Availability in BitTorrent Systems

Giovanni Neglia', Giuseppe Reina’, Honggang Zhang®
Don Towsley*, Arun Venkataramani*, John Danaher*

'DIEE.T.
Universita degli Studi di Palermo, Italy
giovanni.neglia@ieee.org
g.reina@gmail.com

Abstract—In this paper, we investigate the problem of highly
available, massive-scale file distribution in the Internet. To this
end, we conduct a large-scale measurement study of BitTorrent,
a popular class of systems that use swarms of actively down-
loading peers to assist each other in file distribution. The first
generation of BitTorrent systems used a central tracker to enable
coordination among peers, resulting in low availability due to the
tracker’s single point of failure.

Our study analyzes the prevalence and impact of two recent
trends to improve BitTorrent availability: (i) use of multiple
trackers, and (ii) use of Distributed Hash Tables (DHTSs), both
of which also help to balance load better. The study considered
more than 1,400 trackers and 24,000 DHT nodes (extracted from
about 20,000 torrents) over a period of two months. We find that
both trends improve availability, but for different and somewhat
unexpected reasons. Our findings include: (i) multiple trackers
improve availability, but the improvement largely comes from the
choice of a single highly available tracker, (ii) such improvement
is reduced by the presence of correlated failures, (iii) multiple
trackers can significantly reduce the connectivity of the overlay
formed by peers, (iv) the DHT improves information availability,
but induces a higher response latency to peer queries.

I. INTRODUCTION

Peer-to-peer file distribution is rapidly displacing traditional
client-server distribution in the Internet. By some estimates [1],
BitTorrent (BT), a popular class of peer-to-peer file distribution
systems, constituted about 30% of Internet backbone traffic in
June 2004. BitTorrent uses active peers to assist each other
in file distribution eliminating a single point of congestion,
the server. Thus, the capacity of BT systems increases with
the number of active peers enabling highly scalable file
distribution.

Although BitTorrent eliminates a single point of congestion
as regards data traffic, it continues to have a single point
of failure. The first generation of BT systems employed a
centralized fracker to enable coordination between peers. The
tracker maintains the set of active peers, also called the
swarm, interested in a specific file. A peer joins the swarm
by announcing itself to the tracker, which returns a small
random subset of peers from the swarm. Peers use this subset
to connect to other peers to obtain missing pieces of the file.
If the tracker fails or is unreachable, the system becomes
unavailable to new peers, so they can not obtain the file or
contribute resources to the system.

Measurement studies [2] confirm low tracker availability
experienced by users of BT systems today. The massive

$Math Computer Science Dept.
Suffolk University
hzhang @ieee.org

*Computer Science Dept.
University of Massachusetts Amherst
{towsley, arun} @cs.umass.edu
jpdanaher @comcast.net

prevalence of BitTorrent and recent proposals to adapt BT
techniques for more general forms of packet delivery [3]
including email attachments, software updates, and security
patches make tracker availability an important problem. For
example, unavailability of security updates distributed using
BT can seriously impact the well-being of the Internet.

Two recent trends have emerged to tackle the problem of
tracker availability. The first one is the support for multiple
trackers to increase the likelihood of at least one available
tracker for a given file (introduced at the end of 2003).
The second one is the integration of Distributed Hash Tables
(DHTs) with BT clients that store information across the entire
community of BT users (introduced in May 2005). Section V
and VI describe in detail how these two mechanisms work in
practice.

Our study investigates availability of BT systems in the light
of these trends. Availability depends on several factors such
as the multi-tracker or the DHT infrastructure (simply DHT in
what follows), the amount of information they store, patterns
of tracker and network failures, and the amount of information
shared across trackers and peers. We quantitatively analyze the
improvement in availability due to the two mechanisms.

Our study considered more than 20,000 torrents specifying
more than 1,400 trackers and 24,000 DHT nodes over a period
of several months. We find that multiple trackers as well as
DHT use improve availability, but for different and somewhat
unexpected reasons. Our major findings are as follows.

o Multiple trackers improve availability, but the improve-

ment largely comes from a single highly available tracker.

o The potential improvement from multi-tracker is reduced
due to the presence of correlated failures.

o The use of multiple trackers can significantly reduce the
connectivity of BitTorrent overlay.

o« DHT improves information availability, but induces a
higher response latency.

o Tracker and DHT show complementary characteristic
features. Current trend of combining multiple trackers and
DHT can provide high information availability with low
information response latency.

The rest of this paper is organized as follows. In Sec-
tion II we illustrate related works. After the description of the
measurements sets in Section III, we show results about the
trackers availability in Section IV. The improvement deriving

from the use of multiple trackers and of the DHT infrastructure
are respectively described in Sections V and VL

II. RELATED WORKS

There are now many measurement studies about BT traffic
and operation. However they mainly focus on issues different
from peer information availability: amount and characteristics
of P2P traffic in the network [4], swarm evolution dynamics
depending for example on peer arrival pattern and average
connection time [5], [6], global downloading performance
achievable by the peers [5], the BT-specific content sharing
algorithms like the choke algorithm or the pieces selection
algorithm [7] in particular as regards their effectiveness in
promoting cooperation [8], [9].

The work most similar to ours is [2]. The authors focus on
suprnova.ord, which at the time of the study was the most
popular website advertising BT contents. suprnova.org
was not just a website, but a complete architecture including
a mirroring system to balance user requests across multiple
websites, servers to store torrent files, and human moderators
to eliminate faked contents. The measurements span from
June 2003 to March 2004, and the authors investigate the
availability of the architecture and also of the peers of a
specific content. Tracker availability appears to be a significant
problem: only half of the trackers they consider have an
average uptime of 1.5 days or more. At the same time trackers
appear to be more available than HTML mirrors and torrent
servers in suprnova.org architecture. Our results suggest
that there is a significant non-stationary effect affecting this
kind of measurements. Our study also addresses new features
that were not considered during the measurement campaign
described in [2] (multi-tracker support was introduced during
the measurement period, DHT support only later).

Separate from the specific BT framework, there are some
works about availability of distributed systems in the Internet
[10], [11], [12], [13], [14]. In [10] the authors investigate peers
availability through a measurement campaign of the Overnet
file-sharing network [15]. They stress “aliasing errors” when
IP addresses are considered as identifiers for the peers and
show that availability of each peer significantly depends on
the measurement time interval (because peers join and leave
the system) and on time-of-day, but is roughly independent
from the availability of other peers. Even if trackers should
be stable entities in the BT architecture we observed lifetime
effects in our availability measurements. In [11] three different
large distributed systems (PlanetLab, Domain Name System
and a collection of over 100 web servers) are considered. The
study identifies differences among temporal availability, Mean
Time To Failure (MTTF), Mean Time To Repair (MTTR),
Time To Failure (TTF) and Time To Repair (TTR). TTF
is the expected time to failure, given that the system has
already been in the working state for a specific time 7.
They show that good availability does not necessarily imply
good MTTF and MTTR and while MTTF and MTTR can
be predicted with reasonable accuracy, TTF and TTR are
much more difficult to predict. Besides these systems seem to

exhibit large-scale correlated failures (in contrast with [10]).
Our study confirms the presence of correlated failures among
different trackers. [12] points out some limitations of using
average temporal availability evaluated on long time periods
and across many peers. In particular they show that temporal
affinity (i.e. similar temporal pattern of peer presence in the
system, due for example to day-of-time effects) and difference
in availability distribution for different peers can increase
system global availability. They introduce a new metric to
characterize system performance considering the number of
peers in the system at a given instant and evaluate it through
two traces from Kazaa and Overnet networks. Although a
similar analysis could also be interesting in our case, it is out
of the scope of this paper (see also remarks in Section VII).
[13] is a measurement study of Napster and Gnutella networks,
trying to quantify content popularity and peers presence in
the system. They also show a significant dependence of peer
availability on the time of the day. [14] looks at the availability
of Kazaa peers mainly to investigate potential benefits for file-
sharing coming from locality-awareness.

III. THE DATA SETS

To share a file or group of files through BT, clients first
create a torrent file (or simply a torrent). A torrent contains
meta information about the files to be shared in the info section
and about the tracker which coordinates the file distribution
in the announce section. The content is identified by the info-
hash value, obtained by applying a hash function to the info
section of the torrent. A client performs a HTTP GET request
to the tracker specified in the announce section in order to
receive a subset of peers. In this paper we refer to this request
as an announce request. In order to support multiple trackers
and DHT two new optional sections have been added: the
announce-list section and the nodes one.

In our study we considered about 20,000 torrents, found
mainly through www.torrentspy.com. We developed a
script, which automatically downloads the RSS feed of this
site and then downloads every new torrent file indicated in
the feed. In what follows we refer to the following sets.

SET1 : set of 4238 torrents advertised by www.
torrentspy.com from May 15 to May 19, 2006.
SET2 : set of 17198 torrents advertised by www.
torrentspy.com from May 20 to June 30, 2006.

All these torrents specify more than 1,400 trackers and more
than 24,000 DHT nodes. Table I summarizes information
about trackers and nodes we can extract from the different
sets. Azureus is one of the most popular BT clients together
with Bram Cohen’s’ one, which is usually called the Mainline
client [16]. The Table also specifies the length of the mea-
surement period as regards trackers availability. While SET1
is smaller in terms of torrents and trackers, it has been investi-
gated during a longer period of time. For this reason SET2 has
been used to investigate characteristics at a given time instant,

IBram Cohen is the creator of BitTorrent protocol.

set advertised unique Trackers# Mainline Azureus Availability
torrents# | torrents# | total | HTTP | UDP | DHT nodes | DHT nodes Meas. Period
SETI 4238 4186 525 491 4646 21 May 26th-July 27th
SET2 17198 16900 1355 1283 21474 196 July 5th-July 28th

TABLE I
TORRENT SETS

Torrents #

Tracker ranking
Fig. 1. Popularity of the Trackers in SET2

450

400

3001 1

Alive Trackers #

250+ : B : 4

0 i i i i i i i i
%?3—May31—May 08-Jun 16-Jun 24-Jun 02-Jul 10-Jul 18-Jul 26-Jul

Fig. 2. Number of live Trackers

while SET1 has been used to investigate performance across
time. In our study we also considered www.btjunkie.com
(the corresponding data sets are described in [17]). Although
this website declares to be the largest BT search engine, we
were able to obtain fewer torrents through their RSS feed than
through the RSS feed of www.torrentspy.com.

Figure 1 shows the distribution of the torrents across the
different trackers for sets SET2 . The 20 most popular trackers
manage more than 50% of all the torrents and the 10% most
popular ones (about 120) manage more than 73% of them.
Similar results hold also for the other sets and also if we
estimate the popularity of each tracker directly by querying it
with an apposite scrape request [17].

IV. TRACKER RELIABILITY

In this section we first consider the availability of tracker
itself, without considering the specific contents they manage.
There are two different kind of trackers: those using HTTP
protocol for the communication with the client and those using

UDP protocol. The second possibility has been introduced in
order to reduce the load on trackers [18]. As Table I shows,
HTTP trackers are much more common. Also we noted that
most of the UDP trackers are associated to a HTTP tracker
(they have the same IP address).

The availability has been evaluated by probing periodically
the trackers (usually every 15 minutes). A single machine in
UMass network has been performing the task, with at most ten
trackers being probed at the same time. We calculate tracker
availability by dividing the number of successful probes (i.e.
the number of probes the tracker responds to) by the total
number of probes.

The way to probe the tracker in order to check if it is
working differs according to whether a tracker uses HTTP or
UDP. The availability of UDP trackers has been evaluated by
trying to establish an UDP handshake as described in the UDP
tracker protocol specification [18]. A probe consists of three
UDP packets sent consecutively. The tracker is considered
unavailable (the probe is unsuccessful) if these attempts fail.
HTTP tracker availability has been evaluated by trying to open
a TCP connection to the address specified in the announce key.
The tracker is considered not available if three consecutive
attempts to open the connection fail (the time between two
consecutive attempts is equal to 100 seconds). This procedure
can produce wrong results. For example some trackers are
implemented as modules of Apache web-servers and BT
requests are identified from the specific URL and forwarded
to the tracker module. Our measurements suggest that this is
quite common (see [17]). In such cases we would erroneously
conclude that the tracker is available if the tracker module is
down, but the web-server is working and accepts incoming
TCP connection. The problem is not easy to solve and we
decided to rely on a heuristic to identify such cases [17]. In
such a way we identified 16 web-servers where the BT module
had been probably uninstalled.

We performed tracker availability measurements for two
months. We observed that for some trackers the availability
depends on the length of the measurement time interval (a
similar effect was observed in [10] for the peers of the Overnet
network) and in particular decreases as the measurement time
interval increases. Our hypothesis is that probably these track-
ers died, i.e., they finally stop operating. Figure 2 quantifies
this non-stationary effect. It shows the evolution of the number
of live trackers during the two months. We assume that a
tracker dies when it starts being unavailable until the end of
the measurement period for at least two days. It appears that
the number of live trackers decreases from 416 to 354 (about

1

—— Trackers Availability
0.9 —— Single tracker torrent availabitily
0.8/{ ——Multitracker torrent availability

07t
0.6
5
Gos
0.4f
03
0.2}
0.1
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Availability

Fig. 3. Trackers and Torrents Availability

15%) over 58 days, from May 27 to July 24. From the data
we can roughly estimate that the tracker lifetime is about 390
days?.

Figure 3 shows the Cumulative Distribution Function (CDF)
of the availability of SET2 trackers over a 21 days period
(curve labelled “Trackers Availability”) starting from July 5.
The curve is similar for different periods and different sets,
only the number of unavailable trackers changes quite signif-
icantly depending on the measurement period (from 20% to
30%). We are more interested in characterizing the availability
of information for the peers in a given swarm. We briefly
refer to this concept as torrent availability. For single tracker
torrents, the torrent availability coincides with the availability
of the tracker specified in the torrent (see Section V for multi-
tracker case). If trackers were equally represented across the
torrents, the CDF of the torrent availability would coincide
with the CDF of the tracker availability, but we have shown
in Figures 1 that tracker popularity is skewed. This effect
is clearly shown by the CDF of the torrent availability in
Figure 3 (curve labelled “Single Tracker Torrent Availabil-
ity”)>. We note a 25% jump in the CDF, it corresponds to
www . thepiratebay.org tracker (tracker.prq.to),
the most popular tracker in Figure 1. The availability of
this tracker changed a lot during our measurement campaign,
from 0.5% during May 26-June 9 to 47% during the period
which the figure refers to. If we filter out this tracker, the
torrent availability appears to be higher than the availability of
the trackers, mainly because many of the always unavailable
trackers (corresponding to the 30% initial jump in the blue
curve) are not used for single-tracker torrents, but are always
coupled with other trackers in multi-tracker torrents. Finally
the third curve in Figure 3 refers to multi-tracker torrents,
which we are going to address in the following section.

In order to investigate if there is a relation between tracker
availability and the number of torrents the tracker is manag-
ing, we performed a linear regression on the data with the
availability as response variable and the number of torrents

2Under the assumption of exponential independent lifetimes, the lifetime
can be estimated as the inverse of the average tracker death rate (62/(416
58) = 2.6 * 103 per day).

3The CDF of torrent availability weights the availability of each tracker in
the set with its number of presences in the torrents.

Avg downtimes (live'trackers)

CDF
(]
'
i

Avg uptimes (all the trackers)

Avg uptimes (live trackers)

I I I I 1
0 25 50 75 100 125 150
Time (h)

Fig. 4. CDF of average up-time and down-time over two months

(derived from SET1) as explanatory variable. The estimate of
the slope is B =-29%10"* (i.e. there would be a reduction
of about 3% in the availability every 100 torrents) with a
99% confidence interval equal to [—5.4x107%,0.3%107%] and
the correlation coefficient is quite small, 0.0216. This analysis
does not suggest a dependence between the two variables. We
performed also a linear regression considering the number of
torrents each tracker declares as answer to a scrape request.
The conclusion is the same [17].

Finally Figure 4 shows the CDF of the average uptime and
downtime evaluated for all the trackers in SET1 and consid-
ering only the trackers alive at the end of the measurement
period (from May 26th to July 19th). If we consider all the
trackers then only 45% of the trackers appear to have an
average uptime smaller than 1.5 days. This is similar to what
observed in [2]*, but we note that if we restrict to live trackers
the average availability increases significantly and about 60%
of the trackers show an average uptime longer than 1.5 days.
As regards the distribution of the downtime itself, 25% of
the downtimes last more than half an hour, 20% more than 1
hour and 10% more than 2 hours. This suggests that tracker
unavailability is often due to software or machine crash rather
than to temporary network problems’.

V. MULTI-TRACKER FEATURE

Multi-Tracker feature allows two or more trackers to take
care of the same content [21]. In addition to the mandatory
announce section in the torrent file, which specifies the tracker
URL, a new section, announce-list, has been introduced. It
contains a list of lists of tracker URLs. Trackers in the same list
have load-balancing purpose: a peer randomly chooses one of
them and sends it an announce request. All the trackers in the
same list exchange information about the peers they know. The
different lists of trackers are intended for backup purpose: a
peer tries to contact a tracker in the first list, if all the announce
requests to trackers in the first list fail, it tries to contact a
tracker in the second list and so on. On the next announce, it

4The authors do not address the issue of dead trackers.

5The measurement study in [19] shows that only 10% of the path failures
last more than 15 minutes, and only 5% more than half an hour. The older
study from Paxson [20] shows even shorter durations.

repeats the procedure in the same order. Trackers in different
lists do not share information. There are two common ways
to use multi-tracker feature: only for backup purpose when
the announce-list contains lists with a single tracker, and only
for load balancing purpose when the announce-list contains a
single list with many trackers. In our sets about 35% of the
torrents specify multiple trackers, among which 60% are for
backup, 25% for load balancing and 15% for both backup and
load balancing.

Multi-tracker feature is clearly intended to improve the
availability of the information about the peers in the swarm.
In what follows we are going to quantify this improvement.

A. Correlation among different trackers

In order to quantify the benefit of multi-tracker we first need
to check if availabilities of different trackers can be considered
independent. From our measurements it appears that trackers
availabilities are more correlated than one could expect.

This result is similar to the conclusion in [11] for Planetlab
machines and web-servers, and opposite from the results
in [10] for Overnet peers. In [11] the authors simply show
that the number of near-simultaneous failures does not seem
to follow a geometric distribution®, nor a beta-binomial distri-
bution which should be more suited to account for correlated
failures. In [10] the authors consider for all the host pairs
(A,B) the difference between the a priori probability that host
A is available and the same probability given that host B is
available. They observe that the difference is between 0.2 and
-0.2 for 80% of all the host pairs and conclude that there is
significant independence, even if there is an evident diurnal
pattern in single host availability.

Our analysis is based on 4 weeks availability measurements
for live trackers (trackers which were not completely unavail-
able during the measurement period) in SET1 and is more
accurate from the statistical point of view. For all the tracker
pairs” we considered the contingency table and performed a
G-test. We tested the null hypothesis that availabilities of
different trackers are independent with a Type I risk equal to
5% and 1%. In order to use the G-test we had to discard 65%
of the pairs. The test supported statistical dependence for 40%
of the pairs and 30% of the pairs respectively with the 5% and
1% Type I risks.We performed also an approximate Fisher test
which overcomes some limitations of the G-test and so allow
us to consider a larger set of pairs (86%). The results of the
G-test are confirmed also on this larger set [17].

One simple cause of correlation is that trackers can be
hosted in the same machine. Among the 406 trackers consid-
ered, there where 26 groups collecting 73 trackers having the
same IP. For all these pairs (except two) the G-test refused the
independence assumption, but they represent less than 0.2% of
the total number of pairs considered, hence this justifies only
a minimum part of the correlation found by the tests.

6A limitation of their analysis is that they assume a unique failure
probability for all the machines.
7We consider a tracker identified by IP address, protocol and port number.

N 0N NN N
S N A O @
S o & & o

Available Trackers#

[+
®
S

05-Jul 07-Jul 09-Jul 11-Jul 13-Jul 15-Jul 17-Jul 19-Jul 21-Jul 23-Jul
Fig. 5. Number of Available Trackers Time Plot

3x10“‘

2.5¢

2,

2 1.5¢
o

1+

0.5¢

0

-2 -1 0 1 2
Frequency (days'1)

Fig. 6. Power Spectral Density of the Number of Available Trackers

We think that this correlation can be due to a daily pattern in
tracker availability. This can be a consequence of user behavior
(churn) or of tracker failures that can be recovered only when
the user is present or of network failures [20]. Figure 5
shows the total number of available SET2 trackers for three
weeks in July 2006 with a 10 minutes resolution. The daily
pattern is confirmed by Figure 6, where the spectral density,
evaluated with the unmodified periodogram method, exhibits
a peak corresponding to a 1-day periodicity®.

B. Availability Improvement

The presence of multiple trackers in a torrent clearly in-
creases peers information availability for the swarm because
it is sufficient that at least one of the trackers is available. If
failures at different trackers were independent we could simply
evaluate the unavailability of a group of trackers as the product
of the unavailabilities of each tracker. This assumption is not
corroborated by the data in the previous section, so we have
to consider for each tracker its availability temporal sequence
and then check if at a given time instant there is at least a
tracker available. We refer to the availability evaluated in this
way as time-aware availability.

The CDF of the time-aware availability for multi-tracker
torrents is plotted in Figure 3. This picture shows a significant

8The other peak corresponds to the total measurements scale and it is mainly
due to the average decrease of available trackers between July 16th and July
18th shown in Figure 5.

01} = = =Independence assumption
—— Time—-aware

0 0.02 0.04 006 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Gain

Fig. 7. Multitracker Gain Distribution

improvement coming from multi-tracker. We note that this
improvement does not derive from the combination of many
trackers with low availability, but mainly from the presence
of a highly available one in the set of trackers. This claim
is supported by Figure 7. The figure shows the availability
improvement using all the trackers, in comparison to the avail-
ability of the best tracker. For example if the most available
tracker has a 95% availability, and the presence of the other
trackers raises the availability up to 97%, the improvement
(gain) is equal to 2%. The availability has been evaluated
both considering trackers availabilities independent (dashed
curve) and considering the availability temporal sequences for
all the trackers (solid curve). The figure suggests two main
remarks. First, if we consider the time-aware curve the gain
in comparison to the most available tracker is quite small:
below 0.6% in 83% of the cases and below 2% in 95% of the
case. Second, the availability correctly evaluated considering
the temporal sequence is smaller than that evaluated under
independence assumption. This was also expected because
tracker availabilities mainly exhibit a positive correlation:
trackers tend to be available during the same time periods.

Figure 8 gives some more insight. The figure shows the
gain distribution across all the tracker groups specified in the
set’. The gain has been normalized to the maximum possible
improvement (e.g. in the above example the normalized
improvement is 0.4 = 2/(100 — 95). The figure shows that
two situations occur very often. For 30% of the groups (left
part of the curve) there is no gain in comparison to the most
available tracker, as it was already underlined by Figure 7. At
the same time for 27% of the groups (right part of the curve)
the presence of the other trackers raises the availability up to
100%, but we know from Figure 7 that the absolute value is
small.

C. Problems related to multitracker: swarm splitting

When the announce-list specifies a group of trackers for
load balancing, all the trackers should know all the peers in
the swarm. When the group of trackers is for backup, at a
given time only one tracker should know all the peers in

9Differently from Figure 7 two torrents which specify the same group of
trackers are considered as one.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Gain

Fig. 8. Multitracker Normalized Gain Distribution for the different group of
trackers

Subswarm 3

Subswarm 2

Fig. 9. Potential Neighbors Graph

the swarm. In reality things can be different due to peer
arrival and departure, tracker failures, time intervals between
consecutive tracker updates. Besides there are also some bad
implementations of torrent makers and BT clients, which can
cause a swarm to split into disjoint subsets [21]. This would
be clearly harmful for content spreading. In what follows we
use the term subswarm to denote the subset of the swarm a
tracker manages, i.e., all the peers it knows about.

In order to evaluate if the risk of disjoint subswarms is
realistic, we considered all the 568 multi-tracker torrents
in SET2. On July 14th for each torrent we made multiple
announce requests to each tracker in the announce-list in order
to discover the subswarm it was managing, i.e. the (IP, port)
pair of all the peers the tracker knew about. The whole process
took about 5 hours and collected more than 22,000 peers. Once
we had the subswarms, we built a graph as follows: each node
in the graph corresponds to a peer and a link between two
nodes indicates that there is at least a subswarm that includes
the corresponding peers. Note that if two peers (say P1 and
P2) belong to the same subswarm then they could be neighbors
in BT overlay, this occurs when the tracker managing the
subswarm includes P1 (P2) in the response to an announce
request from P2 (P1). For this reason we refer to this graph as
potential neighbors graph. An example is shown in Figure 9:
there are three partially overlapping subswarms with peers 4,
5 and 6 included in more than one subswarm. Clearly if the
graph has more than one component then the subswarms are

disjoint. Only 17 torrents (about 3%) exhibited this problem:
16 had two components, 1 three. The peer communities were
quite small ranging from 3 to 24 peers. In such cases if a
piece of content was available only at a single peer, it could
be propagated only inside the subswarm the peer belongs to
(as far as the graph does not change).

Even when the graph is completely connected, we can
quantify subswarm overlap and then the possibility to spread
the content across the swarm. In particular we considered two
other performance metrics evaluated on graphs (beside the
number of connected components). One performance metric
is the connectivity degree: the number of links in the graph
divided by the maximum number of links, i.e. the number of
links of a fully meshed graph. For example the connectivity
of the graph in Figure 9 is 0.5, because there are 18 links out
of 36 possible links in a 9 nodes graph. This metric refers
to the graph in its entirety. The other metric quantifies how
much connected is the worst connected subswarm. We adapt
the idea of graph conductance and we define the conductance
of a non-empty subswarm S (gg) as the number of links
connecting nodes of the subswarm (Ng) with nodes outside
(Nge), normalized by the product NgNge, i.e. the maximum
number of links. When Ng. is equal to 0, we consider
gs = 1'°. Then we define the conductance of the swarm
as the minimum value of gg among all the subswarms. For
example the conductances of the three subswarms in Figure 9
are gs, = 2/(4+*5), gs, = 9/(3%6) and gs, = 2/(5*4) and
the community conductance is 0.1.

Figures 10 and 11 show respectively the CDFs for the
connectivity and the conductance. In each figure there are 4
curves, one considers all the multi-tracker torrents, the others
refer to backup torrents, load-balancing ones and torrents for
both the purposes. As was expected the performance are very
good for pure load balancing. In fact in this case trackers
periodically communicate with each other their subswarms.
Performance can be bad for backup, especially if we look at
the conductance in Figure 11. It appears that 27% of the worst
connected subswarms have a conductance smaller than 0.5,
which indicates that on the average peers in the subswarm can
at most discover half of the peers outside the subswarm. Data
in [17] show that connectivity and conductance are positively
correlated.

VI. DISTRIBUTED HASH TABLES

The latest versions of the most popular clients (Azureus,
Mainline, BitComet, pTorrent, BitLord and BitSpirit [16])
implement the functionalities of a DHT node, so that all peers,
independently from the content they are interested in (i.e. from
the swarm they are in) can form a single DHT infrastructure.
The purpose of the DHT is to store the information needed
to contact peers interested in a specific content. According
to the common DHT language the key is the info-hash of
the torrent, while the value is the contact information (e.g.
the IP and the port of a peer client). Theoretically the DHT

10Note that gg is always less than or equal to one.

1

—All

0.97 |- - -Backup
0.8F | ='='Load balancing
Load balancing & Backup
0.7r
0.6
g
505
0.4r

0.3r
0.21
0.1F

0 i i i

i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Connectivity

Fig. 10. Connectivity Cumulative Distribution Function

09k —All
) = = =Backup
0.8 | ='='Load balancing
0.7 Load balancing & Backup
0.61
g
8 0.5
0.4f Lo
B
0.31 Cyemtt
0.2+ . ___-' ; : 4
0.1 PR e S

. | | 1 i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Conductance

Fig. 11. Conductance Cumulative Distribution Function

could completely replace the tracker, permitting the operation
of trackerless torrents.

We said that all the BT clients could form a single DHT,
but in reality there are currently two different incompatible
implementations (both based on the Kademlia model [22]):
the Mainline one, and the Azureus one. Except Azureus all the
other clients are compliant with Mainline DHT specifications.
Our measurement study focuses on the Mainline DHT.

A. A Brief Overview of DHT Operation

When a user creates a new torrent, the program usually
allows him to insert some DHT nodes. The DHT nodes can
be manually specified or are just randomly picked up from the
set of “good” (highly available) DHT nodes from the routing
table of the client!!. These DHT nodes act as bootstrap nodes,
in fact they are used in order to initialize the client routing
table. The routing table is updated from time to time according
to the protocol description in [23]. There are also other ways
to discover DHT bootstrap nodes to initialize the routing table.
For example if a peer is already in a swarm and is connected
to another peer, they can exchange DHT related information.

In order to download the content, the BT client can send
requests to the set of DHT nodes in its routing table closest!? to
the infohash. The contacted nodes will reply with the contact

"TEach BT client is at the same time a peer and a DHT node.
12Kademlia DHT uses the XOR metric to compare keys and DHT nodes
identifiers.

1 T T T T T A e ses

0.9r

0.8F E: i
o7]
0.6F ff -
w X
gosp ” -
0.4F .
0.3F % -

0.2r : : 4
0.1F % q
0 i i i i

| 1 1 1 |
0 20 40 60 80 100 120 140 160 180 200
Number of nodes explored

Fig. 12. The cumulative distribution of the number of DHT nodes ever
explored before finding the first valid peer in a swarm.

information of peers interested in the content, if they know
any, or with the contact information of the DHT nodes in
their own routing table closest to the infohash. The timeout
for a request is 20 seconds in a Mainline client.

Table I shows the number of DHT nodes we found in
the torrents of our data sets. The higher number of Mainline
nodes is mainly due to BitComet torrent-maker, which adds
by default 10 nodes to each torrent.

B. Information availability through the DHT

Similarly to what we did for trackers, we have been mea-
suring the availability of DHT nodes. The DHT protocol [23]
implements a specific request, called DHT ping, in order to
check if a DHT node is available, so we resort to DHT pings.
We considered a node unavailable when it did not answer to
three DHT pings sent consecutively. Due to space constraints,
we do not show any plot [17]. We simply mention that 70%
of the nodes were always unavailable, while the others showed
an availability nearly uniformly distributed between 0% and
100%. The availability of the bootstrap nodes clearly influence
the speed of the query process.

In order to investigate the effectiveness of DHT networks,
we customized a Mainline client and conducted experiments
on a set of 2569 torrents, those of SET2 with DHT nodes.
For each torrent, we first erased the routing table and all the
files that kept the information related to contents previously
downloaded. Namely, the client started with a clean state for
each torrent. Then we let the client start contacting the DHT
nodes in the torrent file and trying to recover information about
peers. In the meantime, all the nodes in the routing table were
logged (recall that the routing table is updated frequently). The
measurement was stopped after the client had received the first
valid peer and the next torrent was considered. Our experiment
started at 20:15 on July 22, 2006, and it took about 34 hours
to finish.

Figures 12 and 13 respectively show the CDF of the number
of DHT nodes ever explored and of the time elapsed before
finding the first valid peer. We see that DHT is pretty effective
because for about 93% of the torrents a peer can be found by
our client by exploring less than 50 DHT nodes and in less

0.6
ko 5 —e—get peers through tracker| |
- ——get peers through DHT
0.4
0.3¢ |
0.2§ il

I I I I
0 50 100 150 200 250 300
Exploring time

Fig. 13. Comparison between DHT and Tracker. The cumulative distribution
of the time needed to find the first valid peer in a swarm.

DHT peers #
- - n n (] (] B
(=] o o o o [o
T T T T T T
i i i i i i

&)
T
!

i

(=)

0 25 50 75 100 125 150 175 200 225 250
Tracker peers #

Fig. 14. Number of Peers obtained by the DHT in 20 minutes vs Number
of Peers obtained by one query to the Trackers

than 88 seconds. In the worst case the time needed was 140
seconds and 184 DHT nodes were explored. There is a strong
correlation between the number of DHT nodes explored and
the time elapsed in order to find a peer [17].

For comparison, we also investigated the time needed to
find the first valid peer by just contacting trackers in the same
data set. We put an upper limit of 300 seconds for contacting
a tracker. That is, our client stops announcing to the tracker
after 300 seconds, even if the tracker does not answer. Our
experiment started 21:33 on July 24, 2006, and finished at
22:54 on July 27, 2006. The CDF of the time needed to find
a peer for both trackers and DHT is plotted in Figure 13. As
expected, usually tracker can respond with valid peers faster
than DHT, in less than one second. However, note that about
30% of trackers do not respond at all within 300 seconds. On
the contrary in these experiments our client was always able
to get peers from the DHT in less than 140 seconds. However,
we need to be cautious because our tracker experiment was
conducted one day later after we finished DHT experiments.

Finally we compare the number of peers that can be
obtained by the tracker (or the trackers) specified in the torrent
and by the DHT (using the DHT nodes in the torrent as
bootstrap nodes). It is difficult to define the framework for a
fair comparison between DHT and trackers, we need to choose
the time to collect the peers through the DHT, the number
of queries to the tracker/trackers and the time between two

consecutive queries (if more than one). We considered the
number of peers harvested through the DHT in a 20 minutes
time interval and the number of peers achieved through a
single query to the trackers'’. Figure 14 shows the results
of our experiments for 117 torrents. The DHT was able to
provide some peers in 16 out of 17 cases where trackers
were unreachable. Nevertheless when trackers are available
they usually provide more peers (only in 22 cases the DHT
outperformed an available tracker). From the figure it appears
also that there is a strong correlation between the number of
peers achievable in the two ways.

The conclusion of these two experiments is that trackers in
general provide more information and faster, but the DHT can
significantly increase the availability of the whole system.

VII. CONCLUSIONS AND FUTURE RESEARCH

From a distributed systems perspective, BitTorrent is a com-
plex system using three different forms of failure robustness:
a primary-backup (the tracker) as well as a structured peer-
to-peer overlay for the control plane (the Kademlia DHT
infrastructure) and an unstructured peer-to-peer overlay for the
data distribution plane. Our measurement study is a first step
towards understanding the interaction of diverse fault-tolerance
and scalability paradigms to provide a single massive-scale
distributed service. In particular we have analyzed the preva-
lence and impact of the use of multiple trackers and DHT as
regards the availability of information about the peers. The
main conclusion of our study from the system design point of
view is that trackers and DHT should be both considered in
order to architect highly available BitTorrent systems.

A distinguishing feature of our study in comparison to
previous works is the focus on the information availability
rather than on the peers itself. At the same time one of its
limitations is that we do not check whether this information
is updated (e.g. if the peers provided by trackers and DHT
are effectively online), and the effect of lack of information
or bad information on the spreading of the content (e.g. in
the case of multiple trackers how low conductance slows
down file diffusion). Also, it could have been interesting to
weight the information availability with the number of peers
interested into this information (as in [12]). We repute these
issues meaningful and we deserve them for future research.
We observe that if we would have collected the data needed
to address these issues on the same data sets and with the
same time granularity, the load on the trackers would have
been much higher (see [17] for more details). We would
also like to carry out a new measurement campaign using
more measurement points, this would help us to distinguish
the different causes of tracker unavailability.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Luca Scalia at D.ILE.E.T.
for his help. This research has been supported in part by

13 Most of the trackers specify a minimum time interval between two
announce requests equal to 30 minutes, 1 hour or 2 hours (even if they usually
do not enforce it). Hence a client should not send more than one request in
a 20 minutes interval if the tracker is available.

Italian MIUR projects Famous and Mimosa and by NSF under
grant awards ANI-0085848, CNS-0519998, CNS-0519922,
and EIA-0080119. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] “CacheLogic,” http://www.cachelogic.com.

[2] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The BitTorrent
P2P file-sharing system: Measurements and analysis,” in Proc. of 4th
International Workshop on Peer-to-Peer Systems, Febr. 2005.

[3] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil, “An Architecture
for Internet Data Transfer,” in Proc. of the 3rd Symposium on Networked
Systems Design and Implementation, May 2006.

[4] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos,
“Is p2p dying or just hiding?” in Proc. of the 47th IEEE Global
Telecommunications Conference, Nov. 2004.

[5] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. A. Hamra, and
L. Garcés-Erice, “Dissecting BitTorrent: Five Months in a Torrent’s
Lifetime,” in Proc. of the 5th Passive and Active Measurement Workshop,
April 2004.

[6] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ment, analysis, and modeling of BitTorrent-like systems,” in Proc. of
the 5th ACM SIGCOMM Internet Measurement Conference, Oct. 2005.

[71 A. Legout, G. Urvoy-Keller, and P. Michiardi, “Understanding BitTor-
rent: An Experimental Perspective,” INRIA, Tech. Rep. 00000156, 2005.

[8] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu,
“Influences on Cooperation in BitTorrent Communities,” in Proc. of 3rd
Workshop on Economics of P2P Systems, Aug. 2005.

[9] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting BitTorrent

For Fun (But Not Profit),” in Proc. of 5th International Workshop on

Peer-to-Peer Systems, 2006.

R. Bhagwan, S. Savage, and G. M. Voleker, “Understanding Availabil-

ity,” in Proc. of the 2nd International Workshop on Peer-to-Peer Systems,

Febr. 2002.

P. Yalagandula, S. Nath, H. Hu, P. B. Gibbons, and S. Seshan, “Beyond

Availability: Towards a Deeper Understanding of Machine Failure Char-

acteristics in Large Distributed Systems,” in Proc. of the 1st Workshop

On Real Large Distributed Systems, 2004.

R. J. Dunn, J. Zahorjan, S. D. Gribble, and H. M. Levy, “Presence-Based

Availability and P2P Systems,” in Proc. of the 5th IEEE International

Conference on Peer-to-Peer Computing, Sept. 2005.

J. Chu, K. Labonte, and B. N. Levine, “Availability and Popularity

Measurements of Peer-to-Peer Systems,” in Proc. of ITCom: Scalability

and Traffic Control in IP Networks Il Conference, July 2002.

K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan,

“Measurement, modeling, and analysis of a peer-to-peer file-sharing

workload,” in Proc. of 19th ACM Symposium on Operating Systems

Principles, Oct. 2003.

“Overnet website,” http://www.overnet.com.

“Wiki on bittorrent clients,” http://en.wikipedia.org/wiki/Comparison_of_

BitTorrent_software.

G. Neglia, G. Reina, H. Zhang, D. Towsley, A. Venkataramani, and

J. Danaher, “Availability in BitTorrent Systems,” UMass, Tech. Rep. 06-

41, June 2006, ftp://gaia.cs.umass.edu/pub/Neglia06availability _bt06-41.

pdf, http://www-sop.inria.fr/maestro/personnel/Giovanni.Neglia/

publications/NegliaO6availability -bt06-41.pdf.

“UDP tracker protocol specification,” http://xbtt.sourceforge.net/udp-

tracker_protocol.html.

N. Feamster, D. G. Andersen, H. Balakrishnan, and F. Kaashoek,

“Measuring the Effects of Internet Path Faults on Reactive Routing,”

in ACM Sigmetrics - Performance 2003, 2003.

V. Paxson, “End-to-end routing behavior in the Internet,” IEEE/ACM

Trans. on Networking, vol. 5, no. 5, pp. 601-615, 1997.

“Multitracker description,” http://wiki.depthstrike.com/index.php/P2P:

Protocol:Specifications:Multi%tracker.

P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Informa-

tion System Based on the XOR Metric,” in Proc. of the 1st International

Workshop on Peer-to-Peer Systems, March 2002.

“DHT protocol specification,” http://www.bittorrent.org/Draft DHT_

protocol.html.

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

[18]

[19]

[20]
(21]

[22]

[23]

