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Shape Segmentation and Applications in Sensor
Networks

Xianjin Zhu Rik Sarkar Jie Gao

Department of Computer Science, Stony Brook University.{xjzhu, rik, jgao}@cs.sunysb.edu

Abstract—Many sensor network protocols in the literature
implicitly assume that sensor nodes are deployed uniformly inside
a simple geometric region. When the real deployment deviates
from that, we often observe degraded performance. It is desirable
to have a generic approach to handle a sensor field with complex
shape. In this paper, we propose a segmentation algorithm that
partitions an irregular sensor field into nicely shaped pieces such
that algorithms and protocols that assume a nice sensor field
can be applied inside each piece. Across the segments, problem
dependent structures specify how the segments and data collected
in these segments are integrated. This unified topology-adaptive
spatial partitioning would benefit many settings that currently
assume a nicely shaped sensor field.

Our segmentation algorithm does not require sensor locations
and only uses network connectivity information. Each node is
given a ‘flow direction’ that directs away from the network
boundary. A node with no flow direction becomes a sink, and
attracts other nodes in the same segment. We evaluate the per-
formance improvements by integrating shape segmentation with
applications such as distributed indices and random sampling.

I. INTRODUCTION

Sensor networks have a unique geometric character as
sensor nodes are embedded in, and designed to monitor, the
physical environment. Thus the physical locations of sensor
nodes have a fundamental influence on the system design
in all aspects from low-level networking and organization to
high-level information processing and applications. Clearly
sensor placement affects connectivity and sensing coverage,
which subsequently affects basic network organization and
networking operations. Recently a number of research efforts
have identified the importance of not only sensor locations, but
also the global geometry and topological features of a sensor
field. The ‘topology’ here means algebraic topology and refers
to holes or high-order features. In the literature, uniformly
random sensor deployment is arguably the most commonly
adopted assumption on sensor distribution — but is rarely the
case in practice. Many algorithms and protocols proposed for
a dense and uniform sensor field inside a simple geometric
region, may have degraded performance when they are applied
to an irregular sensor field with holes, etc.

Let us use routing as an example. Geographical routing,
in which a packet is greedily forwarded to the neighbor that
is geographically closest to the destination [1], [2], [3], has
attracted a lot of interests. It is simple, elegant, and has little
routing overhead. In a dense and uniform sensor field with no
holes, geographical forwarding produces almost shortest paths
and is robust to link or node failures and location inaccuracies.

However, when the sensor field is too sparse, has holes or
a complex shape, greedy forwarding fails at local minima.
This is due to a mismatch of routing/naming rules with the
real network connectivity. Two nodes that are geographically
close may actually be far away in the connectivity graph.
Thus, when these topological features (e.g., holes) become
prominent, the naming and its coupled routing protocol should
represent the real network connectivity and adjust to these
topological features accordingly [4], [5].

Beyond geographical routing, the global topology of a
sensor field has fundamental influence on how information
gathered in the network should be processed, stored and
queried. In a sensor field with narrow bottlenecks, more
aggressive in-network processing is expected to minimize
the traffic flowing through bottleneck nodes. In a distributed
storage scheme, the global geometry should be taken into
account to achieve better load balance on storage nodes. Many
existing information processing algorithms do not account for
the global geometry of a sensor field yet. A typical example
is the quadtree type of geometric decomposition hierarchy,
which has been extensively used to exploit spatial correlation
in sensor data (e.g., DIFS, DIM [6], [7]) for efficient multi-
resolution storage. In a sensor field with holes, a standard
geometric quadtree (the bounding rectangle is partitioned into
4 equal-size quadrants recursively) may become unbalanced
with lots of big empty leaf blocks. An imperfect partition hi-
erarchy subsequently affects the performance, especially load
balance, of all algorithms and data structures built on top of it.
In another example, random sampling of a sensor node can be
conducted by choosing the node closest to a random location.
To achieve a uniform distribution, the sampling probability
needs to be adjusted by the area of the corresponding Voronoi
cell [8], [9]. In an irregular sensor field, the Voronoi cells have
vastly varying areas. Thus the sampling efficiency suffers as
a lot of trials end up being rejected.

One approach to deal with irregularly shaped sensor field is
to develop virtual coordinates with respect to the true network
connectivity, as in the case of routing [4], [5]. One may
follow this line and re-develop algorithms for all the other
problems on virtual coordinate systems. Both the development
of virtual coordinates and topology-adaptive algorithms on top
of that are highly non-trivial. In this paper, we propose to
develop a unified approach to handle complex geometry. We
propose a segmentation algorithm that partitions an irregular
sensor field into nicely shaped pieces such that algorithms that



assume a uniform and dense sensor distribution can be applied
inside each piece. Across the segments, problem dependent
structures specify how the segments and data collected in these
segments are integrated. This unified topology-adaptive spatial
partitioning would benefit many settings that currently assume
sensor field with nice simple shape. There is not much prior
work on segmenting a sensor field. The mostly related one by
Kröller et al. [10] proposed a boundary detection algorithm
with which one can organize sensor nodes by ‘junctions’
and ‘streets’. Our goal is to further explore segmentation
algorithms suitable for a discrete sensor field as well as
applications that can benefit from it.

In this paper, we consider a static sensor network with an
irregular shape. We take the viewpoint to regard the sensor
network as a discrete sampling of the underlying geometric
environment and develop a ‘shape segmentation’ algorithm.
This is motivated by the fact that sensor networks are to
provide dense monitoring of the embedded space. The analysis
of geometric shapes has been extensively studied in graphics
and computational geometry with many shape segmentation al-
gorithms proposed in the literature [11], [12], [13], [14], [15].
These algorithms typically work in a centralized setting with
ample computational resources. Shape segmentation problem
for a discrete sensor field faces a number of new challenges,
and requires non-trivial algorithm design to achieve sufficient
robustness to input inaccuracies.

• Sensor nodes start with no idea of the global picture.
We consider the approach of collecting all information at
a centralized node not a scalable solution. Segmentation
algorithm needs to be automatic and distributed in nature.

• Sensor nodes may not know their geographical locations
— automatic and scalable localization (without GPS)
is still a challenging problem. Even when they do, the
locations may come with large inaccuracies.

• When sensor locations are not available, the distance
between two nodes is often approximated by their mini-
mum hop count value, which is always an integer. This
rough approximation introduces inevitable noise to any
geometric algorithms that use the hop count to replace
the Euclidean distance.

We propose to adapt a shape segmentation scheme by using
flow complex [11] to sensor networks. The algorithm uses only
the connectivity information and does not assume that sensors
know their locations. We first discover all the hole boundaries
and the outer boundary, say by the algorithm developed by
Wang et al. [16]. We let the boundary nodes flood inward
and every node records the minimum hop count from the
boundary. Each node is then given a ‘flow direction’, the
direction to move away fastest from boundaries. A node may
be singular with no flow direction and is named as a sink1.
The sensor field is partitioned to segments in a way that nodes
in the same segment flow to the same sink. This naturally

1Notice that the sink we refer to in this paper is not a data sink or
aggregation center (base station), although the sinks are good indicators of
where to place base stations or aggregation centers

partitions the sensor field along narrow necks. In the geometric
version, all the sinks stay on the medial axis of the field,
which is the set of points with at least two closest points
on the boundary and constitutes a ‘skeleton’ of the shape.
In a discrete network sinks may appear far away from the
medial axis due to local noises and connectivity disturbances.
In addition, in degenerate cases such as a corridor with parallel
boundaries, many nodes on the medial axis may be identified
as sinks. We apply a local merging process such that nearby
sinks along the medial axis with similar hop counts from
the boundary, together with their corresponding segments,
are merged. In the end, each segment is given a unique
identifier by the sink(s). All the nodes in the same segment are
informed of the identifier distributed along the reversed flow
pointers. The algorithm is communication efficient. It involves
a couple of limited flooding from the boundary nodes to the
interior of the network. All the other operations only involve
local computations. With given boundaries, the segmentation
algorithm incurs a total transmission cost ofO(n).

We tested the segmentation algorithm under various topolo-
gies and node density. We observed intuitive segmentation
along narrow necks in a sensor field with reasonable node
degree (around7 ∼ 8). To show the benefit of segmentation,
we evaluated the performance improvements by integrating
segmentation algorithm with two existing algorithms that
currently assume a uniform sensor field: a distributed index for
multi-dimensional data (DIM) [7] and random sampling [8],
[9]. For both algorithms, we show that in an irregular sensor
field, the segmentation algorithm provides improved perfor-
mance and load balance.

s1
s2

s3p1 p2

Fig. 2. Two regular points (p1 andp2) with their flow vectors. Sinks (s1, s2

ands3) stay inside the convex hull of their closest points on the boundary.

II. N OTATIONS AND DEFINITIONS

We first introduce some notations and definitions defined
in the continuous domain [11]. In the next section we show
how to adapt them in a discrete network. For a connected
continuous regionR, denote byB the boundaries, represented
by a set of closed curves, each bounding either an inner hole
or the outer boundary. For a pointx ∈ R, the distance from
x to the boundaries is define byh(x) = min{||x− p||2 : p ∈
B}. The medial axisis the set of points inR with at least
two closest points on the boundary. The distance functionh
is continuous, and smooth everywhere except points on the
medial axis. We call a pointx a critical point, or asink, if x
is inside the convex hull of its closest points onB, denoted
by H(x). For example, sinks1 has three closest points on
the boundary and stays inside the triangle spanned by them.
Obviously all the sinks stay on the medial axis. All non-critical



(i) (ii)

(iii) (iv)
Fig. 1. The fish network. 5000 nodes, Avg. degree 8. Boundary nodes are shown in black. (i) Medial axis nodes shown in dark green. Sink nodes shown in
red. (ii) The stable manifolds of the sink nodes, shown in different colors. (iii) Nearby sinks with similar hop counts to the boundary, along with their stable
manifolds, are merged. Orphan nodes shown in grey. (iv) The final result after processing orphan nodes.

points are called regular. Thedriver, d(x), is defined as the
closest point inH(x) (e.g., in Figure 2, the driver ofp1 is the
smaller black dot). For a point not on the medial axis, its driver
d(x) is the unique closest point onB, e.g., p2 in Figure 2.
For a sink, the driver is itself. Now theflow is defined as a
unit vector v(x) = x−d(x)

||x−d(x)|| (i.e., the direction that points
away from its driver), ifx 6= d(x) and 0 otherwise. It has
been proved in [11] that all the points will flow to sinks. The
stable manifoldof a sinkx, denoted asS(x) is simply the set
of points that flow to it by following the flow directions. In
Figure 2 there are a total of three sinks and two large stable
manifolds (the stable manifold fors2 is just a line segment,
called a degenerate segment). Sinkss1 and s3 correspond to
local maxima of the distance functionh(x), sinks2 is a saddle
point. The sink can be considered, to some extent, a ‘center’
of the segment. Rigorously, we have the following theorem.
Define a ball centered at a point to belocally maximalif the
ball is entirely inside the shape and by moving the center of
the ball infinitesimally one cannot enlarge the size of the ball.

Theorem 2.1. All locally maximal balls are centered at sinks.

Proof: Consider a locally maximal ballB centered at
nodex. If x is not a sink, it must have a flow direction. Then
B will become larger if the center of the ball is shifted a
small distance in the direction of the flow, because the distance
function increases along the follow direction. This contradicts
to the fact thatB is locally maximal. Sox must be a sink.

This theorem gives some property of the non-degenerate
segments induced. Intuitively, we want to obtain a few number
of large and ‘fat’ pieces. One way to measure the fatness of a
segmentS(x) is to consider the largest ball, completely inside
R, centered at a point insideS(x) (this ball can stick out
of the segment) against the minimum enclosed ball ofS(x).
Theorem 2.1 says that we obtaink non-degenerate segments,
with k equivalent to the number of locally maximal balls — the
largest ball centered insideS(x) is exactly the locally maximal

ball centered at the sinkx. If we merge two segments, the
fatness of the resulting segment will be hurt since the size of
the largest ball inside the segment does not increase but the
size of the minimum enclosed ball may increase. One may
improve the fatness of segments by reducing the sizes of the
minimum enclosed balls, at the expense of introducing more
segments.

III. SEGMENTATION ALGORITHM

The flow and stable manifolds described in section II natu-
rally partition a continuous domain into segments along narrow
necks — each stable manifold is a segment. In this section
we show how to implement the flow and the segmentation in
a discrete sensor field, when we do not have node location
information, nor the distance function. Unlike the continuous
case, here we approximate the Euclidean distance function to
the boundary by the minimum hop count to boundary nodes.
As for the notion of closestpointson the boundary, an interior
nodex has one or more closestintervals— each interval is a
consecutive sequence of nodes on the boundary with minimum
hop count fromx. We want to find, for each sensorx, a flow
pointer that points to one of its neighbors, in order to move
‘fastest’ away from the boundary. The challenge is to assign
these flow pointers and identify the sinks in a robust way
such that there is no loop and an intuitive segmentation can
be derived. We describe an outline of the algorithm followed
by the details of each step.

1) Boundary detection.Find the boundaries of the sensor
field using the algorithm described in [16]. This algo-
rithm identifies boundary nodes and connects them into
cycles that bound the outer boundary and interior hole
boundaries of the sensor field.

2) Construct the distance field. The boundary nodes
simultaneously flood inward the network and each node
records the minimum hop count to the boundary, as
well as the interval(s) of closest nodes on the boundary.



Nodes on the medial axis can identify themselves as they
have two or more closest intervals.

3) Compute the flow.Each nodex computes a flow pointer
that points to itsparent — the neighbor with a higher
hop count from the boundary and the most symmetric
closest intervals on the boundary among all such neigh-
bors. Nodes on the medial axis with no neighbor of
higher hop count becomesinks. See Figure 1(i) and (ii).

4) Merge nearby sinks.Nearby sinks on the medial axis
with similar hop count from the boundary are merged
into a sink clusterand agree on a singlesegment ID.

5) Segmentation.The nodes that ultimately flow to the
same sink cluster are grouped into the same segment.
We let each sink disseminate the segment ID along
the reversedparent pointers. See Figure 1 (iii) for the
merged segments.

6) Final clean-up. Due to irregularities in node distribu-
tion, some nodes have locally maximum hop count to
boundary but do not stay on medial axis — thus didn’t
get recognized as sinks. These, and nodes that flow into
them are leftorphan. In the final clean-up phase, we
merge the orphan nodes to their neighboring segments.

A. Boundary detection

We use the boundary detection algorithm proposed by
Wang et al. [16] to identify boundaries with the connectivity
information. The boundaries of inner holes and outer boundary
are assigned unique identifiers, and nodes along each boundary
cycle are assigned ordered sequence numbers. Every boundary
node thus knows the identifier and the length of the boundary
to which it belongs, and its own sequence number on that
boundary. We refer to the set of nodes on boundaryj asBj .

B. Construct the distance field

With the boundary nodes identified, we construct a distance
field such that each node is given a minimum ‘distance’ to
the sensor field boundary. Since we do not assume location
information, our only measure of distance in the network is
the number of hops to the boundary nodes. The problem is
that a node typically has more than one nearest boundary
nodes with the same hop counts away (thus may be identified
to be on the medial axis). Hence we keep not theclosest
nodebut the interval of closest nodes. An intervalI on the
jth boundary cycle is simply a sequence of nodes along the
boundary cycle. It can be represented uniquely by a 4-tuple
(j, startI , endI , |Bj |), wherestartI andendI are the two end
points, |Bj | is the length of thejth boundary.

We have the boundary nodes synchronize among them-
selves [17], [18] and start to flood the network at roughly
the same time. The boundary nodes initiate a flood with
messages of the form(I, h) where I is an interval nearest
to the transmitting node, andh is the distance to nodes inI.
A node p keeps track of the setSp of intervals of boundary
nodes nearest to it. On receiving a message(I, h), a nodep
comparesh to its current distancehp to the boundary:

• If h > hp, discard the current message.

• If h < hp, discard all existing intervals, sethp := h,
Sp := {I} and send(I, h + 1) to all neighbors.

• If h = hp, merge I with adjacent and overlapping
intervals on the same boundary if there is any. Otherwise,
simply addI into Sp. Send(I, h + 1) to all neighbors.

After this computation of sets of nearest intervals for all
nodes in the network, nodes on the medial axis can be
identified as follows:

Definition 3.1. Nodes on medial axis: A nodep is a medial
axis node if|Sp| > 1.

Note that our definition of medial axis differs from that used
in existing articles (e.g. [5]). What is the most appropriate
analog of the continuous medial axis in a discrete network
is yet to be debated. We find this definition quite robust
and most suitable for our purposes. Figure 1 (i) shows the
medial axis of the fish network found with this protocol. The
protocol described above is easy to implement and works
well in simulations. As pointed out in [5], if all boundary
nodes initiate the flood at about the same time, then this
method keeps the total communication cost very low. The
distance field can also be constructed with two rounds of
boundary flooding: in the first round each node records the
hop count to the boundary; in the second round each node
broadcasts their closest intervals. To simplify the theoretical
analysis of message complexity, we use the two-round version
in Section III-G.

mid(b)

b
c

mid(p) mid(c)

p

1 2
5

6
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[3, 5]

[2, 6]
[3, 8]

3

Fig. 3. Nodep selects nodeb as its parentv(p), asb is the more symmetric
neighbor. The closest intervals of nodep, b, c are shown.

C. Compute the flow pointer

Once each nodep learns its minimum distancehp from
the boundaries and the intervals of closest nodes at distance
hp from it, it can construct the flow pointer and find sinks
locally. Observe that for any pair of neighboring nodesp and
q, if hp < hq, then the closest intervals ofp must be included
in the closest intervals ofq. Rigorously,∀ I ∈ Sp ,∃ I ′ ∈ Sq

such thatI ⊆ I ′.
Each node creates aflow pointerto its parent, the neighbor

who is strictly further away from the boundary than itself, and
whose closest intervals are mostsymmetricwith respect to its
own closest intervals. In Figure 3, nodep selects nodeb as its
parentv(p) because the mid point ofb’s interval is closer to
the mid point of its own interval. The intuition behind this is
to select the neighbor that represents the best movement away
from all parts of the boundary. We make this notion rigorous
by defining the angular distance of two neighboring nodes.



(i) (ii)

Fig. 4. The corridor network. (i) Opposite boundaries run parallel to each-other, producing several sinks in succession, resulting in the fragmented segmentation.
(ii) Segmentation after merging nearby sinks with similar distances to the boundary.

Definition 3.2. Mid point : The mid pointmid(I) for an inter-
val I defined on the boundaryj, is the |I|+1

2 -th element in the
continuous sequence modulo|Bj | of I, if |I| is odd, else it is
the mean of the( |I|2 )-th and the( |I|2 + 1)-th elements.

Definition 3.3. Angular distance: The angular distance
δ(p, q) between neighboring nodesp andq wherehp < hq is
defined asδ(p, q) =

∑
I∈Sp

minI′∈Sq |mid(I)−mid(I ′)|, I
andI ′ must be on the same boundary.

Using the functionδ, each nodep selects a neighborq such
that hp < hq, and the sum of distances from the mid points
of its intervals to the corresponding intervals ofq is less than
that for any other neighbor ofp.

Definition 3.4. Flow pointer: Let Hp be p’s neighbors with
higher hop count from the boundary, i.e.,hp < hq, for q ∈ Hp.
Then the parent ofp, v(p) is defined as the neighbor inHp with
minimum angular distance,v(p) = arg minq∈Hp

δ(p, q).

A typical node, for examplep in Figure 3 would have only
one boundary interval nearest to it. Nodes on the medial axis
have more than one such interval, in which case, the parent is
chosen based on the sum of mid point distances instead of a
single distance, as described above.

Definition 3.5. Sink: A nodec is a sink, if c is a medial axis
node, and has locally maximum hop count from the boundary.

The sinks of the fish network, by this definition, are shown
in Figure 1(i). Sinks are those medial axis nodes without a
parent. With the flow, the sequence of directed edges starting
at any non-sink nodep ends at a unique rootc. Since a node
p selects its parent only if its parent has a higher hop count
from the boundary, there cannot be a cycle in the directed
graph implied by the flow. Thus, the nodes in the network
are organized into directed forests, with the nodes in the same
tree flow to the same root by following their flow pointers. In
a continuous domain, thestable manifoldsof the sinks form
the segments. In a discrete network, the analog of thestable
manifold of a sink c would be the directed tree rooted atc,
such that any directed path in this tree ends atc.

D. Merge nearby sinks

One can take the stable manifolds of the sinks, i.e., the
trees rooted at the sinks, as the segmentation. But this may
result in a heavily fragmented network (see Figure 1(ii)). This
happens when there are a cluster of sinks on the medial axis,
and there is a tree rooted at each. This situation becomes severe
when some parts of boundaries run parallel to each other. See

Figure 4 (i). In this case we have a sequence of nodes on the
medial axis where no node is farther from the boundary than
its neighbors, and all these nodes become sink nodes.

We would like to merge nearby sinks with similar distances
from boundary as well as their corresponding segments. We
call the merged sinks asink cluster. A sink cluster K is
represented by the tuple(id, hmax, hmin), where id is the
minimum ID of all the sinks in the cluster, i.e., the ID of
the leader of the cluster.hmax and hmin are the maximum
and minimum distances from any sink to the boundary re-
spectively. We set a user defined thresholdt to guarantee that
|hmax−hmin| ≤ t. Each sink node waits for a random interval
to start the merging process to avoid contention. Initially each
sink is by itself a sink cluster, and also a sink cluster leader. A
sink cluster leader searches along the medial axis for nearby
sinks (or sink clusters) to be merged. Specifically, a sink
cluster leaderc sends asearch messageof its current sink
cluster(id, hmax, hmin) to all neighboring nodes on the medial
axis. Each medial axis nodep of cluster (id′, h′max, h

′
min),

on receiving this message, executes the following rule (let
Hmax = max(hmax, h

′
max) andHmin = min(hmin, h′min)) :

• if |Hmax −Hmin| > t, discard the message.
• else forward the message to all neighboring nodes on the

medial axis. Furthermore, ifp is a sink cluster leader,p
would like to merge its sink cluster withc’s sink cluster.

In the second case, whenp wants to be merged, it sends a
merging requestwith (id′, h′max, h

′
min) to c and waits for the

response. The leader nodec makes merging decision based on
its latesthmax andhmin values at the time the request reaches
c (as c may have merged with other sink clusters before it
receives the request fromp) and selects the smallest sink ID
in the merged cluster as the new cluster leader and cluster
ID. We can suppress messages by only sending outmerging
responseafter a sink receives a few merging requests, so that
a set of merged sink clusters can be updated simultaneously.
Note that the handshake is carried out by cluster leaders, and
search messages die out when they reach nodes on the medial
axis with hop count too large or too small. When a new cluster
appears, its cluster leader sends out a new search message
looking for sink clusters to be merged. The process terminates
automatically when no merging request is received after a
timing threshold. In a sparse network when the medial axis
is not connected, we search2 or 3 hop neighbors for nearby
medial axis nodes.

The variablet is a threshold defined by the user. It de-
termines the granularity of segmentation. Smaller values oft
imply that merging step will stop at a small change of the



distance from the boundary and hence collect fewer sinks
together into sink clusters. Thus there will be more segments
created by the algorithm. For larger values oft, the algorithm
will create fewer and larger segments. Figure 5 shows the
differences caused by variation in the value oft. In many
such situations, the most preferable segmentation is likely to
be dependent on the nature of the application. We leave it to
the user’s discretion to set the value oft. Note that the user
can change the value oft even after the network has been
deployed by flooding a message from any one node in the
network. This would require a re-computation of only the last
three steps of the algorithm, starting at merging of sinks.

(i) (ii)

Fig. 5. Network with 2200 nodes, with avg 6 neighbors per node. Segmenta-
tion with threshold (i)t = 2; (ii) t = 4.

A second approach to merge sinks and segments is to
use second derivative of distance field. The idea is that
nodes around a narrow neck may have significant difference
on minimum hop counts to the boundary. Every node can
calculate the second derivative of the distance to the boundary
locally. Merging starting at any cluster leader would stop at a
node with distinct different second derivative value.

E. Segmentation

Each sink cluster defines a segment, as all the trees rooted
at nodes in the sink cluster. To create the segments of the
network, each sink nodec propagates the ID of the sink cluster
to all the nodes in the tree rooted atc. This can be simply done
by reversing the flow pointers. The ID of the sink cluster is
also considered as the ID of the segment. Figure 1(iii) and
Figure 4(ii) show the result of this construction.

F. Final clean-up

Due to noises and local disturbances, it is possible that some
nodes have locally maximum hop count to the boundary, but
are not medial axis nodes. This is likely to happen in sparser
regions of the network or near the boundaries if the boundaries
detected are not tight. In such cases, the node at the local
maximum and all nodes in the tree rooted at it are left without
any segment assignment. We refer to such nodes asorphan
nodes(e.g., the grey nodes in Figure 1(iii)). At the final clean-
up stage, we assign the orphan nodes to a nearby segment. In a
connected network, there always exists an orphan nodep such
that some neighborq of p is not orphan. Each such nodep
selects randomly a non-orphan neighborq, and merges to that
segment. This is executed by all orphan nodes until all nodes
are assigned a segment. Figure 1(iv) shows the final result.

Depending on the requirements of applications, the infor-
mation about the newly formed segments can be disseminated
across the network. Each segment has a natural leader —

the sink node whose ID the segment takes. This sink node
easily collects information about the segment such as node
count, neighboring segments, bounding rectangle (if location
information is available) etc. This information can be delivered
to all nodes in the network, by transmitting along the medial
axis and reversed flow pointers. Since the global features of
the network have been abstracted into a compact presentation,
each node only transmits and stores a small amount of data.

G. Algorithm complexity

We analyze the complexity of the segmentation algorithm
with given boundaries. The total communication cost is dom-
inated by the second step, i.e., constructing the distance field,
which incurs a couple of limited flooding. Other steps only
involve local operations, so the cost is at mostO(n), wheren
is the number of nodes in the network. For the simplicity of
analysis, the second step can be implemented in two passes.
In the first pass, nodes record the minimum hop count from
the boundaries. If the boundary nodes flood inwards almost
simultaneously, each node will receive the message from the
closest boundary node earlier than any other boundary nodes,
thus each node only broadcasts once and all messages received
later are suppressed. In the second pass, nodes broadcast
their closest intervals. Each node constructs and broadcasts
its final interval after receiving messages from all neighbors
with lower hop counts. In summary, the distance field can
be constructed withO(n) messages. The proposed shape
segmentation algorithm is efficient and incurs communication
cost ofO(n) in total.

H. Simulations

We simulated the algorithm for different shapes of network,
and found that an intuitive partitioning into pieces with regular
shape is obtained. These networks either represent practical
scenarios, like an intersection of two roads (Figure 6(i)),
rooms connected by a corridor (Figure 4), or some pathetically
difficult cases we come up with. Several examples are shown
in Figure 6. In general, the algorithm performs consistently
well when the average degree is7 ∼ 8 or higher. Good results
can be obtained for networks of low density by considering
a two or three hop neighborhood in the steps of finding flow
pointers, merging the sinks and constructing segments. We
used a three hop neighborhood in simulations.

IV. A PPLICATIONS

In this section, we present two specific applications that
benefit from shape segmentation: a distributed index for multi-
dimensional data [7] and random sampling [9]. Both of
these applications assume the availability of locations. Such
geographical information gives a node local picture of its
neighborhood, but nodes are still unaware of global features
of the network. Our shape segmentation scheme actually runs
without any geographical information. Simulation results show
that shape segmentation improves performance in terms of
communication cost and load balance.
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Fig. 6. Segmentation results for miscellaneous shapes and densities. (i) cross: 2200 nodes, avg 12 neighbors per node. (ii) cactus: 2100 nodes, avg 9 neighbors
per node. (iii) airplane: 1900 nodes, avg 7.8 neighbors per node. (iv) gingerman: 2700 nodes, avg 8 neighbors per node. (v) hand: 2500 nodes, avg 6.5
neighbors per node. (vi) single-hole: 3700 nodes, avg 13 neighbors per node. (vii) spiral: 2900 nodes, avg 11 neighbors per node. (viii) smiley: 2900 nodes,
avg 8 neighbors per node. (ix) star: 3900 nodes, avg 9 neighbors per node.

A. Distributed Index

Distributed index for multi-dimensional data (DIM [7]) is a
quadtree type hierarchy that supports efficient multi-resolution
data storage and range query. The key idea of DIM is to
map an event with certain values to a specific area called
as zone, and store the event with geographic routing to the
node owning that zone. The zone is determined by dividing the
bounding rectangle of the network alternatively with a vertical
or horizontal line until there is a single node inside the zone.
When a node generates an event, it estimates the destination
zone based on the event value and routes it towards there.

DIM provides a scalable index structure for data storage
and performs well in a network field with simple geometric
topology. However, it suffers a lot from load unbalancing in
a complex shaped sensor field. For a network with arbitrary
shape, there will be large empty space in the bounding
rectangle. Some nodes (especially those boundary nodes) must
take care of a larger zone, and hence store more data than
others. Overloaded nodes would be depleted faster than other
nodes, which may lead to network partitioning and shorten
network lifetime.

With shape segmentation, we can avoid above problems by

applying DIM on each segment. Specifically, we first divide
the entire event range into several sub-ranges. LetNi denote
the number of nodes belonging to theith segment, andN
denote the total number of nodes. Sub-ranges are divided based
on the ratio ofNi/N . The first segment takes care of events
within range[0, N1/N), and the second segment takes care of
the range[N1/N, (N1 +N2)/N), and so on. A new generated
event is divided into several sub-events, each of which is sent
towards the corresponding segments respectively. Inside each
segment, the sub-event is processed in the same way as the
basic DIM algorithm.

To compare the performance of DIM with and without
shape segmentation, we run simulations on various network
scenarios. We generated10000 events with values uniformly
distributed in a fixed range[0, 1000], and stored them into the
network. Figure 7 shows the distribution of storage load for the
cross network. We can see that the boundary nodes in the basic
DIM structure suffer much higher loads than the rest of the
network. On the other hand, with shape segmentation, since
each segment has tighter bounding rectangle and each node
is associated with an almost equal sized zone, data is seen
to be well distributed across the network with no particular
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Fig. 7. (i) Distribution of storage load in basic DIM structure. (ii) Distribution of storage load in shape segmentation integrated DIM structure.

preference for occurrence of peaks. The peaks in Figure 7(i)
reach248, while the highest peak in Figure 7(ii) is only65.

Shape segmentation also helps reduce communication cost
by mapping events into more accurate locations. Table I shows
that the average communication cost in terms of hop counts
for every event insertion is much less with shape segmentation
in all three different network scenarios, viz. cross (Fig. 6(i)),
corridor (Fig. 4) and fish network (Fig. 1). In the cross and
corridor network, shape segmentation saves60% ∼ 70% cost.
The gain in fish-type network is about20%, not as significant
as the previous two cases. The reason is that each piece of
‘fish’ does not tightly match with its bounding rectangle.

cost per event insertion cross corridor fish
without shape segmentation 293.69 359.21 254.37
with shape segmentation 84.15 151.05 204.58

TABLE I. Average data insertion cost for DIM with and without shape
segmentation.

B. Random Sampling

We discuss the benefits of shape segmentation with another
example - random sampling. Uniform random sampling of a
sensor node is a fundamental operation that is used as a basic
element in many scenarios such as gossip [9] and information
diffusion and storage [19].

The basic sampling procedure works as follows [8]. A
node who wants to pick a random sensor in the network first
chooses a random geographical location inside the bounding
rectangle, and uses geographical routing to route towards
that location. The message will eventually arrive at the node
closest to the picked location. A nodep is picked with
a probability proportional to the area of its Voronoi cell.
To achieve a uniform sampling distribution, the acceptance
probability of sampling at each node needs to be adjusted,
as the one with a large Voronoi cell is more likely to be
picked. Basically, each sampled node will be accepted with
probability ri = min(τ/ai, 1), whereτ is a given threshold
andai is the area of the Voronoi cell associated with nodei. If
a node rejects a sample, it will pick a new location and repeat
the above process. In an irregular sensor field, the Voronoi
cells of different nodes have vastly varying areas. Nodes
with large Voronoi cells are picked more likely, yet often get
rejected afterwards. Thus, the sampling efficiency suffers as
a lot of trials end up in vain. Furthermore, since the fate of

each sample can only be determined at the destination node,
samples may be rejected after traveling a long path, which
incurs expensive communication cost and wastes network
resources.

Random sampling integrated with shape segmentation can
dramatically reduce the number of unnecessary trials, at the
same time achieving uniform sampling. The adapted algorithm
runs as follows. Each time before sampling, we first randomly
select a segment. Each segment is selected with probability
Pi = Ni/N . After that, we pick a random location within
the bounding rectangle of the selected segment. Within each
segment we apply the same sampling algorithm and sampling
rejection policy as before. Segments are divided into Voronoi
cells with much smaller variation, thus no node would reject
samples with abnormally high probability.

We run simulations on the same three typical networks.
Results are averaged on10 rounds, and in each round, we
randomly pick100 samples. For the basic random sampling
algorithm, we setτ to the ratio of the size of the network
field and the total number of nodes. Each segment has its
own τ as the ratio of the segment size and number of nodes
belonging to that segment. In Table II, we compare the average
number of trials taken to get100 samples. The basic random
sampling algorithm tried168, 149 and136 times for ‘cross’,
‘corridor’ and ‘fish’ respectively. Shape segmentation reduces
the number to112, 115 and123. Table III shows the average
communication cost per sample. As expected, the cost in shape
segmentation case is less than the basic case.

no. of trials cross corridor fish
without shape segmentation 168 149 136
with shape segmentation 112 115 123

TABLE II. Average number of trials for100 random sampling.

cost per sampling cross corridor fish
without shape segmentation 477.84 511.95 361.80
with shape segmentation 102.49 182.32 238.47

TABLE III. Average cost per sampling.

With the same observation we got in DIM, shape seg-
mentation shows different levels of improvements in different
network scenarios. For these two applications, the performance
more or less depends on whether the bounding rectangle is
tight enough. We notice that this is due to an inherent as-
sumption of the basic sampling algorithm that uses a bounding
rectangle on the sensor field. Further improvement can be



made by using a tighter polygon to approximate the shape
of the segment in the basic sampling algorithm.

C. Discussion

We mainly presented the integration of shape segmentation
with applications that assume simple geometric regions and
rely on geographical locations. But the applications of shape
segmentation can go beyond that. For example, the recent
work on information dissemination and collection [20] can
be directly integrated with shape segmentation. Here, we
further discuss a few more fundamental applications. 1)Load-
balanced routing: Segmentation gives a high level map of
the underlying network field. With proper traffic information
in each segment, we can choose routes with lighter load to
avoid congestion and improve load balance. For example, in
a sensor network monitoring two big rooms connected by a
couple of corridors with different capacity, from one room
to the other, we can distribute traffic based on the capacity
of each corridor. 2)Data aggregation: Data aggregation is
used extensively to explore the data correlation and reduce
messages transmitted. However, it is not a trivial problem to
place aggregation sinks without the knowledge of the global
topology. With shape segmentation, critical points are naturally
the candidates of aggregation sinks. The flow pointers for
nodes inside each segment naturally form the aggregation tree.
Furthermore, by aggregating data within each segment first, we
can dramatically reduce network traffic through bottlenecks.
3) Designing virtual coordinate system: Shape segmentation
even benefits the construction of virtual coordinate systems.
Take a landmark-based routing scheme [4] for an example in
which the placement of landmarks has a critical impact on
its performance. Since the segments capture useful geometric
features, like holes, concavity, etc, a few landmarks inside each
segment would suffice for routing in and between segments.

V. CONCLUSION

In this paper we introduced a simple distributed algorithm
that partitions an irregular sensor field into nicely shaped
segments, by using the connectivity information. We show
that segmentation is a generic approach to handle complex
geometric features and improve the performance of algorithms
that assume a nice regular sensor field. We expect that more
applications will benefit from this general approach with
improved performance in an irregular sensor field.

In shape segmentation, a generally unsolved issue is that
there is no well accepted definition on good segmentation so
far. The choice of appropriate segmentation may also depend
on the applications. For example, a spiral-like sensor field is
equivalently nice as a long corridor for routing protocols, but
it needs to be segmented further for applications that require
a quad-tree type hierarchy. Therefore, it is always an open
choice for the upper level applications to pick a definition
and choose proper segmentation granularity. One interesting
problem is to classify applications into several categories so
that more precise segmentation definitions can be found for
each category. We regard this as our future work.
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