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Abstract—Motivated by streaming applications with stringent
delay constraints, we consider the design of online networkcoding
algorithms with timely delivery guarantees. Assuming that the
sender is providing the same data to multiple receivers over
independent packet erasure channels, we focus on the case of
perfect feedback and heterogeneous erasure probabilities. Based
on a general analytical framework for evaluating the decoding
delay, we show that existing ARQ schemes fail to ensure that
receivers with weak channels are able to recover from packet
losses within reasonable time. To overcome this problem, were-
define the encoding rules in order to break the chains of linear
combinations that cannot be decoded after one of the packetsis
lost. Our results show that sending uncoded packets at key times
ensures that all the receivers are able to meet specific delay
requirements with very high probability.

I. I NTRODUCTION

The issue of delay between data transmission and successful
delivery to the receiving application is arguably one of thekey
concerns when applying coding ideas to networking problems.
This is particularly true for network coding, where nodes
combine multiple packets by means of algebraic operations
and perform computationally heavy Gaussian elimination al-
gorithms to recover the sent data. Although there is growing
consensus that both in wireless broadcast scenarios [1], [2]
network coding can bring benefits in terms of throughput and
robustness, the fact that a receiver may have to wait for a
considerable number of packets, before it can decode the data,
justifies the question whether and how network coding can be
used in scenarios with stringent end-to-end delays.

In the seminal paper of Ahlswede, Cai, Li, and Yeung [3],
which shows that network coding is required to achieve
the multicast capacity of a general network, the problem is
formulated in an information-theoretic setting, where delay
and complexity are not taken into account. Delay is also
not a primary concern of the algebraic framework in [4]
and of the random linear network coding method [5], [6], in
which each node in the network selects independently and
randomly a set of coefficients and uses them to form linear
combinations of the data symbols (or packets) it receives.
When intermediate nodes cannot perform coding operations
and applications are able to tolerate some delay, fountain codes
(e.g., Raptor codes [7]) emerge as a viable solution offering
low coding overhead as well as near-optimal throughput over
packet erasure channels.

Clearly, in all of these instances, coding is performed in
a feedforward fashion. The encoders upstream are oblivious

to packet loss downstream and their coding decisions do not
exploit any feedback information. In contrast, the property that
transmitted packets are linear combinations of subsets of pack-
ets available at the sender buffer suggests that network coding
protocols could be enhanced by modifying the content of the
acknowledgments typically provided by transport protocols.
Instead of acknowledging specific packets, each destination
node of a unicast or multicast session can send back requests
for degrees of freedom that increase the dimension of its vector
space and allow for faster decoding.

Recent contributions that pursue this idea (e.g., [8], [9])
focus mostly on end-to-end reliability with perfect feedback,
i.e., complete and immediate knowledge of the packets stored
at each receiver. The source node reacts by sending the most
innovative linear combination that is useful to most destination
nodes. Throughput optimal network coding protocols follow-
ing this concept appear in [10], [11], which introduce the
useful notion ofseenpacket as an abstraction for the case
in which a packet cannot yet be decoded but can be safely
removed from the sender buffer. Removing packets in a timely
fashion has obvious benefits in terms of queue length. By using
the feedback information to move acoding windowalong the
sender buffer instead of mixing fixed sets of packets (also
called generations [6]), these protocols performonlinenetwork
coding in the sense that they adapt their coding decisions based
on the erasure patterns observed in the network.

Realizing that existing solutions do not yet cover the full
range of trade-offs between throughput and delay, in particular
when users experience different packet loss probabilities, we
set out to provide end-to-end delay control for online network
coding with feedback. Our main contributions are as follows:
• Delay Analysis:We provide an analytical framework to
evaluate the delay performance of online network coding
algorithms that leverage feedback for increased reliability. The
novelty of our approach lies in observing how each erasure
event affects the chains of undecoded linear combinations
that build up at the receiver buffer. Moreover, we can map
the information backlog between receivers to an appropriate
random walk on a high dimensional lattice, which brings
further insight into the delay behavior.
• Online Network Coding Algorithms with Delay Constraints:
Using the knowledge of the chain length at each receiver,
we identify simple ways of limiting the delay by means
of informed encoding decisions. In particular, we show the
benefits of sending uncoded packets to alleviate the delay of
weaker receivers.
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Our work differs from [10] in that we consider hetero-
geneous users with different erasure probabilities and take
the end-to-end delay to be our main figure of merit. Also
centered around equal erasure probabilities for all users,the
contribution in [11] focuses on the two user case and uses only
the binary field, whereas, in contrast also with [9], we consider
also larger field sizes and larger number of users. A different
method to limit the delay is to mix packets in such a way that
at least some of the receivers are able to decode a symbol
immediately upon receiving a new packet. If no feedback
information is available, the best one can do is to choose the
packets randomly and optimize only the number of packets
to be combined [12], an approach which appears adequate
for highly constrained scenarios such as data preservationin
sensor networks. Results on the optimum degree distributions
with respect to network dynamics and topology can be found
in [13]. The use of feedback under similar assumptions was
explored in [14]. The main difference between [14] and this
contribution is that here we provide analytical results, consider
higher fields and do not enforce immediate decoding. We
believe that our algorithms are able to reach a larger set of
operating points in the delay-throughput plane and are thus
well suited for streaming applications with stringent delay
requirements, where network coding has already proved to
yield competitive solutions (see, e.g., [15]).

The remainder of the paper is organized as follows. Sec-
tion II introduces terminology and describes the core ideas
of online network coding with feedback. Our analytical
framework for evaluating the end-to-end delay is outlined in
Section III with results on the relationship between erasure
patterns, undecodable chains, and incurred delays. Section IV
provides solutions for effective delay control and the corre-
sponding performance results are presented in Section V. In
Section VI, we briefly discuss the implications of imperfect
feedback and conclude the paper in Section VII.

II. ESSENTIAL BACKGROUND

A. System Setup

Suppose that a single queue sender wants to transmit a
stream of packets to multiple receivers. For simplicity, we
assume that packets arrive at the sender in a certain order
(older packets first) and are readily available at the senderfor
encoding and transmission. Each receiveri is connected to
the sender via a separate packet erasure channel, which takes
one packet per time slot and loses a packet with probability
ǫi. Packets are lost independently across channels and time
slots and receivers are able to detect when a packet is missing.
Since the sender has access to perfect feedback (without errors,
losses, or delay), it can make encoding decisions based on the
buffer state of each receiver.

B. ARQ for Network Coding

The reference system for our analysis is the ARQ for
network-coding (ANC) scheme presented in [10], which was
shown to be throughput optimal for the case of Poisson
arrivals, perfect feedback, and identical erasure probabilities
on all channels. In this scheme, the sender transmits linear

TABLE I
EXAMPLE OF ONLINE NETWORK CODING WITH ARQ

Time Slot Sent Packet Receiver 1 Receiver 2
1 p1 OK E
2 p1 ⊕ p2 OK OK
3 p2 ⊕ p3 OK OK
4 p3 ⊕ p4 OK OK
5 p4 ⊕ p5 OK E
6 p4 ⊕ p6 OK OK
7 p6 ⊕ p7 E OK
8 p7 OK OK
9 p5 ⊕ p8 OK OK
10 p8 ⊕ p9 E OK
11 p9 OK E
12 p9 ⊕ p10 OK OK

combinations of the packets in its queue, where the decision
which packets to combine relies on the concept ofseen
packets. A packetp is said to be seen by a receiver, if the
receiver is able to construct a linear combination of the form
p + q, such thatq is a linear combination of packets that
are newer thanp. In particular, a packet is seen when it can
be decoded. The sender always transmits a packet that is a
combination of the last (i.e., oldest)unseenpackets of each
of the receivers. This ensures that the last unseen packet will
now be seen by all receivers which receive the coded packet.

A packet can be dropped from the sender queue whenever
it wasseen(but not necessarily decoded) by all receivers. This
has the agreeable property that queue sizes at the sender are
kept small, since the sender can drop packets before they are
decoded at all receivers, without compromising reliability. The
expected queue size was shown to beO((1− ǫ)−1) [10]. The
basic operation of this scheme is illustrated in Table I, which
lists the sequence of packet receptions (OK) and erasures (E)
and shows the corresponding coding decisions made by the
sender for a two receiver case. This example shall be discussed
in more detail below and in the next section.

The scheme in [10] was extended in [11] with the goal of
reducing the decoding delay, specifically for the two receiver
scenario. Here, packets that are unseen at a receiver because
all combinations containing that packet were lost are requested
by the receiver at a later stage. In the example of Table I, this
happens in time slot 7, where receiver 2 requestsp6, instead
of p5, resulting in the transmission ofp6 ⊕ p7. Packetp5 is
only requested in time slot 9, after receiver 2 decodedp6.

III. D ELAY ANALYSIS

Before proceeding with the analysis, it is important to
clarify the notion of delay in the context of online network
coding algorithms. Once an information packetp arrives at
the sender queue it will typically go through five different
stages: (1)p is mixed with other packets by means of coding
operations, (2)p is transmitted to the receivers, (3)p is seen
by the receiver, (4)p is decoded, and (5)p is delivered to the
application. In the following we shall focus on the decoding
delay, which is measured as the number of slots between the
first transmission of an encoding of the packet and successful
decoding at the receiver. Clearly, this delay subsumes the time
it takes for a packet to be seen and the time it takes for a seen
packet to be decoded.
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A. Two Receivers

We start with the case of two receivers and assume without
loss of generality that the sender restricts its transmissions
to uncoded packets or XORs of two packets [10]. Since we
assume that all packets that are necessary for encoding are
readily available at the sender, the incurred decoding delay
depends only on the rules enforced by the online network
coding algorithm and the erasure patterns of the two channels.
In each time slot we have one of the erasure events listed in
Table II, which occur with the given event probabilities.

TABLE II
L IST OF POSSIBLEERASUREEVENTS

Event Description Probability
A No erasures P (A) = (1 − ǫ1)(1 − ǫ2)
B Receiver 1 gets the coded packet

and receiver 2 observes an erasure
P (B) = (1 − ǫ1)ǫ2

C Receiver 1 observes an erasure and
receiver 2 gets the coded packet

P (C) = ǫ1(1− ǫ2)

D Both receivers observe an erasure P (D) = ǫ1ǫ2

An erasure event causes a receiver buffer to build up achain
of lengthK, which we define as a set ofK independent linear
combinations involvingL > K symbols, which cannot be
decoded by the receiver. In the scenario shown in Table I,
receiver 2 suffers from losses (denoted by E) in time slots 1
and 5, whereas receiver 1 obtains everything error free (OK)
except for the data transmitted in slot 7. Each erasure sets
a mark for a new chain of undecodable linear combinations,
such that each chain begins immediately after its preceding
chain has been solved. For example, up to slot 4 receiver 2
built up the chain{p1 ⊕ p2,p2 ⊕ p3,p3 ⊕ p4}. The erasure
in slot 5 sets a mark for a new chain, which will involvep5

by necessity. However, before that chain begins, the first chain
grows to{p1⊕p2,p2⊕p3,p3⊕p4,p4⊕p6,p6⊕p7}. Since
receiver 1 experiences an erasure in slot 7, the encoding rule
forces the sender to transmit packetp7 in uncoded fashion,
which in turn allows receiver 2 to break its first chain and
recover packets{p1,p2,p3,p4,p6,p7}. The second chain
begins immediately in slot 9 with{p5 ⊕p8}, because packet
p5 was not seen by receiver 2 in slot 5. Note that an erasure
event at the leading receiver 1 is not enough to allow receiver
2 to break the current chain. If the following packet is lost at
receiver 2, as shown in the example with the loss ofp2 in
time slot 11, the chain will simply continue to grow.

Clearly, the decoding delay is deeply influenced by the
length of chains such as these and by the sender’s ability
to break them in a timely manner — in spite of randomly
occurring packet erasures

1) First-Order Analysis:Assuming that channels 1 and 2
have erasure probabilitiesǫ1 andǫ2, respectively, and that the
sender follows the simple ARQ rules outlined in Section II,
we can describe the chain duration in a probabilistic fashion.

Proposition 1: After an erasure of typeB that starts a chain
at receiver 2, the chain remains unbroken for a duration ofT

slots with probability

P (T ) = ǫ1(1− ǫ2)
2

T−1∑

t1=0

(ǫ1ǫ2)
t1 ·

·
∑

t2,t3:2t2+t3=T−1−t1

(ǫ1ǫ2(1 − ǫ1)(1− ǫ2))
t2 · (1− ǫ1)

t3 . (1)

Proof: We start by observing that events of typeD only
increase the delay until the chain can be decoded but do not
otherwise affect the recovery process or the length of the chain.
Therefore, there is nothing to lose from ignoring events of type
D for now and taking their impact into account only at a later
stage. If we only take into account events of typeA, B or C,
a chain starting with an erasure is only broken after an erasure
event of typeC (in which receiver 2 obtains a packet missed
by receiver 1) immediately followed by an event of typeA
or C, in which receiver 2 obtains the uncoded symbol that
will ultimately allow it to decode the chain. While the chain
is unbroken, any occurrence of event pairs that are notCC or
CA will add to the duration of the chain. Any occurrence of
D at any slot (including between the first and second events
of the pairs we considered previously) will further increase
the chain duration.

Since the channel erasures are independent from slot to slot,
we can think of all the occurrences ofD, none of which affects
the breaking of the chain in any way, as a contiguous block in
the first slots after the erasure. With this assumption in mind,
notice that for the chain to be brokenT + 1 slots after the
erasure, in slotT we must observeC, since the only pairs
that break a chain areCA andCC. Thus, after the first slots
(whereD was observed) and up to and including slotT −2, if
we observe aC, it must be followed by the eventB. Regarding
the remaining slots, we can have isolated eventsA and B

(only the ones not preceded byC, because those are already
taken into account). Therefore, lettingt1, t2 and t3 represent
the number of occurrences of the eventsD, CB andA ∪ B,
respectively, we have that

P (T )=

T−1∑

t1=0

P (D)t1
∑

t2,t3:2t2+t3=T−1−t1

P (CB)t2(P (A) + P (B))t3 ·

·(P (CA) + P (CC)) (2)

Notice that, since erasures in different slots are independent
of each other, we have thatP (CA) = P (C)P (A), P (CB) =
P (C)P (B) andP (CC) = P (C)2. Thus, substitutingP (A),
P (B) and P (D) by the expressions in Table II in (2) and
simplifying the resulting terms we obtain Equation (1).

Likewise, we can compute the distribution for the chains
built up at the other receiver.

Proposition 2: After an erasure of typeC, a chain at
receiver 1 remains unbroken for a duration ofT slots with
probability

P (T ) = ǫ2(1− ǫ1)
2

T−1∑

t1=0

(ǫ1ǫ2)
t1 ·

·
∑

t2,t3:2t2+t3=T−1−t1

(ǫ1ǫ2(1− ǫ1)(1 − ǫ2))
t2 · (1− ǫ2)

t3 . (3)

Proof: The proof follows analogously to the previous
proof by swapping eventsB andC.

2) Higher-Order Analysis:As mentioned earlier, if a sec-
ond erasure of typeB occurs while receiver 2 is still pro-
cessing an unbroken chain, the result can be viewed as a
marker that signals a future new chain. This second chain
will begin immediately after the receiver recovered from the
current chain. From then on, the distribution of the number of
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slots required to break it is also given by Proposition 1. The
delay with which receiver 2 sees (and later decodes) the packet
missed in the second erasure will naturally be dependent on
the number of slots that pass between the second erasure and
the breaking of the first chain. A similar argument applies
to the kth erasure event that takes place while receiver 1 is
recovering from the first chain. The result is a marker for a
kth chain, whose overall delay is given byD =

∑k

i=0
Ti,

whereT0 is the number of slots between thekth erasure and
the breaking of the first chain andTi denotes the time it takes
to break chaini. Notice thatT0 follows the same distribution
asTi, because it counts the time slots between an erasure and
the breaking of a chain. Clearly,D results from the sum of
the independent and identically distributed random variables
T0, T1, . . . , Tk, and for this reason is itself a random variable.

B. Multiple Receivers

As should be expected, determining the various forms of
delay becomes increasingly complex for larger numbers of
receivers. To gain some insight, we start by observing that,
at any point in time there will be at least one leader, where
leader(s) at time slott are one or more of the receivers which
have received the maximum number of packets up to time slot
t. The following proposition describes an important property
of the leader status.

Proposition 3: A receiver that became a leader at timet and
stays in the group of leaders until it receives one more packet
at time t + δ is able to decode all packets included in any
of the linear combinations transmitted untilt+ δ.1 A receiver
continues to be able to decode immediately all coded packets
at t′ > t + δ, provided it remains the leader or a member of
the group of leaders.

Proof: Assume the leaders lose a packet at timet (oth-
erwise no other receiver can become a leader) and suppose
that they received the firstd packets up to that time. These
packets carry encodings of at most the firstd+1 information
units. This ensures that leaders would have been able to decode
a new packet, had they received the current transmission. A
new receiver is now to become part of the leaders receives
its next packet at timet + δ (and thus no other leaders
receive a packet betweent and t + δ). Since the coding
algorithms are throughput optimal (i.e., each received packet
is innovative) the receiver will haved + 1 (coded) packets
which are combinations of the firstd + 1 original packets. It
can thus solve the corresponding system of linear equations
and decode all packets.

As shown in the example of Table I for time slot 8, also non-
leaders may break chains and decode packets. However, as the
number of receivers increases and/or the erasure probabilities
become more heterogeneous, the probability that non-leaders
can decode becomes very small.

We use the fact that leaders can decode all packets to derive
an upper bound on the decoding delay in the multiple receiver

1A receiver may become part of the group of leaders when it receives a
packet and the leaders do not. However, if the next packet or packets are lost
and the receiver drops out of the group of leaders before receiving another
packet, it will not be able to break its chain. This is analogous to the events
CB andCD in the previous example.

TABLE III
TRANSITION RULES FOR THETHREE-RECEIVERCASE

Event R1 R2 R3 Next State Direction
E0 OK OK OK (x1, x2) ·
E1 OK OK E (x1, x2 + 1) ↑
E2 OK E OK (x1 + 1, x2) →
E3 OK E E (x1 + 1, x2 + 1) ր
E4 E OK OK (x1 − 1, x2 − 1) ւ
E5 E OK E (x1 − 1, x2) ←
E6 E E OK (x1, x2 − 1) ↓
E7 E E E (x1, x2) ·

Fig. 1. Random walk interpretation of the state evolution atreceiverR1.

case. As we have seen, the decoding delay is tightly connected
to the time interval between the moment in which a receiver
ceases to be a leader and the moment it is able to catch up
and regain the leader status. Describing the system in termsof
the packets received by each of the receivers leads to a state
space which grows exponentially in the number of receivers
and is therefore intractable.

However, taking the point of view of one of the receivers, for
instanceR1, we can describe the evolution of the differences
in received packets betweenR1 and the remaining receivers as
a random walk in an(n−1)-dimensional lattice, wheren is the
number of receivers. To develop some intuition, consider the
case of three receivers, denotedR1, R2, andR3. Letx1 denote
the difference of received packets betweenR1 andR2, and let
x2 describe the difference betweenR1 andR3. The state of the
system from the perspective ofR1 is thus described by the pair
(x1, x2), which can be viewed as a point in two-dimensional
space. In each time slot, there are eight possible erasure events,
depending on whether each of the receivers suffers a packet
loss or not. If, in a given time slot, all receivers lose a packet
or if there are no packet losses, then the state does not change.
In all other cases,x1 andx2 will increase or decrease by one
unit according to the transition rules in Table III, where once
again we use OK and E to denote successful reception and
packet erasure, respectively.

Once we associate the erasure events with the corresponding
probabilities, which can be easily computed from the erasure
probabilities for each of the receivers, we obtain a random
walk on a two-dimensional lattice, as illustrated in Figure1.

Clearly,R1 is a leader if and only if the coordinates(x1, x2)
lie in the first quadrant. In this case,x1 andx2 are both positive
(or zero) andR1 has received either the same or a higher
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number of packets than the other receivers.R1 ceases to be a
leader, when its state position moves from the first quadrantto
one of the other three. Conversely, it becomes a leader again
if its state position moves back to quadrant one. The length
of time R1 spends in each of the quadrants depends only on
the erasure probabilities, or equivalently the probabilities of
erasure eventsE1 . . . E7.

The proposed random walk model proves to be very useful
for computing upper bounds on the decoding delay experi-
enced by receiverR1. When(x1, x2) is in the first quadrant,
we have thatR1 is the leader and, thus, by Proposition 3, every
received packet is immediately decoded, which is equivalent
to zero delay. Therefore, ifn is the number of slots in which
R1 is a leader ande is the number of erasures observed by
R1 during those slots,n− e packets have zero delay.

When (x1, x2) lies outside the first quadrant (or, equiva-
lently, whenR1 is not a leader), we can upper bound the
delay of the packets transmitted in those slots as follows. Let
t1 be a time slot such that(x1, x2) is in the first quadrant at
slot in slot t1 − 1 and elsewhere in slott1. Furthermore, let
t2 be the first time slot aftert1 such that(x1, x2) is again in
the first quadrant in slott2 + 1. This means that during the
slots betweent1 andt2, R1 is not a leader. In the worst case,
by Proposition 3, all the packets transmitted betweent1 and
t2 will only be decoded at slott2 + 1. Hence, we can upper
bound the delay of all these packets byt2 − t1.

It is worth pointing out that generalizing this idea from
three receivers ton receivers forces us to consider random
walks in n-dimensional lattices. The class of random walks
we need can be deemed as untypical on several counts: (a)
they assign non-uniform probabilities to different directions by
virtue of the properties of online network coding, and (b) they
admit the possibility that a node stays in the same position.
Close inspection of the related literature in probability theory
reveals that the complete mathematical characterization of
integer random walks — even for uniform distributions in
two dimensions — offers non-trivial difficulties. A large body
of work is concerned with the number of points covered
by the random walk up to a certain time (see e.g. [16]),
other contributions focus on hitting times on the coordinate
axis [17] or among multiple random walks [18]. At this time,
providing a mathematical description of the crossing times
between quadrants of a non-uniform random walk is clearly a
daunting task, which justifies the use of numerical techniques
at the final stage of the proposed analysis.

Returning to the three-node case, Fig. 2 illustrates the
upper bounds on the decoding delay of receiverR1 we obtain
using the proposed methodology. As was to be expected, the
behavior of the cumulative distribution function can be very
different depending on whether the erasure probability of the
receiver of interest is equal to the erasure probabilities of the
other receivers, or lower, or higher. With a higher erasure
probability, as shown in the bottom curve withǫ1 = 0.25,
ǫ2 = 0.2, and ǫ3 = 0.1, almost all of the chains are broken
only after the leading receivers have receivedall of their
packets, resulting in a very high decoding delay. As an extreme
case, if one of the receivers has a perfect channel, there areno
opportunities for any of the other receivers to break chains.
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Fig. 2. CDF for the upper bound on the decoding delay of receiver R1 for
the proposed random walk model based on 10000 simulations with 1000 slots
for three different cases of erasure probabilities.

Any effort to control the delay by means of informed
coding decisions amounts to creating opportunities for non-
leading nodes to achieve the leader status. In our random
walk interpretation, this is equivalent to pushing the target
receiver to the first quadrant, whenever it has spent more than
an acceptable amount of time in the other three quadrants.
From a mathematical point of view, changing the encoding
rule corresponds to altering the probabilities assigned toeach
direction of the random walk, thus making trajectories towards
the first quadrant more likely. Achieving this goal in practice
is the topic of the next section.

IV. ONLINE NETWORK CODING WITH DELAY

CONSTRAINTS

In the following, we present online network coding algo-
rithms that are targeted towards effective delay control. The
underlying system setup is the one we described in Section II.

A. Systematic Online Network Coding

As argued in the previous section, the desirable properties
of ANC in terms of throughput optimality and a small sender
queue size come at the expense of a potentially high decoding
delay. We will now show that by allowing for some flexibility
with respect to the sender’s queue size, we can significantly
reduce the average delay — without sacrificing throughput.

Systematic Online Network Coding (SNC): A packet that
is transmitted by the sender for the first time, is sent uncoded.
Whenever the current leader suffers a packet loss, the next
packet transmitted by the sender is a linear combination
containing the last unseen packet of each receiver.

An example of the SNC algorithm is given in Table IV.
It is not difficult to see that SNC does quite the opposite of
ANC, in the sense that the packets sent after receiver 2 losesa
packet remain uncoded, whereas ANC enforces their encoding.
Conversely, a packet loss at receiver 1 causes the transmission
of the coded packetp1 ⊕ p7 in time slot 8, whereas in the
case of ANC the same event causes the transmissions of an
uncoded packet.

The average queue size at the sender increases toΩ((1 −
ǫ)−2), the same as for traditional random linear networking
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TABLE IV
EXAMPLE OF SYSTEMATIC ONLINE NETWORK CODING

Time Slot Sent Packet Receiver 1 Receiver 2
1 p1 OK E
2 p2 OK OK
3 p3 OK OK
4 p4 OK OK
5 p5 OK E
6 p6 OK OK
7 p7 E OK
8 p1 ⊕ p7 OK OK
9 p8 OK OK
10 p9 E OK
11 p5 ⊕ p9 OK E
12 p10 OK OK

coding over all packets in the sender’s queue [10], since, for
the algorithm to guarantee reliable communication, packets
can only be removed from the sender’s queue after they have
been successfully decoded at all receivers.

Proposition 4: With SNC, each received packet is innova-
tive and the algorithm is thus throughput optimal.

Proof: A packet is sent uncoded only if it was never
transmitted previously. Such a packet is clearly innovative for
each receiver that obtains it. Coded packets are combinations
of the oldest unseen packets of all receivers, as in ANC.
Their reception thus causes a receiver to see the oldest unseen
packet, which corresponds to an increase of the dimension of
the information subspace available at that receiver. The proof
follows analogously to the proof of throughput optimality for
ANC in Theorem 3 of [10].

Since most of the packets are sent uncoded, the average
packet delay is much smaller than with ANC. For the same
reason, the number of required encoding and decoding opera-
tions is vastly reduced compared to ANC. In short, the SNC
algorithm builds up chains over missing packets, not over all
of the packets that follow a packet loss.

For real-time traffic, achieving throughput optimality is
usually not possible, since packets cease to be useful to the
application if they are delivered only after a certain deadline.
In such a case, the sender has to give up on those packets. In
this case, for SNC, only the missing packet is skipped, and,
whenever possible, the sender continues to try to repair other
missing packets within their deadline. ANC, on the other hand,
loses the whole chain, which leads to a substantial reduction
in throughput.

B. Online Network Coding with a Delay Threshold

To further reduce the worst-case delay for each receiver,
we can trade off some of the throughput for a substantial
reduction in delay. As a simple first measure to reduce delay,
we can retransmit a packet in uncoded form, in case a packet
deadline is in danger of being violated.

Systematic Online Network Coding with a Delay
Threshold (SNCT): Let t be the current time slot andtij be
the deadline for packetpj at receiveri. The sender proceeds
as before, as long ast < tij − δ for all undecoded packetsj
and for each receiveri. In case a deadline for an undecoded
packetj is “in danger” and t ≥ tij − δ, packetpj is sent
uncoded. In case receiveri loses packetpj, this packet is

repeated until the packet is either received or the deadline
expires. In case multiple deadlines are in danger, the sender
randomly picks a suitable undecoded packet and sends it in
uncoded form.

The same concept can be applied to ANC to obtainANC
with a Delay Threshold (ANCT). Again, the sender proceeds
as with ANC, as long as no deadlines for yet undecoded
packets are in danger, and otherwise transmits the correspond-
ing packet in uncoded form. Once the packet is repaired or
the deadline expires, the sender resumes with transmitting
combinations of the last unseen packets of all receivers. Note
that in this case, it is no longer possible for an ANCT
sender to discard packets once they are seen by all senders.
Consequently, the expected queue size for ANC also increases
to Ω((1 − ǫ)−2), the same as SNC and SNCT.

V. SIMULATION RESULTS

We investigate the performance of the different algorithms
and the impact of imposing decoding deadlines by means of
simulation. We use a custom simulator with a full implemen-
tation of ARQ for network coding without and with delay
threshold (ANC, ANCT), as well as systematic online network
coding (SNC, SNCT). Packets are broadcast by the sender and,
as before, we use a simple channel model with independent
erasures for the different receivers. For all simulations,the
sender has 100 original packets to transmit to the receivers.
The metrics we consider are the mean and worst-case decoding
delay, per receiver throughput, and average and maximum
queue size for the coding at the sender, averaged over multiple
simulation runs. The throughput is calculated as the total
number of packets decoded, divided by the number of time
slots it took until the last packet was decoded.

A. Impact of the Delay Threshold

The value of the delay threshold is the main parameter that
allows to trade off throughput for delay. Low delay thresholds
increase fairness, since the difference in terms of number of
received packets between the leaders and other receivers is
reduced. They also reduce sender queue size for the same
reason. For the simulations, we use a receiver set size ofN =
8 and the channels to the receivers all have erasure probability
ǫ = 0.25. The sender continues to send packets according to
the respective algorithms, until all receivers are able to decode
all packets.

Figure 3(a) shows the maximum and the mean decoding
delay for ANC and SNC without delay threshold (inf.) and
for thresholds between 2 and 40. Despite the same erasure
probability for all receivers, the worst case delay for ANC is
close to duration of the simulation, i.e., the worst receiver has a
single chain which is not broken until the very end. SNC fares
much better with a worst case delay only half as large. Since
with 8 receivers, ANC transmissions are usually combinations
of 8 packets, a single chain may have many packets missing
(not just a single one as in the two receiver case). While the
oldest unseen packet that started the chain is seen with ANC
at the same time as it is seen with SNC, SNC can decode that
packet earlier than ANC is able to break the full chain.
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Fig. 3. Analysis of different delay thresholds (∞, 40, 20, 10, 5, 2) for 8 receivers andǫ = 0.25

The distribution of delay for all receivers is shown in
Figure 3(b). For SNC(T), 75% of the packets are received
without delay. The higher the threshold, the later the CDF
curve jumps to a cumulative probability of 1, with the highest
delay for plain SNC, reaching 1 for a delay of 75. ANC(T)
has a much more varied distributions of delays, with less than
a third of the packets received without delay in most cases.

Mean throughput is given in Figure 3(c), and the error
bars indicate maximum and minimum throughput among the
receivers. Optimum throughput is at 0.75 for ANC and SNC
without threshold. (Note that the throughput of a receiver with
erasure probabilityǫi will be less than1 − ǫi w.h.p.) The
throughput reduction caused by the threshold is on the order
of 30% to 40%, depending on the delay threshold chosen.
As we decrease the threshold and enforce lower delays, we
can also see how maximum and minimum throughput get
closer and closer, leading to higher throughput fairness among
the receivers. Throughput is very close for both ANC and
SNC; however, SNC achieves a slightly more homogeneous
distribution of throughput and thus better fairness.

Also queue size decreases when a threshold is introduced,
as shown in Figure 3(d). As expected, SNC requires a larger
sender queue size than ANC. However, the introduction of a
threshold keeps the maximum queue size to levels that are
small enough to be easily manageable at a sender, even for

larger batches of packets to be sent. Overall, the benefits
in terms of delay improvements outweigh the queue size
increment for most realistic application scenarios.

B. Impact of the Size of the Receiver Set

As the number of receivers increases, their heterogeneity
in terms of number of received packets will increase as well,
even if they all have the same channel erasure probability.
Furthermore, as discussed in Section III, also the probability
that non-leaders can decode early becomes very small. The top
graph in Figure 4(a) shows that the maximum decoding delay
for ANC quickly approaches the duration of the simulation
of 150 time slots. While SNC has a similar worst case
delay for very small and very large receiver sets, delays for
intermediate sizes are significantly lower. For two receivers,
chains with ANC are only missing a single packet which is
repaired at the same time, as the packet is repaired through
a coded transmission with SNC. Similarly, for large receiver
sets, decoding the coded repair packet with SNC becomes as
hard as obtaining enough degrees of freedom to decode a full
chain. Introducing a delay threshold clearly lowers the worst
case delay for both ANC and SNC. With a threshold of 10,
packets are delivered at the latest after around 20 slots, due
to multiple packets that need to be repaired at the same time,
and loss of uncoded repair packets.
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Fig. 4. Analysis of different sizes of receiver sets from 2 to16 for thresholds∞ and 10, andǫ = 0.25
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Fig. 5. Analysis of four different cases of heterogeneous (1,2) and homogeneous (3,4) erasure probabilities for thresholds∞ and 10, and for 8 receivers

More importantly, for ANC the average delay even exceeds
50 time slots. Given that packets originate over the course of
the simulation, the worst possible average delay is 75. This
indicates that the vast majority of packets for most of the
receivers can only be decoded at the end of the simulation
and intermediate decoding is rare. Average delay for SNC is
comparable to the average delay for ANCT with a threshold,
while the average delay for SNCT is negligible.

As expected, throughput for ANC and SNC, as well as
ANCT and SNCT is comparable. However, the very short
delay threshold of only 10 as used in these simulations has
quite a significant impact on throughput. For algorithms with
delay threshold, throughput may drop down to around1

2
of

that without threshold.

C. Impact of the Erasure Probabilities

We finally evaluate algorithm performance for four different
homogeneous and heterogeneous sets of erasure probabilities.
The first case has 7 receivers with erasure probability 0.25,and
a single receiver with erasure probability 0.15. The secondcase
has evenly distributed erasure probabilities, with two receivers
at erasure probability 0.25, two receivers at 0.2, two receivers
at 0.15, and two receivers at 0.1. For the homogeneous cases,

for all receivers we use an erasure probability of 0.25 in case
3 and of 0.1 in case 4. As before, there are 8 receivers and a
delay threshold of 10 for ANCT and SNCT.

Since for 8 receivers even the homogeneous case shows a
worst case delay close to the overall duration of the simulation,
heterogeneous erasure probabilities cannot exacerbate the per-
formance, as can be seen from Figure 5(a). For smaller sizes
of receiver sets and for higher numbers of transmitted packets,
intermediate decoding occurs more frequently and a much
more significant advantage for the use of delay thresholds in
terms of maximum decoding delay can be observed. Again,
we see a throughput reduction caused by the use of delay
thresholds of around 40%, as shown in Figure 5(b). However,
it is important to note that if packets do become useless after
their deadline expires and are discarded by the receivers, the
throughput reduction caused by deadline violations is larger
than that caused by the use of a delay threshold.

VI. I MPERFECT ORDELAYED FEEDBACK

So far, we assumed that the source always has perfect
knowledge of the decoding status of each receiver, which
is usually not feasible in practice. The overhead incurred by
continuous feedback from all the receivers may be too high.
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Furthermore, the feedback channel may experience erasures,
bit errors, and delay.

Consider the case where the feedback packet of a certain
receiver is lost. When performing the next coding decision,
the source does not know whether that receiver has received
the previously sent packet or not. In this situation, the source
can 1) assume that the receiver received that packet and now
requires the next unseen packet, 2) assume that the receiver
missed the packet and still requires the unseen packet reported
previously, 3) perform a random experiment to decide whether
to consider the packet as received or lost, or 4) ignore the
receiver and not include any of its unseen packets in the coding
decisions until feedback from the receiver is heard again.

The tradeoff between throughput and delay is reflected
also in the treatment of missing feedback. In principle, the
more optimistic the sender is in its assumptions about packet
reception, the higher the expected throughput for the receivers,
but the higher the risk of increased chain lengths (and thus
delay). With the systematic encoding algorithms, the main
event that needs to be detected is packet loss at the leader
which allows to send coded repair packets. Whenever this
event is detected late due to feedback loss, the same coded
packet can be sent, but the delay of the repaired packets
increases by the corresponding amount. Whenever the event
is declared erroneously, throughput for the leader decreases
since a non-innovative packet is sent but other receivers
may decode a previously lost packet earlier. These consid-
erations are also confirmed by preliminary simulations with
our algorithms. Thus, the algorithms need continuous feedback
from the leader, but they can easily be modified to have
less frequent feedback from other receivers to reduce control
overhead. Outdated information for the other receivers is often
unproblematic, since only the oldest unseen packet is repaired.
To this end, feedback about multiple packets can be aggregated
in a feedback vector [1]. Distributed algorithms to effectively
limit the amount of feedback have been developed, e.g., in the
context of reliable multicast [19].

VII. C ONCLUSIONS

Taking the decoding delay as our primary figure of merit,
we analyzed how the encoding rules of online network cod-
ing with feedback affect its performance, in scenarios with
homogeneous and heterogeneous erasure probabilities. By
describing the information backlog of different receiversin
terms of chains of undecoded packets and by mapping their
relative behavior in terms of a particular class of random
walks, we were able to show that without effective delay
control, weaker receivers are unlikely to recover from erasures
within reasonable time and that decoding success is essentially
dependent on having some advantage over other receivers in
terms of received packets.

This observation motivated us to re-design the encoding
stage to ensure that all receivers are able to decode at least
some of the packets most of the time. Surprisingly, as our
extensive simulation study shows, sending a large fractionof
the packets in uncoded form provides a throughput optimal
solution with striking gains in terms of decoding delay. This

is particularly useful for streaming applications with stringent
delay requirements, in particular when the source codec is able
to cope with missing packets and thus in-order delivery of all
packets is not really required.

As part of our ongoing work, we intend to combine our
algorithms with a state-of-the-art video codec and tune their
performance to improve the perceived video quality. This
approach involves some prioritization in the decision of which
packets to combine, to take into account their relative impor-
tance when decoding the video stream. We also observe that
sending a packet that is in danger of missing a deadline in
uncoded form is only a first step towards delay optimized
coding algorithms. Coding strategies that ensure immediate
decoding of such packets at the lagging receiver, while provid-
ing the other time-constrained receivers with innovative linear
combinations, will further improve performance. Finally,in
order to design algorithms that work well in practice, the
implications of imperfect feedback need to be investigatedin
more detail.
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