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Shape Segmentation and Applications in Sensor
Networks

Xianjin Zhu Rik Sarkar Jie Gao

Department of Computer Science, Stony Brook Univerdigjzhu, rik, jgad @cs.sunysh.edu

Abstract—Many sensor network protocols in the literature However, when the sensor field is too sparse, has holes or
implicitly assume that sensor nodes are deployed uniformly inside a complex shape, greedy forwarding fails at local minima.
a simple geometric region. When the real deployment deviates This is due to a mismatch of routing/naming rules with the

from that, we often observe degraded performance. It is desirable | network tivity, T des that hicall
to have a generic approach to handle a sensor field with complex "€&! NEWOrk connectivity. Iwo nodes that are geographically

shape. In this paper, we propose a segmentation algorithm that close may actually be far away in the connectivity graph.
partitions an irregular sensor field into nicely shaped pieces such Thus, when these topological features (e.g., holes) become

that algorithms and protocols that assume a nice sensor field prominent, the naming and its coupled routing protocol should

can be applied inside each piece. Across the segments, problengy asent the real network connectivity and adjust to these
dependent structures specify how the segments and data collected

in these segments are integrated. This unified topology-adaptive topological features ?‘CCOfd'”Q'Y [4], [5]
spatial partitioning would benefit many settings that currently Beyond geographical routing, the global topology of a
assume a nicely shaped sensor field. sensor field has fundamental influence on how information
Our segmentation algorithm does not require sensor locations gathered in the network should be processed, stored and
air\]/(énor:aly‘f?;v?/s dri]l’ztc\:l\tli(z)rrll(’ (;ﬁgtr‘e(jcl:g’gé 'gw;maftr'gg tEhZChn;(\:v%erkls queried. In a sensor field with narrow bottlenecks, more
tg)oundary. A node with no flow direction }tl)ecomes a sink, and aggress.ive in-.network processing is expected to_ m!nimize
attracts other nodes in the same segment. We evaluate the per-the traffic flowing through bottleneck nodes. In a distributed
formance improvements by integrating shape segmentation with storage scheme, the global geometry should be taken into
applications such as distributed indices and random sampling.  account to achieve better load balance on storage nodes. Many
existing information processing algorithms do not account for
the global geometry of a sensor field yet. A typical example
Sensor networks have a unique geometric character isshe quadtree type of geometric decomposition hierarchy,
sensor nodes are embedded in, and designed to monitor, whéch has been extensively used to exploit spatial correlation
physical environment. Thus the physical locations of sensor sensor data (e.g., DIFS, DIM [6], [7]) for efficient multi-
nodes have a fundamental influence on the system desigsolution storage. In a sensor field with holes, a standard
in all aspects from low-level networking and organization tgeometric quadtree (the bounding rectangle is partitioned into
high-level information processing and applications. Clearly equal-size quadrants recursively) may become unbalanced
sensor placement affects connectivity and sensing coveragéh lots of big empty leaf blocks. An imperfect partition hi-
which subsequently affects basic network organization aedarchy subsequently affects the performance, especially load
networking operations. Recently a number of research effoltalance, of all algorithms and data structures built on top of it.
have identified the importance of not only sensor locations, batanother example, random sampling of a sensor node can be
also the global geometry and topological features of a sensmnducted by choosing the node closest to a random location.
field. The ‘topology’ here means algebraic topology and refeT® achieve a uniform distribution, the sampling probability
to holes or high-order features. In the literature, uniformlgeeds to be adjusted by the area of the corresponding Voronoi
random sensor deployment is arguably the most commordgll [8], [9]. In an irregular sensor field, the Voronoi cells have
adopted assumption on sensor distribution — but is rarely thastly varying areas. Thus the sampling efficiency suffers as
case in practice. Many algorithms and protocols proposed #iot of trials end up being rejected.
a dense and uniform sensor field inside a simple geometricOne approach to deal with irregularly shaped sensor field is
region, may have degraded performance when they are appliedevelop virtual coordinates with respect to the true network
to an irregular sensor field with holes, etc. connectivity, as in the case of routing [4], [5]. One may
Let us use routing as an example. Geographical routirfgl/low this line and re-develop algorithms for all the other
in which a packet is greedily forwarded to the neighbor th@roblems on virtual coordinate systems. Both the development
is geographically closest to the destination [1], [2], [3], hasf virtual coordinates and topology-adaptive algorithms on top
attracted a lot of interests. It is simple, elegant, and has litth that are highly non-trivial. In this paper, we propose to
routing overhead. In a dense and uniform sensor field with develop a unified approach to handle complex geometry. We
holes, geographical forwarding produces almost shortest patinepose a segmentation algorithm that partitions an irregular
and is robust to link or node failures and location inaccuraciesensor field into nicely shaped pieces such that algorithms that

|. INTRODUCTION



assume a uniform and dense sensor distribution can be apppaditions the sensor field along narrow necks. In the geometric
inside each piece. Across the segments, problem dependeamsion, all the sinks stay on the medial axis of the field,
structures specify how the segments and data collected in thedéch is the set of points with at least two closest points
segments are integrated. This unified topology-adaptive spatial the boundary and constitutes a ‘skeleton’ of the shape.
partitioning would benefit many settings that currently assunie a discrete network sinks may appear far away from the
sensor field with nice simple shape. There is not much prioredial axis due to local noises and connectivity disturbances.
work on segmenting a sensor field. The mostly related one loyaddition, in degenerate cases such as a corridor with parallel
Kroller et al. [10] proposed a boundary detection algorithnboundaries, many nodes on the medial axis may be identified
with which one can organize sensor nodes by ‘junctiona’s sinks. We apply a local merging process such that nearby
and ‘streets’. Our goal is to further explore segmentatiaginks along the medial axis with similar hop counts from
algorithms suitable for a discrete sensor field as well #ise boundary, together with their corresponding segments,
applications that can benefit from it. are merged. In the end, each segment is given a unique
In this paper, we consider a static sensor network with agentifier by the sink(s). All the nodes in the same segment are
irregular shape. We take the viewpoint to regard the sensoformed of the identifier distributed along the reversed flow
network as a discrete sampling of the underlying geometiiointers. The algorithm is communication efficient. It involves
environment and develop a ‘shape segmentation’ algorithencouple of limited flooding from the boundary nodes to the
This is motivated by the fact that sensor networks are ioterior of the network. All the other operations only involve
provide dense monitoring of the embedded space. The analysizl computations. With given boundaries, the segmentation
of geometric shapes has been extensively studied in graphatgorithm incurs a total transmission cost©@f{n).
and computational geometry with many shape segmentation al\We tested the segmentation algorithm under various topolo-
gorithms proposed in the literature [11], [12], [13], [14], [15]gies and node density. We observed intuitive segmentation
These algorithms typically work in a centralized setting withlong narrow necks in a sensor field with reasonable node
ample computational resources. Shape segmentation probtiggree (around ~ 8). To show the benefit of segmentation,
for a discrete sensor field faces a number of new challenges, evaluated the performance improvements by integrating
and requires non-trivial algorithm design to achieve sufficiesegmentation algorithm with two existing algorithms that
robustness to input inaccuracies. currently assume a uniform sensor field: a distributed index for
« Sensor nodes start with no idea of the global picturBiulti-dimensional data (DIM) [7] and random sampling [8],

We consider the approach of collecting all information a{f)] For both algorithms, we show that in an irregular sensor

a centralized node not a scalable solution. Segmentatitfld: the segmentation algorithm provides improved perfor-

algorithm needs to be automatic and distributed in natuf@ance and load balance.

« Sensor nodes may not know their geographical locations
— automatic and scalable localization (without GPS)
is still a challenging problem. Even when they do, the
locations may come with large inaccuracies.

« When sensor locations are not available, the distance
between two nodes is often approximated by their mini-
mum hop count value, which is always an integer. This
rough approximation introduces inevitable noise to arfyg. 2. Two regular pointsy; andp2) with their flow vectors. Sinkssf, s2
geometric algorithms that use the hop count to replaé‘éd s3) stay inside the convex hull of their closest points on the boundary.
the Euclidean distance. I

_ _ . NOTATIONS AND DEFINITIONS
We propose to adapt a shape segmentation s_cheme by USINWe first introduce some notations and definitions defined
flow complex [11] to sensor networks. The algorithm uses onm the continuous domain [11]. In the next section we show

the connectivity information and does not assume that Sensprs 1o adapt them in a discrete network. For a connected
know their locations. We first discover all the hole boundari ntinuous regiorR, denote by the bounda.ries represented

and the outer boundary, say by the algorithm developed ya set of closed curves, each bounding either an inner hole

Wang et al. [16]. We let the boundary nodes flood inwar r the outer boundary. For a poimte R, the distance from

and every node records the minimum hop count from tk}ceto the boundaries is define by(x) = min{|jz — p|[> : p €

boundary. Each node is then given a ‘flow direction’, th% . The medial axisis the set of points iR with at least

d|regt|on to move away fa;test 'from bOl_Jndanes. A node.m o closest points on the boundary. The distance function
be singular with no flow direction and is named as a &ink

o . . [s_continuous, and smooth everywhere except points on the
The sensor field is partitioned to segments in a way that noc}@

in th t flow o th k. Thi ; 8dial axis. We call a point a critical point, or asink if x
In the same segment flow 1o the same sink. This naluraly jside the convex hull of its closest points &n denoted

Ing _ A _ by H(xz). For example, sinks; has three closest points on
Notice that the sink we refer to in this paper is not a data sink

aggregation center (base station), although the sinks are good indicatorihﬁ poundary and_ stays inside the trie.mgle.spanned by_ .them'
where to place base stations or aggregation centers Obviously all the sinks stay on the medial axis. All non-critical
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Fig. 1. The fish network. 5000 nodes, Avg. degree 8. Boundary nodes are shown in black. (i) Medial axis nodes shown in dark green. Sink nodes shown in
red. (i) The stable manifolds of the sink nodes, shown in different colors. (iii) Nearby sinks with similar hop counts to the boundary, along with their stable
manifolds, are merged. Orphan nodes shown in grey. (iv) The final result after processing orphan nodes.

points are called regular. Thdriver, d(x), is defined as the ball centered at the sink. If we merge two segments, the
closest point ir(z) (e.g., in Figure 2, the driver gf; is the fatness of the resulting segment will be hurt since the size of
smaller black dot). For a point not on the medial axis, its drivéhe largest ball inside the segment does not increase but the
d(x) is the unique closest point 0B, e.g.,ps in Figure 2. size of the minimum enclosed ball may increase. One may
For a sink, the driver is itself. Now th#ow is defined as a improve the fatness of segments by reducing the sizes of the
unit vectorv(z) = % (i.e., the direction that points minimum enclosed balls, at the expense of introducing more
away from its driver), ifx # d(z) and 0 otherwise. It has segments.

been proved in [11] that all the points will flow to sinks. The

stable manifoldof a sinkz, denoted asS(z) is simply the set lll. SEGMENTATION ALGORITHM

of points that flow to it by following the flow directions. In  The fiow and stable manifolds described in section Il natu-
Figure 2 there are a total of three sinks and two large stablg)y partition a continuous domain into segments along narrow
manifolds (the stable manifold for, is just a line segment, necks — each stable manifold is a segment. In this section
called a degenerate segment). Sinksand s3 correspond t0 \ye show how to implement the flow and the segmentation in
local maxima of the distance functidriz), sinks, is a saddle 5 giscrete sensor field, when we do not have node location
point. The sink can be considered, to some extent, a ‘cent@fformation, nor the distance function. Unlike the continuous
of the segment. Rigorously, we have the following theorergase, here we approximate the Euclidean distance function to
Define a ball centered at a point to eally maximalif the  the poundary by the minimum hop count to boundary nodes.
ball is entirely inside the shape and by moving the center g for the notion of closestointson the boundary, an interior
the ball infinitesimally one cannot enlarge the size of the ballggde. has one or more closesttervals— each interval is a
consecutive sequence of nodes on the boundary with minimum
hop count fromz. We want to find, for each sensor a flow

Proof: Consider a locally maximal balB centered at pointer that points to one of its neighbors, in order to move
nodez. If z is not a sink, it must have a flow direction. Therifastest’ away from the boundary. The challenge is to assign
B will become larger if the center of the ball is shifted dhese flow pointers and identify the sinks in a robust way
small distance in the direction of the flow, because the distargigch that there is no loop and an intuitive segmentation can
function increases along the follow direction. This contradict¥e derived. We describe an outline of the algorithm followed
to the fact thatB is locally maximal. Sar must be a sink.m by the details of each step.

This theorem gives some property of the non-degeneratel) Boundary detection. Find the boundaries of the sensor
segments induced. Intuitively, we want to obtain a few number  field using the algorithm described in [16]. This algo-
of large and ‘fat’ pieces. One way to measure the fatness of a rithm identifies boundary nodes and connects them into
segmentS(z) is to consider the largest ball, completely inside cycles that bound the outer boundary and interior hole

Theorem 2.1. All locally maximal balls are centered at sinks.

R, centered at a point insid8(z) (this ball can stick out boundaries of the sensor field.
of the segment) against the minimum enclosed balb 6f). 2) Construct the distance field. The boundary nodes
Theorem 2.1 says that we obtainnon-degenerate segments, simultaneously flood inward the network and each node

with k equivalent to the number of locally maximal balls — the records the minimum hop count to the boundary, as
largest ball centered insid®(z) is exactly the locally maximal well as the interval(s) of closest nodes on the boundary.



Nodes on the medial axis can identify themselves as theys If h < h,, discard all existing intervals, sét, := h,

have two or more closest intervals. Sp :={I} and sendI, h + 1) to all neighbors.
3) Compute the flow.Each node: computes a flow pointer o If 2 = h,, merge I with adjacent and overlapping
that points to itsparent— the neighbor with a higher intervals on the same boundary if there is any. Otherwise,

hop count from the boundary and the most symmetric simply addI into S,. Send(Z, » + 1) to all neighbors.

closest intervals on the boundary among all such neigh-after this computation of sets of nearest intervals for all

bors. Nodes on the medial axis with no neighbor Qipdes in the network, nodes on the medial axis can be
higher hop count becongnks See Figure 1(i) and (ii). identified as follows:

4) Merge nearby sinks.Nearby sinks on the medial axis
with similar hop count from the boundary are merge
into a sink clusterand agree on a singkegment 1D

5) Segmentation. The nodes that ultimately flow to the Note that our definition of medial axis differs from that used
same sink cluster are grouped into the same segment.existing articles (e.g. [5]). What is the most appropriate
We let each sink disseminate the segment ID alor@palog of the continuous medial axis in a discrete network
the reversegarent pointers. See Figure 1 (iii) for the is yet to be debated. We find this definition quite robust
merged segments. and most suitable for our purposes. Figure 1 (i) shows the

6) Final clean-up. Due to irregularities in node distribu- medial axis of the fish network found with this protocol. The
tion, some nodes have locally maximum hop count terotocol described above is easy to implement and works
boundary but do not stay on medial axis — thus didnwell in simulations. As pointed out in [5], if all boundary
get recognized as sinks. These, and nodes that flow imdes initiate the flood at about the same time, then this
them are leftorphan In the final clean-up phase, wemethod keeps the total communication cost very low. The
merge the orphan nodes to their neighboring segmentiistance field can also be constructed with two rounds of

boundary flooding: in the first round each node records the

hop count to the boundary; in the second round each node
We use the boundary detection algorithm proposed Myoadcasts their closest intervals. To simplify the theoretical

Wanget al. [16] to identify boundaries with the connectivityanalysis of message complexity, we use the two-round version

information. The boundaries of inner holes and outer boundary Section III-G.

are assigned unique identifiers, and nodes along each boundary 9 mid(b) mid(p)  mid(c)

cycle are assigned ordered sequence numbers. Every boundary ! 3 5

node thus knows the identifier and the length of the boundary

to which it belongs, and its own sequence number on that
boundary. We refer to the set of nodes on boundaag ;.

gefinition 3.1. Nodes on medial axisA nodep is a medial
xis node ifiS,| > 1.

A. Boundary detection

B. Construct the distance field

With the boundary nodes identified, we construct a distance
field such that each node is given a minimum ‘distance’ to b [2,6]
,the Sens,or field boundary. Since W_e do no_t assume Iocatlg . 3. Nodep selects nodé as its parenv(p), asb is the more symmetric
information, our only measure of distance in the network igighbor. The closest intervals of nogleb, ¢ are shown.
the number of hops to the boundary nodes. The problem is
that a node typically has more than one nearest bound&ry Compute the flow pointer

nodes with the same hop counts away (thus may be identifiedonce each node learns its minimum distancé, from

to be on the medial axis). Hence we keep not thesest the boundaries and the intervals of closest nodes at distance
nodebut theinterval of closest nodes. An interval on the 1, from it, it can construct the flow pointer and find sinks
j*" boundary cycle is simply a sequence of nodes along thally. Observe that for any pair of neighboring nogeand
boundary cycle. It can be represented uniquely by a 4-tuplejf 5, < h,, then the closest intervals pfmust be included

(J, starty, endy, | B;|), wherestart; andend; are the two end in the closest intervals of. Rigorously,YI € S,,3I" € S,
points, | B| is the length of thej'" boundary. such thatl C I'.

We have the boundary nodes synchronize among themgach node createsfow pointerto its parent the neighbor
selves [17], [18] and start to flood the network at roughlyho is strictly further away from the boundary than itself, and
the same time. The boundary nodes initiate a flood Withhose closest intervals are mastmmetricwith respect to its
messages of the forr/, h) where I is an interval nearest own closest intervals. In Figure 3, nogeselects nodé as its
to the transmitting node, anlis the distance to nodes ih  parentv(p) because the mid point dfs interval is closer to
A nodep keeps track of the sef,, of intervalsof boundary the mid point of its own interval. The intuition behind this is
nodes nearest to it. On receiving a messafe:), a nodep g select the neighbor that represents the best movement away
compares to its current distancé,, to the boundary: from all parts of the boundary. We make this notion rigorous

o If h > h,, discard the current message. by defining the angular distance of two neighboring nodes.

c [3,8]



Fig. 4. The corridor network. (i) Opposite boundaries run parallel to each-other, producing several sinks in succession, resulting in the fragmented segmentation.
(i) Segmentation after merging nearby sinks with similar distances to the boundary.

Figure 4 (i). In this case we have a sequence of nodes on the
medial axis where no node is farther from the boundary than
) T2 .~ its neighbors, and all these nodes become sink nodes.
continuous sequlﬁnce mOquBJ"blOf L, if |I] is odd, else itis  \ye would like to merge nearby sinks with similar distances
the mean of the'3')-th and the( -5 + 1)-th elements. from boundary as well as their corresponding segments. We
call the merged sinks aink cluster A sink cluster K is
represented by the tupl€d, hiax, Amin), Whereid is the
minimum ID of all the sinks in the cluster, i.e., the ID of
the leader of the cluster.h.x and hy;, are the maximum
and minimum distances from any sink to the boundary re-
Using the functiony, each node selects a neighbar such spectively. We set a user defined threshiotd guarantee that
that h, < h,, and the sum of distances from the mid point§imax — hmin| < t. Each sink node waits for a random interval
of its intervals to the corresponding intervalsqofs less than to start the merging process to avoid contention. Initially each
that for any other neighbor qf. sink is by itself a sink cluster, and also a sink cluster leader. A
Definition 3.4. Flow pointer: Let H, be p’s neighbors with s!nk cluster' leader searches along the medial .a}xis for neqrby
higher hop count from the boundary, i.k,, < h,, forq € H,. sinks (or sink clusters) to be merged. Specifically, a sink
Then the parent of, v(p) is defined as the neighbor Hi, with cluster leaderc sends asearch messagef its current sink

minimum angular distance(p) = arg min,c;_4(p, q). ;Ezteg;i,hhﬁ;a?aﬁmgxg a:llgxi%rflbglrjgg chillclash?n th;/ medial

. . . » ""max? min)’
A typical node, for example in Figure 3 would have only on receiving this message, executes the following rule (let
one boundary interval nearest to it. Nodes on the medial axis =~ — max(h K. ) and Hyi, = min(humin, B0 ) -

. . . . maxy “max
have more than one such interval, in which case, the parent IS s H,
max

h based h ¢ mid ooint di ; d of — Hypin| > t, discard the message.
chosen based on the sum of mid point distances instead of & g|se forward the message to all neighboring nodes on the
single distance, as described above.

ol _ _ A _ _ medial axis. Furthermore, jf is a sink cluster leadep
Definition 3.5. Sink: A nodec is asink, if ¢ is a medial axis would like to merge its sink cluster wittis sink cluster.

node, and has locally maximum hop count from the boundary. |, the second case whenwants to be merged, it sends a

The sinks of the fish network, by this definition, are showferging requeswith (id’, A, .., by, ) t0 ¢ and waits for the
in Figure 1(i). Sinks are those medial axis nodes withoutgsponse. The leader nodenakes merging decision based on
parent. With the flow, the sequence of directed edges startifglatestimax andhnmin values at the time the request reaches
at any non-sink node ends at a unique roet Since a node ¢ (&s ¢ may have merged with other sink clusters before it
p selects its parent only if its parent has a higher hop couifceives the request frop) and selects the smallest sink ID
from the boundary, there cannot be a cycle in the directéd the merged cluster as the new cluster leader and cluster
graph implied by the flow. Thus, the nodes in the networl- We can suppress messages by only sendingmrging
are organized into directed forests, with the nodes in the saffgponseafter a sink receives a few merging requests, so that
tree flow to the same root by following their flow pointers. It set of merged sink clusters can be updated simultaneously.
a continuous domain, thetable manifoldsof the sinks form Note that the handshake is carried out by cluster leaders, and
the segments. In a discrete network, the analog ofstable search messages die out when they reach nodes on the medial
manifold of a sink ¢ would be the directed tree rooted @t @Xxis with hop count too large or too small. When a new cluster

Definition 3.2. Mid point : The mid pointnid(I) for an inter-
val I defined on the boundary is the X" -th element in the

Definition 3.3. Angular distance: The angular distance
d(p, q) between neighboring nodgsandq whereh,, < h, is
defined a9 (p,q) = Zlesp mingeg, [mid(I) —mad(I")|, I
andI’ must be on the same boundary.

such that any directed path in this tree ends.at appears, its cluster leader sends out a new search message
. looking for sink clusters to be merged. The process terminates
D. Merge nearby sinks automatically when no merging request is received after a

One can take the stable manifolds of the sinks, i.e., tiiening threshold. In a sparse network when the medial axis
trees rooted at the sinks, as the segmentation. But this misyot connected, we searéhor 3 hop neighbors for nearby
result in a heavily fragmented network (see Figure 1(ii)). Thimedial axis nodes.
happens when there are a cluster of sinks on the medial axisThe variablet is a threshold defined by the user. It de-
and there is a tree rooted at each. This situation becomes seten@ines the granularity of segmentation. Smaller values of
when some parts of boundaries run parallel to each other. $®ply that merging step will stop at a small change of the



distance from the boundary and hence collect fewer sink®e sink node whose ID the segment takes. This sink node
together into sink clusters. Thus there will be more segmemasily collects information about the segment such as node
created by the algorithm. For larger valuestpthe algorithm count, neighboring segments, bounding rectangle (if location
will create fewer and larger segments. Figure 5 shows thdormation is available) etc. This information can be delivered
differences caused by variation in the value tofln many to all nodes in the network, by transmitting along the medial
such situations, the most preferable segmentation is likely dgis and reversed flow pointers. Since the global features of
be dependent on the nature of the application. We leave ittt network have been abstracted into a compact presentation,
the user’s discretion to set the value tofNote that the user each node only transmits and stores a small amount of data.
can change the value daf even after the network has been

deployed by flooding a message from any one node in tRe Algorithm complexity

network. This would req_uire a re-c_omputation_ of only_the last e analyze the complexity of the segmentation algorithm
three steps of the algorithm, starting at merging of sinks. yith given boundaries. The total communication cost is dom-
; inated by the second step, i.e., constructing the distance field,
which incurs a couple of limited flooding. Other steps only
involve local operations, so the cost is at mogi), wheren
is the number of nodes in the network. For the simplicity of
analysis, the second step can be implemented in two passes.
In the first pass, nodes record the minimum hop count from
(i the boundaries. If the boundary nodes flood inwards almost
Fig. 5. Network with 2200 nodes, with avg 6 neighbors per node. Segmen@i-multaneously, each node will receive the message from the
tion with threshold ()t = 2; (i) * = 4. closest boundary node earlier than any other boundary nodes,
A second approach to merge sinks and segments isthgis each node only broadcasts once and all messages received
use second derivative of distance fieldhe idea is that later are suppressed. In the second pass, nodes broadcast
nodes around a narrow neck may have significant differenieir closest intervals. Each node constructs and broadcasts
on minimum hop counts to the boundary. Every node cdis final interval after receiving messages from all neighbors
calculate the second derivative of the distance to the boundaigh lower hop counts. In summary, the distance field can
locally. Merging starting at any cluster leader would stop atke constructed withO(n) messages. The proposed shape
node with distinct different second derivative value. segmentation algorithm is efficient and incurs communication
cost of O(n) in total.

E. Segmentation
Each sink cluster defines a segment, as all the trees rootedSimulations

at nodes in the sink cluster. To create the segments of theWe simulated the algorithm for different shapes of network,

network, each s!nk nodepropagates the ID of the.smk CIUSterand found that an intuitive partitioning into pieces with regular
to all the nodes in the tree rootedafThis can be simply done

shape is obtained. These networks either represent practical
by reversing the flow pointers. The ID of the sink cluster ig P P P

I idered he ID of th e 1(ii Eienarios, like an intersection of two roads (Figure 6(i)),
also considered as the of t € segment.. igure 1(iii) aP8Boms connected by a corridor (Figure 4), or some pathetically
Figure 4(ii) show the result of this construction.

difficult cases we come up with. Several examples are shown
F. Final clean-up in Figure 6. In general, the algorithm performs consistently

Due to noises and local disturbances, it is possible that som%" when thg average degreefis- 8 or highgr. Good regults_
nodes have locally maximum hop count to the boundary, iink be obtained for networks of low density by considering

are not medial axis nodes. This is likely to happen in spars%rtwo or three hop neighborhood in the steps of finding flow

regions of the network or near the boundaries if the boundarf%%'mers' merging the sinks and constructing segments. We

detected are not tight. In such cases, the node at the Io'ég?d a three hop neighborhood in simulations.

maximum and all nodes in the tree rooted at it are left without

any segment assignment. We refer to such nodesrpisan

nodes(e.g., the grey nodes in Figure 1(iii)). At the final clean- In this section, we present two specific applications that

up stage, we assign the orphan nodes to a nearby segment.berefit from shape segmentation: a distributed index for multi-

connected network, there always exists an orphan pagleeh dimensional data [7] and random sampling [9]. Both of

that some neighbog of p is not orphan. Each such noge these applications assume the availability of locations. Such

selects randomly a non-orphan neighbpand merges to that geographical information gives a node local picture of its

segment. This is executed by all orphan nodes until all nodesighborhood, but nodes are still unaware of global features

are assigned a segment. Figure 1(iv) shows the final resultof the network. Our shape segmentation scheme actually runs
Depending on the requirements of applications, the infarithout any geographical information. Simulation results show

mation about the newly formed segments can be disseminatiedt shape segmentation improves performance in terms of

across the network. Each segment has a natural leadercemmunication cost and load balance.

IV. APPLICATIONS
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Fig. 6. Segmentation results for miscellaneous shapes and densities. (i) cross: 2200 nodes, avg 12 neighbors per node. (ii) cactus: 2100 nodes, avg 9 neighbo
per node. (iii) airplane: 1900 nodes, avg 7.8 neighbors per node. (iv) gingerman: 2700 nodes, avg 8 neighbors per node. (v) hand: 2500 nodes, avg 6.5
neighbors per node. (vi) single-hole: 3700 nodes, avg 13 neighbors per node. (vii) spiral: 2900 nodes, avg 11 neighbors per node. (viii) smiley: 2900 nodes,
avg 8 neighbors per node. (ix) star: 3900 nodes, avg 9 neighbors per node.

A. Distributed Index applying DIM on each segment. Specifically, we first divide
Distributed index for multi-dimensional data (DIM [7]) is ath€ entiré event range into several sub-ranges.\.edenote

quadtree type hierarchy that supports efficient multi-resolutiéf€ number of nodes belonging to thie segment, andV
data storage and range query. The key idea of DIM is flenote the total number of nodes. Sub-ranges are divided based

map an event with certain values to a specific area call@g the ratio ofN;/N. The first segment takes care of events
as zone and store the event with geographic routing to th#ithin range[0, N1/N), and the second segment takes care of
node owning that zone. The zone is determined by dividing tife€ rangeN1/N, (N1 + N>)/N), and so on. A new generated
bounding rectangle of the network alternatively with a vertic&ent is divided into several sub-events, each of which is sent
or horizontal line until there is a single node inside the zonkWards the corresponding segments respectively. Inside each

When a node generates an event, it estimates the destinaie@ment, the sub-event is processed in the same way as the

zone based on the event value and routes it towards therePasic DIM algorithm.

DIM provides a scalable index structure for data storageTo compare the performance of DIM with and without
and performs well in a network field with simple geometrishape segmentation, we run simulations on various network
topology. However, it suffers a lot from load unbalancing iscenarios. We generatd®000 events with values uniformly
a complex shaped sensor field. For a network with arbitradystributed in a fixed rangf, 1000], and stored them into the
shape, there will be large empty space in the boundimgtwork. Figure 7 shows the distribution of storage load for the
rectangle. Some nodes (especially those boundary nodes) neusss network. We can see that the boundary nodes in the basic
take care of a larger zone, and hence store more data tldM structure suffer much higher loads than the rest of the
others. Overloaded nodes would be depleted faster than othetwork. On the other hand, with shape segmentation, since
nodes, which may lead to network partitioning and shortezach segment has tighter bounding rectangle and each node
network lifetime. is associated with an almost equal sized zone, data is seen

With shape segmentation, we can avoid above problemstoybe well distributed across the network with no particular
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Fig. 7. (i) Distribution of storage load in basic DIM structure. (ii) Distribution of storage load in shape segmentation integrated DIM structure.

preference for occurrence of peaks. The peaks in Figure #gch sample can only be determined at the destination node,
reach248, while the highest peak in Figure 7(ii) is on5.  samples may be rejected after traveling a long path, which
Shape segmentation also helps reduce communication dostirs expensive communication cost and wastes network
by mapping events into more accurate locations. Table | shoresources.
that the average communication cost in terms of hop countsRandom sampling integrated with shape segmentation can
for every event insertion is much less with shape segmentatidramatically reduce the number of unnecessary trials, at the
in all three different network scenarios, viz. cross (Fig. 6(i)same time achieving uniform sampling. The adapted algorithm
corridor (Fig. 4) and fish network (Fig. 1). In the cross anduns as follows. Each time before sampling, we first randomly
corridor network, shape segmentation saé@% ~ 70% cost. select a segment. Each segment is selected with probability
The gain in fish-type network is abo20%, not as significant P, = N;/N. After that, we pick a random location within
as the previous two cases. The reason is that each piecehef bounding rectangle of the selected segment. Within each
‘fish’ does not tightly match with its bounding rectangle. segment we apply the same sampling algorithm and sampling
_ _ , rejection policy as before. Segments are divided into Voronoi
cost per event insertion cross | corridor fish . .~ .
without Shape Segmentation 50360 | 35021 | 254,37 cells with much smaller va_natlon, thu_s_no node would reject
with shape segmentation 84.15 | 151.05 | 204.58 samples with abnormally high probability.
TABLE |. Average data insertion cost for DIM with and without shape We run simulations on the same thrge typ|cal networks.
segmentation. Results are averaged ar) rounds, and in each round, we
randomly pick100 samples. For the basic random sampling
algorithm, we setr to the ratio of the size of the network
field and the total number of nodes. Each segment has its
We discuss the benefits of shape segmentation with anotB@ + as the ratio of the segment size and number of nodes
example - random sampling. Uniform random sampling of gelonging to that segment. In Table II, we compare the average
sensor node is a fundamental operation that is used as a bagigiber of trials taken to get00 samples. The basic random
element in many scenarios such as gossip [9] and informatigimpling algorithm tried 68, 149 and 136 times for ‘cross’,
diffusion and storage [19]. ‘corridor’ and ‘fish’ respectively. Shape segmentation reduces
The basic sampling procedure works as follows [8]. Ahe number tal12, 115 and123. Table Il shows the average
node who wants to pick a random sensor in the network fiiggmmunication cost per sample. As expected, the cost in shape

chooses a random geographical location inside the boundigigymentation case is less than the basic case.
rectangle, and uses geographical routing to route towards

that location. The message will eventually arrive at the node 9. of rials : cross | corridor | fish
. . . . . without shape segmentation 168 149 136

closest tq_the p|cke_d location. A node is picked Wlth with shape segmentation 112 115 123

a probability proportional to the area of its Voronoi cell.

To achieve a uniform sampling distribution, the acceptance

B. Random Sampling

TABLE II. Average number of trials fot00 random sampling.

probability of sampling at each node needs to be adjusted; cost per sampiing cross | corridor | fish
as the one with a large Voronoi cell is more likely to be | without shape segmentation 477.84] 511.95 | 361.80
picked. Basically, each sampled node will be accepted with Vith Shape segmentation 10249 | 182.32 | 238.47
probability 7; = min(7/a;, 1), wherer is a given threshold TABLE Ill. - Average cost per sampling.

anda; is the area of the Voronoi cell associated with nodé With the same observation we got in DIM, shape seg-
a node rejects a sample, it will pick a new location and repeaentation shows different levels of improvements in different
the above process. In an irregular sensor field, the Vorom@twork scenarios. For these two applications, the performance
cells of different nodes have vastly varying areas. Nodesore or less depends on whether the bounding rectangle is
with large Voronoi cells are picked more likely, yet often getight enough. We notice that this is due to an inherent as-
rejected afterwards. Thus, the sampling efficiency suffers ssmption of the basic sampling algorithm that uses a bounding
a lot of trials end up in vain. Furthermore, since the fate eéctangle on the sensor field. Further improvement can be



made by using a tighter polygon to approximate the shape
of the segment in the basic sampling algorithm.

C. Discussion
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We mainly presented the integration of shape segmentation
with applications that assume simple geometric regions and
rely on geographical locations. But the applications of shapg]
segmentation can go beyond that. For example, the recent
work on information dissemination and collection [20] canpy
be directly integrated with shape segmentation. Here, we
further discuss a few more fundamental applicationd.dgd-
balanced routing Segmentation gives a high level map of[3]
the underlying network field. With proper traffic information
in each segment, we can choose routes with lighter load 4!
avoid congestion and improve load balance. For example, in
a sensor network monitoring two big rooms connected by a
couple of corridors with different capacity, from one room[®I
to the other, we can distribute traffic based on the capacity
of each corridor. 2)Data aggregation Data aggregation is [6]
used extensively to explore the data correlation and reduce
messages transmitted. However, it is not a trivial problem to
place aggregation sinks without the knowledge of the globat]
topology. With shape segmentation, critical points are naturally
the candidates of aggregation sinks. The flow pointers fqg;]
nodes inside each segment naturally form the aggregation tree.
Furthermore, by aggregating data within each segment first, we
can dramatically reduce network traffic through bottlenecké.g]
3) Designing virtual coordinate systenShape segmentation
even benefits the construction of virtual coordinate syste 1Sd]
Take a landmark-based routing scheme [4] for an example'in
which the placement of landmarks has a critical impact on
its performance. Since the segments capture useful geoméfit
features, like holes, concavity, etc, a few landmarks inside each
segment would suffice for routing in and between segmentg.2]

V. CONCLUSION
[13]

In this paper we introduced a simple distributed algorithm
that partitions an irregular sensor field into nicely shap
segments, by using the connectivity information. We sho
that segmentation is a generic approach to handle complex
geometric features and improve the performance of algorithfis!
that assume a nice regular sensor field. We expect that more
applications will benefit from this general approach with
improved performance in an irregular sensor field. (16]

In shape segmentation, a generally unsolved issue is that
there is no well accepted definition on good segmentation so
far. The choice of appropriate segmentation may also depehd
on the applications. For example, a spiral-like sensor field g
equivalently nice as a long corridor for routing protocols, but
it needs to be segmented further for applications that requgs]
a quad-tree type hierarchy. Therefore, it is always an open
choice for the upper level applications to pick a definition
and choose proper segmentation granularity. One interesting
problem is to classify applications into several categories g,
that more precise segmentation definitions can be found for
each category. We regard this as our future work.

)
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