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Abstract— The Distributed Coordination Function (DCF) aims
at fair and efficient medium access in IEEE 802.11. In face of its
success, it is remarkable that there is little consensus on the actual
degree of fairness achieved, particularly bearing its impact on
quality of service in mind. In this paper we provide an accurate
model for the fairness of the DCF. Given M greedy stations we
assume fairness if a tagged station contributes a share of 1/M
to the overall number of packets transmitted. We derive the
probability distribution of fairness deviations and support our
analytical results by an extensive set of measurements. We find
a closed-form expression for the improvement of long-term over
short-term fairness. Regarding the random countdown values
we quantify the significance of their distribution whereas we
discover that fairness is largely insensitive to the distribution
parameters. Based on our findings we view the DCF as emulating
an ideal fair queuing system to quantify the deviations from a
fair rate allocation. We deduce a stochastic service curve model
for the DCF to predict packet delays in IEEE 802.11. We show
how a station can estimate its fair bandwidth share from passive
measurements of its traffic arrivals and departures.

I. INTRODUCTION

The Distributed Coordination Function (DCF) specifies a
randomized access procedure for the shared wireless medium
in IEEE 802.11. The target is to divide resources fairly among
an unknown number of stations while minimizing access
delays and maximizing overall throughput. Originating from
the basic ALOHA access scheme significant progress has been
made regarding throughput and stability of today’s Medium
Access Control (MAC) protocols [1], [2]. The issue of per-flow
fairness is however, still under debate and different studies
do not agree in their conclusions, e.g. [3], [4]. An important
aspect of fair scheduling is the attainable quality of service.
While long-term fairness ensures a certain average throughput
the issue of short-term fairness has tremendous impact on
individual packet delays [3], [5], [6].

Centralized fair scheduling algorithms on the other hand
are very well understood today. The pioneering Generalized
Processor Sharing (GPS) model [7] assumes a weighted re-
source allocation that is perfectly fair on any time scale.
To date, a variety of packet-by-packet implementations exist
that emulate GPS closely, such as Weighted Fair Queuing.
Distributed emulations are proposed in [8], [9], [10] with the
aim to implement fair scheduling in the DCF. Models for fair
packet scheduling are derived e.g. in [11], [12], [13], [14].
These models define error terms that specify the worst-case
deviation of a packet scheduler from an ideal GPS system.

Moreover, the GPS model and the calculus for network
delay [15] gave rise to the important concept of deterministic

service curve [7] that is the foundation of today’s network
calculus [16], [17]. Recently, significant progress has been
made towards the formulation of stochastic service curves, see
[18], [19], [20] and references therein. These models are used
in [21], [20], [22] to derive service curve representations of
wireless links with a focus on channel outages that are due to
fading and interference. Modeling random medium access is,
however, an open challenge.

In this paper we analyze the fairness of the DCF and
the impacts on quality of service at a single radio channel.
Our contributions are as follows. First, we derive closed-
form solutions for the conditional distribution P [K = k|l]
that a contending station transmits k packets given a tagged
station transmits l packets within the same time interval. This
characterization of fairness turns out to be comprehensive
and versatile, e.g. the well-known fairness index by Jain [23]
follows readily. We substantiate our analytical findings using
an extensive baseline set measurements that we conducted in
a shielded and unechoic room and of OmNet++ simulations.
Second, we view the DCF as emulating the GPS policy. We
formulate a recursive model for packet departure times coined
DCF clock that is subject to well-defined random error terms.
Based on the distribution of packet inter-transmissions we
derive a stochastic service curve model for the DCF. Finally,
we show how a station can obtain reliable estimates of the fair
rate from passive measurements of its arrivals and departures.

The remainder of this paper is structured as follows. In Sect.
II we discuss related work on fairness in IEEE 802.11. In Sect.
III we elaborate on our controlled evaluation environment. We
compare our set of baseline measurements to OmNet++ simu-
lations as well as to related studies. In Sect. IV we develop a
model of the DCF and derive closed-form expressions for the
fairness. In Sect. V we view the DCF as emulating GPS and
derive the DCF clock and after that a DCF service curve model
in the network calculus. In Sect. VI we show how the fair share
under the DCF can be estimated from passive measurements.
Sect. VII provides brief conclusions.

II. BACKGROUND AND RELATED WORK

In this section we introduce the basic functionality of the
IEEE 802.11 DCF and discuss related work on its perfor-
mance. The DCF seeks to achieve per-packet fairness [4],
[24] that is also the subject this work. Besides, the notion of
airtime fairness [25], [26], [27] is important in IEEE 802.11.
It depends, however, on further parameters such as packet
sizes and rate-adaptation. Numerous works, e.g. [8], [9], [10],
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[28], seek to modify the DCF to improve fairness issues in
wireless networks. Yet, we find that not even the degree of
per-packet fairness that is achieved by the standard DCF is
well-understood and precisely modeled.

A. DCF Mode of Operation

The IEEE 802.11 standard [29] specifies the DCF mode of
operation. Here, we only consider the case of greedy stations
that persistently contend for the wireless medium.

We consider a tagged station that transmits a packet and
after the so-called Short Inter-Frame Space (SIFS) receives
the corresponding acknowledgement. Before sending the next
packet the station generates a uniformly distributed backoff
value in [0, 1, . . . , w − 1] where w is the contention window.
Whenever the medium is continuously idle for the duration of
a Distributed Inter-Frame Space (DIFS) the station starts re-
spectively continues its countdown procedure and decrements
its backoff value by one each slot time. The countdown is
paused if the medium gets busy again and it is resumed after
each successful DIFS waiting. As soon as the backoff value
reaches zero the station sends its packet. If several stations
perform the countdown procedure simultaneously the one with
the smallest backoff value starts its transmission first.

If two or more stations finish the countdown procedure at
the same time their transmissions cause a collision. In this case
the respective stations perform an exponential backoff, i.e they
double their current contention window w at most up to wmax.
They return to wmin in case of a successful transmission.

B. Related Work on Fairness

Achieving good throughput while taking fair medium access
into account is a major goal of MAC protocols. This target
gave rise to significant research, for a survey see e.g. [30].
Using a distributed scheduling approach such as the DCF it
is, however, still a challenge.

A seminal performance analysis of the saturation throughput
of the IEEE 802.11 DCF is provided in [2]. Based on a two-
dimensional Markov model the distribution of the contention
window is derived. The approach is simplified in [5] using
a one-dimensional Markov chain and approximated using
backoff values sampled from an exponential distribution with
a mean related to the collision probability in [31]. Channel
access delays are derived e.g. in [5], [6], [32].

One of the first papers that point at the importance of
fairness in wireless networks is [1]. The authors investigate
fair bandwidth allocation in the presence of hidden terminals
and introduce the RTS/CTS message exchange. Fairness is
frequently quantified using Jain’s fairness index [23]. Given a
number of samples K the index is defined by their first and
second moment as

f =
E[K]2

E[K2]
. (1)

Jain’s fairness index is in the interval [0, 1] where larger values
indicate better fairness.

An empirical study of fairness in WaveLANs is provided
in [3]. Using a sliding window the throughput of individual

stations is measured for different window sizes to compute
Jain’s fairness index for short and long time-scales. The finding
is that WaveLANs are long-term fair but unfair on short
time-scales. Similar results are reported for IEEE 802.11 by
a number of subsequent papers that compute Jain’s fairness
index from simulation respectively measurement data [8], [33],
[10]. Based on a Markov model the study [34] supports short-
term unfairness. In contrast the authors of [4], [24] report long
as well as short-term fairness.

The argument of short-term fairness is supported in [4]
using an analytical model that introduces a new indicator of
fairness. To this end, the packet inter-transmissions of a con-
tending station are counted before a tagged station transmits
a single packet. Considering independent and identically dis-
tributed (i.i.d.) backoff values bi(j) and two stations indexed
i = 1, 2, the first station sends exactly k packets before the
second station completes its countdown if

∑k
j=1 b1(j) ≤ b2(1)

and
∑k+1
j=1 b1(j) > b2(1). The backoff values are modeled

as continuous and uniformly distributed in [0, w − 1], hence
collisions are not considered in [4]. Furthermore, synchronized
stations are assumed that start their countdown procedures
at the same time. The sums of uniform random variables
are expressed using the Irwin-Hall distribution yielding the
conditional probability that station one transmits k packets
given station two transmits a single packet

P[K = k|1] =
k + 1

(k + 2)!
.

The paper [4] reports a good match of the model with empir-
ical data and concludes short-term fairness for two stations.
The closed-form result is not extended to more than two
stations. The authors provide, however, measurement results
in [24] which indicate that fairness decreases as the number
of contending stations increases.

A number of studies [8], [10], [9] seek to develop improve-
ments of the DCF that resemble fair scheduling algorithms.
Also, the bandwidth estimation study [35] relates fairness of
the DCF to the fair share achieved under GPS [7] and reports
a good match for long-term fairness. Here, the fair share f is
defined as

f :
∑

i
min(ρi, f) = C (2)

where ρi is the source data rate of station i and C is the
channel capacity. Despite the efforts to implement fair medium
access, models that quantify deviations of the DCF from the
fair share on different time scales remain an open challenge.

III. EMPIRICAL FAIRNESS EVALUATION

We conduct an empirical evaluation of the fairness achieved
by the DCF that acts as a baseline for our model-based analysis
in Sect. IV. We perform extensive experiments with two
and more contending stations using an IEEE 802.11 testbed
in a specific shielded and unechoic measurement chamber.
Hence, we can assume that the wireless medium is free of
interference from external sources that do not belong to our
testbed. Furthermore, we present results from OmNet++ [36]
simulations of the same topology and setup for comparison.



Fig. 1. Wireless testbed setup
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Fig. 2. Jain’s fairness index

Our testbed shown in Fig. 1 consists of four wireless stations
(S1 to S4) that run the rude/crude traffic generator [37] to
contend for the medium and send data to a receiver (R). The
stations are connected to the access point (AP) using IEEE
802.11g with 54 Mbps1. The access point is connected to
the receiver using fast Ethernet with 100 Mbps. The distance
between the wireless stations and the access point is between
0.5 m and 1.5 m to avoid antenna near field effects. We
switched off RTS/CTS, automatic rate adaption and made sure,
that packet fragmentation does not occur. Additionally, all
stations are connected to a separated wired control network.

We perform experiments with M = 2, 3, 4 contending sta-
tions lasting for 30, 45, and 60 minutes respectively. We repeat
each experiment 25 times to generate a sufficient amount of
data for statistical analysis. Each station sends a greedy UDP
flow of 1500 Byte packets at a rate of 28 Mbps. Note that the
sending rate of a single station coincides with the net service
rate of IEEE 802.11g due to per-packet protocol overhead [2].
During the experiments all stations transmitted their data with
an average rate of 14, 9.3, and 7 Mbps respectively indicating
close to perfect long-term fairness (2) in the testbed.

To investigate fairness at different timescales we tag
a station and count the random number of packet inter-
transmissions K of all contending stations while the tagged
station transmits l packets, i.e. we consider the conditional
probability P[K = k|l]. For M = 2 and l = 1 our definition
reduces to the special case in [4] where short-term fairness
among two stations is analyzed. Here, we consider short- as
well as long-term fairness and an arbitrary number of stations.

Jain’s fairness index (1) derives immediately from the first
and second moment of the inter-transmissions. We compute
the empirical distribution for different l to address short- and
long-term fairness in our testbed. Fig. 2 shows the results for
M = 2, 3, 4 contending stations and l = 1 . . . 100. It becomes
apparent that Jain’s index reports poor short-term fairness, i.e.
for small l stations frequently outperform each other. This
short-term unfairness is, however, quickly alleviated, e.g. we
see a fairness index of 0.9 already for l = 20 in case of two
stations, converging to long-term fairness where all stations
virtually sent an equal number of packets. Fairness decreases
with increasing number of stations as also measured in [24],
possibly due to a subset of stations in exponential backoff [27].

1We use Lenovo ThinkPad R61 and T61 notebooks with 2.0 GHz, 2 GB
RAM running Ubuntu Linux 7.10 with kernel version 2.6.25. We employ the
internal Intel PRO/Wireless 4965 AG IEEE 802.11g WLAN cards. The access
point is a Buffalo Wireless-G 125 series running DD-WRT [38] version 24.
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Fig. 3. OmNet++ simulation results agree closely with the measurement data.
The q-q plot matches well for 0.99 of the samples, but brings out deviations at
the tail, showing additional unfairness in the testbed compared to the simulator.
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Fig. 4. Numerical results from an extension of the model in [4]. The uniform
backoff random variables overestimate fairness. The q-q plot not only differs
at the tail but also its slope midway does not become one. Moreover, the 0.99
interval narrows by a factor of 1.7 and wrongly indicates good fairness.

Next, we compare our testbed measurements to OmNet++
simulations. The simulator assumes perfect channel conditions
without interference or fading as also expected in our mea-
surement room. Fig. 3(a) shows the probability mass function
(pmf) of the inter-transmissions K for different l to compare
the simulations to the testbed measurements. We observe that
the simulation results match the measurement data quite well.
We use quantile-quantile (q-q) plots to bring out differences
at the tail of the distributions to detail the goodness of fit.
The exemplary q-q plot for l = 40 in Fig. 3(b) shows the
quantiles of the measurement data vs. the simulation data. As
indicated in Fig. 3(b) we find that 0.99 of the samples coincide,
whereas the deviations at the tail show additional unfairness
in the testbed that is not reproduced by the simulator.

Furthermore, we compare our testbed measurements to the
model that is established for two stations and short-term
fairness in [4] and introduced in Sect. II-B. To analyze long-
term fairness as well we extend this method from the special
case l = 1 in [4] to cover all l ≥ 1. Denote bi(j) the i.i.d.
countdown values for packet j at station i = 1, 2. We model
the distribution of inter-transmissions K of station 1 while
station 2 transmits l packets as

P[K=k|l]=P

[
k∑

j=1

b1(j)≤
l∑

j=1

b2(j) and
k+1∑

j=1

b1(j)>
l∑

j=1

b2(j)

]
.

Assuming bi(j) are uniform random variables as in [4] results
in Irwin-Hall distributed terms which, however, do not yield
a simple solution for l ≥ 2. For now, we compute the dis-
tribution numerically by convolution and compare the results
denoted uniform backoff model in Fig. 4 to our testbed data.



The pmf of the model shows a clear deviation from the testbed
results that is also confirmed by the q-q plot. Compared to
Fig. 3(b) the 0.99 interval becomes much narrower in Fig.
4(b) indicating that the assumption of uniform backoff values
overestimates the actual fairness of the DCF significantly.

IV. STOCHASTIC MODELS FOR FAIRNESS ANALYSIS

In this section we use probability theory, see e.g. [39], to
derive closed-form expressions for the fairness that is achieved
among M contending stations. We tag station M and denote
Ki the inter-transmissions of station i = 1 . . .M − 1 and let
K =

∑M−1
i=1 Ki. The conditional probability P[K = k|l] can

be defined for M ≥ 2 as

P[K=k|l] = P

[
M−1∑

i=1

Ki = k

]
(3)

where the random variables Ki are the integers that satisfy
Ki∑

j=1

bi(j) ≤
l∑

j=1

bM (j) and
Ki+1∑

j=1

bi(j) >
l∑

j=1

bM (j).

First, in Sect. IV-A we analyze long-term fairness among two
stations, i.e. M = 2 and l, k � 1. Assuming exponential
backoff we derive results for arbitrary M, l, k in Sect. IV-B.

A. Long-term Fairness with Arbitrary Backoff

We use the central limit theorem to derive the long-term
fairness. In the sequel, we denote normal random variables
N(µ, σ2) where µ is the mean and σ2 the variance.

Theorem 1 (Gaussian approximation) Let the bi(j) be i.i.d.
random variables with mean µ and variance σ2 and let M =
2. For k, l� 1 (3) is approximately Gaussian where

P[K≤k|l] ≈ P

[
N(0, 1) ≤ µ (k − l)

σ
√
k + l

]
.

Proof: For M = 2 we have from (3) that

P[K<k|l] = P

[
k∑

j=1

b1(j) >
l∑

j=1

b2(j)

]

and after expansion and some normalization this equals

= P

[∑l
j=1 b2(j)− lµ

σ
√
l

−
∑k
j=1 b1(j)− kµ

σ
√
l

<
µ(k − l)
σ
√
l

]
.

Using the central limit theorem it follows that

P[K<k|l] ≈ P

[
N(0, 1)−N

(
0,
k

l

)
<
µ(k − l)
σ
√
l

]
.

Since the normal distribution with zero mean is symmetric we
can replace the subtraction of N(0, k/l) by addition. Further-
more, the sum of two normal random variables N(µ1, σ

2
1) and

N(µ2, σ
2
2) is normal with N(µ1 + µ2, σ

2
1 + σ2

2) such that

P[K<k|l] ≈ P

[
N

(
0,
k + l

l

)
<
µ(k − l)
σ
√
l

]
.

Finally, we use that if X is N(aµ, a2σ2) then Y = X/a is
N(µ, σ2) with a2 = (k + l)/l to standardize the result.

Th. 1 assumes i.i.d. random countdown values. It does,
however, not make any assumption about their distribution.
To compare the impact of different models we formulate the
following corollary for uniform, as used e.g. in the short-
term fairness model in [4], respectively exponential countdown
values, as assumed e.g. in the throughput model in [2], [31].
Corollary 1 (Uniform versus exponential countdown)
Assume Th. 1. If the bi(j) are uniform in [0, w], then

P[K≤k|l] ≈ P

[
N(0, 1) ≤

√
3(k − l)√
k + l

]
.

If the bi(j) are exponentially distributed then

P[K≤k|l] ≈ P

[
N(0, 1) ≤ k − l√

k + l

]
.

Th. 1 and Cor. 1 yield a number of important conclusions.
First, we compare the pmf from Cor. 1 displayed in Fig. 5(a).
The assumption of exponential backoff values, which reflects
the increase of the contention window in case of collisions,
matches our empirical data closely. In contrast the assumption
of uniform backoff does not agree well. Fig. 5(c) and Fig. 5(d)
show q-q plots of the exponential model vs. the testbed data
and confirm the accuracy of the model for 0.99 of the samples.
The testbed exhibits larger unfairness at the distribution tail as
also observed compared to OmNet++ simulations in Fig. 3(b).

Considering Cor. 1 it is interesting to note that the dis-
tribution parameter in case of uniform as well as in case of
exponential countdown values has no influence on the fairness.
In contrast the distribution itself has significant impact. Cor.
1 shows an explicit fairness degradation of

√
3 of exponential

compared to uniform countdown values, i.e.
√

3 can be viewed
as the price of exponential backoff. Fig. 5(a) shows this effect
clearly, i.e. the pmf for uniform is by

√
3 higher and narrower.

Another important aspect is the improvement of long- over
short-term fairness. To this end, we define a multiplicative
constant c and let k = cl. The parameter c may be viewed as
a threshold value that specifies a relative deviation that is still
considered fair. By insertion the term (k − l)/

√
k + l from

Th. 1 becomes
√
l (c − 1)/

√
c+ 1 and it follows that long-

term fairness improves proportionally to
√
l. Thus, the initial

fairness improvement for small l is significant but becomes
less pronounced with increasing l. This result is independent
of the distribution of backoff values. Fig. 5(b) shows a q-q
plot of our measurement data for l = 40 vs. l = 160. The
slope of the q-q plot closely follows

√
160/40 for 0.99 of the

samples. Hence, Fig. 5(b) clearly displays the
√
l scaling in

the testbed data.

B. Short- and Long-term Fairness with Exponential Backoff
In the sequel we only consider exponential backoff that

proved accurate in Sect. IV-A. We derive an exact result and
useful approximations for long- as well as short-term fairness.
Theorem 2 (Exact result) Let bi(j) be i.i.d. exponential ran-
dom variables and let p = 1/M . Then (3) is negative binomial

P[K=k|l] = pl(1− p)k
(
k + l − 1

k

)
.
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Fig. 5. Analytical results from Cor. 1 match the testbed data well, if the
model uses exponential instead of uniform backoff random variables. The
model accurately predicts the

√
l fairness improvement, see the slope in 5(b).

Proof: First, we determine the probability that station M
gets access to the channel. Key to deriving this probability is
the memorylessness of negative exponential random variables,
i.e. given an exponential random variable X with parameter
λ it holds that P[X > x+ y|X > x] = P[X > y] = e−λy .

Consider M stations that contend for an idle channel. Owing
to the memoryless property each station has an exponentially
distributed countdown value with the same parameter λ irre-
spective of the time the station has already spent on performing
the countdown procedure. It follows that each channel access
can be viewed as an independent Bernoulli experiment. Denote
p the probability of success, i.e. the probability that station
M finishes its countdown procedure first such that it attains
access to the channel. Since the remaining countdown values
are i.i.d. at all stations, each station has the same channel
access probability p where

∑M
i=1 p = 1 such that p = 1/M .

Concluding, the probability that stations 1 . . .M − 1 access
the channel exactly k times until station M performs the l-th
channel access is the probability to see the l-th success of
station M exactly in the (k + l)-th Bernoulli trial. This event
is negative binomially distributed.

A direct proof from (3) for M = 2 can be found in the
appendix. Next, we derive a useful bound for the distribution.

Corollary 2 (Chernoff bound) Assume Th. 2. It follows that

P
[
KSk

∣∣∣l
]
≤
(

(1− p)(k + l)
k

)k(
p(k + l)

l

)l
∀k ≶ l(M−1)

Proof: The proof uses Chernoff’s bounds

P
[
XSx

]
≤ e−θxMX(θ) ∀θ ≶ 0

where MX(θ) = E[eθX ] denotes the moment generating
function of X . We insert the well-known generating function

of the negative binomial random variable and derive

P[K≤k|l] ≤ e−θk
(

p

1− (1− p)eθ

)l
∀θ < 0.

We minimize the right hand side over all θ < 0 to obtain the
best possible bound and insert θ = ln k − ln ((l + k)(1− p))
where k < l(1−p)/p = l(M −1) to ensure θ < 0. The upper
bound follows in the same way.

Finally, we derive a normal approximation. This allows
viewing fairness deviations as i.i.d. Gaussian noise.

Corollary 3 (Gaussian approximation) Assume Th. 2. It
follows for l� 1 that

P[K≤k|l] ≈ P

[
N(0, 1) ≤ kp− l(1− p)√

l(1− p)

]
.

Proof: We view the negative binomial random variable
in Th. 2 as a sum of i.i.d. geometric random variables. Each
of the geometric random variables equals the number of trials
required until the next success is achieved, i.e. we write Th.
2 as a sum of l i.i.d. geometric random variables denoted Xi

P[K≤k|l] = P

[
l∑

i=1

Xi ≤ k + l

]
.

Normalization using the mean µ = 1/p and the variance σ2 =
(1− p)/p2 of geometric random variables yields

P[K≤k|l] = P

[∑l
i=1Xi − lµ
σ
√
l

≤ (k + l)p− l√
l(1− p)

]
.

Using the central limit theorem the normalized sum is approx-
imately standard normal N(0, 1) if l� 1.
We note that Cor. 1 and Cor. 3 for M = 2 converge under the
assumption of the central limit theorem, i.e. for k, l→∞.

Th. 2, Cor. 2, and Cor. 3 can be easily extended to heteroge-
nous stations that use different parameters λ, e.g. for service
differentiation. In this case only the probability of successful
channel access p has to be adapted accordingly. Also, it is
a straightforward extension of Th. 2 to derive the probability
that a single station with index M transmits l packets given
that the remaining M−1 stations together transmit k packets.

Fig. 6 compares the results from Th. 2 with the testbed
measurement data. We find that Th. 2 accurately predicts short-
and long-term fairness for M = 2 stations, see Fig. 6(a). Fig.
6(c) and Fig. 6(d) add q-q plots for short-term fairness which
also show a close match for 0.99 of the samples. For three
respectively four stations we find that Th. 2 underestimates
unfairness, see Fig. 6(b). While our model fits almost perfectly
for two stations we conclude that additional effects beyond
our model cause unfairness in case of more than two stations.
Empirical results indicating poor fairness in case of more than
two stations have also been reported e.g. in [24].

Considering Th. 2 we recover the result that the parameter
of the i.i.d. exponentially distributed countdown values does
not impact fairness regardless of the number of stations and
the time-scale.
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Fig. 6. Analytical results from the exponential model and Th. 2 predict
short- and long-term fairness correctly for M=2 stations. For more stations
the testbed data shows additional unfairness beyond the model, see 6(b).
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Fig. 7. Long-term fairness improves approximately with
√
l in case of more

than two stations. This improvement is correctly predicted by Cor. 3.

With p = 1/M and letting k = (M − 1)cl Cor. 3 yields

kp− l(1− p)√
l(1− p)

=
√
l(c− 1)

√
M − 1
M

predicting that fairness improves with
√
l. Fig. 7(a) and 7(b)

show the improvement for M = 3 and M = 4 stations re-
spectively. The testbed measurements confirm the dependence
on
√
l. Fairness even scales better than

√
l at the tail end.

Next, we derive Jain’s fairness index (1) that follows directly
from the first and second moment of the inter-transmissions.
For the negative binomial distribution in Th. 2 the first moment
is E[K] = l(1− p)/p and the second central moment is l(1−
p)/p2 such that the second moment becomes E[K2] = l(1 −
p)/p2 + (l(1− p)/p)2. With p = 1/M we have

f =
l

l + M
M−1

. (4)

Regarding Fig. 2 we find that (4) matches the testbed mea-
surement data almost perfectly for M = 2 stations, in which
case f = l/(l + 2). For more than two stations additional
effects that cause unfairness as shown in Fig. 6(b) result in a

TABLE I
KULLBACK-LEIBLER DISTANCE FOR DIFFERENT MODELS

model l = 1 l = 10 l = 40 l = 160
uniform backoff Cor. 1 NA 0.536 0.766 0.831
exponential backoff Cor. 1 NA 0.104 0.094 0.075
exponential backoff Th. 2 0.039 0.050 0.083 0.065

model M = 2 M = 3 M = 4
exponential backoff Th. 2 0.083 0.351 0.702

deviation. In face of short-term unfairness we find, however,
that fairness is practically achieved already for moderate l.

For further quantitative comparison we use the Kullback-
Leibler distance between the measurement data and the ana-
lytical expressions. The Kullback-Leibler distance D(X||Y )
quantifies the deficiency if we assume the distribution of X
instead of the true distribution of Y [40]. It is defined as

D(X||Y ) =
∑

x

P(X=x) ln
P(X=x)
P(Y =x)

.

Here, P(X=x) is the empirical mass function and P(Y =y)
is the probability mass function from the analytical model.
Tab.I summarizes the results. Clearly, modeling the backoff
procedure using exponential random variables outperforms the
assumption of uniform random variables. Moreover, the results
confirm that fairness degrades in case of more than 2 stations.

V. DCF CLOCK AND A SERVICE CURVE MODEL

In this section we derive a service curve model for the DCF
that facilitates applications of the stochastic network calculus
[18], [19], [20]. To this end, we model the DCF as emulating
the Generalized Processor Sharing (GPS) discipline [7].

A. The DCF viewed as a GPS Emulation

GPS is a fluid-flow model that defines a weighted fair
resource allocation. Each flow indexed i is assigned a weight
ϕi. Considering only backlogged flows, flow i is guaranteed a
share of ϕi/

∑
j ϕj of the capacity C. Due to the granularity

of packets real implementations can only emulate GPS with
limited precision, for an overview see e.g. [11], [12], [13] and
for enhancements of the DCF [8], [9], [10]. Analytical models
specify the deviation from an ideal GPS system using worst-
case error terms. Two prominent models are Guaranteed Rate
Clock (GRC) [11] and Packet Scale Rate Guarantee (PSRG)
[14] that are the basis of IntServ and DiffServ. We derive a
related model for the DCF that we refer to as DCF Clock.

Lemma 1 (DCF Clock) Consider M stations with indices i
that contend for the medium using the DCF. Let ai(n) be the
arrival time of the n-th packet at station i with length Li. If
the medium is busy at ai(n) let δ be the residual service time
of the packet in service or else δ = 0. The departure times are

di(n) = max{ai(n) + δ, di(n− 1)}+
Li
Ri

+ φi(n) + ψi(n)



where the average service rate

Ri =
Li

C(µ+M∆) +
∑M
j=1 Lj

C

is subject to zero mean error terms φi(n) = bi(n)− µ and

ψi(n) =
M∑

j=1

(Kj(n)− 1)
(
Lj
C

+ ∆
)
.

Here, C is the capacity, bi(n) are i.i.d. exponential countdown
values with mean µ, Kj(n) are the inter-transmissions, and
∆ comprises all constant per-packet protocol latencies.

Proof: First assume that station i is not backlogged. If the
medium is idle station i starts the medium access procedure
immediately at ai(n) or else after the residual service time of
the packet that is in service, i.e. at ai(n) + δ. Otherwise, if
station i is backlogged it starts the access procedure for packet
n after packet n − 1 finishes service, that is at di(n − 1).
Combining all cases station i initiates its access procedure at
max{ai(n) + δ, di(n− 1)}.

Before station i transmits packet n an amount of channel
idle time of bi(n) has to be accumulated to complete the
countdown procedure. In parallel all other backlogged stations
perform their countdown procedure to contend for the medium.

The transmission of a packet under the DCF includes
constant protocol overhead for DIFS, preamble, SIFS, and
acknowledgement that are summed up in ∆. Hence, it takes
∆+Li/C units of time to transmit a packet of length Li on a
channel with capacity C. The number of packets transmitted
by station j in the interval [max{ai(n) + δ, di(n− 1)}, di(n)]
is denoted Kj(n). The transfer takes

∑M
j=1Kj(n)(∆+Lj/C)

units of time. Assembling all parts the departure time is

di(n)=max{ai(n)+δ, di(n−1)}+bi(n)+
M∑

j=1

Kj(n)
(
Lj
C

+∆
)
.

(5)
Next, we show that the two error terms have zero mean.

Clearly, E[φi(n)] = E[bi(n)−µ] = 0. We instantiate Th. 2 with
M = 2 and l = 1 to find the number of inter-transmissions of
one station. We have E[Kj(n)] = 1 such that E[ψi(n)] = 0.

The residuum after substitution of the error terms in (5) is
the mean latency caused by the countdown procedure and by
inter-transmissions. We equate this latency with Li/Ri where
Ri has the interpretation of an average service rate. We obtain

µ+
M∑

j=1

(
Lj
C

+ ∆
)

=
Li
Ri

and solve for Ri to derive the average service rate.
Lemma 1 specifies the deviation φi + ψi of the DCF clock

from an ideal GPS system with rate allocation Ri. Note that
the error terms have zero mean such that Ri is the true
average service rate. The service rate considers the resource
consumption that is due to protocol overhead. Apart from that,
the rate allocation is proportional to the packet lengths used
by individual stations, which formally derives from the target

of packet-level fairness of the DCF. Roughly speaking, the
packet lengths Li take the place of the GPS weights ϕi.

It is worthwhile comparing the error terms in Lemma 1 with
the GRC model [11]. The GR Clock is defined as

GRCi(n) = max{ai(n), GRCi(n− 1)}+
Li
Ri

where departures are subject to an error term χ such that

di(n) ≤ GRCi(n) + χ.

Compared to the GR Clock the recursion in Lemma 1 uses
the actual departure times di instead of the target GRCi. As
a consequence, the per-packet error terms of the DCF are
accumulated during a busy period. This is not the case in the
GRC model. In other words, a GRC scheduler that deviates
from the GR Clock nevertheless has to keep up with the
GR Clock at subsequent packet transmissions, i.e. unfairness
cannot accumulate. In contrast the DCF does not seek to
correct previous deviations, i.e. the DCF is memoryless in the
sense that it does not compensate past unfairness. Moreover,
the error terms of known GRC implementations typically are
small deterministic upper bounds, e.g. χ = Lmax/C for
packet-by-packet GPS [11] as opposed to the DCF error terms
that are random and possibly unbounded.

B. A Stochastic Service Curve Model of the DCF

Service curves are a powerful model for systems in the
network calculus, see the textbooks [16], [17] for an overview.
The particular strength is the convolution of tandem systems
that yields the notion of network service curve and permits
analyzing entire networks as a single system. Recent stochastic
network calculus is developed in [18], [19], [20] and references
therein. The stochastic network calculus facilitates analyzing
wireless systems. It is used in [21], [20], [22] to model the
effects that are due to fading and interference.

In this section we derive a stochastic service curve model
for the DCF. We use a max-plus approach, see e.g. [16],
[41], that translates to min-plus network calculus if the service
curve is inverted from a function of packets into a function of
time [16]. In the deterministic network calculus this relation
establishes a close connection between the GRC model and
so-called latency-rate service curves [12], [13], [42].

Definition 1 (Stochastic max-plus service curve) Consider
a system with packet arrival and departure times a(n) and
d(n) respectively. The system has a stochastic max-plus
service curve sε with violation probability ε if for all n ≥ 1

P[d(n) ≤ a ∗ sε(n)] ≥ 1− ε.

Here, ∗ denotes the max-plus convolution that is defined as
a ∗ sε(n) = maxm∈[1,n]{a(n−m+ 1) + sε(m)}.

Given a stochastic max-plus service curve it is straightforward
to compute packet delays defined as d(n) − a(n) that are
violated at most with probability ε from a ∗ sε(n) − a(n),
e.g. to determine the playout delay of a video application.



Theorem 3 (DCF service curve) Assume Lemma 1, let all
packets have the same size denoted L, and consider a tagged
flow. The DCF has a stochastic latency-rate service curve

sε(n) = T +
n

R

with latency T and rate R defined as

T = τ + (1 + ς)
(
L

C
+ ∆

)
and

1
R

= ϑ+ (1 + ρ)
(
L

C
+ ∆

)

and violation probability ε =
∑∞
m=1(ε1(m) + ε2(m)). Para-

meters τ, ϑ, ς, ρ ≥ 0 and ε1, ε2 are defined in (7) and (8).

The service curve in Th. 3 is an affine function that comprises
a latency offset T and a packet rate R respectively per-packet
latency R−1. The terms correspond to the latency-rate service
curve model in min-plus algebra. The free parameters define
the service guarantee and determine its violation probability.
The parameter choice is subject to numerical optimization.
We find that τ, ϑ that stem from the variable duration of the
countdown procedure have comparably small impact, whereas
ς, ρ that consider the random amount of time consumed by
inter-transmissions have a significant effect.

Proof: We consider station M and denote its arrivals
a(n) and departures d(n). We analyze a single busy period
starting at a(m). From (5) we obtain by recursion that

d(n) = a(m) + δ +
n∑

i=m

b(i) + (l +K)
(
L

C
+ ∆

)
(6)

where l = n−m+ 1 is the number of packets sent by station
M and K =

∑M−1
j=1

∑n
i=mKj(i) is the sum of all inter-

transmissions since the start of the busy period.
We derive probabilistic affine upper envelopes for the

random terms.
∑n
i=m b(i) is the sum of l i.i.d. exponential

random variables each with mean µ. Hence, the sum is Gamma
distributed and has moment generating function MP

b(θ, l) =
(1/(1− θµ))l for θ < 1/µ. From Chernoff’s bound we obtain

P

[
n∑

i=m

b(i) ≥ τ+ϑl

]
≤ e−θ(τ+ϑl)

(
1

1− θµ

)l
∀θ ∈ (0, 1/µ).

Minimization yields θ = (τ + (ϑ−µ)l)/((τ +ϑl)µ) such that
P
[∑n

i=m b(i) ≥ τ + ϑl
]
≤ ε1(l) where

ε1(l) =
(
ϑ+ τ

l

µ
e−

µ+ϑ+ τ
l

µ

)l
. (7)

We use Cor. 2 to bound the number of inter-transmissions K.
We let k = ς + ρl to find P[K ≥ ς + ρl] ≤ ε2(l) where

ε2(l) =

(
p(1− p)ρ+ ς

l (1 + ρ+ ς
l )

1+ρ+ ς
l

(ρ+ ς
l )
ρ+ ς

l

)l
. (8)

Inserting the envelopes τ+ϑl and ς+ρl into (6) and bounding
δ by ∆ + L/C yields that

d(n) ≤ a(m) + τ + ϑl + (1 + ς + (1 + ρ)l)
(
L

C
+ ∆

)
(9)

is violated at most with probability ε1(l) + ε2(l).
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Fig. 8. The free service curve parameters ς, ρ define a sample path bound
for the number of inter-transmissions. The bound is violated at most with
probability

P
ε2. The parameters have significant impact on the shape of the

latency-rate service curve.

In the final step we take the maximum over all m of the right
hand side in (9) to resolve the assumption that the busy period
starts at a(m) [16], [17] and obtain the max-plus convolution
form in Def. 1. After some reordering (9) yields the service
curve in Th. 3. We use Boole’s inequality and sum εi(l) over
all l to derive a corresponding sample path bound [18]. We
estimate the tail probabilities to verify that this sample path
bound exists. From (7) we have

ε1(l) ≤
(
ϑ

µ
e−

µ+ϑ
µ

)l
= ql1

where q1 < 1 generally. Similarly, we have from (8) that

ε2(l) ≤
(
p(1− p)ρ(1 + ρ)1+ρ

ρρ

)l
= ql2

where q2 < 1 can be shown for ρ > (1− p)/p = M − 1 from
Bernoulli’s inequality. Using the geometric sum we find that

∞∑

l=n

εi(l) ≤
qni

1− qi

proving the boundedness of the violation probability.
We provide an example of the service curve for IEEE

802.11g. We set ∆ = 0.1 ms and C = 54 Mbps. We
consider M = 2 stations and packets of L = 1500 Byte. The
parameters τ, ϑ have comparably small impact and τ = 1 ms
and ϑ = 0.1 ms achieve already

∑
ε1 < 10−6. The effects

of the remaining parameters ς, ρ on
∑
ε2 are shown in Fig.

8. As an example consider ς = 50 and ρ = 1.5 where Fig. 8
reveals

∑
ε2 ≈ 5 · 10−6. The corresponding service curve is

sε(n) = 17.5 + 0.9n ms where ε =
∑
ε1 +

∑
ε2 ≈ 6 · 10−6.

VI. RATE ESTIMATION FROM PASSIVE MEASUREMENTS

In this section we show how user applications, such as rate-
adaptive video streaming, can estimate their fair bandwidth
share under the DCF from passive measurements of their
data arrivals and departures. Closely related are active probing
techniques that seek to identify the unused capacity along a
network path from specific probe packets, also referred to
as available bandwidth estimation. For an overview of these
methods and their use in IEEE 802.11 WLANs we refer to
[35] and references therein. Compared to available bandwidth



estimation two major differences are important to consider
when estimating the fair rate under the DCF.

The majority of the available bandwidth estimation methods
are based on the assumption of First-In First-Out (FIFO)
scheduling. Due to its simplicity FIFO is the prevalent schedul-
ing discipline in the wired Internet. Yet, packet probes can
preempt existing production traffic at a FIFO multiplexer
making the estimation of unused capacity challenging. This
difficulty does not occur in case of fair scheduling where a
greedy flow is simply assigned the fair bandwidth share.

For the moment assume an ideal GPS system and a flow
that transmits a burst of l + 1 packets. Packets are marked
with time-stamps a(n) and d(n) at the sender and receiver
respectively. To avoid the necessity for synchronized clocks at
sender and receiver we use only the time differences between
packet departures, so-called gaps, that can be computed from
the time-stamps at the receiver only. The averaged gap of the
departures is

gd =
d(l + 1)− d(1)

l

and an estimate of the fair rate follows as f = L/gd.
In case of the DCF such fair rate estimates can, however,

be largely perturbed by the random channel access procedure.
We view this variability as measurement noise and use a
Kalman filter to perform an online smoothing over several
samples of gd. The Kalman filter takes measurements of the
departures of a system superposed by i.i.d. Gaussian noise as
input to estimate the system’s state. It recursively weights past
measurements to generate optimal estimates in the sense that
it minimizes the mean squared error. Stationarity of the system
is not a necessary precondition. For an overview see e.g. [43].

We use a Kalman filter to generate smoothed estimates of
the departure gap. We index consecutive measurement samples
gd(n) and denote the smoothed output of the Kalman filter
gd(n). The Kalman filter computes

gd(n) = (1−G(n))gd(n− 1) +G(n)gd(n)

where the weight G(n) balances the impact of the current
measurement. G(n) is referred to as the Kalman gain that is

G(n) =
(

1 +
σ2
gd

(n)
σ2
E(n− 1) + σ2

P

)−1

where σ2
E is the estimation error variance and σ2

P and σ2
gd

are
external parameters denoting Gaussian process and measure-
ment noise variances respectively. The update of σ2

E is

σ2
E(n) = (1−G(n))(σ2

E(n− 1) + σ2
P ).

To parameterize the measurement noise, we estimate the
variability of gd. From (6) we derive that

d(l + 1)− d(1) = (l +K)
(
L

C
+ ∆

)
+

l+1∑

j=2

b(j) (10)

where K are the inter-transmissions between packet 1 and
l+1. Eq. (10) contains two sources of randomness, the number
of inter-transmissions from contending stations K and the
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Fig. 9. Samples of the fair share show a large variability referred to as
measurement noise. The noise reduces with

√
l. With this input the Kalman

filter provides good estimates of the fair share after short convergence both
for CBR as well as Pareto cross traffic and for several contending stations.

cumulated countdown values
∑l+1
j=2 b(j). As discussed in Sect.

V-B the effects due to inter-transmissions are dominant so that
we approximate

∑l+1
j=2 b(j) ≈ lµ by its mean value. Regarding

the inter-transmissions we assume l� 1 and use the Gaussian
model from Cor. 3. After normalization we find that K/l is
normal with standard deviation σK/l =

√
(1− p)/(p2l) where

p = 1/M is determined by the number of contending stations.
Dividing (10) by l we recover gd and derive the standard
deviation of the gap as σgd =

√
(1− p)/(p2l) (∆ + L/C).

To demonstrate the filtering approach we employ rude/crude
to transmit a variable bit rate video tracefile2 using UDP. In
addition the D-ITG traffic generator [45] is used at contending
stations to generate CBR respectively Pareto cross traffic with
a shape parameter of 1.4 and changing intensity for both types.
We use each of the packet bursts caused by the video frames
to obtain a sample of the fair share. The samples are fed into
a Kalman filter that generates smoothed fair share estimates.
In our experiments we optimize the filter configuration for
M = 2 and ∆ + L/C ≈ 0.32 ms such that the measurement
noise has σgd ≈ 0.46 ms/

√
l. The Kalman filter weights each

of the samples according to the corresponding measurement
noise. The adjustment of the process noise as a second free
parameter of the Kalman filter can be viewed as a tuning knob
that trades smoothness for convergence speed. Here, a process
noise with σ2

P = 10−5 ms2 provides good results.
Fig. 9 shows the individual samples derived from each of

the video frames as well as smoothed fair share estimates from
the Kalman filter. Despite the large variability of single fair
share samples the Kalman estimates follow the theoretical long
term fair share from (2) closely. Furthermore, the filter quickly
detects changes in the underlying process, i.e. changes of the
cross traffic that are labeled with traffic type and intensity in
Fig. 9. This demonstrates the utility of our approach.

VII. CONCLUSIONS

We analyzed the short- and long-term fairness of the DCF
in IEEE 802.11 based on conditional probabilities of the
number of inter-transmissions. The approach has proven highly
useful, facilitating significant closed-form results. Regarding
i.i.d. countdown values we showed a major impact of the type

2We used 140 seconds of a H.264 tracefile from Terminator 2 [44] with
an average rate of 5 Mbps and significant variability. The GoP size is 12, the
minimum frame size 51 Byte, and the maximum frame size 159 kByte.



but not the parameters of the distribution. We proved that long-
term fairness improves with

√
l. Our findings are substantiated

by an extensive measurement and simulation study. We mod-
eled the DCF as emulating a fluid GPS scheduler yielding a
fair average service rate that is subject to well-defined error
terms. Based on the DCF clock we derived a service curve
that opens up significant options for performance analysis
of wireless multi-hop networks using the stochastic network
calculus. We concluded our study showing a technique that
estimates the fair rate under the DCF from passive traffic
measurements of a video application, e.g. for rate-adaptation.
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APPENDIX

TABLE II
SUMMARY OF NOTATION

symbol definition
D Kullback-Leibler distance
E expected value
M moment generating function
P probability
a packet arrival time
b backoff countdown value
c constant fairness threshold
C channel capacity
d packet departure time
E estimation error for the Kalman filter
f fair share, fairness index
g gap, time between packets
G gain of the Kalman filter

GRC Guaranteed Rate Clock
i, j running indices
k number of packet inter-transmissions
K random number of packet inter-transmissions
l number of packets transmitted by a tagged station
L packet length
m,n packet indices
M number of contending stations
N Normal random variable
p channel access probability
P process noise for the Kalman filter
q probability
r source data rate
R data rate of a service curve
s max-plus service curve
T latency of a service curve
w backoff window size

X,Y, Z random variables
δ residual packet service time
∆ constant per-packet protocol overhead
ε violation probability
θ free parameter in Chernoff’s bound
λ parameter of the exponential distribution
µ, σ mean and standard deviation

τ, ϑ, ς, ρ service curve parameters
φ, ψ DCF Clock error terms
χ GR Clock error term
ϕ GPS weights

A. Proof of Theorem 2

Proof: We provide an alternative proof of Theorem 2
which we derive directly from (3) for M = 2. In this case we
have

P[K=k|l]=P

[
k∑

j=1

b1(j)≤
l∑

j=1

b2(j) and
k+1∑

j=1

b1(j)>
l∑

j=1

b2(j)

]

The probability can be rewritten as

P[K=k|l] = P[0 ≤ Z − Y < X]

where X,Y, Z are independent random variables. X = b1(k+
1) is exponentially distributed with probability density

fX(x) = λ e−λx.

Y =
∑k
j=1 b1(j) and Z =

∑l
j=1 b2(j) are sums of k

respectively l exponentially distributed random variables, that
is Y,Z are Gamma (also known as m-Erlang) distributed. The
probability density functions of Y and Z are

fY (y) =
λ e−λ y (λ y)k−1

(k − 1)!

fZ(z) =
λ e−λ z (λ z)l−1

(l − 1)!

respectively. We calculate the probability P[K=k] as follows

P[K=k|l] =
∫ ∫ ∫

0≤z−y<x
fZ(z)fY (y)fX(x)dxdydz

=
∫ ∞

z=0

∫ z

y=0

∫ ∞

x=z−y
fZ(z)fY (y)fX(x)dxdydz

Solving the first two integrals leads to

P[K=k|l] =
λk+l

(l − 1)! k!

∫ ∞

z=0

e−2λ z zk+l−1 dz

We can solve this equation using integration by parts. After
the first step this leads to

P[K=k|l] =
λk+l

(l − 1)! k!
(k + l − 1)

2λ

∫ ∞

z=0

e−2λzzk+l−2 dz

We have to repeat the integration by parts another k + l − 2
times to find

P[K=k|l] =
λk+l

(l − 1)! k!
(k + l − 1)!
(2λ)k+l−1

∫ ∞

z=0

e−2λz dz.

The integral evaluates to 1/2λ such that

P[K=k|l] =
1

(l − 1)! k!
(k + l − 1)!

2k+l

and after some reordering

P[K=k|l] = 2−(k+l)

(
k + l − 1

k

)

becomes negative binomial.
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