
Hardness and Approximation of the Survivable
Multi-Level Fat Tree Problem

Hung Q. Ngo
Computer Science and Engineering

SUNY at Buffalo
Email: hungngo@cse.buffalo.edu

Thanh-Nhan Nguyen
Computer Science and Engineering

SUNY at Buffalo
Email: nguyen9@buffalo.edu

Dahai Xu
AT&T Labs – Research

Email: dahaixu@research.att.com

Abstract—With the explosive deployment of “triple play”
(voice, video and data services) over the same access network,
guaranteeing a certain-level of survivability for the access net-
work is becoming critical for service providers. The problem of
economically provisioning survivable access networks has given
rise to a new class of network design problems, including the
so-called SURVIVABLE MULTI-LEVEL FAT TREE problem (SMFT).

We show that two special cases of SMFT are polynomial-
time solvable, and present two approximation algorithms for
the general case. The first is a combinatorial algorithm with
approximation ratio min{dL/2e + 1, 2 log2 n} where L is the
longest Steiner path length between two terminals, and n is
the number of nodes. The second is a primal-dual (2∆s + 2)-
approximation algorithm where ∆s is the maximum Steiner
degree of terminals in the access network. We then show that
approximating SMFT to within a certain constant c > 1 is NP-
hard, even when all edge-weights of G are 1, L ≤ 10, and
∆s ≤ 3. Finally, we experimentally show that the approximation
algorithms perform extremely well on random instances of the
problem.

Keywords: Broadband access networks, Graph theory, Optimiza-
tion, Survivable tree, Topology design.

I. INTRODUCTION

Internet service providers are actively deploying triple-play
services, i.e., transmitting voice, video and data to end users
over the same access network. The ongoing projects include
U-Verse from AT&T, FiOS from Verizon, and all-in-together
service packages from cable companies (like Comcast, Time
Warner, Cablevision, etc.). With the increasing dependence on
the access network, both service providers and end users are
expecting higher networking reliability or survivability against
transient failures of network elements. Access networks used
to be the bottleneck of end-to-end survivability. For economic
reasons, most access networks were designed with a tree-like
topology rooted at a central office of the service provider.
While a tree topology is fragile to edge failures, traditional
dual-home design, i.e., connecting a downstream node to
two upstream nodes for redundancy, could be prohibitively
expensive. Alternatively, the appropriate addition of a limited
number of redundant links to the tree can provide better
survivability-cost tradeoff [1].

The problem of provisioning survivability to an access
network is unique due to the special feature called “Fat
tree.” Usually, only the central offices can be equipped with
the expensive routing capability [2], and the other terminals

within the access network only have the basic switching
capability (such as traffic aggregation using multiplexing and
demultiplexing). Therefore, to recover from a failure of its
upstream link, the terminal has to relay the traffic from another
terminal of the same distance or lower distance to the root in
the fat tree. A sample fat tree [3] is shown in Fig. 1.

Fig. 1. Logical fat-tree architecture for access network

The SURVIVABLE MULTILEVEL FAT-TREE (SMFT) prob-
lem was defined in [1] as follows. We are given a graph
G = (V,E), called the base graph. Edges of G are weighted
with non-negative weights w : E → R+. The vertex set of
G is partitioned into T ∪ S, where vertices in T are called
terminal nodes, and vertices in S are called Steiner nodes.

We are also given a (fat) tree G0 = (T,E0) which is a
subgraph of G that spans all terminal nodes and does not
contain any Steiner node. There is one designated terminal
node r called the root. For every terminal node t ∈ T , let Pt

denote the path from t to r in G0, and lt – the level of t – be
the length of Pt. (See Fig. 2.)

The objective is to augment G0 with a minimum weight
set of edges A ⊆ E − E0 such that the augmented graph
G0 ∪A = (V,E0 ∪A) satisfies two constraints:
(i) Bridge-connectivity constraint: for every terminal t 6= r

there is a path P ′
t in G0 ∪A from t to r which is edge-

disjoint from Pt. We will refer to P ′
t as a backup path

for terminal t.
(ii) Fat-tree constraint: for each terminal t 6= r, P ′

t does not
contain any terminal v with lv > lt. (P ′

t may or may not
contain Steiner nodes.)

The internal nodes of a path are nodes in the path other
than its two extreme ends. For any subgraph G′ of G, an arm

2

of G′ is a path in G′ from a terminal t to another terminal u
with no internal terminal. The arm is called a (t, u)-arm. If
lt ≥ lu then the arm is also called a t-arm. Thus, a (t, u)-arm
is either a t-arm, or a u-arm, or both (which can only happen
when lt = lu). See Fig. 2 for an illustration.

This path is a t-arm
but not an x-arm

Steiner nodes

TerminalsEdges of the tree G0

Other edges of G

root r

u v

t

This path is both a u-arm and a v-arm

Level 2

Level 1

Level 3

x

This node has Steiner
degree ds(x) = 2

Fig. 2. Illustration of an SMFT instance and the arm concept.

Let L denote the longest arm length in G (in terms of
number of edges, not in terms of edge weight). The Steiner
degree ds(t) of a terminal t is the number of Steiner nodes
adjacent to it. Let ∆s denote the maximum Steiner degree of
terminals in T .

The SMFT problem was shown to be NP-hard in [1]. Our
contributions are as follows.

• We show that two special cases of SMFT are polynomial-
time solvable. The first is when G = Kn and edge
weights are uniform. The second is when there’s no
Steiner node (i.e. ∆s = 0). The second algorithm serves
as a subroutine for an approximation algorithm that
follows.

• We present two approximation algorithms for SMFT. The
first is a combinatorial algorithm with approximation ratio
min{dL/2e + 1, 2 log2 n}. This combinatorial algorithm
also gives optimal solutions in the two cases above.
Several natural variations of this combinatorial algorithms
are also briefly discussed and analyzed. The second is a
primal-dual algorithm with ratio (2∆s + 2).

• We show that approximating SMFT to within a certain
constant c > 1 is NP-hard, even when all edge-weights
of G are 1, L ≤ 10, and ∆s ≤ 3. This hardness result
justifies the approximation ratios dL/2e + 1 and 2∆s +
2 of the previous two algorithms, in the sense that for
instances where there is some constant c > 1 such that
a c-approximation does not exist (unless P = NP), our

algorithms provide constant approximation ratios.
• We implemented the two approximation algorithms and

a variation of the combinatorial algorithm and tested
them on random instances of SMFT. The results are very
encouraging as our algorithms give optimal or very-near-
optimal solutions on these instances.

The rest of this paper is organized as follows. Section II
presents algorithms for two special cases of SMFT where it is
polynomial-time solvable. Section III gives two approximation
algorithms, one purely combinatorial and the other primal-
dual. Section IV proves a hardness of approximation result.
Lastly, in Section V we show the performance evaluation
of the approximation algorithms on random instances of the
problem.

II. TWO POLYNOMIAL-TIME SOLVABLE SPECIAL CASES

The following notations will be used throughout this sec-
tion. Suppose the maximum level number is m. For each
i ∈ {0, . . . ,m}, let Ti be the set of terminals at level i, and
set ni = |Ti|. For any subset F of edges, let w(F) denote its
total weight.

The following simple proposition gives a characterization
of feasible solutions to SMFT, which provides an important
insight into designing efficient (approximation) algorithms for
this problem.

Proposition II.1. An edge set A ⊆ E −E0 is feasible if and
only if, for every terminal t 6= r, there exists a t-arm Qt in
(V,A).

Proof: Suppose A is feasible. For each terminal t, let P ′
t

denote a backup path for t. Let Qt be the segment of P ′
t from

t to the first terminal v on P ′
t . Due to the fat-tree constraint,

lv ≤ lt as desired.
Conversely, suppose A satisfies the condition stated in the

proposition. We prove by induction on the level lt that each
terminal t has a backup path. Consider a terminal t at level 1.
If the t-arm Qt ends at the root then we’re done. Otherwise,
Qt ends at a terminal v 6= t also at level 1. In this case, a
backup path for t can follow Qt to v and then take the edge
(v, r) to the root. For the induction step, consider a terminal t
at level lt > 1. Suppose Qt ends at terminal v 6= t. Consider
two cases as follows. If v is an ancestor of t in the rooted fat
tree, then a backup path for t is the concatenation of Qt and
P ′

v , which exists by the induction hypothesis. When v is not
an ancestor of t (but still lv ≤ lt), let u be the least common
ancestor of t and v in the tree G0. A backup path for t can
be constructed by following Qt to v, then follow the v ; u
path in G0 to u, and finally take P ′

u to the root.

A. Base Graph G is Complete with Uniform Edge Weights

In this subsection, we consider the case when G = (V,E) =
Kn and all G’s edge weights are equal. Ignoring the trivial
all-0 weight case, we can assume that w(e) = 1 for all e. The
objective is to find a minimum number of edges to augment
G0.

3

Theorem II.2. There is a linear-time algorithm which outputs
optimal solutions to instances of SMFT where G = Kn and
w(e) = 1,∀e ∈ E.

Proof: Suppose G = Kn and w(e) = 1,∀e ∈ E. Let
OPT denote the optimal augmentation cost for this instance.
Consider three cases as follows.

Case 1: degG0
(r) ≥ 2. We first show that

OPT ≥
⌈n1

2

⌉
+ · · ·+

⌈nm

2

⌉
. (1)

Consider an optimal solution A∗. By Proposition II.1, there
exists a t-arm Qt in (V,A∗) for each terminal t at level lt ≥ 1.
Let et be the edge incident to t on Qt. Let B = {et | lt ≥ 1},
then OPT ≥ |B|. If eu = ev , then u and v must be at the same
level due to the fat-tree constraint. Hence, |B| ≥

⌈
n1
2

⌉
+ · · ·+⌈

nm

2

⌉
as desired. We next show that the OPT’s lower bound

(1) can be achieved. Consider a level i ≥ 1 in the tree G0. Let
vi
1, . . . , v

i
ni

be the terminals at this level. Set A = ∅ initially.
• If ni = 1, add the edge (vi

1, r) to A. Since the root has
degree ≥ 2, ni = 1 implies i ≥ 2. Thus, (vi

1, r) /∈ G0.
• When ni ≥ 2, add the edge (vi

2j−1, v
i
2j) to A for each

j = 1, . . . , bni/2c. If ni is odd, add the edge (vi
ni−1, v

i
ni

)
to A. We have added precisely dni/2e edges for level i.
In light of Proposition II.1, it is not difficult to see that
A is feasible with the desired cardinality.

Case 2: degG0
(r) = 1 and there is at least one Steiner node.

Similar to case 1, we can show that OPT ≥ 1 +
⌈

n1
2

⌉
+ · · ·+⌈

nm

2

⌉
. The extra 1 is due to the fact that the node at level 1

needs an arm of length 2 to connect to the root. This lower
bound can be achieved in much the same way as in case 1.

Case 3: degG0
(r) = 1 and there’s no Steiner node. In this

case, the instance is infeasible because the terminal t at level
1 cannot have any t-arm.

B. G0 is a Spanning Tree of G (i.e. No Steiner Node)

In this subsection, we consider the case when the base graph
G and its edge weights are arbitrary, and G0 spans G.

Theorem II.3. There is a polynomial-time algorithm which
outputs optimal solutions to instances of SMFT for which G0

spans G.

Proof: Let Ei be the subset of edges of G which has
one end-point at level i and the other at some level ≤ i. Let
Gi = (Vi, Ei) be the subgraph of G induced by edges in Ei

and their incident vertices. Note that Ti ⊆ Vi, and that the sets
Ei are disjoint but the Vi may not.

We first observe the structure of an optimal solution. Let A∗

be any optimal solution to an instance (G, G0, w) of SMFT.
Applying Proposition II.1, let Qt be a t-arm in G0 ∪A∗ from
terminal t to another terminal v with lv ≤ lt. Since there’s no
Steiner node, Qt is precisely tv; namely, each Qt is just an
edge. For each i ∈ [m], let A∗

i = {Qt | lt = i}. Then, for
every i, A∗

i is a subset Ei such that every terminal in Ti is
incident to some edge in A∗

i . In other words, Ti is “covered”
by A∗

i (in the sense of edge-covering). Conversely, suppose
for each i we pick a subset Ai ⊆ Ei which covers Ti, then

A = ∪m
i=1Ai is feasible by Proposition II.1. Since the Ei are

disjoint, w(A) =
∑

i w(Ai).
Consequently, to show that an optimal solution can be found

in polynomial-time we only need to show, given a level i, how
to choose a subset Ai ⊆ Ei with minimum cost which covers
Ti. This problem is similar to the minimum weight edge-cover
(MWEC) problem on the graph Gi, which is polynomial time
solvable (see, e.g., [4]). However, Ti is not necessarily the set
of all vertices of Gi. Thus, our problem is slightly different
because the standard MWEC problem requires covering all
vertices of a graph.

Fortunately, we can easily transform our problem’s instance
to an instance of MWEC as follows. For each graph Gi =
(Vi, Ei), construct a graph G′

i = (Ti, E
′
i) as follows. If an

edge e ∈ Ei has both ends in Ti, then add e to E′
i with the

same weight. If an edge e = (u, v) ∈ Ei has only one end
u ∈ Ti, then add a loop (u, u) to E′

i. Set the loop’s weight to
be w(e). Thus, all edges in Ei are “present” in E′

i. A subset
of edges of Ei covers Ti iff it is an edge-cover of G′

i and vice
versa. Thus, we only need to solve MWEC on G′

i, for each
i. (The standard reduction from MWEC to MINIMUM WEIGHT
PERFECT MATCHING still works when the input instance of
MWEC has loops.)

III. APPROXIMATION ALGORITHMS

A. A Combinatorial Approximation Algorithm

We will present several combinatorial approximation algo-
rithms for SMFT. The first algorithm called CAA, shown in
Fig. 3 uses as a subroutine the algorithm for the no-Steiner
node special case of SMFT shown in Section II-B. The other
combinatorial algorithms are variations of CAA which will be
discussed later in the next subsection.

Before analyzing the algorithm, we need two structural
lemmas. An optimal solution A∗ is called minimal if there
is no edge e ∈ A∗ such that A∗ − {e} is also feasible. (An
optimal solution could be non-minimal when it contains some
redundant 0-weight edges.)

Lemma III.1. Let A∗ be any minimal optimal solution to an
instance (G, G0, w) of SMFT. For each terminal t ∈ T −{r},
fix a t-arm Q∗

t in (V,A∗). Then, there exists a partition A∗ =
A∗

1 ∪ · · · ∪A∗
k of A∗ satisfying the following properties:

(i) For each i ∈ [k], the subgraph of G induced by A∗
i ,

denoted by G[A∗
i], is a tree all of whose leaves are

terminals and all of whose internal nodes (if any) are
Steiner nodes.

(ii) For every terminal t ∈ T −{r}, the t-arm Q∗
t belongs to

a unique G[A∗
i] for some i ∈ [k]

(It should be noted that a terminal t may occur in several
G[A∗

i].)

Proof: Consider the graph G∗ = (V,A∗). Remove from
G∗ all Steiner nodes that do not belong to any t-arm Q∗

t .
Then, remove all terminals from G∗. The result is a collection
of connected components C1, . . . , Ck2 . Each t-arm Q∗

t whose
length is at least 2 must share a Steiner node with a unique

4

Algorithm CAA

Inputs: G, G0 and edge weight function w

1: Construct another instance of SMFT on another graph Ḡ =
(T, Ē) with edge weights w̄ : Ē → R+ as follows.

• The fat tree G0 for Ḡ is the G0 for G
• Ḡ will have no Steiner nodes
• There is an edge uv in Ē if there is an arm connecting

u and v in G
• Set w̄(uv) to be the weight of the lightest arm (in

terms of weight function w) connecting u and v in G

2: Run the algorithm in Theorem II.3 to get an optimal
solution Ā ⊆ Ē − E0 for the Ḡ-instance
// If the Ḡ-instance is infeasible, then then G-instance is
also infeasible.

3: A← ∅
4: for each uv ∈ Ā do
5: Let Quv be the arm in G where w(Quv) = w̄(uv);
6: Add all edges in Quv to A
7: end for
8: Return A

Fig. 3. A Combinatorial Approximation Algorithm for SMFT.

component Ci, i ∈ [k2]. For each i ∈ [k2], let A∗
i be the union

of edges of the t-arms Q∗
t with lengths ≥ 2 which share a

Steiner node with component Ci. Let k1 be the number of
t-arms Q∗

t with lengths 1. Put each of those k1 t-arms in
a separate set A∗

k2+1, . . . , A
∗
k2+k1

. Let k = k1 + k2. Then,
A∗

1 ∪ · · · ∪A∗
k is a partition of A∗ satisfying property (ii).

For property (i), we first show that each terminal is of
degree 1 in G[A∗

i]. If there is a terminal t in G[A∗
i] of degree

≥ 2, say tu and tv belongs to A∗
i where u, v ∈ Ci. Removing

the edge tu does not affect the feasibility of A∗, because if
tu is part of some arm then it can be replaced with tv and
the u ; v path in Ci. This contradicts the minimality of
A∗; thus, each terminal has degree 1 in G[A∗

i]. Next, suppose
G[A∗

i] is not a tree for some i. In this case, a cycle in G[A∗
i]

is a cycle in the component Ci. Again, removing an edge on
this cycle does not affect A∗’s feasibility. Consequently, the
partition satisfies property (i).

Lemma III.2. Let H be a rooted tree whose root is s and
each of whose leaves v is associated with a positive integer
lv . Let D be the depth of H . Let v0 be any leaf where lv0 is
smallest among all lv . Let U be the set of all leaves v other
than v0 where lv = lv0 . There exists a collection P of paths
in this tree satisfying the following properties:
(i) The path from v0 to s is in P

(ii) Each path in P other than the v0, s-path is from a leaf
to another leaf

(iii) For every leaf u 6= v0, there is another leaf v with lv ≤ lu
such that the u, v-path is in P

(iv) If U 6= ∅, then there is a node u ∈ U such that the
u, v0-path is in P .

(v) Each edge of the tree H belongs to at most D +1 of the

paths in P .

Proof: We induct on D. If D = 1, let vm, . . . , v0 be the
leaves of this tree. Without loss of generality, assume lvm ≥
· · · ≥ lv0 . The path collection P includes the vm, vm−1-path,
..., v1, v0-path, and v0, s-path. (See Fig. 4.) It is easy to see
that this path collection works.

Suppose D ≥ 2. Let sm, . . . , s0 be the neighbors of s and
Hm, . . . ,H0 be the subtrees rooted at sm, . . . , s0, respectively.
The depths of these subtrees are at most D− 1. Without loss
of generality, we can assume that v0 belongs to H0. For each
i ∈ [m], let vi

0 be a leaf in subtree Hi with lowest lvi
0

number
among all leaves in Hi. Set v0

0 = v0. By rearranging the
subtrees, we can assume that lvm

0
≥ lvm−1

0
≥ · · · ≥ lv0

0
.

Apply the induction hypothesis to all the subtrees, and let
Pi be the path collection for the subtree Hi. Let P be the
union of the Pi, ignoring the vi

0, si-paths. Then, add into
P the following paths: the vm

0 , vm−1
0 -path, the vm−1

0 , vm−2
0 -

path, ..., the v1
0 , v0

0-path, and the v0, s-path. (See Fig. 4 for
an illustration.) It is not difficult to verify that P satisfies all
stated conditions.

a path in the collectionP

root s

v0vm

depth D = 1

vm
0

vm−1
0

v0
0 = v0

sm s0

root s

Pm−1Pm

m = 2
depth D ≥ 2

P0

Fig. 4. Illustration of the proof of Lemma III.2

Theorem III.3. Let L be the shortest length (in terms of the
number of edges) of the arms in G, and n be the number
of vertices of G. Then, Algorithm CAA shown in Fig. 3 has
approximation ratio min{dL/2e + 1, 2 log2 n} and running
time O(n2(m + n log n)), where n = |V (G)|,m = |E(G)|.

Proof: Using the min-weight perfect matching algorithm
from [5], the running time is certainly achievable. It might
even be a little better if we use the more sophisticated
algorithm from [6].

Let A∗ be any minimal optimal solution to an instance
(G, G0, w) of SMFT, and let OPT = w(A∗). Let A be the
solution returned by Algorithm CAA. Let Ā be the solution
returned in line 2 of Algorithm CAA. Note that w(A) ≤ w(Ā),

5

because by “unpacking” the edges in Ā into edges of G to put
in the solution A, some edges of G might be duplicated.

Thus, it is sufficient to show two inequalities:

w(Ā) ≤ (2 log2 n) · OPT (2)
w(Ā) ≤ (dL/2e+ 1) · OPT (3)

The general strategy for showing w(Ā) ≤ α·OPT is as follows.
We show how to construct from A∗ a feasible solution B̄ to the
Ḡ-instance of SMFT where w̄(B̄) ≤ α·OPT. Since Ā is optimal
for the Ḡ-instance, we conclude that w(Ā) ≤ w(B̄) ≤ α·OPT.

Let us first show inequality (2) using this strategy. For each
terminal t ∈ T −{r}, fix a t-arm Q∗

t in (V,A∗). Consider the
partition A∗ = A∗

1 ∪ · · · ∪ A∗
k satisfying the properties stated

in Lemma III.1. As the A∗
i are disjoint, OPT =

∑k
i=1 w(A∗

i).
Fix an i ∈ [k]. Let Ti be the set of terminals in G[A∗

i].
Color a terminal t in Ti red if its t-arm Q∗

t belongs to G[A∗
i],

and color t white otherwise. For each red terminal t in Ti,
we will construct a t-arm Qi

t in the tree G[A∗
i] such that each

edge in the tree belongs to at most 2 log2 |Ti| of these Qi
t.

To do so, let Di be the directed graph obtained from the
tree G[A∗

i] by replacing each edge in G[A∗
i] with two directed

edges pointing to opposite directions. Then, Di is an Eulerian
graph. An Eulerian tour on Di will visit each terminal in Ti

exactly once and come back to the first terminal where the tour
started. Let t1, . . . , t|Ti| be the sequence of terminals the tour
visits, in that order. Following this tour, we obtain a collection
of (undirected) arms in the tree G[A∗

i]: (t1, t2)-arm, (t2, t3)-
arm, ..., (t|Ti|, t1)-arm, where each edge of the tree occurs in
at most two arms.

Without loss of generality, assume t1 has highest
level among all terminals in this tree. For each j =
1, 2, . . . , b|Ti|/2c, a (t2j , t2j+1)-arm is either a t2j-arm or a
t2j+1-arm or both. In addition, the (t|Ti|, t1)-arm is always
a t1-arm. Thus, the above arm collection gives us t-arms for
at least d|Ti|/2e of the terminals. The number of terminals t
without a t-arm is at most b|Ti|/2c. Next, we consider the
terminals t without t-arms and follow the Euler tour again.
The same argument gives us a collection of t-arms for at least
half of these terminals t, where each edge of the tree occurs
in at most two arms. In the end, we have constructed t-arms
for all terminals, except for possibly the one at the lowest
level, after at most log2 |Ti| rounds. (Some t-arms for white
terminals might have also been constructed, but we don’t need
them.) Each edge of the tree occurs in at most 2 log2 |Ti| arms.

Note that, if there was a terminal whose level is strictly
lower than all other terminals, then that terminal has to be
white. Thus, if there is a lone remaining red terminal t in the
end, then there must be at least another terminal t′ at the same
level as t. The t′, t-path is a t-arm.

The above analysis gives us a collection of t-arms for every
terminal t. Each t-arm is of the form Qit

t for a unique it ∈
[k]. Thus, the total weight of these t-arms is

∑
t w(Qit

t) ≤∑
i 2 log2 |Ti|w(A∗

i) ≤ 2 log2 n
∑

i w(A∗
i) = 2 log2 n · OPT.

Now, consider a solution B̄ for the Ḡ-instance constructed
as follows. For each t-arm Qit

t , say Qit
t is a (t, u)-arm, inserts

the edge tu into B̄. By definition of the weight function w̄,
we have w̄(tu) ≤ w(Qi

t). The set B̄ is certainly feasible for
the Ḡ-instance, and w̄(B̄) ≤

∑
t w(Qit

t) ≤ 2 log2 n · OPT.

We next prove inequality (3). For each red terminal in Ti,
we will construct a t-arm Qi

t in the tree G[A∗
i] such that each

edge in the tree belongs to at most dL/2e+1 of these Qi
t. The

construction strategy is different from the 2 log2 n-ratio case.
Consider a longest arm (in terms of the number of edges)

in G[A∗
i] from a terminal t1 to a terminal t2. Suppose this

arm has length L′ ≤ L. (Recall that L denotes the length of a
longest arm in the entire base graph G.) The case when L′ = 1
is trivial, so we can assume L′ ≥ 2. Let s be a Steiner node
in the middle of this longest arm. (If L′ is odd, choose any
one of the two middle nodes.) Fix s as the root of this tree.
Then, the depth of this rooted tree is at most dL′/2e.

By Lemma III.2, there exists a collection of paths satisfying
the conditions stated in the lemma. If the set U in the Lemma
is empty, then v0 is the unique node with lowest level in the
tree, and hence v0 is white. The collection of paths given in
the Lemma is the collection of t-arms we want. (The v0, s-
path is redundant, along with t-arms for white terminals.) If
the set U is not empty, then the u, v0-path in part (iv) of the
lemma is a v0-arm, so we are fine even when v0 is red.

B. Three Variations of CAA

CAA-v1: In this variation, instead of computing the optimal
solution to the Ḡ-instance in line 2 of CAA, we just pick
a shortest t-arm (in Ḡ) for every terminal t and add to Ā.
The solution, if exists, is certainly feasible for the Ḡ-instance.
The analysis of CAA-v1 is almost identical to that of CAA,
with a slightly worse approximation ratio of min{dL/2e +
2, 2 log2 n + 1}. The advantage of CAA-v1 over CAA is that
its running time is better. Essentially we only need to run
an all-pair shortest-path algorithm such as the Floyd-Warshall
algorithm in O(n3)-time.

CAA-v2: In CAA we treat each level independently, and
thus do not take into account the fact that a partial solution
for a lower level might make the incremental cost for covering
the next level smaller than the cost of covering the next level.
This variation can be implemented by going through G0 level-
by-level, collapsing all terminals at lower levels and all used
Steiner nodes, then find a cover for the current level. It is not
difficult to see that the incremental cost for covering a level is
at most the cost for covering it (without collapsing lower level
nodes). Thus CAA-v2 has approximation ratio at least as good
as CAA. The running time of CAA-v2 can be implemented
so that it is the same as that of CAA-v1.

CAA-v3: Better yet, instead of computing the Ḡ-edge cover
for each level as in CAA-v2, we can make use of the optimal
solution to the terminal cover problem in [1]. After collapsing
lower levels and used Steiner nodes, we can treat it as a
new root and the next level as terminals for the terminal
backup problem. The approximation ratio is at least as good
as CAA, but the worst-case running time is a lot worse:
O(log(OPT)n10).

6

Primal-Dual Algorithm for SMFT, Generic Version

1: y← 0 (all yt,U are set to 0)
2: l← 0
3: Al ← ∅
4: while Al is not feasible do
5: Choose a subset νl of terminal cuts which have not been

“hit” by Al

6: Increase yt,U uniformly for all C(t, U) ∈ νl until there
is some edge el ∈ E′ −Al such that∑

C(t,U)∈νl: el∈C(t,U)

yt,U = w(el)

7: Al+1 ← Al ∪ {el}
8: l← l + 1
9: end while

10: A′ ← Al−1 // start the reverse delete step
11: for j ← l − 1 down to 1 do
12: if A′ − {ej} is feasible then
13: A′ ← A′ − {ej}
14: end if
15: end for
16: Return A′

Fig. 5. General Description of a Primal-Dual Algorithm for SMFT. We will
describe later how to choose (i.e. compute) νl efficiently.

C. A Primal-Dual (2∆s + 2)-Approximation Algorithm

1) SMFT under the Primal-Dual Framework: Define E′ =
E − E0 and G′ = (V,E′). For any terminal t 6= r, and any
subset U ⊂ V such that U does not contain t but does contain
all terminals with level ≤ lt, let C(t, U) be the set of all edges
uv ∈ E′ where u ∈ U , v /∈ U , and each of u, v is either a
Steiner node or a terminal at level ≤ lt. Intuitively, C(t, U) is
sort of like a cut (U, Ū) of G′ in which we ignore edges of the
cut which are incident to some terminal with level > lt. For
lack of better words, we will call such an edge set C(t, U) a
t-terminal cut.

A simple (and standard) maxflow-mincut argument (see,
e.g. [7]) along with Proposition II.1 leads to the following
important proposition.

Proposition III.4. An edge set A ⊆ E′ is feasible if and
only if |A ∩ C(t, U)| ≥ 1 for every terminal t 6= r and every
t-terminal cut C(t, U).

The proposition allows us to view an instance of SMFT as
an equivalent instance of the HITTING SET problem as follows.
We need to choose a least-weight subset A of E′ such that A
“hits” every t-terminal cut C(t, U) (i.e. |A ∩ C(t, U)| ≥ 1).

Associate a (dual) variable yt,U to each t-terminal cut
C(t, U). The generic primal-dual algorithm (Algorithm in Fig.
4.3 in [8], or Algorithm in Fig. 3 of [9]) can now be applied
to SMFT, as shown in Fig. 5. In describing the algorithm, we
have tried to use notations as consistently as possible with
those used in [8], [9].

For any subset A ⊆ E′, a subset D ⊆ E′ − A is called a

minimal augmentation of A if A∪D is feasible and for any e ∈
D, A ∪D− {e} is not feasible. The following theorem gives
the blueprint for deriving approximation ratio of the generic
primal-dual algorithm.

Theorem III.5 (See [8], [9]). If for every iteration l of the
generic primal-dual algorithm,

max
D:min. aug. of Al

∑
C(t,U)∈νl

|D ∩ C(t, U)| ≤ α|νl|, (4)

then the algorithm is an α-approximation algorithm.

2) Choosing the νl and Proving Approximation Ratio: Let
Al be the subset of edges at iteration l of the algorithm shown
in Fig. 5. A terminal t 6= r is said to be a blocked terminal (at
iteration l) if there is no t-arm in (V,Al). If Al is infeasible
then there must be at least one blocked terminal.

For each blocked terminal t, let H l
t be the subgraph obtained

from the graph (V,Al) by removing all terminals at levels
> lt (and their incident edges). Let Ū l

t be the set of vertices
reachable from t in H l

t , and define U l
t = V − Ū l

t . Since t is
blocked, Ū l

t contains t and possibly some Steiner nodes, but
no other terminal. It is not difficult to see that Ūt1 ∩ Ūt2 = ∅
for two different blocked terminals t1 and t2. Consider the
graph H l

t [Ūt − {t}] which is the subgraph of H l
t induced by

Ūt − {t}. This graph has cl(t) connected components called
the private components of t. It is easy to see that

cl(t) ≤ ds(t) ≤ ∆s.

Theorem III.6. Suppose at each iteration l of the algorithm
shown in Fig. 5 the set νl is chosen to be the collection of all
terminal cuts C(t, U l

t) for which t is a blocked terminal. Then,
the algorithm has approximation ratio 2∆s + 2 with running
time O(mn log m), where n = |V (G)|,m = |E(G)|.

Proof: The algorithm can be implemented using a union-
find data structure in much the same way that Kruskal’s MST
algorithm is implemented, which justifies the running time.

We show that our choice of νl satisfies inequality (4) with
α = 2∆s + 2. It is sufficient to show that, for any infeasible
Al and any minimal augmentation D of Al,∑

C(t,U l
t)∈νl

|D ∩ C(t, U l
t)| ≤ (2∆s + 2)|νl|. (5)

To prove (5), we interpret the two sides of the inequality as
combinatorial quantities. The right hand side of (5) is simply
(2∆s+2) times the number of blocked terminals. The left hand
side is slightly more complicated. Color edges in Al black and
edges in D green. Define Gl = (V,Al ∪ D) and construct
the graph Ḡl obtained from Gl by lumping together (i.e.,
identifying) all nodes in each set Ū l

t , retaining the possible
parallel edges and loops introduced by this lumping process.
Since the Ū l

t are disjoint, the graph Ḡl is well-defined. For
convenience, the node in Ḡl resulted from identifying all nodes
in Ū l

t is named Ū l
t , and is referred to as a t-super node.

Thus, Ḡl has three kinds of nodes: t-super nodes for blocked
terminals t, unblocked terminal nodes, and Steiner nodes. The

7

left hand side of (5) is simply the total green degree of the
super nodes in Ḡl.

To prove that the total green degree of super nodes is at
most (2∆s + 2) times the number of blocked terminals, we
devise a credit scheme. Each super node Ū l

t is given 2cl(t)+2
“credits” to pay for the total green degree of the super nodes.
Each green degree “debt” will be paid with one credit. Of the
2cl(t) + 2 credits of Ū l

t , there are two credits for each private
component of t plus two extra credits. Let Din denote the set
of all green edges both of whose ends are inside some super
node, and Dex the rest of the green edges. Clearly edges in
Din do not contribute to the total green degree of super nodes.
We will specify a way to write Dex as a union

Dex =
⋃

t is a blocked terminal

Dt (6)

and specify how the credits can be used to pay for the green
degree debts contributed from each of the Dt.

Since Al ∪D is feasible, for every blocked terminal t there
is at least one t-arm Qt in Gl. The path Qt induces a path Q̄t

in Ḡl from the super node Ū l
t to either an unblocked terminal

v or a super node Ū l
v , where lv ≤ lt. We will also call Q̄t

a t-arm in Ḡl. The t-arms in Ḡl may consist of some black
edges and some green edges in Dex.

Now, for each blocked terminal t, let Q̄t be a t-arm in Ḡl

with shortest length among all t-arms in Ḡl; correspondingly,
let Qt denote a t-arm in Gl which induces Q̄t in Ḡl. The
following is an important property of the Q̄t chosen this way.
Claim: All internal nodes of Q̄t are either Steiner nodes of
super nodes Ū l

u with lu > lt.
Note the subtle point that this kind of internal super node

is possible because the arm Qt inducing Q̄t can transit Ū l
u via

some private component of u but bypass u itself.
We now prove the claim. If there was a u-super node Ū l

u

with lu ≤ lt among the internal nodes of Q̄t, then the segment
of Q̄t from t to Ū l

u is also a t-arm in Ḡl shorter than Q̄t,
violating the definition of Q̄t. There cannot be any internal
unblocked terminal u of Q̄t because the arm would have ended
at u. The claim is thus proved.

The union (6) is constructed algorithmically as follows.
Initially, set Dt = ∅ for all blocked terminals t. Color all
super nodes and private components in Ḡl white. Some private
components may later be turned red, while others remain
white. However, all super nodes will eventually be turned red.
At each step, the algorithm does the following:

• add a few green edges from Dex to some empty Dt,
• use the credits of some white super nodes and white

private components to pay for the green degree “debts”
imposed by the green edges just added to Dt,

• turn some super nodes’ and private components’ colors
from white to red, including all the ones whose credits
have been used up

• maintain the following invariance: for each blocked
terminal t whose super node Ū l

t is red, there exists a
t-arm in (V,Al ∪Din ∪ (∪tDt)).

By the definition of blocked terminals, every terminal t that
is not blocked has an entirely black t-arm in Gl. After the
algorithm is terminated, all super nodes are red. The invariance
thus ensures that Al ∪Din ∪ (∪tDt) is feasible. Since D is a
minimal augmentation of Al, (6) must hold as promised. As
all green degree debts have been paid by the credits given to
the white nodes (at most 2∆s +2 credits each), inequality (5)
is thus proved.

It remains to describe the algorithm satisfying all of the
above. The invariance certainly holds initially since there is no
red super node yet. Process one by one the blocked terminals
in non-decreasing order of their levels, breaking ties arbitrarily.
Suppose a blocked terminal t is being considered.

If the super node Ū l
t is already red, then do nothing and

move on to the next blocked terminal. (In this case Dt remains
the empty set.) The invariance still holds.

Now, suppose Ū l
t is white. By the claim above, we only

need to consider three cases as follows.
Case 1. Q̄t has no internal super node. In this case, add all

green edges in Q̄t to Dt. The total green degree debt in Dt

is at most 2 (could be 1 if Q̄t ends at an unblocked terminal).
We can thus use the two extra credits of Ū l

t to pay for Dt, then
color the super node Ū l

t red. The invariance holds because Qt

is a t-arm in (V,Al ∪Din ∪ (∪tDt)).
Case 2. Q̄t has some internal super node(s), and all of them

are white. The private components of white super nodes are
always white. In this case, add all green edges on Q̄t to Dt.
If Q̄t has k internal super nodes, then the number of white
super nodes on Q̄t is at least k+1. (The other end of Q̄t may
be red.) The total green degree debt induced by Dt is at most
2k + 2 (one on each end, and two for each internal node).

Now, Qt will “grabs” on to at least one private component
of each internal super node. We use the credits of these private
components (2 each) to pay for the 2k-debt amount and turn
them red. Also color all internal super nodes red (their extra
credits are not used). Then, use the two extra credits of Ū l

t to
pay for the green degree debts on two ends and turn Ū l

t red
also. Note that, by the claim above, all internal nodes Ū l

u of
Q̄t satisfy lu > lt.

To show the invariance, note that Qt itself is a t-arm
in (V,Al ∪Din ∪ (∪tDt)). For the terminals u whose super
nodes Ū l

u have just been turned red, a u-arm can be constructed
by going from u to a node in Ū l

u that Qt “touches,” and then
follow Qt back to t itself. Since lu > lt, this is a legitimate
u-arm.

Case 3. Q̄t has some internal super node(s), at least one of
which is red. As we move along Qt from t to the other end, we
either meet some red private component of an internal super
node of we don’t.

In the latter case, add all green edges on Q̄t to Dt. We can
then use the extra credits of Ū l

t and the credits of white private
components we see along the way to pay for the new debts, in
the same fashion as the previous case. Turn Ū l

t and the white
private components red.

In the former case, let Ū l
u be the first internal super node

with a red private component that Qt touches. Add all green

8

edges on the segment of Q̄t from Ū l
t to Ū l

u to Dt. Turn
all white nodes and private components on this segment to
red. Similar to Case 2, the white nodes’ and white private
components’ credits are sufficient to pay for the green degree
debts incurred by Dt.

It remains to show that the invariance still holds. By the
above claim, lu > lt; thus, u is not yet processed in our
algorithm. The only way for a private component of Ū l

u to
turn red before u is processed is when that private component
lies on some path Qv where Ū l

v is an already processed super
node. Hence, lv ≤ lt < lu. Thus, a t-arm can follow Qt to
the private component of u and then following Qv back up to
v. The handling of terminals whose super nodes just turned
white is similar to that in Case 2.

IV. HARDNESS OF APPROXIMATING SMFT

Theorem IV.1. There exists a constant c > 1 such that it is
NP-hard to approximate SMFT to within a factor c, even when
restricted to instances of SMFT for which L ≤ 10, ∆s ≤ 3,
and all edge weights are 1.

Proof: We present a gap-preserving reduction from MAX-
E3SAT(5) to SMFT. (See, e.g., [10]–[12] for background on
gap-preserving reductions and hardness of approximation.) An
instance of MAX-E3SAT(5) consists of a CNF formula ϕ in
which each clause Ci, i ∈ [m], consists of exactly 3 literals
and every variable belongs to exactly 5 clauses. Suppose there
are n variables. It is easy to see that m = 5n/3. The objective
is to find a truth assignment satisfying as many clauses as
possible. Let OPT(ϕ) denote the maximum number of clauses
of ϕ satisfied by a truth assignment. It is known that it is NP-
hard to distinguish between instances ϕ of MAX-E3SAT(5) for
which OPT(ϕ) = m and instances ϕ for which OPT(ϕ) <
(1− ε)m for some fixed constant 0 < ε < 1 [13].

Our gap-preserving reduction from MAX-E3SAT(5) to SMFT
is a polynomial-time algorithm satisfying the following prop-
erties:
(i) For each instance ϕ of MAX-E3SAT(5), the algorithm

produces an instance I = (G, G0, w) of SMFT. This
instance has L ≤ 10, ∆s ≤ 3, and w(e) = 1 for all
e ∈ E(G).

(ii) Let OPT(I) denote the optimal cost of this instance. Then,

OPT(ϕ) = m ⇒ OPT(I) ≤ 10n + m + 2
OPT(ϕ) < (1− ε)m ⇒ OPT(I) > c(10n + m + 2)

where c = 1 + 5ε
37 > 1 is a constant.

Consider an instance ϕ of MAX-E3SAT(5) on variables
x1, . . . , xn and clauses C1, . . . , Cm. Without loss of gener-
ality, we can assume that n ≥ 3. The graph G = (V,E) and a
tree G0 is constructed as follows. See Fig. 6 for an illustration.

The terminal set of G includes r, r′, xi for each i ∈ [n], and
Cj for each j ∈ [m], where r is the root. The Steiner node set
includes a node s, and t1i , . . . , t

9
i , f

1
i , . . . , f9

i for each variable
xi.

xnx1

x2

f1
1

f3
1

f5
1

t11

t31

t51
t71 f9

n
f7

n
f5

n

f3
n

f1
n

t1n

root r

t91

C1 C2 Cm

r′

Cm−1

s

Other edges of G

Edges of the tree G0 Terminal nodes

Steiner nodes

Fig. 6. Illustration of the gap-preserving reduction

The fat tree G0 consists of the following edges: rxi for each
i ∈ [n], rr′, and r′Cj for each j ∈ [m]. The rest of the edges of
E(G) involve Steiner nodes. First, there are two edges rs and
sr′. Second, for each i ∈ [n] there are two paths from xi to r:
the true arm xit

1
i . . . t9i r and the false arm xif

1
i . . . f9

i r. Third,
there are three edges from each clause terminal Cj hooking
Cj to either a true arm or a false arm corresponding to the
literals that Cj contains. Specifically, consider a literal xi. Let
Cj1 , . . . , Cjk

(k ≤ 5) be the clauses that contains this literal,
where j1 < j2 < · · · < jk. Connect Cj1 to t1i , Cj2 to t3i , ...,
Cjk

to t2k−1
i . (Since k ≤ 5, 2k−1 ≤ 9.) For the literal x̄i, we

connect the clauses that contains it to the false arm instead.
First, suppose OPT(ϕ) = m. Consider a truth assignment

a : {x1, . . . , xn} → {TRUE, FALSE} which satisfies all clauses
of ϕ. Construct a feasible solution A to the SMFT instance as
follows. For each variable xi, if a(xi) = TRUE then add all
edges on the true arm xit

1
i . . . t9i r to A; otherwise, add the

false arm. For each clause Cj , add the edge from Cj to the
arm of a literal which satisfies Cj . Also add two edges r′s and
sr to serve as an r′-arm. It is easy to verify that A is feasible
with cost 10n + m + 2. The term 10n comes from one arm
for each xi. The term m comes from one edge for each Cj .
And, the term 2 comes from edges r′s and sr. Thus, we have
just shown that OPT(ϕ) = m⇒ OPT(I) ≤ 10n + m + 2.

Second, suppose OPT(ϕ) < (1 − ε)m, namely no truth
assignment can satisfy at least (1 − ε)m clauses. Consider
an optimal solution A∗ to the SMFT instance. The r′-arm in
(V,A∗) has to be r′sr of weight 2. Since A∗ is feasible, we
can also fix an xi-arm in (V,A∗) for each vertex xi. Each
of these arms is either a false arm or a true arm. Color all
edges on these arms green. (It might be the case that both
the true and false arms of some xi belong to A∗. We just
need to fix one green arm for such xi.) Also fix a Cj-arm
QCj in (V,A∗) for each clause Cj . Let g be the number
of QCj which “grabs” on to one of the green arms. Then,

9

TABLE I
SUM COST OF THE EDGES CHOSEN BY VARIOUS ALGORITHMS FOR SMFT PROBLEM

Alg. G1
6 G2

6 G1
7 G2

7 G1
8 G2

8 G1
9 G2

9 G1
10 G2

10 G1
11 G2

11
Opt. 145 101 81 93 147 145 117 90 108 103 74 72
CAA 145 103 81 93 148 161 117 90 112 103 80 75
CAA-v2 145 101 81 93 148 145 117 90 108 103 74 72
PD 145 101 81 95 148 148 117 90 109 104 74 72

it is not difficult to see that the total cost of A∗ is at least
10n + 2 + g + 2(m− g) = 10n + 2 + 2m− g.

Consider a truth assignment which sets xi to TRUE if the
true arm for xi is green, and FALSE otherwise. This truth
assignment satisfies at least g clauses. Thus, g < (1 − ε)m.
Consequently, noticing that m = 5n/3 and n ≥ 3, we have

OPT(I) = w(A∗) ≥ 10n + 2 + 2m− g

> 10n + 2 + 2m− (1− ε)m

=
(

1 +
εm

10n + m + 2

)
(10n + m + 2)

=
(

1 +
ε5n/3

35n/3 + 2

)
(10n + m + 2)

≥
(

1 +
5ε

37

)
(10n + m + 2).

V. PERFORMANCE EVALUATION

We present the numerical results of solving the min-cost
SMFT problem with various algorithms. We use BRITE [14] to
create Waxman [15] topologies where the nodes are uniformly
distributed on the plane and the probability of having an
edge between any two nodes is inversely proportional to the
exponential value of their Euclidean distance. We start with
any node as the root and find the shortest path tree originated
from it. Then we randomly choose another node, t, as well as
all the nodes along the shortest path from t to root as terminals.
We repeat the above procedure until we have collected enough
terminals as required. The residual nodes are treated as Steiner
nodes. The subgraph of the shortest path tree spanning all the
terminals is considered as the existing multi-level access tree.

Starting with a 25-node Waxman network, we create 10 test
instances with different number of Steiner nodes for different
roots. Denote Gi

k as the i-th instance (different root) with k
Steiner nodes.

Table I shows the total cost returned by various algo-
rithms, which include optimal solution using Integer Linear
Programming (ILP), CAA, CAA-v2, and the primal-dual al-
gorithm. The ILP formulation is the ILP of the HITTING SET
formulation of SMFT presented in Section III-C, which has
exponential size in the input instance. We do not know of a
better (i.e. polynomial-sized) ILP formulation for SMFT. This
is the reason we couldn’t test the approximation algorithms on
larger random instances. From the table, we observe that all
approximation algorithms can achieve near-optimal solution.
In particular, CAA-v2 finds all the optimal solutions except
for the instance of G1

8.

In terms of running time, our approximation algorithms just
take a few seconds. As expected, finding the optimal solution
with ILP requires more time. For example, the lintprog in
MATLAB quires 10-20 minutes for a 6-Steiner-node network,
more than one hour for a 9-10 Steiner-node network, and more
than two hours for an 11 Steiner-node network.

ACKNOWLEDGEMENTS

The work of Hung Q. Ngo was supported in part by NSF
CAREER Award CCF-0347565.

REFERENCES

[1] D. Xu, E. Anshelevich, and M. Chiang, “On survivable access network
design: Complexity and algorithms,” in Proceedings of the 27rd IEEE
Conference on Computer Communications (INFOCOM). Phoenix,
Arizona, U.S.A.: IEEE, Apr 2008, pp. 709–717.

[2] M. Andrews and L. Zhang, “The access network design problem,” in
IEEE symposium on Foundations of Computer Science, FOCS’98, Palo
Alto, CA, 1998, pp. 40–59.

[3] A. Patzer, “Algorithms for a reliable access network,” Master’s thesis,
Princeton University, 2004.

[4] A. Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol.
A, ser. Algorithms and Combinatorics. Berlin: Springer-Verlag, 2003,
vol. 24, paths, flows, matchings, Chapters 1–38.

[5] H. N. Gabow, “Data structures for weighted matching and nearest
common ancestors with linking,” in SODA ’90: Proceedings of the first
annual ACM-SIAM symposium on Discrete algorithms. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 1990, pp.
434–443.

[6] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for general
graph-matching problems,” J. Assoc. Comput. Mach., vol. 38, no. 4, pp.
815–853, 1991.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.

[8] M. X. Goemans and D. Williamson, “The primal-dual method for ap-
proximation algorithms and its application to network design problems,”
in Approximation Algorithms for NP-Hard Problems, D. Hochbaum, Ed.
PWS Publishing Company, 1997, pp. 144–191.

[9] D. P. Williamson, “The primal-dual method for approximation algo-
rithms,” Math. Program., vol. 91, no. 3, Ser. B, pp. 447–478, 2002,
iSMP 2000, Part 1 (Atlanta, GA).

[10] V. V. Vazirani, Approximation algorithms. Berlin: Springer-Verlag,
2001.

[11] L. Trevisan, “Inapproximability of combinatorial optimization prob-
lems,” The Electronic Colloquium in Computational Complexity, Tech.
Rep. 65, 2004.

[12] S. Arora and C. Lund, “Hardness of approximation,” in Approximation
Algorithms for NP-Hard Problems, D. Hochbaum, Ed. PWS Publishing
Company, 1997, pp. 399–346.

[13] U. Feige, “A threshold of ln n for approximating set cover (preliminary
version),” in Proceedings of the Twenty-eighth Annual ACM Symposium
on the Theory of Computing (Philadelphia, PA, 1996). New York:
ACM, 1996, pp. 314–318.

[14] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to
universal topology generation,” in Proc. of the International Workshop
on Modeling, Analysis and Simulation of Computer and Telecommuni-
cations Systems- MASCOTS’01. Cincinnati, Ohio, August, Aug. 2001.

[15] B. M. Waxman, Routing of multipoint connections. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1991.

