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Abstract—The constructions of optical buffers is one of the  The only known way to “store” optical packets without
most critically sought after optical technologies in all-optical converting them into other media is to direct them via a set
packet-switched networks, and constructing optical buffers di- of optical switches through a set of fiber delay lines so that

rectly via optical Switches and fiber Delay Lines (SDL) has . .
received a lot of attention recently in the literature. A practical the optical packets come out at the right place and at the

and challenging issue of the constructions of optical buffers that right time. With recent advances in optical technologies, the
has not been addressed before is on the fault tolerant capability of constructions of compact and tunable optical buffers by using

such constructions. In this paper, we focus on the constructions the so-called “slow light” technique [1]-[5] have been made
of fault tolerant linear compressors and linear decompressors. feasible. As a result, the construction of an optical buffer may

The basic network element for our constructions is scaled optical th bulk iaht t d th hronizati
memory cell, which is constructed by a2 x 2 optical crossbar not be as bulky as one might expect, an € synchronization

switch and a fiber delay line. We give a multistage construction iSsue that is usually of practical concern may not be a critical
of a self-routing linear compressor by a concatenation of scaled design obstacle. As such, constructing optical buffers directly

optical memory cells. We also show that if the delays, say via optical Switches and fiber Delay Lines (SDL) has been
di,da, ..., dar, Of the fibers in the scaled optical memory cells o.qgnized as one of the promising technologies for the design

satisfy a certain condition (specifically, the condition in (A2) given . . -
in Section 1), then our multistage construction can be operated as of optical buffers, and has received a lot of attention recently

a self-routing linear compressor with maximum delay>>*/ ¥ 4, in the literature (see e.g., [6]-[23] and the references therein).
even after up to F of the M scaled optical memory cells fail Early SDL constructions for optical buffers, including the
to function properly, where 0 < F* < M — 1. Furthermore, shared-memory optical packet switch in [6] and CORD (con-
we prove that our multistage construction with the fiber delays tantion resolution by delay lines) in [7][8], focused more on
d1,da,. .. dar given by the generalized Fibonacci series of order feasibility of such an approach. On the other hand, recent
F is the best among all constructions of a linear compressor that ; - : ! .
can tolerate up to F faulty scaled optical memory cells by using @dvances in SDL constructions have shown that there exist
M scaled optical memory cells. Similarly results are also obtained systematic methods for constructing various types of optical
for the constructions of fault tolerant linear decompressors. buffers, including First-In-First-Out (FIFO) multiplexers in
[9]-[11] and [17]-[19], buffered packet switches in [11][12],
FIFO queues in [20], priority queues in [21][22], and linear
One of the key problems of optical packet switching is theompressors, non-overtaking delay lines, and flexible delay
lack of optical buffers as optical packets cannot be easiipes in [23].
stopped, stored, and forwarded. To build high speed packef practical and challenging issue of the constructions of op-
switches that scale with the speed of fiber optics, one neditsl buffers that has not been addressed before is on the fault
to resolve conflicts among packets competing for the sarmderant capability of such constructions. The reliability issue
resources. Traditionally, such conflicts are resolved by first the design of any network element is of great concern to a
converting optical packets into electronic packets, storing thesystem designer and deals with the situation that some of the
in electronic buffers, and then converting electronic packetemponents of a network element may not function properly.
back into optical packets. Therefore, such an approach incMvithout taking the reliability aspect into consideration during
tremendous overheads in both the O-E conversion and the BH® design process, a network element consisting of hundreds
conversion, and hence could not fully exploit the transmissiam thousands of components will be in a total breakdown even
speed advantage of photons over electrons. As such, the desigen only a single component fails to function properly. As
of optical buffers has become one of the most criticallguch, the constructions of fault tolerant network elements are
sought after optical technologies in all-optical packet-switchegktremely important and challenging from a practical point of
networks. view.

I. INTRODUCTION



In this paper, we focus on the constructions of fault tolerakéeeps circulating through the fiber delay line. To read out the
linear compressors and linear decompressors. As in magbrmation from the memory cell, set the crossbar switch to
works in the SDL literature, we assume that packets are the “cross” state so that the packet in the fiber delay line can
the same size. Furthermore, time is slotted and synchronizezldirected to the output link.
so that every packet can be transmitted within a time slot. By
so doing, packets can be “stored” in a fiber delay line with @ 0t (b) 0t © 0!
the propagation delay being an integer multiple of a time slot. I_V J I_-' J I_-' J

We will use scaled optical memory cells as basic network - —

— —

) 4 4
elements for the constructions of fault tolerant linear compres- g >\ ><\

sors and linear decompressors. A scaled optical memory cell

that will be described in detail in Section Il is constructed

by a 2 x 2 optical crossbar switch and a fiber delay Iine,'.:ig- 1. ‘ An optica_l memory c_eII: (a) writing information (b) circulating
. . . . . information (c) reading information.

In Section I, we briefly review the construction of a linear

compressor in [23], and then we give a straightforward con- 5 g.aled SDL element is said to be with scaling factor

struction of a fault tolerant linear compressor. In Section llfs o delay of every delay line isn times of that in the

we first show a two-stage construction of a linear CompreSSBFiginal (unscaled) SDL element. One of the most important

Such atwo-stage cqnstruction is repurgively expanded to givﬁr%perties of SDL elements is the time interleaving property
multistage construction of self-routinglinear compressor by for scaled SDL elements in [17]: a scaled SDL element with

a concatenation of scaled optical memory cells. We also derg/ga"ng factorm can be operated as time interleaving rof

the following condition on the delays, sayi,d>,....dwm, spL elements. For example, in Figure 2, we show a scaled
of the fibers in the scaled optical memory cells so that OWfyical memory cell with scaling factor 2 as the length of
multistage con.structlo_n can be ope]&ated as a self-routing lingag delay line in Figure 2 is twice of that in the original
compressor with maximum deldy.,, d;: optical memory cell in Figure 1. To operate a scaled optical
(A1) di = 1 anddgy1 < Ele d; + 1 for all & = memory cell with scaling factor 2 as time interleaving of two
1,2,...,M — 1. (unscaled) optical memory cells, one first partitions time into
For0 < F < M —1, we then use (A1) to show a more generggven and odd numbered time slots. For the even numbered
result that our multistage construction can be operated aéirae slots, one can set the connection patterns of2the2
self-routing linear compressor with maximum de@ﬁ;F d; optical crossbar switch in the scaled SDL element according

even after up taF’ of the M scaled optical memory cells areto the read/write operation for one memory cell. Similarly,

broken if the following condition is satisfied: for the odd numbered time slots, one can set the connection
(A2) d;=1foralli=1,2...,F+1, anddy,p_ < Paltems of the x 2 optical crossbar switch in the scaled SDL

dpsp < Zk—l d,+1forall k=23 M—F element according to the read/write operation for the other
r <Y d; =2,3,..., .

[ Il
Note that (A2) is more general than (Al) as (A2) reducen€mory ce

to (A1) when F' = 0. Furthermore, we show an optimality

result that our multistage construction with the fiber delays
dyi,ds,...,dy given by the generalized Fibonacci series of
order F' is the best among all constructions of a linear com-
pressor that can tolerate up fofaulty scaled optical memory — —
cells by usingV scaled optical memory cells. Similarly results

for the constructions of fault tolerant linear decompressors
are given in Section IV. Finally, conclusions are made in

Section V. Now we review the definition and the construction of a
linear compressor in [23].

—» —_—

<-)2

Fig. 2. An optical memory cell with scaling factor 2.

II. A STRAIGHTFORWARD CONSTRUCTION OF AFAULT

TOLERANT LINEAR COMPRESSOR Definition 1 (Linear compressors [23]) Suppose that the

In our previous papers [20][23], we used optical memorgeparture time of a packet is known upon its arrival. Let
cells as basic network elements for the constructions of variotf§(n) and 7¢(n) be the arrival time and the departure time,
types of optical queues. An optical memory cell (see Figure fdspectively, of the'” packet. A network element with a single
is constructed by & x 2 optical crossbar switch and a fiberinput link and a single output link is calledlmear compressor
delay line with one time slot (unit) of delay. To write a packetvith the range of delaj;, ds] if it realizes the set of mappings
to the memory cell, set thzx 2 crossbar switch to the “cross” that satisfy
state so that the packet at the input link can be directed to the
fiber delay line with one time slot of delay. Once the write
operation is completed, the crossbar switch is then set to #ed the following monotone and consecutive condition:
“par” state so that the packet directed into the fiber delay lin¢(n) = 7¢(n — 1) + 1 wheneverr®(n) < 7%(n — 1). In

7%(n) + dy < 7%(n) < 7%n) + dy for all n, @)



particular, if d; = 0, then it is called a linear compressor Lot a2 o2 AN VY A
with maximum delayis. s ﬂm

As pointed out in [23], the name, linear compressor,
originates from its counterpart for space switches (see €fg 4. A direct construction of a fault tolerant linear compressor with
[24][25]). The condition7%(n) < 7%(n — 1) means that maximum delay2’” — 1 that can tolerate one faulty optical memory cell.
the n'" packet arrives before thén — 1)** packet departs.
If one defines a busy period of a linear compressor as the
period of time that there are packets in the linear compressitvat a linear compressor with maximum detais constructed
then the monotone and consecutive condition implies that thg A/ scaled optical memory cells. Then its efficienayis
departures in a busy period are monotone and consecutiefined to be the ratio dbg,(d + 1) to the number of scaled
Note that the packet that initiates a busy period can have @ptical memory cells\/ used in the construction, i.e.,
arbitrary delay (as long as its delay is not greater than the
maximum delay). _ logy(d+1) )

p

It was shown in [23] that a linear compressor with maximum M
delay 2" — 1 can be constructed by a concatenation)f For instance, the efficiency for the construction in Figure 3 is
scaled optical memory cells in Figure 3. Moreover, such Rand the efficiency for the naive construction that uBes 1
construction is a self-routing linear compressor. Specificallycaled optical memory cells at each stage is dnlgF + 1).
let + = 7%(n) — 7%(n) be the delay of the:'" packet, and However, the former construction cannot tolerate any failure
let basbar—1 ... beb1 be the binary representation of (from  of scaled optical memory cells, and the latter with a much
the most significant bit to the least significant bit), i.= |ower construction efficiency can tolerate up fofailures of
>_it, 52171, Index theM scaled optical memory cells fromscaled optical memory cells. In Section Ill, we will show an
left to right. Then then'" packet is routed to the fiber delayoptimal construction of a linear compressor that can tolerate
line with delay2’~* at thei"" scaled optical memory cell only yp to F faulty scaled optical memory cells and has efficiency
if b; = 1. greater tharl/(F + 1).

IIl. AN OPTIMAL CONSTRUCTION OF AFAULT TOLERANT
: : e o o : ':‘ & ':‘ LINEAR COMPRESSOR

A. A Two-stage Construction of a Linear Compressor

Fig. 3. A self-routing linear compressor with maximum dey — 1. . . .
In Figure 5, we consider a two-stage construction of a

The problem with the self-routing linear compressor if€twork element. The first stage is a linear compressor with
Figure 3 is its fault tolerant capability. If one of the scalefnaximum delayd;, and the second stage is a linear compres-
optical memory cells does not function properly, then thgor with maximum delayB and scaling factor,. We will
construction in Figure 3 no longer works. To increase tH@dow that ifd; < d; + 1, then such a construction can be
reliability of the construction via a concatenation of scale@Perated as a linear compressor with maximum déldy+d,
optical memory cells, we assume that each optical memd#jder the following operation rule:
cell has a bypass circuit. The bypass circuit sets up a direc{fR1) If 74(n) — 7%(n) < Bds — 1, then we set¢(n) =
connection between its input link and its output link once a Td(n)—dgLTd(”);Ta(")J. Otherwise, we set¢(n) =
fault within an optical memory cell is detected. Such an optical 74(n) — Bd,. 2
memory cell will be called dault/bypassoptical memory cell
in this paper. Even with fault/bypass optical memory cells, the
construction in Figure 3 still does not work when one of the  7°(n) ner oo 1 7 O [ e compresaran | | 7°(0)
fault/bypass optical memory cells detects a fault. maximum ety o i >

To construct a linear compressor that can tolerate a failure
of a fault/bypass optical memory cell, one may simply use two
scaled optical memory cells for each stage of the construction
(see Figure 4). As such, one can build a linear compressor with
maximum delay2™ — 1 that can tolerate one faulty optical
memory cell by a concatenation 21/ scaled optical memory Theorem 2 Suppose that the network element in Figure 5 is
cells. In a similar way, one can build a linear compressor wistarted from an empty system.df < d; + 1, then under
maximum delay2? —1 that can tolerate up t& faulty optical (R1) the two-stage construction is a linear compressor with
memory cells by a concatenation @F + 1) M scaled optical maximum delayBdsy + d; .
memory cells.

In order to compare various constructions, we introduce tigoof. According to Definition 1 for a linear compressor, we
efficiencyp for a construction of a linear compressor. Supposeed to show that the network element in Figure 5 can realize

Fig. 5. A two-stage construction of a linear compressor.



all the mappings (or sample paths) that satisfy In this case, we see from (R1) that

Ta(n) < Td(’fl) < Ta(’n,) —+ Bd2 =+ d17 (3) TC(n _ 1) — Td(’rl _ 1) _ d2 \\Td(n - 1) — T‘l(n — 1)J
4n) = 7%(n — 1) + 1, . da
wheneverr®(n) < 7%(n — 1). 4 =7(n—1) = (k= 1)da. (13)

In other words, if (3) and (4) hold for alt, then under the Using (12),7%(n) < 7(n — 1), and (13) yields

assignment rule in (R1) n) = *(n) = 1%n —1) +1 - 7%(n)
Ta(n) STc(n)STa(n)—l—dl, (5) ZTd<n—1)—|—1—TC(’n—1)Z(k'—l)dg—l—l.
(n) =7 —1)+1, As 7%(n) > 7*(n — 1), we also have
Whenever'r“(n) < TC(TL — 1) (6) Td(n) _ Ta<n) — Td(’I’L _ 1) +1-— Ta(n)
o) ) <7in—1)—7%n—1) < kdy — 1.
< 7%n) < 7°(n) + Bds, @)
(Td(n) — 7°(n)) modd, = 0, ) It then follows from (R1) that )
7l(n) = 7(n") + da, 7¢(n) = 7%(n) — do r (n)d_T (n)J
d( * 2
wheneverr®(n) < 7¢(n"), 9) ) — (k= 1)y, 14

wheren* is the last packet (in the busy period containing the
n*" packet) that departs before thé packet from the same AS & direct result of (14), (13), and (12), we then have
time interleaved linear compressor at the second stage. In the ;) — +4(p) 4 7°(n — 1) — 7% (n — 1) = 7°(n — 1) + 1.
following, we divide the proof into three parts.

(i) First, we show that (5), (7), and (8) hold for all We Case Z.de <7Y(n—1)=7%n—1) < Bdy +di:
consider the following two cases: In this case, we have from (R1) that

d a .
Case 1.0 < 7%(n) — 7*(n) < Bdy — 1: 7(n—1) = %(n — 1) — Bds. (15)

In this case, we see from (R1) that
Using (12) andr®*(n) < 7¢(n — 1) yields

c Td(n) -7 (Tl)
7(n) = 7(n) — ds {ng ’ (10) 7%(n) = 1%(n—1)+1 = 7°(n—1)+Bdy+1 > 7%(n)+Bda+1.
which implies that From (R1), it follows that
7¢(n) = 7%(n) + ((r%(n) — 7%(n)) modds). (11) 7¢(n) = 7%(n) — Bds. (16)

It follows from (11),7%(n) > r%(n) in (3), and the assumption In conjunction with (15) and (12), we then have
d2 §d1—|—1 that Tc(n) :Tc(n*1)+1.

74(n) <7°(n) < 7%(n) +do — 1 <7%(n) + di. (iii) To prove (9), letng = sup{m < n : 7%(m) > 7(m —

1)} be the index of the packet that initiates the busy period
containing then'” packet. From (4), it follows that for all
nop<m<n

As 0 < LMJ < B —1 < B in this case, we have
from (10) that

Tc(n) < Td(n) < Tc(n) + Bds. Td(m) _ Td(m _ 1) +1. (17)
Clearly, (7%(n) *dTC(”)) TOd dy = 0. Note that thed, time interleaved linear compressors at the
Case 2.Bdy < 7%(n) — 7%(n) < Bdy + dy: second stage are connected to the output link of the linear

In this case, we have from (R1) thatt(n) = 7(n) — Bd2, compressor at the first stage periodically with peribd If

)
and it follows thatr?(n) < Tc(n) < 7%(n) + dyi. Clearly, , _ g, > p,, then we have from (17) that* = n — d» is the
74(n) = 7¢(n) + Bd and ((7%(n) — 7¢(n)) moddz) = 0. last packet (in the busy period containing thié packet) that
(i) To see (6), suppose that'(n) < 7°(n — 1). Then we geparts before the!” packet from the same time interleaved
also haver®(n) < 7%(n—1) ast®(n—1) <7%n—1)in (7). linear compressor at the second stage. As such, it follows from

It follows from (4) that (17) that

ml(n) =71 —1)+ 1. (12) 74(n) = 14(n — dy) + dy = T4(n*) + ds. (18)
Now we consider the following two cases: On the other hand, ik —dy < ng, then then'” packet arrives
Case 1.(k—1)dy < 7¢(n—1) —7%(n—1) < kdy — 1, k= at an empty linear compressor at the second stage and there

1,2,...,B: is no need to check (9). |



We remark that Theorem 2 is a generalization of one of oand fori =M —1,M —2,...,1,
previous results on the constructions of linear compressors in

. M
[23] that holds only fords = d; + 1 instead ofds < d; + 1 in I(z) = { Loif e =30 Ie(2) - di > ds, (20)
Theorem 2. As shown in [23], the conditidh = d;+1 for the 0, otherwise.
tW(_)-stage Constructhn Ie_ads to the multistage COhStrUCtIOI’l_ﬂI'e vector (I (z), Io(x), .. ,IM($)> obtained this way is
a linear compressor in Figure 3. However, as we have shown

in Section I, such a construction in Figure 3 does not hag&!ed theC-transform ofz in [19]. _
the fault tolerant capability. In contrast, in Section I1I-B and (R2) Let 7i(n) be the departure time of the™ packet

Section 11I-C, we will show that the general conditidh < from the k™" stage,k = 1,2,..., M — 1. We set

dy + 1 for the two-stage construction in Theorem 2 is the key M

to the constructions of fault tolerant linear compressors. mi(n) = 74(n) — Z Ii(z)d; (21)
i=k+1

B. A Multistage Construction of a Linear Compressor by a for k=1,2,..., M —1.

Concatenation of Scaled Optical Memory Cells It is known [19] that the(C-transform has the unique

As it has been shown in [23] that an optical memory cetkepresentation property for all < z < Zf\il d; under the
can be used as a linear compressor with maximum delay lc¢dndition in (Al), i.e.,
follows that the network element in Figure 6 is a special case M
of that in Figure 5 withB = 1. As such, it can be operated as a = Z I,(x)d;. (22)

linear compressor with maximum deldy—+ds if do < dy+1. ]

As such, we also have from (21) that

de
0 [T — 7 () b
A = . STOTETAES TSRS

i=1

Fig. 6. A construction of a linear compressor. In other words, the delay line of thé”" scaled optical memory
cell is traversed by the'" packet if I, (z) = 1.

Note that ifd; = 1, then the first stage in Figure 6 could
be constructed by using an optical memory cell and we hav@eorem 3 Suppose that the network element in Figure 7 is
a linear compressor by a concatenation of two scaled optigghrted from an empty system. If (A1) holds, then under (R2)
memory cells. On the other hand, & > 1 in Figure 6, the construction in Figure 7 is a self-routing linear compressor
then by recursively expanding the first stage, we obtainygth maximum de'&Efﬁldi-
concatenation of\/ scaled optical memory cells in Figure 7,
where thei*” scaled optical memory cell is with scaling factoProof. We first show by induction that the network element
d;, i=1,2,...,M, andd; = 1. Intuitively, with appropriate consisting of the first: stages in Figure 7 can be operated

choice of the scaling factord;, ds, ..., dy;, We expect that as a linear compressor with maximum del®)_, di, k =
the network element in Figure 7 can be operated as a linda?, ..., M. As d; = 1, this holds trivially fork = 1 as an
compressor with maximum dEIaE?il d;. optical memory cell can be used as a linear compressor with

maximum delay 1.
4 p g p Suppose as the induction hypothesis that for sarmek <
0 — — p— M — 1, the network element consisting of the fitsstages in

Mo ° 0&]:'_‘_\':1:'__‘> Figure 7 is a linear compressor with maximum de@?z1 d;.
As the (k + 1)*" stage is a linear compressor with maximum

Fig. 7. A construction of a linear compressor by a concatenation of scalgglay 1 and Sca"ng faCtOik-&-l and dk+1 < Z?:l di + 1,
optical memory cells. it then follows from Theorem 2 that the network element
consisting of the firsk + 1 stages in Figure 7 can be operated

We will show that such a construction can be operated agia a linear compressor with maximum def®y; " d;. This
self-routing linear compressor if the delay lines are chosentompletes the induction.
satisfy the condition in (Al). Now we show that the construction in Figure 7 isalf-

To specify the routing in such a construction, febe the routing linear compressor with the routing policy specified by
delay of thent" packet, i.e.x = 7%(n) — 7%(n). For z, we (R2). Since the network element consisting of the fivét- 1
stages in Figure 7 can be operated as a linear compressor with
maximum delay>> " d;, the construction in Figure 7 is a
concatenation of a linear compressor with maximum delay
Zf‘i{ldi and a linear compressor with maximum delay 1
and scaling factord,,;. As such, we have from (R1) that

recursively compute thé/-vector (Il(:r), Ir(x),..., IM(:C))
as follows:

1, if 2 >dy,

In(x) = { 0, otherwise, )



7, (n) = 74(n) — Iy (x)dys, Wherez is the delay of the becomes a concatenation 8f — F' scaled optical memory

n'" packet. Repeating the same argument yields cells. Letdy, k = 1,2,...,M — F, be the scaling factor of
th . . -~ .
7(n) = 78, (1) — T (2)dn the k" optical memory cell in thesé/['— F optical memory
k k+1 M+ + cells. Clearly,d;, = d; for somek < j < k+ F. Since we
assume thatl;, < d for all k£ in (A2), it follows that
— ) = S L), (24) ¢ = i forall kin (A2)
i=k+1 dp <dp <dy . p (26)
fork=1,2,...,M —1. B forallk=1,2,...,M—F.
) ) ] ] Now we verify that (Al) still holds for the delays
Example 4 (Binary representation) In particular, if we choose(g1 dy. ... JM s Asd; = 1fori=1,2...F+1, and

dp =21 for k = 1,2,..., M, then we have a self-routingp < F. we have
linear compressor with maximum del@}’ — 1 as shown in =~ — ' .
Figure 3. For this particular case, th€-transform ofz is l=dy <dy <dp, =1,

simply the binary representation af - ~
i . implying thatd,; = 1. For0 < k < F'— F', we have from (26)

C. A General Construction of a Fault Tolerant Linear Comandd; =1,i=1,2,..., F + 1, that

pressor k
Observe that ifK(F +1) < M < (K + 1)(F + 1) Ay Sy p=1<> di+1,
for some K > 1, then for the straightforward construction i=1
that dg—1)(r1)+1 = dg—nF+n+2 = =+ = der+1) = Similarly, for F — F+1 < k < M — F — 1, we have from

267k = 1,2, K, and dg(riny41 = dr(ri+2 = (26), (A2), andF < F that
... = dy = 2%, the condition in (A1) is still satisfied even

after up toF of the M optical memory cells are broken. As . iaingd

such, the network element in Figure 7 can still be operatéd+1 Sy p < Z di+1<
as a linear compressor with maximum defgy’; * d; even =1 i=
after up toF' of the M optical memory cells detect faults. We From Theorem 3, the concatenation of the remairj\iﬂgﬁ’

can easily calculate that the maximum delay for such a diregfaled optical memory cells can be operated as a self-routing

k

k
dﬁ—lgz&—&-l.
1 =1

construction is linear compressor with maximum delay;” * d;. SinceF’ <
M-F K1 F anddy < dj for all £ in (26), it is also a self-routing linear
Y di=[M—(K-1)(F+1)+125"' —F—1. (25 compressor with maximum delay’ ™" d;. n
=1

As aresult, forF = 0, we haved; = 2i~1fori=1,2,...,M, Example 6 (Generalized Fibonacci series) Lét/ > 1 and

and the construction efficiency is equal toFor F > 1, the 0 < F' < M — 1. Consider the series of fiber delay lines with
construction efficiency approached asM tends to infinity, di =1 forall i =1,2,....F +1, anddyir = dpyp-1 +
namely, the asymptotic construction efficiency is equattq. di—1 for all & = 2,3,..., M — F. We call such a series
Although the construction efficiency for such a straightforwarde generalized Fibonacci series of ordet Note that when
construction is much smaller than 1 Asbecomes large, such” = 0, the generalized Fibonacci series reduces to the series
a direct construction guarantees that the network elementdhpowers of 2, i.e.d, = 2", k = 1,2,..., M. Also note
Figure 7 can still be operated as a linear compressor whtat the well-known Fibonacci series is a special case of the
maximum delay>" " T ” d; even after up td” of the M optical generalized Fibonacci series withi = 1.

memory cells are broken. We show that such a series of delays satisfy the condition in
In the following theorem, we show how one constructs @?2). Clearly, we have, < dj, forall k=1,2,..., M —1.
linear compressor via fault/bypass optical memory cells thdew we argue by induction that
can tolerate up toF' faulty optical memory cells and has k-1
construction efficiency greater thq;alﬁ. dirp = Z d; +1 27)
=1

network element in Figure 7 is started from an empty Systefl. | + d, = d; + 1. Suppose that (27) holds for sorte<
and all the optical memory cells in Figure 7 are fault/bypass < 37 — F _ 1. Then we have o

optical memory cells. If the condition in (A2) is satisfied, 1 N
then the construction in Figure 7 can still be operated as a
L . ; — d =d dp = di+1+d = d;+1. (28
self-routing linear compressor with maximum defgy’; “'q;, ~ “**1+F = Ghrr T z_; T Z_; +1.(28)
even after up td” of the M optical memory cells detect faults. . ) - o
Since the Fibonacci series grows exponentially at the rate

Proof. Assume that there aré optical memory cells that of the golden ratio(v/5 + 1)/2, the efficiency for the con-
detect faults, wher® < F' < F. With the bypass circuit, it struction that uses the Fibonacci series as the delays of

Theorem 5 LetM > 1and0 < F' < M —1. Suppose thatthe for gl = 2,3,..., M — F. For k = 2, we havedp., =



—— (1) 0%5 0_3323333 0_325 04_12 factors (from the ;mallest to the largest) of the remaining
Fp’; T 06945475 0551463 | 0.464958 | 0405685 M — F scaled optical memory cells so thdt < dj., for

= = 5 = 5 5 allk=1,2,...,M - F —1.

7 | 0-166667| 0.142857| 0.125 | 0.111111 0.1 As the remaining scaled optical memory cells can be
pr | 0.361992| 0.328173] 0.301066| 0.278758| 0.260015 operated as a linear compressor with maximum delaywe

F 10 1 12 13 14 haved; = 1. Otherwise, a packet with delay equal to 1 can

7r7 | 0-909091] 0.083333] 0.076923| 0.071429| 0.066667 not depart at its departure time as this packet must be stored
pr_| 0.244006] 0.230142] 0.218000| 0.207260] 0.197682] iy gne of the fibers and the delay of every fiber delay line is

i3 5 16 7 18 19 e
-1 | 0.0625 | 0.056824| 0.055556| 0.052632| 0.05 greater than 1 in this case.

op | 0.189077] 0.181297| 0.174222| 0.167757| 0.161822 Let j be the smallest positive integer less thieih— F' such
thatd; 11 > >_7_, d;+1. If there does not exist such a positive
integer, letj = M — F. We claim that

d< i 1;. (31)

i=1

TABLE |
ASYMPTOTIC CONSTRUCTION EFFICIENCYpr BY USING THE
GENERALIZED FIBONACCI SERIES OF ORDERF FOR0 < F' < 19

_ _ il We prove this claim by contradiction. Suppose thas the
the fiber delay lines approachdsg,(*3=) = 0.694242 smallest positive integer less thaif — F such thatd;,; >
as M tends to infinity. This is much better than the naivg~/_ g, 1. Consider the sample path that a packet initiates a
construction that uses two scaled optical memory cells Blisy period at time and with delay equal @:J_'ﬂdﬁl, and
each stage. In general, the generalized Fibonacci series @kre is a packet in every time slot- 1, ¢ + 271._.  From the
prder F grows exponent.|all);+alt theFrate ofr, whgre "F  monotone and consecutive condition of a linear compressor,
is the root of the equation™ ™" —r* —1 = 0 with the e see that the delays for all the packets after tinage also
largest magnitude. It follows that its construction eff|C|enc¥qua| toZ]f d:+1. Therefore, at time, — sz d.. there
=log(S" M7 4, +1)/M = log(dar41)/M approaches T rate with de i
Py F = 1082 =y dit 1) ogldara PP ared"7_, d;+1 packets with delays equal }57_, d;+1 stored
the asymptotic construction efficienpy = log,(rr) as M iy the fiber delay lines with delaydy, k = 1,2,..., M — F.
:ﬁ_nd_s to mr?rt])m':.t Afhcar][hbe seentfrtqm Tabtle '{_ f@rzﬁ. 1 As at each time instance the fiber delay lines with deldys
is is much better than the asym - : 3
, YMPIOTC ConSTUCHion EMICIENEY. 1 ..., j, can only accommodate a maximumysf,_, d;
1/(F + 1) of the naive construction that uség’ + 1) scaled packets, at least one of the?_, d; +1 packets at time; must

optical memory cells at each stage. be stored in a fiber delay line with deldy for somek > j+1,
. . ] and that packet can not depart at the right time since it has a
D. An Optimal Construction of a Fault Tolerant Linear Com'packet dela)zj,l d;+1 which is smaller tham,,, k > j41.
pressor As such, the maximum delay of the linear compressor is at
In this section, we show that the construction by the genenost) 7_, d;. On the other hand, i1 < Zle d; +1 for

alized Fibonacci series of ordétin Example 6 is the optimal all ¥k = 1,2,...,M — F — 1, thenj = M — F and we can
M—F 7

construction that maximizes the construction efficiency amompgove thatd < >"." " d; by a similar argument.
all the constructions that can tolerate up Kofaulty optical Note that from the definition ofj, we haved; = 1 and
memory cells by using// scaled optical memory cells . dk-&-l < Zle di+1forall k=1,2,...,5—1. Let dy, i =
Letd: =1forali=1,...,F+1, and let 1,2,...,M, be thei"" smallest element i§dy,da, ..., da}.
k—1 Clearly, for allk = L2,...,M-F, we haved, = d; for
diyp =) di+1 (29) somek < i < k+ F. Asd; = 1, we must haved; =
i=1 di =1,4i=12,...,F+1. Forafixedl <k < j -1,
forall k=2,3,...,M — F. Let consider the special case that = d(;), i = 1,...,k, and
M—F di+1 = d(x4+1+F), then we have
Dip= ) di (30) "
k=1 diky117) < Zd(i) +1 (32)
i=1

Theorem 7 Let M > 1 and0 < F < M — 1. Consider
a linear compressor that is constructed by usiif scaled We are now in a position to show that

optical memory cells. Suppose that it can still be operated as

a linear compressor with maximum deldyafter up to F' of doy <dj, i=1,2,...,j+F. (33)
the M optical memory cells detect faults. Thén< D3, r,

where D}, , is defined in (30). We will prove (33) by induction. We already havg;) = 1 =

dr, i =1,2,...,F + 1. Assume for somd < k£ < j—1
Proof. Suppose that there a€ optical memory cells that that (33) holds for ali = 1,2,...,k + F as the induction
detect faults. Letd;,ds,...,dy—r be the ordered scaling hypothesis. It then follows from (32), the induction hypothesis,



and (29) that Theorem 10Let M > 1 and 0 < F < M — 1. Suppose
& & that the network element in Figure 7 is started from an
d < diy +1< & +1=d" _ empty system and all the optical memory cells in Figure 7
(k+14F) Z (®) ; ’ LR are fault/bypass optical memory cells. Lét = dpr41-4,
i=1,2,...,.M. Ifd,=1forall i=1,2,...,F+1, and

i=1

Finally, for the special case thaf; = diy, 1 = 1
1,2,...,M — F, we have from (31), (33)j < M — F, and ' . '
9 4y ) — < < g
(30) that dpyp1 < diyp < Z; d+1 (35)
i Jd J M-F forall k=2,3,..., M — F, then the construction in Figure 7
d< di=Y duy<) di< Y di=Djp. can still be operated as a self-routing linear decompressor
=t =1 =1 =1 with maximum delayy"* d; even after up taF" of the M
The proof is completed. W optical memory cells detect faults.
The following corollary follows directly from Theorem 7 Conversely, consider a linear decompressor that is con-
and Example 6. structed by usingM scaled optical memory cells. Suppose

that it can still be operated as a linear decompressor with
Corollary 8 The asymptotic construction efficiency for a linmaximum delay! after up to F' of the M optical memory
ear compressor that can tolerate upofaulty optical memory cells detect faults. Thed < D3, ., where D}, . is defined
cells by usingM scaled optical memory cells is boundedn (30).

above bypr = log,(rr), whererr is the root of the equation _ . o
P+l —pF 1 = 0 with the largest magnitude. Corollary 11 The asymptotic construction efficiency for a

linear decompressor that can tolerate up kofaulty optical
IV. AN OPTIMAL CONSTRUCTION OF AFAULT TOLERANT memory cells by using/ scaled optical memory cells is
LINEAR DECOMPRESSOR bounded above byr = log,(rr), Whererp is the root of

The mirror image of an SDL element is an SDL elemerfie equation”*! — 7" — 1 = 0 with the largest magnitude.
that reverses the direction of every link in the original SDL
element. By so doing, the inputs (resp. outputs) of the original . . .
SDL element become the outputs (resp. inputs) of its mirrorIn this paper, have considered S.’DL constructions of fault
image. It is obvious that if a sample path can be realized % erant linear compressors and linear decompressors. The

an SDL element, then its time reversed sample path can asaosic network element for our constructions is scaled optical
be realized by th'e mirror image of the SDL element memory cell, which is constructed by2ax 2 optical crossbar

The mirror image of a linear compressor is called a ”negyvitch and a fiber delay line. Such consideration of fault tol-

decompressor in [23] as defined below: erant capability is extremely important and challenging from
' a practical point of view as otherwise the linear compressors

and linear decompressors may fail to function properly even
hen a single scaled optical memory cell is broken.

V. CONCLUSIONS

Definition 9 (Linear decompressors [23])Suppose that the w
departure time of a packet is known upon its arrival. Le We first provided a two-stage construction of a linear

7%(n) and 7%(n) be the arrival time and the departure time, . :
. h . compressor. Such a two-stage construction was recursively
respectively, of then'” packet. A network element with a . . : .
. ) : . L : expanded to give a multistage construction of a self-routing
single input link and a single output link is called lmear

) . . linear compressor by a concatenation of scaled optical memor
decompressowith the range of delayd;, ds] if it realizes P y b y

. . . _cells. We have shown that if the delays, do, .. ., d,; satisfy
thde set of maps)mgs that satisfy (1), the FIFO _cond|t|on[he condition in (Al), then our multistage construction can be
7%(n — 1) < 7%n) foralln, and the followinginverse

. " operated as a self-routing linear compressor with maximum

monotone and consecutive conditiarf:(n) = 7%(n — 1) + 1 M
p : . . delay )".", d;. We have also shown a more general result
wheneverr®(n) < 7%(n — 1). In particular, if d; = 0, then it s : A
. . . . that if the delaysiy, ds, . . ., djs satisfy the condition in (A2),
is called a linear decompressor with maximum deday . .
then our multistage construction can be operated as a self-
. . . . M—F
Suppose a linear decompressor with maximum deldg routing linear compressor with maximum delgy,;_, " d;

constructed by using/ scaled optical memory cells. As foréven after up tof’ of the M scaled optical memory cells

a linear compressor, its efficiengyis defined as are broken. Furthermore, we have proved that our multistage
construction with the delaysl,,ds,...,dy given by the
— logy(d + 1). (34) generalized Fibonacci series of ordris the best among

M all constructions of a linear compressor that can tolerate up

As a linear decompressor is the mirror image of a linedn F' faulty scaled optical memory cells by using scaled
compressor, the construction in Figure 7 can be operated aspéical memory cells. Similarly results were also obtained for
linear decompressor and the optimal construction efficiencytiee constructions of fault tolerant linear decompressors.
achieved by the generalized Fiboncacci series as stated in th®ne of our on going research problems is on the construc-
following theorem and its corollary. tions of fault tolerant optical 2-to-1 FIFO multiplexers. For



this, we have considered the feedback system in our previo{g J. T. Tsai, “COD: architectures for high speed time-based multiplexers
Work [19] |n that paper’ we have obtalned a necessary and and buffered paCket switches,” Ph.D. Dissertation, University of Cali-

sufficient condition on the delays of the fiber delay lines i[1

fornia, San Diego, CA, USA, 1995.

0] R. L. Cruz and J.-T. Tsai, “COD: alternative architectures for high

the feedback system so that it can be operated as an optical speed packet switching EEE/ACM Transactions on Networkingpol. 4,

2-to-1 FIFO multiplexer. Our preliminary investigation show
that under a more general condition on the delays of the fiber

pp. 11-21, February 1996.

11] D. K. Hunter, D. Cotter, R. B. Ahmad, D. Cornwell, T. H. Gilfedder,

P. J. Legg, and |. Andonovic2‘x 2 buffered switch fabrics for traffic

delay lines, the feedback system can be operated as an optical routing, merging and shaping in photonic cell networkEEE Journal
2-to-1 FIFO multiplexer when some of the fibers are brokepl.Z]
Results along this line will be reported separately.

ACKNOWLEDGMENT

This research was supported in part by the National Scierl¢d
Council, Taiwan, R.O.C., under Contract NSC-93-2213-E-
007-040, Contract NSC-93-2213-E-007-095, Contract NSQ4]
94-2213-E-007-046, and the Program for Promoting Academic

Excellence of Universities NSC 94-2752-E-007-002-PAE.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(18]
REFERENCES

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable op{rle]
cal buffer using slow light in semiconductor nanostructuRFgceedings

of the IEEE vol. 9, pp. 1884-1897, November 2003. 17]
M. R. Fisher, S. Minin, and S. L. Chuang, “Tunable optical grou;g
delay in an active waveguide semiconductor resonatBEE Journal
of Selected Topics in Quantum Electronioml. 11, pp. 197-203, 18]
January/February 2005.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg,
D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays
via Brillouin slow light in an optical fiber,"Physical Review Letters [19]
vol. 94, 153902, April 2005.
D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast
light propagation in a Raman assisted fiber optical parametric amplifier:
a route to all optical buffering,Optics Expressvol. 13, pp. 6234-6249, 20]
August 2005.
Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner,
“12-GHz-Bandwidth SBS Slow Light in Optical Fibers,” Proceedings (21]
International Conference on Optical Fiber Communications (OFC'06)
Anaheim, CA, USA, March 5-10, 2006, PDP1.

M. J. Karol, “Shared-memory optical packet (ATM) switch,” Pro- 22]
ceedings SPIE vol. 2024: Multigigabit Fiber Communication Systengs
(1993) October 1993, pp. 212-222.

I. Chlamtac, A. Fumagalli, L. G. Kazovsky, P. Melman, W. H. Nelson
P. Poggiolini, M. Cerisola, A. N. M. M. Choudhury, T. K. Fong, R. T.
Hofmeister, C.-L. Lu, A. Mekkittikul, D. J. M. Sabido IX, C.-J. Suh,
and E. W. M. Wong, “Cord: contention resolution by delay lindEEE
Journal on Selected Areas in Communications. 14, pp. 1014-1029,
June 1996.

I. Chlamtac, A. Fumagalli, and C.-J. Suh, “Multibuffer delay line 24]
architectures for efficient contention resolution in optical switchiné
nodes,"|EEE Transactions on Communication®l. 48, pp. 2089-2098, [25]
December 2000.

(23]

of Lightwave Technologyol. 15, pp. 86-101, January 1997.

D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, and |I.
Andonovic, “SLOB: a switch with large optical buffers for packet
switching,” IEEE Journal of Lightwave Technologyol. 16, pp. 1725—
1736, October 1998.

E. A. Varvarigos, “The “packing” and the “scheduling packet” switch
architectures for almost all-optical lossless networkS8EE Journal of
Lightwave Technologwol. 16, pp. 1757-1767, October 1998.

D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in optical packet
switches,”IEEE Journal of Lightwave Technologyol. 16, pp. 2081—
2094, December 1998.

D. K. Hunter and I. Andonovic, “Approaches to optical Internet packet
switching,” IEEE Communications Magazineol. 38, pp. 116-122,
September 2000.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet
switching: An overview,”|IEEE Communications Magazineol. 38,

pp. 84-94, February 2000.

C.-S. Chang, D.-S. Lee, and C.-K. Tu, “Recursive construction of FIFO
optical multiplexers with switched delay linedEEE Transactions on
Information Theoryvol. 50, pp. 3221-3233, December 2004.

C.-S. Chang, D.-S. Lee, and C.-K. Tu, “Using switched delay lines for
exact emulation of FIFO multiplexers with variable length burd&SEE
Journal on Selected Areas in Communicationsl. 24, pp. 108-117,
April 2006.

C.-C. Chou, C.-S. Chang, D.-S. Lee and J. Cheng, “A necessary
and sufficient condition for the construction of 2-to-1 optical FIFO
multiplexers by a single crossbar switch and fiber delay lines,” to appear
in IEEE Transactions on Information Theoryol. 52, October 2006.
C.-S. Chang, Y.-T. Chen, and D.-S. Lee, “Constructions of optical FIFO
queues,’IEEE Transactions on Information Theoryol. 52, pp. 2838—
2843, June 2006.

A. D. Sarwate and V. Anantharam, “Exact emulation of a priority queue
with a switch and delay lines,” to appear @ueueing Systems: Theory
and Applicationsvol. 53, pp. 115-125, July 2006.

H.-C. Chiu, C.-S. Chang, J. Cheng, and D.-S. Lee, “A simple proof
for the constructions of optical priority queues,” submittedteeueing
Systems: Theory and Applicatiqrz005.

C.-S. Chang, Y.-T. Chen, J. Cheng, and D.-S. Lee, “Multistage con-
structions of linear compressors, non-overtaking delay lines, and flexible
delay lines,” submitted ttEEE/ACM Transactions on NetworkinGon-
ference version ifProceedings IEEE 25th Annual Conference on Com-
puter Communications (INFOCOM'0O6Barcelona, Spain, April 23—-29,
2006.

J. Hui, Switching and Traffic Theory for Integrated Broadband Networks
Boston, MA: Kluwer Academic Publishers, 1990.

S.-Y. R. Li, Algebraic Switching Theory and Broadband Applications
San Diego, CA: Academic Press, 2001.



