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Abstract— We consider the problem of obtaining a high quality
estimates of band-limited sensor fields when sensor measurements
are noisy and the nodes are irregularly deployed and subject to
random motion. We consider the mean square error (MSE) of the
estimate and we analytically derive the performance of several
reconstruction/estimation techniques based on linear filtering.
For each technique, we obtain the mean value of the MSE, as well
as its asymptotic expression in the case where the field bandwidth
and the number of sensors grow to infinity, while their ratio
is kept constant. Our results provide useful guidelines for the
design of sensor networks when many system parameters have
to be traded off.

I. INTRODUCTION

Advances in wireless technology have enabled the use of
wireless sensor networks for several important services, such
as environmental and traffic control, habitat monitoring, and
weather forecasts. Most of these applications require to sample
a physical phenomenon over the network area, process the
observed samples and communicate the resulting information
to the external world.

In this paper, we consider a set of sensors communicating
with a sink node, through either single- or multi-hop commu-
nications. While each sensor locally samples the physical field,
the sink collecting all samples is in charge of reconstructing
the signal of interest. We assume that initially sensors are ei-
ther located at pre-defined positions, or, if randomly deployed
over the network area, their location can be estimated at the
sink node. We consider a fixed time instant and focus on the
spatial sampling and reconstruction of the sensor field. We
note that, in general, sensors provide an irregular sampling
of the observed phenomenon. This may be due to various
reasons: random deployment of the nodes, environment char-
acteristics that bias the network deployment, sensors entering
a sleep mode, inaccuracy in sensor positioning, or nodes
movement [1]. In general the sink has to reconstruct the field
from a collection of samples that are not equally spaced.

The problem of signal reconstruction from irregularly
spaced samples has been widely addressed in signal process-
ing. Several efficient and fast algorithms have been proposed
to numerically reconstruct or approximate a signal [2], [3].
The problem we address in this work, however, is different.
The questions we pose are as follows:
(i) how do noisy measures and uncertainty on the knowledge
of the sensor positions affect the quality of the reconstructed
signal?
(ii) how can we trade off system parameters like measurement
noise level, field bandwidth, signal reconstruction quality and
number of sensors?

The model of the monitoring system we analyze here
assumes that the sensors position varies around an average
value, and only the average location of the nodes is known at
the sink. Examples where this model applies are observation
systems using surface buoys [4], underwater robots located
at different depths [5], dropsondes or low-cost unmanned
platforms [6].

Our main results are as follows. We use as field recon-
struction techniques some linear filters that are commonly
employed in signal detection and estimation, and we evaluate
the mean square error (MSE) of the obtained estimate. We
find that a key parameter for the network performance is the
ratio β of the field bandwidth to the number of sampling
sensors. In particular, there exists a critical value of this ratio
beyond which the performance of all considered reconstruction
strategies degrade significantly, even for low values of noise
level and limited uncertainty on the sensor positions. To
obtain an acceptable reconstruction quality when β is large,
reconstruction techniques that exploit some knowledge of
the measurement noise and the sensor movement must be
employed. We carry out an asymptotic analysis of the system
as the field bandwidth and the number of sensors grow to
infinity, while their ratio β is kept constant, and we show
that this is an effective tool to study the system performance
even when the number of sensors is small. Finally, we find a
lower bound to the MSE that can be achieved by any of the
considered techniques.

II. SYSTEM MODEL AND DIFFERENCES WITH RESPECT TO

PREVIOUS WORK

A. Assumptions

Let us consider a field with one-sided bandwidth M ,
sampled by r sensors placed at positions x = [x1, . . . , xr]T,
xq ∈ [0, 1), q = 1, . . . , r, which are in general not equally
spaced.

We define β as the ratio of the double-sided bandwidth of
the field to the number of sensors, i.e., β = (2M + 1)/r.
This is an important parameter in our analysis; note that, if a
Nyquist sampling interval were used, we would have: β = 1.

The field discrete spectrum is denoted by the 2M + 1
column vector 1 a = {ak}, k = −M, . . . ,M ; we model
the spectrum a as a random vector with covariance matrix
E[aa†] = σ2

aI2M+1. This is a conservative assumption because

1Column vectors are denoted by bold lowercase letters, matrices are denoted
by bold upper case letters. The (k, q) entry of the matrix X is denoted by
(X)kq . The n × n identity matrix is denoted by In, the generic identity
matrix is denoted by I, and the conjugate transpose operator is denoted by
(·)†
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it corresponds to the case where no a priori information is
available on the observed signal. The value s of the field at
positions x depends on the spectrum a through the expression
s = G†

xa, where s is a size r column vector and Gx is the
(2M + 1) × r generalized Fourier matrix defined as:

(Gx)kq =
1√

2M + 1
e−2πikxq

k = −M, . . . ,M
q = 1, . . . , r

(1)

The dependence of the matrix Gx on the position vector x
is clearly indicated by its subscript. When the samples are
equally spaced in the interval [0, 1), GxG†

x is proportional to
the identity matrix (i.e., GxG†

x = I/β).
Finally, we assume that sensor field measures are sent to

a processing unit, the so-called sink node, whose task is to
provide an estimate â of the field spectrum a. Since in our
work we focus on the reconstruction of the physical field, we
consider that sensor transmissions always reach successfully
the sink node.

B. System model

Here the characteristics of the model under study are sum-
marized. Sensors move around the average position x̂ = E[x],
i.e., the sensor positions are given by: x = x̂ + δ, where δ
is the relative position with respect to the average location x̂.
The noisy measures p are given by:

p = s + m = G†
xa + m = G†

x̂+δa + m (2)

The noise m and the relative positions δ are modeled as
Gaussian random variables with E[mm†] = σ2

m Ir and
E[δδ†] = σ2

δ Ir, respectively. The noise, the relative positions,
and the field spectrum are considered mutually independent,
i.e., E[mδ†] = E[ma†] = E[aδ†] = 0. The sink has perfect
knowledge of x̂.

C. Our contribution with respect to previous work

Not many papers have addressed the problem of sampling
and reconstruction in sensor networks. Here we briefly review
some of these works.

Given a network where sensors can enter a low-power
operational state (i.e., a sleep mode), the work in [7] presents
an algorithm to determine which sensor subsets should be se-
lected to acquire data from an area of interest and which nodes
should remain inactive to save energy. A similar problem is
addressed in [8], where an adaptive sampling is described,
which allows the central data-collector to vary the number of
active sensors, i.e., samples, according to the desired resolution
level. Note that, in our work, we consider an irregular topology
that may be caused by nodes moving into a sleep state;
however, we do not directly address energy efficiency and
scheduling of the node sleep/activity periods.

In [9], the authors consider a unidimensional field, uni-
formly sampled at the Nyquist frequency by low-precision
sensors. The impact on the field reconstruction accuracy of
quantization errors and node density is evaluated. In our work
we consider an additive noise that models errors due to the

measurement procedure as well as to quantization of the
samples, but we do not specifically focus on the latter issue.

The field reconstruction at the sink node with spatial
and temporal correlation among sensor measures is studied
in [10]–[13]. The problem of reconstructing a band-limited
signal from an irregular set of samples at unknown locations
is addressed in [14]. There, sensor positions are unknown but
always equal to an integer multiple of the sampling interval.
Differently from [14], we assume that the sink can either
acquire or estimate the sensor locations and that sensors are
randomly deployed over a subset of R. Finally, in our previous
work [15] some conditions on the irregular topology of the
sensor network are identified, which allow for a successful
signal reconstruction, both under deterministic and random
node deployment. Here, we propose to apply linear filters to
the field reconstruction and we consider the following causes
of quality degradation: (i) noisy measures and (ii) uncertainty
at the sink on the position of moving sensors.

III. PRELIMINARIES

Several reconstruction techniques have been proposed in the
literature, which amount to the solution of a linear system
(see [2], [3] and the references cited therein). A widely used
technique consists in processing the measures p by means of
a linear filter, B, which is an r × (2M + 1) matrix and is a
function of the system parameters known at the sink. Then the
estimate of the field spectrum is given by:

â = B†p (3)

A. Our performance metrics

Given the spectrum estimates â, for each location x
the field estimate ŝ(x) can be obtained as: ŝ(x) =∑M

k=−M exp(j2πkx)âk/
√

2M + 1. Therefore, a high quality
field reconstruction is possible if a very precise estimate â is
provided. As a measure of the estimate precision of the field
spectrum, given the average locations x̂ we employ the mean
square error (MSE) defined as 2

MSEx̂ = E
a,m,δ

[‖â − a‖2
]

= σ2
aTr{Φx̂} (4)

where Φx̂
∆= 1

σ2
a

E
a,m,δ

[
(â − a)(â − a)†

]
. Using (3), after

some algebra we have:

Φx̂ = B†
(

E
δ

[
G†

xGx

]
+ αI

)
B − 2�

{
E
δ

[Gx]B
}

+ I (5)

where SNRm = 1/α = σ2
a/σ2

m is the signal-to-noise ratio on
the measure. Next, we consider the vector x̂ to be random
with entries uniformly distributed over the interval [0, 1).
In this case a more appropriate performance metric is the
per-sample average MSE, normalized to σ2

a, i.e., MSEav =
E
x̂
[MSEx̂]/(2M + 1)/σ2

a where MSEx̂ is as in (4). When

the parameters M and r grow to infinity while the ratio

2The operator E
v
[·] averages the argument over the distribution of the

random vector v, Tr{·} is the trace operator
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β = (2M + 1)/r is kept constant, we also consider the
asymptotic per-sample average MSE, defined as:

MSE∞ = lim
M,r→+∞
2M+1

r =β

MSEav (6)

B. Some useful mathematical tools

1) The functional φ: Let us first consider an n × n
Hermitian random matrix X and the functional φ(X) ∆=
limn→+∞ 1

n E[Tr{X}]. In our analysis we use the following
results on the functional φ(·) [16]. First, we notice that
φ(I) = 1. Secondly, if g(x) is a continuous function defined
in x ∈ R

+ with existing Taylor expansion in x ∈ R
+, then

φ(g(X)) = E [g(ξ)] (7)

where ξ is the random variable distributed as the asymptotic
eigenvalues of X.

Using (6), the asymptotical MSE can be written as:

MSE∞ = φ(Φx̂) (8)

2) A simple expression for Gx̂+δ: As will be clear in
Sec. IV, many parameters are functions of the matrix Gx̂+δ .
It is thus useful to derive an expression of Gx as a function
of Gx̂, in order to separate the random part, δ, of x from the
constant part x̂. From (1), the (k, q) entry of Gx is defined
as:

(Gx)kq =
e−2πikxq

√
2M + 1

=
e−2πikx̂q e−2πikδq

√
2M + 1

A useful expression of Gx̂ in terms of Gx is given by the
following theorem.

Theorem III.1 For any vector x of size r, let the (k, q) entry
of the matrix Gx be (Gx)kq = exp(−2πikxq)/

√
2M + 1 for

k = −M, . . . ,M , and q = 1, . . . , r. Let the size r column
vectors x, x̂, and δ be such that x = x̂ + δ then

Gx =
∞∑

n=0

1
n!

WnGx̂∆n (9)

where ∆ = diag(δ) is an r × r diagonal matrix, and W is a
(2M +1)× (2M +1) diagonal matrix with (W)kk = −2πik.

Proof: Omitted; it can be found in [17], available on line.

IV. MODEL ANALYSIS

As already mentioned in Section II, here we consider the
case where sensors are moving and only their average position,
x̂, is known at the sink node. The reconstruction algorithm em-
ploys the matrix B, which is a function of the known average
positions x̂. For any given average location x̂ and filter matrix
B, the MSE of the reconstruction is given by (4) and (5). To
proceed further, we need to compute the averages (5) over
the relative positions δ, i.e., we need the expression of E

δ
[Gx]

and E
δ

[
G†

xGx

]
as functions of Gx̂. Through some simple

calculations and exploiting Theorem III.1, we obtain [17]:

E
δ
[Gx] = MGx̂ (10)

where M = exp(σ2
δW

2/2) is a (2M +1)×(2M +1) diagonal
matrix with (M)kk = exp(−2π2k2σ2

δ ), k = −M, . . . ,M , and

E
δ

[
G†

xGx

]
=

[
G†

x̂M
2Gx̂ +

(
1 − Tr{M2}

2M + 1

)
I
]

(11)

The above definition of M is derived under the assumption
that δ has a zero mean Gaussian distribution. However, we
observe that the matrix M, which depends on the distribution
of the entries of δ, can be written in a more general manner
as: (M)kk = Mδ(−2πik), k = −M, . . . ,M , where Mδ(·) is
the characteristic function of the relative positions. By doing
so, the results reported in this section hold for any distribution
of the entries of δ.

Using (10) and (11) in (5), we obtain:

Φx̂ = B†
(
G†

x̂M
2Gx̂ + γI

)
B − 2�{MGx̂B} + I (12)

where γ = 1 + α − Tr{M2}
2M+1 and �{·} represents the real part

of the argument. In the following, we first consider that the
variance σ2

δ of the sensor movement is unknown at the sink
and, hence, the sink assumes the sensors to be fixed (i.e., δ =
0). Then, we consider that σ2

δ is known and the reconstruction
algorithm employs a filter that exploits such an information to
minimize the MSE.

A. ZF filter

In this case the sink node employs the ZF filter defined as
B† = R−1

x̂ Gx̂ [18], where Rx̂ = Gx̂G
†
x̂. Notice that the sink

knows only the average value of the sensor positions, therefore
B results to be a function of x̂. Using (12), the matrix Φx̂

can be written as:

Φx̂ = γR−1
x̂ + (M − I)2

We are now interested in deriving the asymptotic expression
for the MSE. Note that the Φx̂ is a function of Rx̂ and M,
and it contains terms of the form g(Rx̂) with g(x) = x−1 and
Mp with p = 1, 2. Also, the matrix Rx̂ depends on M and r,
while the matrix M depends on M and σ2

δ . The definition of
MSE∞ in (6) refers to the case where the bandwidth M and
the number of sensors r grow to infinity with constant ratio
β. If this definition is directly applied, information losses may
arise; indeed, we have:

φ(Mp)= lim
M→+∞

1
2M + 1

M∑
k=−M

e−2pπ2k2σ2
δ = 0 (13)

and thus all terms depending on the matrix M would vanish
regardless of the value of σ2

δ . On the contrary, in a realistic
situation we expect to obtain a high reconstruction quality
when the standard deviation of the motion (σδ) is smaller than
or comparable to the average sensor separation (1/r), and a
significant degradation of the reconstruction quality when σδ is
much larger than the average sensor separation. To distinguish
such different conditions, we define the signal-to-noise ratio
on the motion as: SNRx = (1/r)2/σ2

δ = 1/ω2 where ω =
σδr. We then redefine the asymptotic MSE as the limit of the
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average MSE for M, r → +∞, with constant β = (2M +1)/r
and constant ω = σδr. In this case,

φ(Mp)= lim
M,r→+∞

σδ→0
β,ω

1
2M + 1

M∑
k=−M

exp
(−2pπ2k2σ2

δ

)

=
∫ 1/2

−1/2

exp
(−2pπ2z2β2ω2

)
dz = ν

(√
p

2
βω

)
(14)

where ν(x) =
√

π/4 erf(πx)/(πx). Notice that ν(0) = 1 and
limx→+∞ ν(x) = 0. Also, we have:

φ(γ)=1 + α − lim
M,r→+∞

σδ→0
β,ω

Tr{M2}
2M + 1

= 1 + α − ν(βω)

Using the new definition, the asymptotic expression of the
MSE becomes:

MSE∞ = φ(Φx̂) = φ
(
γR−1

x̂ + (M − I)2
)

=1 + β (1 + α − ν(βω)) E

[
1
λ

]
+ ν(βω) − 2ν

(
βω√

2

)
(15)

where λ is the random variable distributed as the asymptotic
eigenvalues of β Rx̂ [15].

B. MMSE filter neglecting σ2
δ

Similarly, if the sink employs the filter B defined as B† =
A−1Gx̂ [18], with A = Rx̂ + αI, then Φx̂ in (12) becomes:

Φx̂ = M2Rx̂A−2Rx̂ + γRx̂A−2 − 2�{MRx̂A−1} + I

If M and Rx̂ are asymptotically free matrices [16], then
φ(MpRq

x̂) = φ(Mp)φ(Rq
x̂) for any positive integer p and q.

Hence, after some calculations and using (14), we obtain:

MSE∞ = 1 +
(
ν(βω) − 2ν(βω/

√
2)

)
E

[
λ2

(λ + αβ)2

]

+β
(
1 + α − ν(βω) − 2αν(βω/

√
2)

)
E

[
λ

(λ + αβ)2

]
(16)

Here we employed the property (7) with g(x) = x2/(x+α)2,
g(x) = x/(x + α)2, and g(x) = x/(x + α), respectively.
Moreover since Rx̂A−1 is Hermitian and M is real and
diagonal Tr{�{MRx̂A−1}} = Tr{MRx̂A−1}.

C. MMSE filter for known σ2
δ

We now consider the linear MMSE filter optimized for the
case where σ2

δ is known at the sink. We find the optimal B
minimizing (12); that is, we null the derivative of (4) with
respect to B. We employ the following properties that hold
for any square Hermitian matrix X:

∂

∂B
�Tr {XB} = X†;

∂

∂B
Tr

{
B†XB

}
= 2XB

Then, we have:

∂MSEx̂(B)
∂B

= 2σ2
a

(
G†

x̂M
2Gx̂ + γI

)
B − 2σ2

aG
†
x̂M = 0

Solving for B, we obtain the expression of the MMSE filter

B† = (MRx̂M + γI)−1 MGx̂ (17)
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Fig. 1. Performance of the ZF filter for β = 0.2, when σ2
δ is neglected

Substituting (17) into (12), we have: Φx̂ =
γ (MRx̂M + γ I)−1. In this case an explicit expression
of MSE∞ is hard to obtain. However, we were able to find
the following lower bound that turned out to be very tight, as
shown by the results presented in Sec. IV-D. Since φ(·) is a
convex function and E

x̂
[Rx̂] = 1/β [15] we have:

MSE∞ =φ(γ(MRx̂M + γ I)−1)

≥ 1

φ
(

1
γ (MRx̂M + γ I)

) =
β(1 + α − ν(βω))

β(1 + α) + (1 − β)ν(βω)
(18)

D. Results

We now show the performance of the analyzed filters.
With regards to the ZF filter, Fig. 1 compares the asymptotic
MSE evaluated through (15) (represented by solid lines and
labeled by “MSE∞”) against the average MSE (represented
by points and labeled by “MSEav”). The MSEav is obtained
by generating 100 realizations of the measures as in (2), with
M = 10, computing the estimates as in (3) and averaging the
square error ‖a − â‖2. The MSE is shown in the log scale
plotted versus SNRm, for β = 0.2 and different values of
SNRx. The solid line labeled “SNRx = +∞” corresponds to
the case where the sink has perfect knowledge of the sensor
positions (δ = 0). The excellent match between the asymptotic
results and the numerical simulation, even for moderate values
of M end r confirms the validity of the asymptotic analysis
as an effective tool to characterize the performance of the
reconstruction techniques.

Fig. 2 compares the performance of the MMSE filter (17),
which has knowledge of σ2

δ , with its lower bound (18), as
SNRm varies. We consider β = 0.2 and different values of
SNRx. Notice that the lower bound is very tight, especially
for high values of SNRx.

The advantage of knowing σ2
δ becomes significant for high

values of β. This is shown in Fig. 3, where the performance
of the MMSE filter (17) labeled by “MMSE σ2

δ ” (dashed
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Fig. 2. Performance of the MMSE filter (17) with perfect knowledge of σ2
δ

versus SNRm, for β = 0.2
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Fig. 3. Performance comparison of the MMSE filter neglecting σ2
δ against

the MMSE filter with perfect knowledge of σ2
δ , as SNRm varies and for

SNRx = 10 dB

lines) and the performance of the MMSE filter neglecting σ2
δ ,

labeled by “MMSE” (solid lines), are compared for SNRx =
10 dB and β = 0.2, 0.4, 0.6, 0.8. The two filters show similar
performance only for β = 0.2, while for larger β’s the
advantage provided by the knowledge of σ2

δ becomes evident,
especially for high values of SNRm. Indeed, the MSE∞ of
the MMSE filter neglecting σ2

δ tends to 1 for small SNRm,
but diverges as SNRm increases, when β > β� ≈ 0.35. This
is because, for α → 0, the term E[λ/(λ+αβ)2)] in (16) tends
to E[1/λ] which diverges for β > β� [15]. Furthermore, it is
interesting to notice that the performance of the MMSE filter
neglecting σ2

δ shows a minimum which can be obtained by
nulling the derivative of (16) with respect to α.

V. CONCLUSIONS

We addressed the problem of reconstructing band-limited
fields from measurements taken by irregularly deployed sen-

sors, and we studied effects of noisy measures and moving
sensors on the reconstruction quality. We analytically derived
the performance of several linear filters in terms of the MSE.
We found that asymptotic analysis is an effective tool to
characterize the performance of the reconstruction techniques
even for a small number of sensors, and that the parameter β
has a key impact on the performance of our system. Our main
results are: (i) the MSE provided by any of the reconstruction
techniques is lower bounded by (18); (ii) the performance of
all reconstruction techniques worsen with increasing β and
SNRx; (iii) the advantage of exploiting the knowledge of
SNRx in the filter design is of fundamental importance to
obtain a high quality reconstruction for β > 0.35 and large
values of SNRm.
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