODUCTION

Data aggregation is recognized as one of the basic dis-
tributed data processing procedures in wireless sensor net-
works for saving energy and reducing medium access layer
contention. We consider the scenario of distributed data
aggregation where each sensor can obtain and estimate the
information of the whole sensing field through data exchange
and aggregation with its neighboring nodes. Such fully de-
centralized aggregation schemes eliminate the need for fixed
tree structures and the role of sink nodes, i.e., each node can
obtain global estimates of the measure of interest via local
information exchange and propagation, and an end-user can
enquire an arbitrary node to obtain the information of the
whole sensing field. Authors in [1] present the motivation and
a good example of distributed, periodic data aggregation.

The local information exchange in distributed data ag-
gregation generally is asynchronous and thus the arrival of
samples at a node is random. For energy saving purpose, a
node prefers to aggregate as much as possible information
before sending out a sample with aggregated information.
The aggregation operation is also helpful in reducing the
contention for communication resources. However, delay due
to waiting for aggregation should also be considered as it is

directly related to the accuracy of the information (e.g. see [2]).
This is especially true for some time-sensitive applications
in large-scale wireless sensor networks, such as environment
monitoring, disaster relief and target tracking. Therefore, the
Sfundamental trade-off between energy and delay imposes a
decision-making problem in aggregation operations. A node
should decide when is the optimal time instant for sending
out the aggregated information with its local knowledge of the
randomness of sample arrival as well as channel contention.

In this paper, we propose a semi-Markov decision process
(SMDP) model to analyze the decision problem and deter-
mine the optimal policies at nodes with local information.
The decision problem is formulated as an optimal stopping
problem with an infinite decision horizon and the expected
total discounted reward optimality criterion is used to take the
impact of delay into account. We show that, once the statistics
of sample arrival and the availability of the multi-access
channel satisfy certain conditions (described in Section III),
there exists simple control-limit type policies (see [3] [4] for an
overview of optimal stopping theory and control-limit policies)
which are easy to implement in practice. In the case that the
required conditions are not satisfied, we propose a finite-state
approximation for the original decision problem, and verify
its convergence as a function of the degree of the truncated
state space. Then we provide two on-line algorithms, adaptive
real-time dynamic programming (ARTDP) and real-time Q-
learning (RTQ), to solve the finite-state approximation. The
numerical properties of the proposed policies are investigated
in Section V-A with a tunable traffic model. The simulation on
a practical distributed data aggregation scenario demonstrates
the effectiveness of the policies we developed, which can
achieve a desired energy-delay balance, compared to previous
fixed degree of aggregation (FIX) scheme and on-demand
(OD) aggregation scheme [5].

Up to our knowledge, the problem of “to send or wait,” de-
scribed earlier, has not been formally addressed as a stochastic
decision problem. Related work is also limited. Most of the
research related to timing control in aggregation, i.e., how long
should a node wait for samples from its children or neighbors
before sending out an aggregated sample, focuses on tree-
based aggregation, such as directed diffusion [6], TAG [7],
SPIN [8] and Cascading timeout [9]. In these schemes, each
node has preset a specific and bounded period of time that it
should wait. The transmission schedule at a node is fixed once
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the aggregation tree is constructed and there is no dynamic ad-
justment in response to the degree of aggregation (DOA), i.e.,
the number of samples collected in one aggregation operation,
or the quality of aggregated information. One exception is [10],
in which the authors propose a simple centralized feedback
timing control for tree-based aggregation. In their scheme, the
maximum duration for one data aggregation operation is set
by the sink with the knowledge of the information quality
in the previous aggregation operation. Distributed control for
DOA is introduced in [5]. The target of the control loop
proposed in their scheme is to maximize the utilization of the
communication channel, or equivalently, minimize the MAC
layer delay, as they mainly focus on real-time applications in
sensor networks. Energy saving is only an ancillary benefit in
their scheme. Our concern is more general than that in [5] as
the objective here is to achieve a desired energy-delay balance.
Minimizing MAC delay is only one extreme performance point
that can be reduced from the general formulation proposed
here.

II. PROBLEM FORMULATION
A. A Semi-Markov Decision Process Model

During a data aggregation operation, from a node’s localized
point of view, the arrivals of samples, either from neighboring
nodes or local sensing, are random and the arrival instants can
be viewed as a random sequence of points along time, i.e., a
point process. We define the associated counting process as
the natural process. As an aggregation operation begins at the
instant of the first sample arrival, the state of the node at a
particular instant, i.e., the number of collected samples by that
instant, lies in a state space S’ = {1, 2, ...}. On the other hand,
for a given node, the availability of the multi-access channel
for transmission can also be regarded as random. This can be
justified by the popularity of random access MAC protocols in
wireless sensor networks (e.g. [11]). Only when the channel
is sensed to be free, the sample with aggregated information
could be sent. Thus, at each available transmission epoch, the
node decides to either (a) “send”, i.e., stop current aggregation
operation and send the aggregated sample or (b) “wait” and
thus give up the opportunity of transmission and continue to
wait for a larger degree of aggregation (DOA). These available
transmission epochs can also be called decision epochs/stages.
The distribution of the inter-arrival time of the decision epochs
could be arbitrary, depending, for example, on the specific
MAC protocol. The sequential decision problem imposed on
a node is thus to choose a suitable action (to continue to wait
for more aggregation, or stop immediately) at each decision
epoch, based on the history of observations up to the current
decision epoch. A decision horizon starts at the beginning of
an aggregation operation. When the decision for stopping is
made, the sample with aggregated information is sent out and
the node enters an (artificial) absorbing state and stays in
this absorbing state until the beginning of the next decision
horizon. See Figure 1 for a schematic diagram illustrating
these operations.

To model the decision process on an individual node,
we assume that, at an available transmission epoch with s,
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Fig. 1. A schematic illustration of the decision process model for data
aggregation. The decisions are made at available transmission epochs; with
the observation of the current node’s state s, i.e., the number of samples
collected, and the elapsed time Zl O0W;, action a is selected (0: continuing
for more aggregation; 1: stopping current aggregation). After the action for
stopping, the node enters the absorbing state A till the beginning of the next
decision horizon.

collected samples on the node, the time interval to the next
available transmission epoch (i.e., the instant that the channel
is idle again) and the number of samples that will arrive on the
node in this interval only depend on the number of samples
already collected, s,, irrelevant to when and how these s,
samples were collected. We state this condition formally in
the following assumption. The effectiveness of this condition
will be justified by the performance of decision policies based
on it in Section V-B.

Assumption 1: Given the state s, € S’ at the nth decision
epoch, if the decision is to continue to wait, then the random
time interval 6W,1 to the next decision epoch and the
random increment X, 1 of the node’s state are independent
of the history of state transitions and the nth transition instant
to-

With Assumption 1 and the observation that the distribution
of the inter-arrival time of the decision epochs might be
arbitrary, the decision problem can be formulated with a semi-
Markov decision process (SMDP) model. The proposed SMDP
model is determined by a 4-tuple {S, 4, {Q;(7)}, R}, which
are the state space S, action set A, a set of action dependent
state transition distributions {Qf;(7)} and a set of state and
action dependent instant rewards R. Specifically,

e S=5"U{A}, where A is the absorbing state;

e A=1{0,1}, with A; = {0,1},Vs € S’ and A, = {0} for
s = A, where a = 0 represents the action of continuing
for aggregation and a = 1 represents stopping the current
aggregation operation;

o QF(7) L P{Woi1 < T,8041 = jlsn = 4,a}, i,j €
S,a € A; is the transition distribution from state i to j
given the action at state i is a; Q! (1) = u(7) fori € S’
and QA A (7) = u(7), where u(7) is the step function;

e R={r(s,a)}, where

r(s,q) = { 9(e)

with g(1) = 0 and g(s) > 0, s > 1 as the aggregation
gain achieved by aggregating s samples when stopping.

a=1,se9
otherwise

The specific form of g(s) depends on the application. For
example, for certain types of queries in sensor networks
such as maximum/minimum, average, count, etc, a linear
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aggregation gain g(s) may be used, as the energy saving in
transmission is roughly proportional to the number of samples
aggregated. One should also notice that the actual energy
gain by aggregation might be complicated in some cases,
not purely determined by the number of collected samples.
In these cases, we could redefine the sfate of a node in our
model by incorporating the factors that affect energy gain.
For example, if the aggregation is achieved by jointly source
coding correlated samples, the state of a node in aggregation
should be redefined to include the information of the number
of collected original samples' as well as the time instants and
locations of generation of these samples.

With this SMDP model, the objective of the decision
problem becomes to find a policy 7 composed of decision
rules {d,},n = 1,2, ..., to maximize the expected reward of
aggregation, where the decision rule d,,,n = 1, 2, ..., specifies
the actions on all possible states at the nth decision epoch.
As our target is to achieve a desired energy-delay balance, the
reward of aggregation should relate to the state of the node
when stopping (which in turn determines the aggregation gain
g(s)) and the experienced aggregation delay. To incorporate
the impact of aggregation delay in decisions, we adopt the
expected total discounted reward optimality criterion with
a discount factor a« > 0 [3]. That is, for a given policy
m = {d;,ds, ...} and initial state s, the expected reward is
defined as

= Ef Ze (8, g1 (sn)) e))

n=0

where sg = s, to = 0 and ty, t1,... represent the times of
successive decision epochs. By defining

v*(s) = supv™(s) 2)

as the optimal expected reward with initial state s € S, we
are trying to find a policy 7* for which v™ (s) = v*(s) for all
s € S.Itis clear that v*(s) > O forall s € S as r(s,a) > 0 for
all s € S and a € A;. We are especially interested in v*(1)
since an aggregation operation always begins at the instant
of the first sample arrival®>. Furthermore, in an aggregation
operation, by stopping at the nth decision epoch with state
sn € S’ and total elapsed time t,,, the reward obtained at the
stopping instant is given by

Yn(sn’ tn) = g(sn)eiat" (3)

where the achieved aggregation gain g(s,) is discounted by
the delay experienced in aggregation.

To ensure there exists an optimal policy for the problem, we
impose the following assumption on the reward at the stopping
instant [4].

'The original sample is defined as the sample with the information of a
single sensor reading, i.e. the raw sample.

2 Although the first actual available transmission epoch within a decision
horizon is not necessary to be the instant that s = 1 (as shown in Figure 1),
we can still treat the instant of s = 1, i.e., the beginning of an aggregation
operation, as the initial decision epoch with action a = 0. Thus s = 1 is the
initial state. This setting would not change the optimal reward or policy as
long as aggregation has a benefit, i.e., 3s € S, g(s) > 0.

Assumption 2: (1) E[sup,, Yn(sn,tn)] < oo; and (2)
limy, 00 Y5 (Sn,tn) = Yoo = 0.

This assumption is reasonable under almost all practical
scenarios. Condition (1) implies that the expected reward
under any policy is bounded, i.e., v*(s) < oo for all s € S’
[4]. This is reasonable as the number of samples expected
to be collected within any finite time duration is finite. For
any practically meaningful setting of the aggregation gain,
its expected (delay) discounted value should be bounded. In
condition (2), Y, = 0O represents the reward of an endless
aggregation operation. In practice, with the elapse of time
(as n — oo, t, — o0), the reward should go to zero since
aggregation with indefinite delay is useless.

B. The Optimality Equations and Solutions

Under Assumption 2, obtaining the optimal reward v* =
[v*(A) v*(1) ...]T and corresponding optimal policy can be
achieved by solving the following optimality equations

v(s) max {g(s) + v(A), Efo(j)e”"7[s]}

Yo d@pi)} @

Jjzs

Vs € S’ and v(A) = v(A) for s = A, where the first term
in the maximization, i.e., g(s) + v(A), is the reward obtained
by stopping at state s, and the second term, E[v(j)e™*"|s]},
represents the expected reward if continuing to wait at state
s.In (4), ¢ (a fo e 7dQ%;(1), a € A, is the Laplace-
Stieltjes transforrn of Qg;(7) w1th parameter o.

It can be shown that

max {g(s) +v(A),

o Result 1: optimal reward v* > 0 is the minimal solu-
tion of the optimality equations (4) and consequently,
v*(A) =0;

o Result 2: there exists an optimal stationary policy d*° =
{d.d, ...} where the optimal decision rule d is given by

Y %)t (5)} Q)

j>s

d(s) = arg max {g

Vs €S and d(A) =0
Result 1 directly follows similar procedures to the proofs
of Theorem 7.1.3, 7.2.2 and 7.2.3 in [3] by substituting the
transition probability matrix P4 in the theorems with Laplace-
Stieltjes transform matrix Mg £ [¢f; ()], d(i) = a,i,j € S
in our problem; Result 2 is the application of Theorem 3
(Chapter 3) in [4] on the SMDP model.

Although (5) gives a general optimal decision rule and the
corresponding stationary policy, it relies on the evaluation of
the optimal reward v*. In the given countable state space 5,
we have not yet provided a way to solve or approximate the
value of v*. To obtain an optimal (or near-optimal) policy, we
will investigate two questions:

1) Is there any structured optimal policy which can be
obtained without solving v* and is attractive in imple-
mentation, and what are the conditions for the existence
of such a policy?

2) Without structured policies, can we approximate the
value of v* with a truncated (finite) state space, and
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is there any efficient on-line algorithm to obtain the
solution for such finite-state approximation?

The answers to the questions will be presented in the following
two sections, respectively. Due to space constraints, We skip
the proofs for all the results listed below and refer the
interested reader to [12].

III. EXISTENCE OF AN OPTIMAL CONTROL-LIMIT POLICY

In this section, we discuss the structured solution of the
optimal policy in (5). Such kind of solution is attractive for
implementation in energy and/or computation limited sensor
networks as it significantly reduces the search effort for the
optimal policy in the state-action space once we know there
exists an optimal policy with certain special structure. We are
especially interested in a control-limit type policy as its action
is monotone in state s € S" [3], i.e.,

) ={ {

where s* € S’ is a control limit. Thus, the search for the
optimal policy is reduced to simply find s*.

s< s*
828* )

(6)

A. Sufficient Conditions for Optimal Control-Limit Policies

By observing that the state evolution of the node is non-
decreasing with time, i.e., the number of samples collected
during one aggregation operation is nondecreasing, we provide
in Theorem 1 a sufficient condition for the existence of
an optimal control-limit policy under Assumption 2, which
is primarily based on showing the optimality of one-stage-
lookahead (1-sla) stopping rule [4].

Theorem 1: Under Assumption 2, if the following inequal-
ity (7) holds for all i > s, i,s € S" once it holds for certain
S,

9(s) =Y a2 (a)g(), @
j=s
then a control-limit policy with control limit
s =min{s>1:g(s) > Y q%(a)g(j)} ®)
j>s
is optimal and the expected total discounted reward (for initial

state s = 1) is

v (1) =Y maj(a)g(i), ©)

j=>s*
where m(a) 2 [mij(o)] = (I—Mgl)_1 with Mgl 2 M)
and
0 . * -
o qij(a) 1< s>
Mi; = { 0 otherwise (10)

In Theorem 1, the optimality of 1-sla stopping rule tells us
that once the reward by stopping at current stage exceeds the
expected discounted reward by continuing one more stage, it
is optimal to stop at the current stage. However, the sufficient
condition for the existence of an optimal control-limit policy
listed in Theorem 1 requires to check (7) for all states, which
is rather difficult computationally. We would thus like to know

if there exists any other condition which is more convenient
for us to check for the optimality of 1-sla stopping rule in
practice, even if it is sufficient most but not all of the time.
For this purpose, we show that if

1) the aggregation gain is concavely or linearly increasing
with the number of collected samples; and,

2) with a smaller number of collected samples at the node
(e.g., state 1), it is more likely to receive any specific
number of samples or more (e.g., > m samples), than
that with a larger number of samples already collected
(e.g., state ¢ + 1), by the next decision epoch;

then the condition for the existence of an optimal control-limit
policy in Theorem 1 almost always holds. We formally state
the above conditions in the following Corollary.

Corollary 1: Under Assumption 2, suppose g(i+1)—g(i) >

0 is non-increasing with state i for all i € S’ and if the

following inequality (11) holds for all states i > s, i,s € S’

once (7) is satisfied at certain s,

ZQ?j(T) > ZQ?H,J'H(T% Vk >, V7 > 0.

jzk Jizk

an

Then, there exists an optimal control-limit policy.

As a special case of Corollary 1, if the dependency of

?j(T) on the current state 7 can be further relaxed, i.e.,
the inter-arrival time of consecutive decision epochs and
the increment of the natural process are independent of the
current state, (11) is satisfied as Q%(T) = Q?+1’j+1(7') =

?_,L-(T),Vj > 4,0 € S',¥r > 0. Thus, there exists an
optimal control-limit policy, and for a linear aggregation gain
g(s) = s — 1, the closed-form expression for the control limit

s* in (8) can be readily obtained as

= [y

where 61 is the random interval of consecutive available
transmission epochs and X is the increment of the natural
process (i.e., the number of arrived samples) in the interval.

12)

B. Comparison to Aggregation Policies in the Literature

From (12), we can see some similarities and differences
between the control-limit policy and the previously proposed
fixed degree of aggregation (FIX) and on-demand (OD)
schemes [5]. In the FIX scheme, its target is to aggregate
a fixed number of samples and, once the number is achieved,
the aggregated sample will be sent to the transmission queue
at the MAC layer. To avoid waiting an indefinite amount of
time before being sent, a time-out value is also set to ensure
that aggregation is performed, regardless of the number of
samples, within some time threshold. The target of (12) is also
to collect at least s* samples, but this threshold value is based
on the estimation of statistical characteristics of the sample
arrival and the channel availability, rather than a preset fixed
value; also, different nodes might follow different values of s*.
In OD (or opportunistic) aggregation scheme, an aggregation
operation continues as long as the MAC layer is busy. Once the
transmission queue in the MAC layer is empty, the aggregation
operation is terminated and the aggregated sample is sent to
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the queue. The objective of the OD scheme is to minimize
the delay in the MAC layer. Now let the delay discount factor
a — oo in (12) to emphasize the impact of delay, then (12) is
reduced to a special (extreme) case such that s* = 1. It implies
that as long as one or more samples have been collected, they
should be aggregated and sent out at the current decision epoch
(i.e., the instant that the channel is free and transmission queue
is empty). In this extreme case, the control-limit policy with
s* = 1 is similar to the OD scheme. Therefore, the OD scheme
can be viewed as a special case of the more general control-
limit policy derived in this section.

IV. FINITE-STATE APPROXIMATIONS FOR THE SMDP
MODEL

In case that the optimal policies with special structures, e.g.,
monotone structure, do not exist, we look for approximate
solutions of (4)-(5). Although we do not impose any restriction
on the number of states and decision epochs in the original
SMDP model, the number of collected samples during one
aggregation operation is always finite under a finite delay
tolerance in practice. Therefore, it is reasonable as well as
practically useful to consider the reward and policy based on
a finite-state approximation of the problem. In this section,
we will first introduce a finite-state approximation model for
the original problem and verify its convergence to the original
countable state space model. Then, two on-line algorithms are
provided to solve the finite-state approximation model.

A. A Finite-State Approximation Model and its Convergence

Considering the truncated state space Sy = Sy U
{A}, Sy = {1,2,..., N} and setting vny(s) = 0,Vs > N,
the optimality equations become

vn(s) = max {g(s) + v (A), Y g% (@)vn (i)}
Jj=s
for s € Sy and vn(A) = vn(A). Let viy > 0 be the
minimal solution of the optimality equation (13). Consequently
vy (A) = 0. To verify the (point-wise) convergence of the
finite-state approximation model (13) to (4), we state the
following Lemmas and Theorem 2 without proofs.

Lemma 1: v}, (s) monotonically increases with N, Vs € S’.

Lemma 2: v} (s) < v*(s), Vs € S" and VN > 0.

Theorem 2: limy_,o v (s) = v*(s),Vs € S”.

Theorem 2 states that for each s € S/, v}, (s) is expected to
be close to the optimal v*(s) under a sufficiently large value of
N (which depends on s). Recall that an aggregation operation
always starts from s = 1, i.e., at least one sample is available
at the node. Thus, if a sufficiently large value of N is chosen
in the finite-state approximation model, the expected optimal
reward vx (1) of one aggregation operation will be very close
to v*(1).

In finite-state approximations, if ¢2;(a),Vs,j € Sy, or
equivalently, the distributions of sojourn time for all state
transitions under action a = 0 are known a priori, backward
induction or linear programming [3] can be used to solve (13).
However, in practice, qgj(a), Vs, j € S are unknown. Hence
we should either obtain the estimated values of ¢2;(a) from
actual aggregation operations or use an alternate “model-free”

(13)

TABLE I
ADAPTIVE REAL-TIME DYNAMIC PROGRAMMING (ARTDP) ALGORITHM.

1 Set k=0
2 Initialize counts w(¢, 7), n(z) and qgj (a) for all i, 5 € S}
3 Repeat {
4 Randomly choose s € S;
5 While (s £ A) {
6 Update vi41(sk) = max {g(sg), ENZJ'Z% (jgw (v ()}
7 Rate 75, (0) = 3 s jss, 49, 5 (@i (5) and 74, (1) = g(sk);
8 Randomly choose action a € {0,1} according to
rsy, (a)/T

— e °k .
o Ple)=
10 ifa=1, Sk+1 = A;
11 else observe actual state transition (sgy1,0Wg11)
12 n(sk) ++;
13 if Sk+1 S N,
14 Update w(sg, Sp41) = w(sk, skr1) + e~ *0Wkt1;
15 Re-normalize qgkj(oz) = wa5:]€§> VYN > § 2 sg;
16 else a =1, s =A;
17 k++}
18

method. In the following, we provide two kinds of learning
algorithms for solving the finite-state approximation model.

B. Algorithm I: Adaptive Real-time Dynamic Programming
(ARTDP)

Adaptive real-time dynamic programming (ARTDP) (see
[13], [14]) is essentially a kind of asynchronous value iter-
ation scheme. Unlike the ordinary value iteration operation
which needs the exact model of the system (e.g. ¢f;(a) in
our problem), ARTDP merges the model building procedure
into value iteration and thus is very suitable for on-line
implementation. The ARTDP algorithm for the finite-state
approximation model is summarized in Table I. In line 6
of the algorithm, a value update proceeds based on current
estimated system model; then a randomized action selection
(i.e., exploration) is carried out (lines 7-9); the selected action
is then performed and the estimation of the system model (i.e.,
g3 () might be updated (lines 12-16).

A key step in ARTDP is to estimate the value of q?j (o) for
all 4,5 € S). The integration in Laplace-Stieltjes transform
can be approximated by the summation of its discrete format
with time step d¢. By defining 7(é,j,1) as the number of
transitions from state ¢ to j with sojourn time 6W; € [I6¢, (1 +
1)6t),l = 0,1,..., and 7(i) as the total number of transitions
from state 7, we have

~0 ~ = 77(27.7:1) —adW,
() ~§—W.) e oM, (14)

Let w(i,j) £ 3720 n(i, j,1)e=**"1, the estimation of ¢, (c)
can be improved by updating w(i, ) and 7(i) at each state
transition as shown in lines 12-16 of Table L.

In ARTDP, the rating of actions and exploration procedure
(lines 7-9) follow the description in [14]. The calculation of the
probability P.(a) for choosing action a € {0, 1} uses the well-
known Boltzmann distribution (line 9), where T is typically
called the computational temperature which is initialized to
a relative high value and decreases properly over time. The
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TABLE II
REAL-TIME Q-LEARNING (RTQ) ALGORITHM.

Set k=0

Initialize Q-value Qy (s, a) for s € S}, a € {0,1}
and set Qx(s,a) =0,Vs > N,a € {0,1}

3 Repeat {

4 Randomly choose s, € S7;

5 While (s £ A) {

6 Rate rs, (0) = Qr(sx,0) and rs, (1) = Qr (s, 1);

7

8

[\S]

Randomly choose action a € {0, 1}according to

sy, (a)/T )

Prl@) = ot o
9 ifa=1,sp01 =4,
10 Update Qp+1(sk, 1) = (1 — o) Qr(sk, 1) + arg(sk);
11 else observe actual state transition (sg41,0Wg41),
12 Update Qp+1(sk,0) = (1 — o )Qp (s, 0)+
13 o [e W+t maxy e (0,13 Qi (sk+1,D)]
14 ifsk+1 > N,a=1, Sk+1:A;
15 E++.}

16 }

purpose of introducing randomness in action selection, instead
of choosing the optimal one based on current estimation, is
to avoid the overestimation of values at some states in an
inaccurate model during initial iterations. When the calculated
value converges to v}, the corresponding decision rule is given
by

Y d@)un ()}

N2j2s

dy(s) = arg max {g(s), (15)

ac{0,1}
for s € S}y and for those s > N, we set dj(s) = 1.

C. Algorithm II: Real-time Q-learning (RTQ)

Real-time Q-learning (RTQ) [13] provides another way for
on-line calculation of the optimal reward value and policy
under N-state approximation. Unlike ARTDP, RTQ does not
require the estimation of q?i-(oz) and even does not take any
advantage of the semi-Markov model. It is a model-free
learning scheme and relies on stochastic approximation for
asymptotic convergence to the desired Q-function. It has a
lower computation cost in each iteration than ARTDP but
convergence is typically rather slow. In our case, the optimal
Q-function is defined as QN (s,1) = g(s), QN (s,0) =
D iss qgj(a)vj‘\,(j), Vs € Sy, QN(s,a) =0, Vs > N,a €
{0,1} and QY (A,0) = 0. It is straightforward to see that
v (s) = maxeeqo1y [QY (s,a)],s € S'. The optimizing Q-
learning rule is given in Table II (line 10 and lines 12-13).

In RTQ, the exploration procedure (lines 7-8) is the same
as the one in ARTDP. In kth Q-value update (lines 9-13), o
is defined as the learning rate, which is generally state and
action dependent. To ensure the convergence of RTQ, Tsitsiklis
has shown in [15] that oy should satisfy (1) 22021 ap = 00
and (2) Y72, af < oo for all states s € S} and actions
a € {0,1}. An example of the choice of ay, can be found in
[14]. As ap — 0 with k — oo, we can see that Qg (s, 1) —
g(sk), sk € Si. When Q(sg,a) converges to the optimal
value QY (s,a) for all states and actions, the corresponding
decision rule is given by

dy(s) = arg max {Q}(s,a)}

16
ac{0,1} (10)

for s € S and for those s > N, we set di(s) = 1.

V. PERFORMANCE EVALUATION
A. Comparison of Schemes under a Tunable Traffic Model

We have considered three schemes of policy design for the
decision problem in distributed data aggregation: (1) control-
limit policy, including Theorem 1, which we call the CNTRL
scheme, and its special case in (12) for a linear aggregation
gain, which we call the EXPL scheme; (2) Adaptive Real-
time Dynamic Programming (ARTDP); and (3) Real-time Q-
learning (RTQ). Recall that CNTRL and EXPL are based
on the assumption that there exists certain structure of the
statistics of state transitions as specified in Theorem 1 and
Corollary 1, respectively; while ARTDP and RTQ are for
general cases of the problem. Except for the EXPL scheme,
the computation of all the other schemes require a finite-state
approximation of the original problem. We now perform a
comparison of all the schemes using a tunable traffic model.
The purpose of such comparison is not to exactly rank the
schemes, but to qualitatively understand the effects of different
traffic patterns and degrees of finite-state approximation on the
performance of these schemes.

1) Traffic Model: We use a conditional exponential model
for random inter-arrival time of decision epochs. That is, given
the state s € S’ at current decision epoch, the mean value
of inter-arrival time to the next decision epoch is modelled
as oW, = dWoe A6=1 4+ §W,in, where Wy + 6Winin
represents the mean value of inter-arrival time for s = 1,
0Wonin > 0 is a constant to avoid the possibility of an infinite
number of decision epochs within finite time (e.g. see [3]) and
A > 0 is a constant to control the degree of state-dependency.
It follows that the random time interval to the next decision
epoch obeys an exponential distribution with a rate® 1 /Ws.
For the natural process, given the state s € S’ at the current
decision epoch and the time interval to the next decision epoch,
the number of arrived samples is assumed to have a Poisson
distribution with a rate A\, = Age " BG~1, where Ay is a
constant which represents the rate of sample arrival at state
s =1and B > 0 is a constant to control the degree of state-
dependency of the natural process. By adjusting parameters A
and B, we can control the degree of state-dependency of this
SMDP model.

2) Comparison of Schemes: For the performance of finite-
state approximations, we include an off-line linear program-
ming (LP) solution as a reference, which uses the estimated
(j?j(a) (as described in ARTDP algorithm). With a proper
randomized action selection and a large number of iterations
in ARTDP, ¢);(a) provides a good approximation of ¢7;(c).
Thus the solution of LP is expected to be close to v},. We
also distinguish the terms calculated value and actual value
of the reward at state s € S}, where the calculated value
is the value of the reward obtained from the LP solution or
iterative calculation in learning algorithms and the actual value
of the reward is obtained from the measured statistics of actual
aggregation operations. When the truncation effect of the state

3The distribution is set to be unchanged even if there are state transitions
during the interval.
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space at state s is non-negligible, i.e., N is not large enough
for state s, the calculated value is different from the actual
value, as expected. As each decision horizon begins at state
s = 1, we will focus on evaluating the value of the reward
with this initial state. In the following, we set 6Wy = 0.13 sec,
OWnin = 0.013 sec, A\g = 38.5 sample/sec, delay discount
factor « = 3 and a linear aggregation gain function g(s) =
s — 1 for all schemes.

0=3, A=0.001, B=0.001
T

—EXPL

- - ~CNTRL (N=40,
. ) } - RTQ (N=40)
F. e e - = ARTDP (N=40)
LP solution

Average Reward
O N A
=
w
.

Average Reward

No. of Test Round

Fig. 2. Convergence of the values of the reward for initial state s = 1
in EXPL, CNTRL, ARTDP and RTQ under different traffic patterns: A =
0.001, B = 0.001, i.e., a low degree of state-dependency (upper) and A =
1, B = 1, i.e, a high degree of state-dependency (bottom); delay discount
factor av = 3; finite-state approximation N = 40.

Iy

©

Average Reward
nN
T
I

i P —EXPL
- . ---CNTRL
. . - RTQ
L. - -~ ARTDP
LP solution|

10' 10° 10° 10!

No. of Test Round

Average Reward
S I A )
T

Fig. 3. Convergence of the values of the reward for initial state s = 1
in EXPL, CNTRL, ARTDP and RTQ under different degrees of finite-state
approximation: N = 10 (upper) and N = 20 (bottom); delay discount factor
« = 3; traffic pattern A = 0.001, B = 0.001, i.e., a low degree of state-
dependency.

Figure 2 shows the effect of state-dependency of the traffic
on the performance of the schemes. The degree of finite-state
approximation N is set to be 40. In the upper plot, A =
0.001, B = 0.001, represents the scenario of a low degree
of state-dependency in the SMDP model. In this case, the
value of the reward in the EXPL scheme is approximated to
be v*(1). The values for s = 1 in LP and all schemes with
N-state approximation are very close to that in EXPL, which
demonstrates (1) the negligible truncation effect on state space
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for state s = 1 with N = 40; (2) the correct convergence of
learning algorithms. The policies obtained from all schemes
are control-limit type with the same control limit s* = 10. In
the bottom plot, A = 1 and B = 1 represents the scenario of a
high degree of state-dependency in the SMDP model. As the
assumption for the optimality of EXPL does not hold in this
case, it converges to a lower value of reward than the other
schemes. The policies obtained from ARTDP, RTQ, CNTRL
and LP are control-limit type with s* = 3 while EXPL gives
a control limit at 4.

Figure 3 shows the effect of finite-state approximation on
the performance of the schemes. We consider A = 0.001, B =
0.001 in which the EXPL scheme provides a value of 4.48
(initial state s = 1) and a control-limit policy at s* = 10. In the
upper plot, N = 10, the actual values of the reward with initial
state s = 1 in ARTDP, RTQ and CNTRL converge to a value
(= 3.78) lower than that in EXPL but significantly higher than
the calculated values in LP and learning algorithms (LP: 2.26,
ARTDP: 2.26 and RTQ: 2.25). This is because the calculated
values are based on (13) in which v}, (s) = 0,s > N. When
the probability of transition from s = 1 to a state beyond N is
non-negligible in actual aggregation operations, the calculated
values underestimate the actual reward. On the other hand, the
policies obtained from ARTDP, RTQ and CNTRL are exactly
the same as the one in LP, i.e., s* = 4, which is far from
s* = 10. When N = 20, we see that the actual performance
gap between finite-state approximations and EXPL becomes
smaller even though the calculated values (LP: 3.94, ARTDP:
3.94 and RTQ: 3.93) still give a conservative estimation
of the reward at s = 1. The policies given by finite-state
approximations are improved to have a control limit s* = 8.
Further improvement at N = 40 for finite-state approximation
has been shown in Figure 2. On the other hand, comparing
the two learning algorithms, we find that for all cases, both
schemes converge to similar values in reward and identical
policies, but ARTDP shows a faster convergence speed than
RTQ. This demonstrates the benefit of using the SMDP model
in ARTDP. The slow convergence partially counteracts the
computational benefit of RTQ.

B. Evaluation in Distributed Data Aggregation Scenario

We provide a further evaluation of the proposed schemes
as well as the existing schemes in the literature (i.e. the OD
and FIX schemes) in a practical distributed data aggregation
application in which each sensor is expected to track the
maximum value of an underlying time-varying phenomenon
in a sensing field. There are 25 sensor nodes randomly
deployed in a two-dimensional sensing field. The phenomenon
is modelled as a spatial-temporal correlated discrete Gauss-
Markov process. Each node is equipped with an omnidi-
rectional antenna and the expected communication range is
ro = 10 m. The data rate for inter-node communication
is set as 38.4 kbps and the energy model of individual
nodes is: 686 nJ/bit (27 mW) for radio transmission,
480 n.J/bit (18.9 mW) for reception, 549 n.J /bit (21.6 mW)
for processing and 343 nJ/bit (13.5 mW) for sensing,
which are estimated from the specifications of Berkeley Motes
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Fig. 4. Average rewards of EXPL, CNTRL, ARTDP, RTQ, OD and FIX

in a distributed data aggregation; delay discount factor o = 8, finite-state

approximation N = 10.
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Fig. 5. Delay performance of EXPL, CNTRL, ARTDP, RTQ, OD and FIX
in a distributed data aggregation; delay discount factor a« = 8, finite-state
approximation N = 10. The y-axis is in logarithmic scale.

MICAZ2 [16]. Each original sample is assumed to have 16 bits.
We set the delay discount factor as o = 8 and the degree
of finite-state approximation as N = 10. The linear function
g(s) = s — 1 is used as the nominal aggregation gain.
Such linear function allows us to evaluate the EXPL scheme
proposed in (12). In practice, other forms of the utility function
g(s) may be used to represent aggregation gains of interest to
designers. The CNTRL and the learning algorithms would still
work under these kinds of utility functions. In the FIX scheme,
for illustration, the degree of aggregation (DOA) is set to 3.
The simulation will show that (see Figure 7, 8) there exists no
universal value of DOA which is optimal under all scenarios
and the optimal DOA should be adaptive to the local traffic.
Figure 4 shows the average reward (initial state s = 1)
obtained by each scheme during aggregation operations. RTQ
and ARTDP achieve the best performance among all schemes
as they do not rely on any special structure of state transition
distributions. CNTRL also shows a higher reward than EXPL
as it relies on a weaker assumption (in Theorem 1). All the
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Fig. 6. Energy consumption (per sample) of EXPL, CNTRL, ARTDP, RTQ,
OD and FIX in data aggregation; delay discount factor @ = 8, finite-state
approximation N = 10.
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Fig. 7. Average degrees of aggregation (DOA) versus different sampling
rates in EXPL, CNTRL, ARTDP, RTQ, OD and FIX in data aggregation;
delay discount factor o = 8, finite-state approximation N = 10.

proposed schemes in this paper have a significant gain over
the previously proposed OD and FIX schemes. One might also
notice that FIX with DOA = 3 shows a decreasing trend in
reward with the increase of the sampling rate while others have
an increasing trend. This is because FIX can not dynamically
adjust its DOA (= 3) when the sampling rate increases, unlike
the other schemes.

Figure 5 evaluates the average delay for collecting the time-
varying maximal values of the field in each scheme. Notice
that, as we did not consider any transmission loss and noise
in reception, delay (i.e., tracking lag) provides a suitable
metric for evaluating tracking performance [17]. OD, RTQ and
ARTDP have a similar delay performance which is slightly
higher than CNTRL and lower than EXPL. FIX shows the
worst delay performance when sampling rate is higher than
9 Hz as its fixed DOA can not help much in reducing network
congestion in a high sampling rate scenario.

Energy costs for different schemes are compared in Fig-
ure 6. OD shows an overall highest energy cost as aggregation
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Fig. 8. Average degrees of aggregation (DOA) of EXPL, CNTRL, ARTDP,
RTQ, OD and FIX at different nodes: Node 1 (node degree =3), Node 7 (node
degree = 5) and Node 9 (node degree = 6); sampling rate is set as 11 Hz.

for energy saving is only opportunistic. EXPL shows the best
energy saving performance among all schemes as it actually
achieves a higher DOA than other schemes (see Figure 7),
though this does not mean EXPL is optimal when aggregation
delay is taken into consideration. Again, RTQ and ARTDP
have similar performance in energy cost. From Figure 5 and 6,
we can see a clear delay-energy trade-off in the proposed
schemes as well as OD. Among them, RTQ and ARTDP
achieve the best balance between delay and energy.

Figure 7 gives the average DOA, i.e., the number of samples
collected per aggregation operation, in all schemes under
different sampling rates. It is clear that the proposed schemes
and OD can adaptively increase their DOAs as the sampling
rate increases. On the other hand, Figure 8 shows the DOAs
at different nodes under a given sampling rate (11 Hz), where
node 1 has three neighbors, node 7 has five neighbors and node
9 has six neighbors. Different node degrees implies different
channel contentions and sample arrival rates. At node 1, with
the lowest node degree among the three nodes, the schemes
(except FIX) have the lowest DOAs. DOAs increase with the
node degree in the proposed schemes as well as OD. This
demonstrates the difference between the proposed control-limit
policies and the previously proposed FIX scheme, as described
in Section III-B, i.e., the control limit s* in the proposed
schemes is adaptive to the environment and the sampling rate,
not as rigid as in the FIX scheme.

VI. CONCLUSIONS

In this paper, we provided a stochastic decision framework
to study the fundamental energy-delay tradeoff in distributed
data aggregation in wireless sensor networks. The problem of
balancing the aggregation gain and the delay experienced in
aggregation operations was formulated as a sequential decision
problem which, under certain assumption, becomes a semi-
Markov decision process (SMDP). The practically attractive
control-limit type policies for the decision problem were
developed and the sufficient conditions for their optimality
were found. Furthermore, we provided two on-line learning

algorithms for the general case of the problem and investigated
their performance under a tunable traffic model. ARTDP
showed a better convergence speed than RTQ with a cost of
computation complexity in learning the system model. The
simulation on a practical distributed data aggregation scenario
showed that ARTDP and RTQ achieved the best performance
in balancing energy and delay costs, while the performance
of control-limit type policies, especially the EXPL scheme in
(12), is close to that of learning algorithms, but with a sig-
nificantly lower implementation complexity. All the proposed
schemes outperformed the traditional schemes, i.e., the fixed
degree of aggregation (FIX) scheme and the on-demand (OD)
scheme.

ACKNOWLEDGEMENT

This work was funded in part by National Science Founda-
tion grants No. CNS-0322956 and CNS-0546402.

REFERENCES

[1] A. Boulis, S. Ganeriwal, and M. B. Srivastava, “Aggregation in sensor
networks: an energy-accuracy trade-off,” Ad Hoc Networks, vol. 1, no.
2-3, pp. 317-331, 2003.

[2] R. Cristescu and M. Vetterli, “On the optimal density for real-time
data gathering of spatio-temporal processes in sensor networks,” in
Proceedings of the Fourth International Conference on Information
Processing in Sensor Networks, IPSN 2005. Los Angeles, CA: IEEE,
Apr. 2005, pp. 159-164.

[3] M. L. Puterman, Markov Decision Processes—Discrete Stochastic Dy-
namic Programming. New York, NY: John Wiley & Sons, Inc., 1994.

[4] T. S. Ferguson, Optimal Stopping and Applications, on-line:
http://www.math.ucla.edu/ tom/Stopping/Contents.html, 2004., 2004.

[5] T. He, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher, “AIDA:

Adaptive application-independent data aggregation in wireless sensor

networks,” ACM Trans. Embedded Comput. Syst, vol. 3, no. 2, May

2004.

C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a

scalable and robust communication paradigm for sensor networks,” in

MOBICOM, Boston, MA, Aug. 2000, pp. 56-67.

[7]1 S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A
tiny AGgregation service for ad-hoc sensor networks,” in OSDI, Boston,
MA, Dec. 2002.

[8] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols

for information dissemination in wireless sensor networks,” in MOBI-

COM, Seattle, WA, Aug. 1999, pp. 174-185.

1. Solis and K. Obraczka, In-network Aggregation Trade-offs for Data

Collection in Wireless Sensor Networks. Santa Cruz, CA: Tech. Report,

Department of Computer Science, UCSC, 2003.

F. Hu, X. Cao, and C. May, “Optimized scheduling for data aggregation

in wireless sensor networks,” in ITCC (2). Las Vegas, NE: IEEE

Computer Society, Apr. 2005, pp. 557-561.

1. Demirkol, C. Ersoy, and F. Alagoz, “Mac protocols for wireless sensor

networks: a survey,” IEEE Communications Magazine, pp. 115-121,

2006.

Z. Ye, A. A. Abouzeid, and J. Ai, Optimal Policies for Distributed Data

Aggregation in Wireless Sensor Networks. Troy, NY: Tech. Report,

Department of Electrical, System and Computer Engineering, RPI, 2006.

A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-

time dynamic programming,” Artificial Intelligence, vol. 72, no. 1-2, pp.

81-138, Jan. 1995.

S. J. Bradtke, “Incremental dynamic programming for online adap-

tive optimal control,” Ph.D. dissertation, University of Massachusetts,

Ambherst, MA, 1994.

J. N. Tsitsiklis, Asynchronous Stochastic Approximation and Q-learning.

Cambridge, MA: Technical Report LIDS-P-2172, MIT, 1993.

Crossbow, MPR/MIB Users Manual Rev. A, Doc. 7430-0021-07. San

Jose, CA: Crossbow Technology, Inc., 2005.

S. Haykin, Adaptive Filter Theory. London: Prentice-Hall, 2001.

[6

—

3
2

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

1684



