
ar
X

iv
:0

80
9.

50
22

v1
 [

cs
.N

I]
 2

9
S

ep
 2

00
8

Network coding meets TCP
Jay Kumar Sundararajan∗, Devavrat Shah∗, Muriel Médard∗, Michael Mitzenmacher†, João Barros‡

∗Dept. of EECS †School of Eng. and Appl. Sciences ‡Dept. of Computer Science
Massachusetts Institute of Technology, Harvard University, Instituto de Telecomunicações

Cambridge, MA 02139, USA Cambridge, MA 02138, USA Universidade do Porto, Portugal
{jaykumar,devavrat,medard}@mit.edu michaelm@eecs.harvard.edu barros@dcc.fc.up.pt

Abstract—We propose a mechanism that incorporates network
coding into TCP with only minor changes to the protocol
stack, thereby allowing incremental deployment. In our scheme,
the source transmits random linear combinations of packets
currently in the congestion window. At the heart of our scheme
is a new interpretation of ACKs – the sink acknowledges every
degree of freedom (i.e., a linear combination that reveals one
unit of new information) even if it does not reveal an original
packet immediately. Such ACKs enable a TCP-like sliding-
window approach to network coding. Our scheme has the nice
property that packet losses are essentially masked from the
congestion control algorithm. Our algorithm therefore reacts
to packet drops in a smooth manner, resulting in a novel and
effective approach for congestion control over networks involving
lossy links such as wireless links. Our experiments show that our
algorithm achieves higher throughput compared to TCP in the
presence of lossy wireless links. We also establish the soundness
and fairness properties of our algorithm.

I. I NTRODUCTION

Network coding has emerged as an important potential ap-
proach to the operation of communication networks, especially
wireless networks. The major benefit of network coding stems
from its ability tomix data, across time and across flows. This
makes data transmission over lossy wireless networks robust
and effective. Despite this potential of network coding, westill
seem far from seeing widespread implementation of network
coding across networks. We believe a major reason for this
is that it is not clear how to naturally add network coding to
current network systems (the incremental deployment prob-
lem) and how network coding will behave in the wild.

In order to bring the ideas of network coding into practice,
we need a protocol that brings out the benefits of network
coding while requiring very little change in the protocol stack.
Flow control and congestion control in today’s internet are
predominantly based on the Transmission Control Protocol
(TCP), which works using the idea of a sliding transmission
window of packets, whose size is controlled based on feed-
back. The TCP paradigm has clearly proven successful. We
therefore see a need to find a sliding-window approach as
similar as possible to TCP for network coding that makes use
of acknowledgments for flow and congestion control. (This
problem was initially proposed in [1].) Such an approach
would necessarily differ from the generation-based approach
more commonly considered for network coding [2]. In this
paper, we show how to incorporate network coding into TCP,

allowing its use with minimal changes to the protocol stack,
and in such a way that incremental deployment is possible.

The main idea behind TCP is to use acknowledgments of
newly received packets as they arrivein correct sequence order
in order to guarantee reliable transport and also as a feedback
signal for the congestion control loop. This mechanism re-
quires some modification for systems using network coding.
The key difference to be dealt with is that under network
coding the receiver does not obtain original packets of the
message, but linear combinations of the packets that are then
decoded to obtain the original message once enough such
combinations have arrived. Hence, the notion of an ordered
sequence of packets as used by TCP is missing, and further, a
linear combination may bring in new information to a receiver
even though it may not reveal an original packet immediately.
The current ACK mechanism does not allow the receiver to
acknowledge a packet before it has been decoded. For network
coding, we need a modification of the standard TCP mecha-
nism that acknowledges every unit of information received.
A new unit of information corresponds mathematically to a
degree of freedom; essentially, oncen degrees of freedom
have been obtained, a message that would have requiredn
unencoded packets can be decoded. We present a mechanism
that performs the functions of TCP, namely reliable transport
and congestion control, based on acknowledging every degree
of freedom received, whether or not it reveals a new packet
immediately.

Our solution introduces a new network coding layer between
the transport layer and the network layer of the protocol stack.
We use the same principle for congestion control as TCP,
namely that the number of packets involved in transmissions
cannot exceed the number of acknowledgments received by
more than the congestion window size. The rules for adapt-
ing the congestion window size are also identical to TCP.
However, we introduce two main changes. First, whenever
the source is allowed to transmit, it sends a random linear
combination of all packets in the congestion window. Second,
the receiver acknowledges degrees of freedom and not original
packets. (This idea was previously introduced in [3] in the
context of a single hop erasure broadcast link.) An appropriate
interpretation of the degree of freedom allows us to order the
receiver degrees of freedom in a manner consistent with the
packet order of the transmitter. This lets us utilize the standard
TCP protocol with the minimal change. We use the TCP-Vegas

http://arXiv.org/abs/0809.5022v1

2

protocol, as it is more compatible with our modifications. The
rest of the paper explains the details of our new protocol along
with its theoretical basis, and analyzes its performance using
simulations as well as an idealized theoretical analysis.

In considering the potential benefits of our network coding
with a TCP-based protocol, we focus on the area of wireless
links. It is well known that TCP is not well suited for lossy
links, which are generally more prevalent in wireless systems.
Adapting TCP for wireless scenarios is a very well-studied
problem (see [4] and references therein for a survey). Coding
across packets is a very natural way to handle losses, and is
well-suited to handle the broadcast nature of wireless for a
multiple receiver scenario. Our extension of TCP to a system
with coded packets leads to a new approach to implementing
TCP over wireless networks, and it is here where the benefits
of our approach are most dramatic.

TCP performs poorly on lossy links primarily because it is
designed to interpret each loss as a congestion signal. Our new
protocol therefore aims to make a lossy channel appear as a
lossless channel to TCP, using random linear network coding.
Masking losses from TCP has been considered earlier using
link layer retransmission [5]. However, it has been noted in
the literature [6], [7] that the interaction between link layer
retransmission and TCP’s retransmission can be complicated
and that performance may suffer due to independent retrans-
mission protocols at different layers. In contrast, our scheme
does not rely on the link layers for recovering losses. Instead,
we use an erasure correction scheme based on random linear
codes between the TCP and IP layers. Our scheme respects
the end-to-end philosophy of TCP – coding operations are
performed only at the end hosts.

A. Previous work

Starting with the initial works of [8] and [9], there has
been a rapid growth in the theory and potential applicationsof
network coding. These developments have been summarized
in several survey papers and books such as [10]. However, to
a large extent, this theory has not yet been implemented in
practical systems.

There have been several important advances in bridging the
gap between theory and practice. The distributed random linear
coding idea, introduced by Hoet al. . [11], is a significant step
towards a robust implementation. The work by Chouet al. [2]
introduced the idea of embedding the coefficients used in the
linear combination in the packet header, and also the notionof
generations (coding blocks). The work by Kattiet al. [12] used
the idea of local opportunistic coding to present a practical
implementation of a network coded system for unicast.

II. PRELIMINARIES

We introduce definitions that will be useful throughout the
paper (see [3] for more details). We treat packets as vectors
over a finite fieldFq of sizeq. All the discussion here is with
respect to a single source that generates a stream of packets.
The kth packet that the source generates is said to have an
indexk and is denoted aspk.

1 0

1 0

1 - - - - - - -

1 - - - - - - -

1 - - - - - - -

p1 p2 p3 p4 p5 p6 p7 p8

Decoded

Seen Unseen

Basis of knowledge

space in RREF

Witness for p4

Number of seen packets = Rank of matrix = Dim of knowledge space

Fig. 1. Seen packets and witnesses in terms of the basis matrix

Definition 1 (Seeing a packet):A node is said to haveseen
a packetpk if it has enough information to compute a linear
combination of the form(pk + q), whereq =

∑

ℓ>k αℓpℓ,
with αℓ ∈ Fq for all ℓ > k. Thus,q a linear combination
involving packets with indices larger thank.
The notion of “seeing” a packet is a natural extension of the
notion of “decoding” a packet, or more specifically, receiving a
packet in the context of classical TCP. For example, if a packet
pk is decoded then it is indeed also seen, asq = 0. A node
can compute any linear combination whose coefficient vector
is in the span of the coefficient vectors of previously received
linear combinations. This leads to the following definition.

Definition 2 (Knowledge of a node):The knowledge of a
node is the set of all linear combinations of original packets
that it can compute, based on the information it has receivedso
far. The coefficient vectors of these linear combinations form
a vector space called theknowledge spaceof the node.
We state a useful proposition without proof (see Corollary 1,
[3] for details).

Proposition 1: If a node has seen packetpk, then it knows
exactly one linear combination of the formpk +q such thatq
is itself a linear combination involving onlyunseenpackets.
The above proposition inspires the following definition.

Definition 3 (Witness):We call the unique linear combina-
tion guaranteed by Proposition 1, thewitness for seeingpk.

A compact representation of the knowledge space is the
basis matrix. This is a matrix in row-reduced echelon form
(RREF) such that its rows form a basis of the knowledge
space. Figure 1 explains the notion of a seen packet in
terms of the basis matrix. Essentially, the seen packets are
the ones that correspond to the pivot columns of the basis
matrix. Given a seen packet, the corresponding pivot row gives
the coefficient vector for the witness linear combination. An
important observation is thatthe number of seen packets is
always equal to the dimension of the knowledge space, or
the number of degrees of freedom that have been received so
far. A newly received linear combination that increases the
dimension is said to beinnovative. We assume throughout the
paper that the field size is very large. As a consequence, each
reception will be innovative with high probability, and will
cause the next unseen packet to be seen (see Lemma 1).

Example:Suppose a node knows the following linear com-
binations: x = (p1 + p2) and y = (p1 + p3). Since

3

these are linearly independent, the knowledge space has a
dimension of 2. Hence, the number of seen packets must be
2. It is clear that packetp1 has been seen, sincex satisfies
the requirement of Definition 1. Now, the node can compute
z , x − y = (p2 − p3). Thus, it has also seenp2. That
meansp3 is unseen. Hence,y is the witness forp1, andz is
the witness forp2.

III. T HE NEW PROTOCOL

In this section, we present the logical description of our new
protocol, followed by a way to implement these ideas with as
little disturbance as possible to the existing protocol stack.

A. Logical description

The main aim of our algorithm is to mask losses from
TCP using random linear coding. We make some important
modifications in order to incorporate coding. First, instead of
the original packets, we transmit random linear combinations
of packets in the congestion window. While such coding
helps with erasure correction, it also leads to a problem
in acknowledging data. TCP operates with units of packets,
which have a well-defined ordering. Thus, the packet sequence
number can be used for acknowledging the received data. The
unit in our protocol is a degree of freedom. However, when
packets are coded together, there is no clear ordering of the
degrees of freedom that can be used for ACKs. Our main
contribution is the solution to this problem. The notion of
seen packets defines an ordering of the degrees of freedom
that is consistent with the packet sequence numbers, and can
therefore be used to acknowledge degrees of freedom.

Upon receiving a linear combination, the sink finds out
which packet, if any, has been newly seen because of the new
arrival and acknowledges that packet. The sink thus pretends
to have received the packet even if it cannot be decoded yet.
We will show in Section IV that at the end this is not a problem
because if all the packets in a file have been seen, then they
can all be decoded as well.

The idea of transmitting random linear combinations and
acknowledging seen packets achieves our goal of masking
losses from TCP as follows. As mentioned in Section II,
with a large field size, every random linear combination is
very likely to cause the next unseen packet to be seen in
order. So, even if a transmitted linear combination is lost,the
next unseen packet will eventually be seen by the receiver in
the form of the next linear combination that is successfully
received. From TCP’s perspective, this appears as though the
degree of freedom waits in a fictitious queue until the channel
stops erasing packets and allows it through. Thus, there will
never be any duplicate ACKs. Every ACK will cause the
congestion window to advance. In short,the lossiness of the
link is presented to TCP as an additional queuing delay that
leads to a larger effective round-trip time. The more lossy the
link is, the larger will be the RTT that TCP sees.

The natural question that arises is – how does this affect
congestion control? Since we mask losses from the congestion
control algorithm, the TCP-Reno style approach to congestion

4321 pppp +++

4321 pppp +++ 22

4321 pppp 43 +++

4321 pppp 624 +++

Lost

Lost

seen 1p

seen 2p

RTT
1

RTTRTT
2

Fig. 2. Example of coding, ACK and RTT measurement

control using packet loss as a congestion indicator is not well
suited to this situation. However, it is useful to note that the
congestion related losses are also made to appear as a longer
RTT. Therefore, we need an approach that infers congestion
from an increase in RTT. The natural choice is TCP-Vegas.

TCP-Vegas uses a proactive approach to congestion control
by inferring the size of the network buffers even before they
start dropping packets. The crux of the algorithm is to estimate
the round-trip time (RTT) and use this information to find the
discrepancy between the expected and actual transmission rate.
As congestion arises, buffers start to fill up and the RTT starts
to rise, and this is used as the congestion signal. This signal
is used to adjust the congestion window and hence the rate.
For further details, the reader is referred to [13].

In order to use TCP-Vegas correctly in this setting, we need
to feed it the fictitiously longer RTT of a degree of freedom
that includes the fictitious queuing delay. We introduce a novel
RTT estimation algorithm to do this.

The sender can note down the transmission time of every
linear combination. So the question is, when an ACK arrives,
to which transmission should it be matched in order to com-
pute the RTT? Our solution is to match it to the transmission
that occurred after the one that triggered the previous ACK.

Consider the example shown in Figure 2. The congestion
window is assumed to be 4 packets long. All 4 transmissions
are linear combinations of the 4 packets in the window. In this
example, the1st packet is seen because of the1st transmission.
The 2nd and 3rd transmissions are lost, and the4th trans-
mission causes the2nd packet to be seen (the discrepancy is
because of losses). As far as the RTT estimation is concerned,
transmissions 2, 3 and 4 are treated as attempts to convey
the 2nd degree of freedom. The RTT for the2nd packet is
therefore computed based on the oldest such attempt, namely
the2nd transmission. In other words, the RTT is the difference
between the time of reception of ACK=3 (in the figure), and
the time of the transmission of(p1 + 2p2 + 2p3 + p4). The
implementation of this idea is explained in the next subsection.

4

ApplicationApplication

TCP VegasTCP Vegas

Network Coding LayerNetwork Coding Layer

Internet ProtocolInternet Protocol

ApplicationApplication

TCP VegasTCP Vegas

Network Coding LayerNetwork Coding Layer

Internet ProtocolInternet Protocol

SOURCE SIDE RECEIVER SIDE

Data

ACK

Internet ProtocolInternet Protocol Internet ProtocolInternet Protocol

Lower layers

Fig. 3. New network coding layer in the protocol stack

B. Implementation

The implementation of all these ideas in the existing pro-
tocol stack needs to be done in as non-intrusive a manner as
possible. We present a solution which embeds the network
coding operations in a separate layer below TCP and above
IP on the source and receiver side, as shown in Figure 3. The
exact operation of these modules is described next.

The sender module accepts packets from the TCP source
and buffers them into an encoding buffer which represents the
coding window1, until they are ACKed by the receiver. The
sender then generates and sends random linear combinations
of the packets in the coding window. The coefficients used in
the linear combination are also conveyed in the header.

For every packet that arrives from TCP,R linear combina-
tions are sent to IP on average, whereR is the redundancy
parameter. The average rate at which linear combinations are
sent into the network is thus a constant factor more than
the rate at which TCP’s congestion window progresses. This
is necessary in order to compensate for the loss rate of the
channel and to match TCP’s sending rate to the rate at which
data is actually sent to the receiver. If there is too little
redundancy, then the data rate reaching the receiver will not
match the sending rate because of the losses. This leads to
a situation where the losses are not effectively masked from
the TCP layer. Hence, there are frequent timeouts leading toa
low throughput. On the other extreme, too much redundancy
is also bad, since then the transmission rate becomes limited
by the rate of the code itself. Besides, sending too many
linear combinations can congest the network. The ideal level
of redundancy is to keepR equal to the reciprocal of the
probability of successful reception. Thus, in practice thevalue
of R should be dynamically adjusted by estimating the loss
rate, possibly using the RTT estimates.

Upon receiving a linear combination, the receiver module
first retrieves the coding coefficients from the header and

1Whenever a new packet enters the TCP congestion window, TCP transmits
it to the network coding module, which then includes it in thecoding window.
Thus, the coding window is related to the TCP layer’s congestion window.
However, it is generally not identical to the congestion window. In particular,
the coding window will still include packets that were transmitted earlier by
TCP, but are no longer in the congestion window because of a reduction of
the window size by TCP. However, this is not a problem becauseincluding
more packets in the linear combination will only increase its chances of being
innovative.

appends it to the basis matrix of its knowledge space. Then,
it performs a Gaussian elimination to find out which packet is
newly seen so that this packet can be ACKed. The receiver
module also maintains a buffer of linear combinations of
packets that have not been decoded yet. Upon decoding the
packets, the receiver module delivers them to the TCP sink.

We now describe the implementation of the RTT com-
putation. As in TCP-Vegas, the sender module notes down
the system clock corresponding to every transmission. In
addition, the transmitter embeds in the header of every
transmission a transmit serial numberTX SERIAL NUM .
This serial number is used for identifying the transmissions
while computing RTT. Now, in every ACK, the sink embeds
in the headerthe transmit serial number of that packet,
the reception of which, triggered the sink’s previous ACK.
This is called PREV SERIAL NUM . (See the exam-
ple in Figure 2.) Upon receiving the ACK, the transmit-
ter first notes the sequence number of the packet that is
being ACKed. Then, for purposes of RTT computation, it
matches this ACK to the transmission whose serial number
is (PREV SERIAL NUM + 1). The transmit time of
the matched transmission is then loaded into the transmit
timestamp echo field of the TCP ACK packet and delivered
to TCP. Thus, the TCP sender is intentionally mislead into
computing the fictitious RTT for the degree of freedom.

The algorithm is specified below using pseudo-code. This
specification assumes a one-way TCP with the timestamps
option turned on.

1) Source side:The source side algorithm has to respond
to two types of events – the arrival of a packet from the source
TCP, and the arrival of an ACK from the receiver via IP.

1) SetTX SERIAL NUM andNUM to 0.
2) Wait state:If any of the following events occurs, respond

as follows; else, wait.
3) Packet arrives from TCP:

a) If the packet is a control packet used for connection
management, deliver it to the IP layer and return
to wait state.

b) If packet is not already in the coding window, add
it to the coding window.

c) SetNUM := NUM + R. (R is the redundancy
factor.)

d) Repeat the following⌊NUM⌋ times:
i) IncrementTX SERIAL NUM by 1.
ii) Generate a random linear combination of the
packets in the coding window.
iii) Add the network coding layer header to it that
contains the following: the coefficients used for the
random linear combination in terms of the packets
in the current coding window, the set of packets in
the window, andTX SERIAL NUM .
iv) Deliver the packet to the IP layer.
v) Note down the current time as the transmission
time corresponding toTX SERIAL NUM .

e) SetNUM := fractional part ofNUM .
f) Return to the wait state.

5

4) ACK arrives from receiver:

a) Remove the network coding ACK header and re-
trieve PREV SERIAL NUM .

b) Modify the TCP ACK header as follows. Set the
timestamp-echo field in the header to the trans-
mission time corresponding to the transmission
number(PREV SERIAL NUM + 1).

2) Receiver side:On the receiver side, the algorithm again
has to respond to two types of events: the arrival of a packet
from the source, and the arrival of ACKs from the TCP sink.

1) Wait state: If any of the following events occurs,
respond as follows; else, wait.

2) ACK arrives from TCP sink:If the ACK is a control
packet for connection management, deliver it to the IP
layer and return to the wait state; else, ignore the ACK.

3) Packet arrives from source side:

a) Remove the network coding header and
retrieve the coding vector as well as the
TX SERIAL NUM .

b) Add the coding vector as a new row to the existing
coding coefficient matrix, and perform Gaussian
elimination to update the set of seen packets.

c) Add the payload to the decoding buffer. Perform
the operations corresponding to the Gaussian elim-
ination, on the buffer contents. If any packet gets
decoded in the process, deliver it to the TCP sink.

d) Generate a new TCP ACK with sequence number
equal to that of the oldest unseen packet.

e) Add the network coding ACK header to
the ACK, consisting of the current value of
PREV SERIAL NUM .

f) Update PREV SERIAL NUM to the
TX SERIAL NUM of the new arrival.

IV. SOUNDNESS OF THE PROTOCOL

We argue that our protocol guarantees reliable transfer of
information. In other words, every packet in the packet stream
generated by the application at the source will be delivered
eventually to the application at the sink. We observe that the
acknowledgment mechanism ensures that the coding module at
the sender does not remove a packet from the coding window
unless it has been ACKed,i.e., unless it has been seen by the
sink. Thus, we only need to argue that if all packets in a file
have been seen, then the file can be decoded at the sink.

Theorem 1:From a file ofn packets, if every packet has
been seen, then every packet can also be decoded.

Proof: If the sender knows a file ofn packets, then the
sender’s knowledge space is of dimensionn. Every seen packet
corresponds to a new dimension. Hence, if alln packets have
been seen, then the receiver’s knowledge space is also of
dimensionn, in which case it must be the same as the sender’s
and all packets can be decoded.

In other words, seeingn different packets corresponds
to having n linearly independent equations inn unknowns.
Hence, the unknowns can be found by solving the system

1 2 53 4

1 Mbps ,100 ms

Sink

2

Src

1

Src

2

Sink

1

Fig. 4. Simulation topology

of equations. At this point, the file can be delivered to the
TCP sink. In practice, one does not have to necessarily wait
until the end of the file to decode all packets. Some of the
unknowns can be found even along the way. In particular,
whenever the number of equations received catches up with
the number of unknowns involved, the unknowns can be found.
Now, for every new equation received, the receiver sends an
ACK. The congestion control algorithm uses the ACKs to
control the injection of new unknowns into the coding window.
Thus, the discrepancy between the number of equations and
number of unknowns does not tend to grow with time, and
therefore will hit zero often based on the channel conditions.
As a consequence, the decoding buffer will tend to be stable.

An interesting observation is that the arguments used to
show the soundness of our approach are quite general and can
be extended to more general scenarios such as random linear
coding based multicast over arbitrary topologies.

V. FAIRNESS OF THE PROTOCOL

Here, we study the fairness property of our algorithm
through simulations.

A. Simulation setup

The protocol described above is simulated using the Network
Simulator (ns-2) [14]. The topology for all the simulations
is a tandem network consisting of 4 hops (hence 5 nodes),
shown in Figure 4. The source and sink nodes are at opposite
ends of the chain. Two FTP applications want to communicate
from the source to the sink. They either use TCP without
coding or TCP with network coding (denoted TCP/NC). All
the links have a bandwidth of 1 Mbps, and a propagation
delay of 100ms. The buffer size on the links is set at 200.
The TCP receive window size is set at 100 packets, and the
packet size is 1000 bytes. The Vegas parameters are chosen
to beα = 28, β = 30, γ = 2 (see [13] for details of Vegas).

B. Fairness and compatibility – simulation results

By fairness, we mean that if two similar flows compete for
the same link, they must receive an approximately equal share
of the link bandwidth. In addition, this must not depend on
the order in which the flows join the network. The fairness
of TCP-Vegas is a well-studied problem. It is known that
depending on the values chosen for theα andβ parameters,
TCP-Vegas could be unfair to an existing connection when
a new connection enters the bottleneck link ([15], [16]).
Several solutions have been presented to this problem in the
literature (for example, see [17] and references therein).In

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.2

0.4

0.6

0.8

1

Time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

TCP/NC vs TCP/NC

Fig. 5. Fairness - two TCP/NC flows

our simulations, we first pick values ofα and β that allow
fair sharing of bandwidth when two TCP flows without our
modification compete with each other, in order to evaluate the
effect of our modification on fairness.

Then, with the sameα andβ, we consider two cases:
Case 1:The situation where two network coded TCP flows

compete with each other.
Case 2:The situation where a coded TCP flow competes

with another flow running TCP without coding.
In both cases, the loss rate is set to 0% and the redundancy

parameter is set to 1 for a fair comparison. In the first
simulation, where both flows use TCP/NC, one flow is started
at t = 0.5s and the other flow is started att = 1000s. The
system is simulated for 2000s. The current throughput is
calculated at intervals of2.5s. The evolution of the throughput
over time is shown in Figure 5. The figure shows that the
effect of introducing the coding layer does not affect fairness.
We see that after the second flow starts, the bandwidth gets
redistributed fairly.

For case 2, the experiment is repeated, but this time with the
TCP flow starting first, and the TCP/NC flow starting at1000s.
The corresponding plot is shown in Figure 6. This figure shows
that coding is compatible with TCP in the absence of losses.
Again we see that after the new flow joins, the bandwidth is
divided fairly between the two flows.

VI. EFFECTIVENESS OF THE PROTOCOL

We now show that the new protocol indeed achieves a high
throughput, especially in the presence of losses. We first de-
scribe simulation results comparing the protocol’s performance
with that of TCP in Section VI-A. Next, in Section VI-B, we
study the effectiveness of the random linear coding ideas ina
theoretical model with idealized assumptions such as infinite
buffer space, and known channel capacity. We show that in
such a scenario, our scheme stabilizes the queues for all rates
below capacity.

A. Throughput of the new protocol – simulation results

The simulation setup is identical to that used in the fairness
simulations (see Section V-A).

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.2

0.4

0.6

0.8

1

TCP/NC vs TCP

Time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

TCP
TCP / NC

Fig. 6. Fairness and compatibility - one TCP/NC and one TCP flow

We first study the effect of the redundancy parameter on
the throughput of TCP/NC for a fixed loss rate of 5%. By
loss rate, we mean the probability of a packet getting lost
on each link. Both packets in the forward direction as well
as ACKs in the reverse direction are subject to these losses.
Since no re-encoding is allowed at the intermediate nodes, the
overall probability of packet loss across 4 hops is given by
1− (1 − 0.05)4 which is roughly 19%. Hence the capacity is
roughly 0.81 Mbps, which when split fairly gives 0.405 Mbps
per flow. The simulation time is10000s.

We allow two TCP/NC flows to compete on this network,
both starting at0.5s. Their redundancy parameter is varied
between 1 and 1.5. The theoretically optimum value is ap-
proximately1/(1 − 0.19) ≃ 1.23. Figure 7 shows the plot
of the throughput for the two flows, as a function of the
redundancy parameterR. It is clear from the plot thatR plays
an important role in TCP/NC. We can see that the throughput
peaks aroundR = 1.25. The peak throughput achieved is
0.399 Mbps, which is indeed close to the capacity that we
calculated above. In the same situation, when two TCP flows
compete for the network, the two flows see a throughput of
0.0062 and 0.0072 Mbps respectively. Thus, with the correct
choice ofR, the throughput for the flows in the TCP/NC case
is very high compared to the TCP case. In fact, even with
R = 0, TCP/NC achieves about 0.011 Mbps for each flow
improving on TCP by almost a factor of 2.

Next, we study the variation of throughput with loss rate
for both TCP and TCP/NS. The simulation parameters are all
the same as above. The loss rate of all links is kept at the
same value, and this is varied from 0 to 5%. We compare two
scenarios – two TCP flows competing with each other, and two
TCP/NC flows competing with each other. For the TCP/NC
case, we set the redundancy parameter at the optimum value
corresponding to each loss rate. Figure 8 shows that TCP’s
throughput falls rapidly as losses increase. However, TCP/NC
is very robust to losses and reaches a throughput that is close
to capacity.

Remark 1:These simulations are meant to be a preliminary
study of our algorithm’s performance. They do not account for

7

1 1.1 1.2 1.3 1.4 1.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Redundancy Factor (R)

T
hr

ou
gh

pu
t (

M
bp

s)

Session 1
Session 2

Fig. 7. Throughput vs redundancy for TCP/NC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Loss rate on each link (%)

T
hr

ou
gh

pu
t (

M
bp

s)

Throughput vs Loss rate

TCP − Session 1
TCP − Session 2
TCP/NC − Session 1
TCP/NC − Session 2

Fig. 8. Throughput vs loss rate for TCP and TCP/NC

the overhead associated with the network coding headers while
computing the throughput. The main overhead is in conveying
the coding coefficients and the contents of the coding window.
However, if the source and sink share a pseudorandom number
generator, then the coding coefficients can be conveyed by
simply sending the current state of the generator. Similarly,
the coding window contents can be conveyed in an incremental
manner to reduce the overhead.

Another source of throughput loss that has not been modeled
in the simulation is the field size not being large enough. This
could cause received linear combinations to be either non-
innovative, or might cause packets to be seen out of order,
resulting in duplicate ACKs. However, the probability that
such problems persist for a long time falls rapidly with the
field size. We believe that with practical choices of field size,
these issues with only cause transient effects that will nothave
a significant impact on performance. The exact quantification
of these effects remains to be done.

B. The ideal case

In this section, we focus on an idealized scenario in order
to provide a first order analysis of our new protocol. We aim
to explain the key ideas of our protocol with emphasis on the
interaction between the coding operation and the feedback.
The model used in this section will also serve as a platform
which we can build on to incorporate more practical situations.

11 22 NN

Fig. 9. Topology: Daisy chain with perfect end-to-end feedback

We abstract out the congestion control aspect of the problem
by assuming that the capacity of the system is fixed in time
and known at the source, and hence the arrival rate is always
maintained below the capacity. We also assume that nodes
have infinite capacity buffers to store packets. We focus on
a topology that consists of a chain of erasure-prone links
in tandem, with perfect end-to-end feedback from the sink
directly to the source. In such a system, we investigate the
behavior of the queue sizes at various nodes.

1) System model:The network we study in this section
is a daisy chain ofN nodes, each node being connected
to the next one by a packet erasure channel, as shown in
Figure 9. We assume a slotted time system. The source
generates packets according to a Bernoulli process of rate
λ packets per slot. The point of transmission is at the very
beginning of a slot. Just after this point, every node transmits
one random linear combination of the packets in its queue.
We ignore propagation delay. Thus, the transmission, if not
erased by the channel, reaches the next node in the chain
almost immediately. However, the node may use the newly
received packet only in the next slot’s transmission. We assume
perfect, delay-free feedback from the sink to the source. In
every slot, the sink generates the feedback signal after the
instant of reception of the previous node’s transmission. The
erasure event happens with a probability(1 − µi) on the
channel connecting nodei and (i + 1), and is assumed to
be independent across different channels and over time. Thus,
the system has a capacitymini µi packets per slot. We assume
that λ < mini µi, and define the load factorρi = λ/µi. The
relation between the transmitted linear combination and the
original packet stream is conveyed in the packet header. We
ignore this overhead for the analysis in this section.

Remark 2:This model and the following analysis also
works for the case when not all intermediate nodes are
involved in the network coding. If some node simply forwards
the incoming packets, then we can incorporate this in the
following way. An erasure event on either the link entering
this node or the link leaving this node will cause a packet
erasure. Hence, these two links can be replaced by a single
link whose probability of being ON is simply the product of
the ON probabilities of the two links being replaced. Thus,
all non-coding nodes can be removed from the model, which
brings us back to the same situation as in the above model.

2) Queue update mechanism:As specified in the previous
subsection, the coding scheme we consider is one where each
node transmits a random linear combination of the current
contents of its queue. Therefore, the question of how to update
the queue contents becomes important. In our scheme, the sink
sends an ACK to the source in every slot, using the feedback

8

link. The ACK contains the index of the oldest packet not
yet seen by the sink. Upon receiving the ACK, the source
drops all packets from its queue with an index lower than
the sink’s request. As for the intermediate nodes, they do not
have direct feedback from the sink. Therefore, the source has
to inform them about the sink’s ACK. This information is
sent on the same packet erasure channel used for the regular
transmission. This feed-forward of the sink’s status is modeled
in our setup as follows. Whenever the channel entering an
intermediate node is in the ON state (i.e., no erasure), the
node’s version of the sink’s status is updated to that of the
previous node. In practice, the source need not transmit the
sink’s status explicitly. The intermediate nodes can inferit
from the set of packets that have been involved in the linear
combination – if a packet is no longer involved, that means the
source must have dropped it, implying that the sink must have
ACKed it already. Whenever an intermediate node receives
an innovative packet, this causes the node to see a previously
unseen packet. The node performs a Gaussian elimination to
compute the witness of the newly seen packet, and adds this to
the queue. Thus, intermediate nodes store the witnesses of the
packets that they have seen. The queue update rule is similar
to that of the source. An intermediate node drops the witness
of all packets up to but excluding the one requested by the
sink. This is based on the most updated version of the sink’s
status known at the intermediate node.

3) Queuing analysis:The following theorem shows that
if we allow coding at intermediate nodes, then it is possible
to achieve the capacity of the network, namelymini µi. Note
that this theorem also implies that if we only allow forwarding
at some of the intermediate nodes, then we can still achieve
the capacity of a new network derived by collapsing the links
across the non-coding nodes, as described in Remark 2.

Theorem 2:As long asλ < µk for all 0 ≤ k < N , the
queues at all the nodes will be stable. The expected queue
size in steady state at nodek (0 ≤ k < N) is given by:

E[Qk] =

N−1
∑

i=k

ρi(1 − µi)

(1 − ρi)
+

k−1
∑

i=1

ρi

An implication: Consider a case where all theρi’s are equal
to someρ. Then, the above relation implies that in the limit
of heavy traffic,i.e., ρ → 1, the queues are expected to be
longer at nodes near the source than near the sink.
A useful lemma:

The following lemma shows that the random linear coding
scheme has the property that every time there is a successful
reception at a node, the node sees the next unseen packet with
high probability, provided the field is large enough. This fact
will prove useful while analyzing the evolution of the queues.

Lemma 1:Let SA and SB be the set of packets seen by
two nodes A and B respectively. AssumeSA\SB is non-empty.
Suppose A sends a random linear combination of its witnesses
of packets inSA and B receives it successfully. The probability
that this transmission causes B to see the oldest packet in

SA\SB is
(

1 − 1
q

)

, whereq is the field size.
Proof: Let MA be the basis matrix of A’s knowledge

space. Then, the coefficient vector of the transmitted linear
combination is given byt = uMA, whereu is a vector of
length|SA| = m whose entries are independent and uniformly
distributed over the finite fieldFq. Now, the entries oft cor-
responding to the packets seen by A (i.e., pivot columns of A)
are equal to the entries ofu that multiplied the corresponding
pivot rows. Therefore, any entry oft corresponding to a packet
seen by A is uniformly distributed and is independent of all
other entries oft.

Let MB be the basis matrix of B’s knowledge space before
the new reception. Letd∗ denote the index of the oldest packet
in SA\SB. Supposet is successfully received by B. Then,
B will appendt as a new row toMB and perform Gaussian
elimination. The first step involves subtracting fromt, suitably
scaled versions of the pivot rows such that all entries oft

corresponding to pivot columns ofMB become 0. (This is
possible only if the received packet is innovative.) We needto
find the probability that after this step, the leading non-zero
entry occurs in columnd∗, which corresponds to the event that
B sees packetd∗. Subsequent steps in the Gaussian elimination
will not affect this event. Hence, we focus on the first step.

Let PB denote the set of indices of pivot columns ofMB.
In the first step, the entry in columnd∗ of t becomes

t′(d∗) = t(d∗) −
∑

i∈PB ,i<d∗

t(i) · MB(r(i), d∗),

wherer(i) denotes the index of the pivot row corresponding
to pivot columni. Since packetd∗ has been seen by A,t(d∗)
is uniformly distributed overFq and is independent of other
entries oft. From this observation and the above expression
for t′(d∗), it follows that for any givenMA and MB, t′(d∗)
has a uniform distribution overFq, and the probability that it

is not zero is therefore
(

1 − 1
q

)

.
For the queuing analysis, we assume that a successful recep-

tion always causes the receiver to see its next unseen packet,
provided the transmitter has already seen it. A consequence
of this assumption is that the set of packets seen by a node is
always a contiguous set, with no gaps in between. In particular,
there is no repeated ACK due to packets being seen out of
order. The above lemma argues that these assumptions become
more and more valid as the field size increases. In reality, some
packets may be seen out of order resulting in larger queue
sizes. However, we believe that this effect is minor and can
be neglected for a first order analysis.
The expected queue size:

We define arrival and departure as follows. A packet is said
to arrive at a node when the node sees the packet for the
first time. A packet is said to depart from the node when the
node drops the witness of that packet from its queue. For each
intermediate node, we now study the expected time between
the arrival and departure of an arbitrary packet at that node.
This is related to the expected queue size at that node, by
Little’s law.

9

Proof of Theorem 2:
Proof: Consider thekth intermediate node, for1 ≤ k <

N . The time a packet spends in this node’s queue can be
divided into two parts:

1) Time until the packet is seen by the sink:
The difference between the number of packets seen by

a node and the number of packets seen by the next node
downstream essentially behaves like aGeom/Geom/1 queue.
The Markov chain governing this evolution is identical to that
of the virtual queues studied in [3]. Given that a node has
seen a packet, the time it takes for the next node to see that
packet corresponds to the waiting time in a virtual queue. For
a load factor ofρ and a channel ON probability ofµ, the
expected waiting time was derived in [3] to be(1−µ)

µ(1−ρ) , using
results from [18]. Now, the expected time until the sink sees
the packet is the sum of(N − k) such terms, which gives
∑N−1

i=k
(1−µi)
µ(1−ρi)

.
2) Time until sink’s ACK reaches intermediate node:
The sink’s ACK has to propagate from the source to

the intermediate node in question through the feed-forward
mechanism. Given that a node knows that the sink has seen
the packet in question, the time it takes for the next node to
get this information is the expected time until the next slot
when the channel is ON. Since theith channel is ON with
probability µi in every slot, this expected time is simply1

µi
.

Thus, the time it takes for the sink’s acknowledgment of the
packet to propagate to nodek is given by

∑k−1
i=1

1
µi

.
Thus, the total expected time a packet spends in the queue

at thekth node (1 ≤ k < N) is given by:

E[Tk] =

N−1
∑

i=k

(1 − µi)

µi(1 − ρi)
+

k−1
∑

i=1

1

µi

Assuming the system is stable (i.e., λ < mini µi), we can use
Little’s law to derive the expected queue size at thekth node:

E[Qk] =

N−1
∑

i=k

ρi(1 − µi)

(1 − ρi)
+

k−1
∑

i=1

ρi

VII. C ONCLUSIONS AND FUTURE WORK

In this work, we propose a new approach to congestion
control on lossy links based on the idea of random linear net-
work coding. We introduce a new acknowledgment mechanism
that plays a key role in incorporating coding into the control
algorithm. From an implementation perspective, we introduce
a new network coding layer between the transport and network
layers on both the source and receiver sides. Thus, our changes
can be easily deployed in an existing system. A salient feature
of our proposal is that coding operations occur only at the end
hosts, thereby preserving the end-to-end philosophy of TCP.

We observe through simulations that the proposed changes
lead to huge throughput gains over TCP in lossy links. For
instance, in a 4-hop tandem network with a 5% loss rate on
each link, the throughput goes up from about 0.007 Mbps to
about 0.39 Mbps for the correct redundancy factor.

In the future, we plan to understand the impact of field size
on throughput. While our current simulations assume a large
field size, we believe that in practice, a large part of the gains
can be realized without too much overhead. We also wish to
understand the overhead associated with the coding operations
in a practical setting. Throughput gains are seen even though
the intermediate nodes do not perform any coding. Theory
suggests that a lot can be gained by allowing intermediate
nodes to code as well. Quantifying the impact of such coding
is of interest in the future.

This paper presents a new framework for combining coding
with feedback based rate-control mechanisms in a practical
way. It is of interest to extend this approach to more general
settings such as network coding based multicast over a general
network. Even in the point-to-point case, we could use these
ideas to implement a multipath-TCP based on network coding.

REFERENCES

[1] C. Fragouli, D. S. Lun, M. Médard, and P. Pakzad, “On feedback for
network coding,” inProc. of 2007 Conference on Information Sciences
and Systems (CISS 2007).

[2] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. of
Allerton Conference on Communication, Control, and Computing, 2003.

[3] J. K. Sundararajan, D. Shah, and M. Médard, “ARQ for network coding,”
in Proc. of 2008 IEEE International Symposium on Information Theory
(ISIT 2008).

[4] S. Rangwala, A. Jindal, K.-Y. Jang, K. Psounis, and R. Govindan, “Un-
derstanding congestion control in multi-hop wireless meshnetworks,”
in Proc. of ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), 2008.

[5] S. Paul, E. Ayanoglu, T. F. L. Porta, K.-W. H. Chen, K. E. Sabnani, and
R. D. Gitlin, “An asymmetric protocol for digital cellular communica-
tions,” in Proceedings of INFOCOM ’95, 1995.

[6] A. DeSimone, M. C. Chuah, and O.-C. Yue, “Throughput performance
of transport-layer protocols over wireless LANs,”IEEE Global Telecom-
munications Conference (GLOBECOM ’93), pp. 542–549 Vol. 1, 1993.

[7] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving reliable
transport and handoff performance in cellular wireless networks,” ACM
Wireless Networks, vol. 1, no. 4, pp. 469–481, December 1995.

[8] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Networkinforma-
tion flow,” IEEE Trans. on Information Theory, vol. 46, pp. 1204–1216,
2000.

[9] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, 2003.

[10] D. S. Lun and T. Ho,Network Coding: An Introduction. Cambridge
University Press, 2008.

[11] T. Ho, “Networking from a network coding perspective,”PhD Thesis,
Massachusetts Institute of Technology, Dept. of EECS, May 2004.

[12] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the Air: Practical Wireless Network Coding,”IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 497–510, June 2008.

[13] L. S. Bramko, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
techniques for congestion detection and avoidance,” inProceedings of
the SIGCOMM ’94 Symposium, August 1994.

[14] “Network Simulator – ns-2.” [Online]. Available:
http://www.isi.edu/nsnam/ns/

[15] U. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas revisited,” INFO-
COM 2000. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1546–
1555, Mar 2000.

[16] C. Boutremans and J.-Y. Le Boudec, “A note on fairness ofTCP Vegas,”
in Proceedings of Broadband Communications, 2000.

[17] J. Mo, R. La, V. Anantharam, and J. Walrand, “Analysis and comparison
of TCP Reno and Vegas,” inProceedings of INFOCOM ’99, 1999.

[18] J. J. Hunter,Mathematical Techniques of Applied Probability, Vol. 2,
Discrete Time Models: Techniques and Applications. NY: Academic
Press, 1983.

http://www.isi.edu/nsnam/ns/

	Introduction
	Previous work

	Preliminaries
	The new protocol
	Logical description
	Implementation
	Source side
	Receiver side

	Soundness of the protocol
	Fairness of the protocol
	Simulation setup
	Fairness and compatibility -- simulation results

	Effectiveness of the protocol
	Throughput of the new protocol -- simulation results
	The ideal case
	System model
	Queue update mechanism
	Queuing analysis

	Conclusions and future work
	References

