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Abstract— This work focuses on a class of distributed storage
systems whose content may evolve over time. Each component
or node of the storage system is mobile and the set of all nodes
forms a delay tolerant (ad hoc) network (DTN). The goal of the
paper is to study efficient ways for distributing evolving files
within DTNs and for managing dynamically their content. We
specify to dynamic files where not only the latest version is useful
but also previous ones; we restrict however to files where a file
has no use if another more recent version is available. The DTN
is composed of fixed number of nodes including asingle source.
At some points in time the source makes available a new version
of a single file F . We consider both the cases when (a) nodes
do not cooperate and (b) nodes cooperate. In case (a) only the
source may transmit a copy ofF to a node that it meets, while
in case (b) any node may transmit a copy ofF to a node that
it meets. Scenario (a) is studied under the assumption that the
source updatesF at discrete times t = 0, 1, . . .. Within each
slot [t, t + 1) there is a fixed probability that a node meets the
source. A file management policy is a set of rules specifying when
the source transmits a copy ofF to a node (say nodei) that
it meets; this decision only depends on the age of the version
of F (if any) that node i is carrying, where the age isk if this
version was createdk − 1 slots ago. We find the optimal static
(resp. dynamic) policy which maximizes a general utility function
under a constraint on the number of transmissions within a
slot. In particular, we show the existence of a threshold dynamic
policy. In scenario (b) F is updated at random points in time.
Similar to scenario (a) we assume that each node knows the age
of the file it carries (the case where nodes only know the date of
creation of a file is studied in [1]). Under Markovian assumptions
regarding nodes mobility and update frequency ofF , we study
the stability of the system (aging of the nodes) and derive an
(approximate) optimal static policy. We then revisit scenario (a)
when the source does not know the number of nodes and the
probability that the source meets a node in a slot, and we derive
a stochastic approximation algorithm which we show to converge
to the optimal static policy found in the complete information
setting. Numerical results illustrate the respective performance
of optimal static and dynamic policies as well as the benefit of
node cooperation.

Keywords: Evolving files; Storage systems; Delay-tolerant(ad
hoc) networks; Performance evaluation; Optimization.

I. I NTRODUCTION

Much work has been devoted for the study of Delay Tolerant
Networks (DTNs). Most of the work on protocol design has
focused on the use of mobility in order to reach one or
more disconnected destinations. The protocols are based on
distribution of the file to relay nodes so as to increase the
successful delivery probability [3], [4], [5], [10], [11].

In such applications, the DTN becomes a distributed storage
system that contains copies of a file that is being transmitted.
In this paper we focus on a special type of file that we call
”dynamic file” or ”evolving file”. By that we mean a file whose
content may evolve and change from time to time. One (or
various) sources wish to make a file available to mobile nodes,
and to send updates from time to time. Some examples are:

• a source has a file containing update information such
as weather forecast or news headlines. The file changes
incrementally from time to time with new information
updates;

• a source wishes to make backups of some directories and
to store them at another nodes in order to increase the
reliability;

• some software updates or patches may be distributed
regularly.

Several formats of dynamic files have been standardized:

• the RSS (“Real Simple Syndication” [6]) family of Web
feed formats used to publish frequently updated content
such as blog entries, news headlines, and podcasts in a
standardized format. Updates can originate from various
sources;

• another format called the “Atom Syndication Format” has
been adopted as IETF Proposed Standard RFC 4287.

We specify to dynamic files where not only the latest version
is useful but also previous ones; we restrict however to files
where a file has no use if another more recent version is
available. For example, consider an evolving file containing
the weather forecast for seven consecutive days. If a user needs
the weather forecast for the next day then any version of the
file from the six last days is useful. The more recent the file is,
the more accurate the requested information is. Furthermore,
having access to a given file makes all previous files irrelevant
to the user.

The goal of our paper is to study efficient ways for distributing
evolving files within DTNs and for managing dynamically
their content. The obvious way to provide the most up-to-date
information is to use epidemic routing (e.g. see [11]) for each
new version ofF . This however consumes a lot of network
resources.

We start with a general description of the model. More details
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will be given in the subsequent sections. There areN + 1
mobile nodes including one source node. From now on anode
designates any mobile node other than the source. At some
time epochs the source creates an updated version of a file
F . When the source meets a node (i.e. is within transmission
range of this node) it may transmit a copy ofF to this node.
Similarly, when two nodes meet the one which carries the
more recent version ofF may transmit a copy of this version
to the other node. When a node receives a more recent version
of F than the one it was carrying (if any) it deletes at once
the oldest version of F.

The setting in which only the source may transmit (a copy
of) F to another node is called thenon-cooperativesetting,
while in thecooperativesetting any mobile node may transmit
to any other node. We assume that transmissions are always
successful.

We say that a node is of agek ≥ 1, or equivalently in state
k, if the source has updated fileF k − 1 times since the file
that this nodes carries has been created. In particular, a node
in state1 holds the most up-to-date version ofF . A node is
in state0 if it does not hold any file. There is a utilityU(k)
associated with a node in statek

A file management policy, or simply a policy, is a set of
rules specifying whether the source and a node, or two nodes,
should communicate when they meet. A policy isstatic (resp.
dynamic) if the decision to transmit does not (resp. does)
depend on the state of the nodes.

Section II addresses the non-cooperative setting. Time is
slotted and there is a fixed probability that a node meets the
source in a slot. At the beginning of each slot the source
creates a new version ofF , so that each node carrying a copy
of F knows that its state has increased by one unit. A copy of
F reaching ageK + 1 (with K < ∞) is immediately deleted.
We find the optimal static policy (Proposition 1) and show
that there is an optimal dynamic policy of a threshold type
(Proposition 2) which we fully characterize (Proposition 3).
The performance of the optimal static and dynamic policies
are compared (Figures 1-4) for two different utility functions
(U(k) = 1 andU(k) = 1/k).

Section III investigates the cooperative setting. We develop a
continuous-time model in which mobile nodes meet at random
times and fileF is updated by the source also at random times.
We assume that at any time nodes know their age and that
the age of a node may only increase unless it receives a more
recent version ofF (i.e.K = ∞). (The case whereK < ∞ as
well as the case where nodes only know the date of creation of
the file they hold are studied in [1].) In Proposition 4 we derive
conditions for stability in a Markovian framework, where
stability refers to the state of each node being finite (a.s.).
Under the more restrictive assumptions where node meeting
times and update times are modeled by independent Poisson
processes, we derive a “mean-field like” approximation for the
expected number of nodes in statek ≥ 1 in the case where a

static policy is enforced. We then use this result to quantify
in Figures 5-6 the benefit of having nodes to cooperate.

The deployment of optimal policies derived in Sections II-
III requires that the source has a complete information on
the network (node mobility, number of nodes). In Section IV
we release this assumption. We focus on the noncooperative
setting and restrict to static policies, and we assume that the
source does not know the number of nodesN and does not
know the probability that a node meets the source in a slot. By
using the theory of stochastic approximations, we construct an
algorithm which converges to the optimal static policy found
in Section II. Section V concludes the paper.

Remark on the notation: by convention
∑m

k=l · = 0 and
∏m

k=l · = 1 if l > m. IR+ denotes the set of all nonnegative
real numbers.

II. NON-COOPERATIVE NODES

In this section we consider the scenario where nodes do not
cooperate and may only receive fileF from the source. Nodes
are labeled1, 2, . . . , N . At times t = 0, 1, . . . the source
creates a new version of fileF . In the following, a slot denotes
any time-period[t, t + 1), t ≥ 0, and slott stands for the
time-period[t, t+1). There is a probabilityq(i) > 0 that node
i = 1, . . . , N meets the source in a slot. We define themeeting
timesbetween the source and a node as the successive slots
at which they meet. The meeting times of each node which
the source form a sequence of independent and identically
distributed (iid) random variables (rvs) and all meeting time
processes are assumed to be mutually independent. For sake
of simplicity, we assume that all transmissions between the
source and the nodes initialized in a slot are completed by the
end of this slot. This implies that the transmission time ofF
is small w.r.t. the duration of a slot.

When a node receives an updated version ofF it deletes at
once the previous version ofF it was carrying, if any. We
define the age of a version ofF as the number of slots that
have elapsed since this version was generated by the source.
We assume that a version of ageK + 1 or more is useless
and that a node deletes at once a file that has reached age
K + 1. Therefore, the age of a version ofF varies between
1 (the version was generated in the current slot) andK (the
version was generatedK − 1 slots ago). We further assume
that K < ∞ (see Remark 2.1).

The state of a node is defined as the age of the version ofF
it carries, if any. A node is in state0 if it does not carry any
version ofF . A node in stateK at the end of a slot switches
to state0 at the beginning of the next slot.

When the source meets nodei, with probability ak(i) it
transmits to it the newest version ofF if that node is in
statek (k = 0, 1, . . . , K). We assume that the transmission
is always successful. The decision by the source to transmit
to a node is independent of all past decisions made by the
source and is also independent of all meeting time processes.
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Introducepk(i) := q(i)ak(i) the probability that nodei in
state k receives the newest version ofF in a slot. Define
pc

k(i) := 1−pk(i). At equilibrium, letπk(i) be the probability
that nodei is in statek at the end of a slot, and letXk be
the average number of nodes in statek at the end of a slot.
We have

Xk =
N
∑

i=1

πk(i), k = 0, 1, . . . , K, (1)

with
∑K

k=0 Xk = N . For eachi = 1, . . . , N , the probabilities
{πk(i)}K

k=0 satisfy the Chapman-Kolmogorov equations

π0(i) = π0(i)p
c
0(i) + πK(i)pc

K(i) (2)

πk(i) = πk−1(i)p
c
k−1(i), k = 2, . . . , K, (3)

1 =

K
∑

k=0

πk(i). (4)

There is one additional equilibrium equation given byπ1(i) =
∑K

k=0 πk(i)pk(i) which we will not consider since it can be
derived by summing up equations (2)-(3). Equations (2)-(4)
define a linear system ofK+1 equations andK+1 unknowns.

From now on we will assume thatp0(i) > 0 (i.e. a0(i) > 0
since we have assumed thatq(i) > 0) for all i as otherwise the
solution to (2)-(4) may not be unique. The non-uniqueness of
the solution corresponds to situations where the steady-state of
nodei will depend upon its initial state (e.g. takep1(i) = 1
and pk(i) = 0 for k 6= 1), a degenerated situation that can
easily be handled and that we will not consider from now on.
Solving for (2)-(4) gives

π0(i) =

∏K

k=1 pc
k(i)

Di

, πk(i) =
p0(i)

∏k−1
l=1 pc

l (i)

Di

(5)

for k = 1, . . . , K, i = 1, . . . , N , with Di :=
p0(i)

∑K

k=1

∏k−1
l=1 pc

l (i) +
∏K

k=1 pc
k(i). Hence, by (1),

X0 =

N
∑

i=1

∏K

k=1 pc
k(i)

Di

, Xk =

N
∑

i=1

p0(i)
∏k−1

l=1 pc
l (i)

Di

(6)

for k = 1, . . . , K.

In the particular case wherepk(i) = pk for all i, k then

X0 =

N

K
∏

k=1

(1 − pk)

D
, Xk =

Np0

k−1
∏

l=1

(1 − pl)

D
(7)

for k = 1, . . . , K, where

D := p0

K
∑

k=1

k−1
∏

l=1

(1 − pl) +

K
∏

k=1

(1 − pk). (8)

If we further assume thatpk = p for k = 0, 1, . . . , K then

X0 = N(1−p)K, Xk = Np(1−p)k−1, k = 1, . . . , K. (9)

Remark 2.1 (K = ∞): Formulas (6) hold ifK = ∞ (i.e.
nodes never delete the file they carry unless they receive a
new version from the source) provided thatDi in (5) is finite

for every i as K ↑ ∞. This is so if limk↑∞ pk(i) > 0 for
i = 1, . . . , N (Hint: apply d’Alembert’s criterion to the series
∑

k≥1

∏k−1
l=1 pc

l (i))). Note from (6) thatX0 = 0 if K = ∞.

Remark 2.2 (Intermittently available nodes):The situation
where nodes are intermittently available can be handled by
replacing pk(i) by r(i)pk(i) with r(i) the probability that
nodei is available in a slot.

A. Performance metrics

There are several performance metrics of interest which canbe
derived from (7). One of these is the expected number copies
of file F given by

X =

K
∑

k=1

Xk = N − X0. (10)

Another one is the expected age of the copies given by
(1/N)

∑K

k=1 kXk. Of particular interest is to evaluate the
power consumption. We assume that the power consumption,
denoted asQ, is proportional to the expected number of
transmissions during a slot, and define it as

Q = γX1. (11)

Without loss of generality we assume from now on thatγ = 1.

B. Energy efficient file management policies for homogeneous
nodes

Until the end of Section II we assume that nodes are homoge-
neous in the sense thatq(i) := q andak(i) := ak for all i, k
with q > 0. We assume thata0 > 0. In this setting{Xk}

K
k=0

are given in (7). To stress the dependency of the power
consumptionQ (see (11)) on the vectorp := (p0, . . . , pK)
we will denote it byQ(p) from now on, so thatQ(p) = X1.

A file management policy is any decision vectora =
(a0, . . . , aK) ∈ (0, 1]× [0, 1]K, where we recall thatak is the
(conditional) probability that the source transmitsF to a node
in statek when it meets such a node. An equivalent definition
of a file management policy is any vectorp = (p0, . . . , pK) ∈
(0, q]× [0, q]K sincep = qa. Unless otherwise mentioned we
will work with the latter definition.

Our objective is to find an optimal file management policy
p which maximizes the system utility given a power con-
sumption constraint. More precisely, letU(k) be the utility
for having a file of agek in the system. We assume that the
mappingU : {0, 1, . . . , K} → IR+ is non-increasing. Without
loss of generality we assumeU(0) = 0. The system utility is
defined as

C(p) =
K
∑

k=1

XkU(k). (12)

If U(k) = 1 for all k > 0 then C(p) = X , given in (10).
We will assume thatU is not identically zero as otherwise the
system utility is always zero.



4
The optimization problem is the following:

P: MaximizeC(p) over the set(0, q]× [0, q]K givenQ(p) ≤
V , whereV is a positive constant.

We will solve P in two different settings: thestatic setting
where management policies are restricted to policies of the
form p = (p, . . . , p) with p ∈ (0, q], and the dynamic
setting where the optimization is made over all vectorsp =
(p0, . . . , pK) ∈ (0, q] × [0, q]K .

1) Static optimal policy: In the static setting, problemP
becomes (see (9)):

P′: Maximize C(p) := Np
∑K

k=1(1 − p)k−1U(k) over p ∈
(0, q] given thatNp ≤ V .

Proposition 1 (Optimal static policy):

If Nq ≤ V then p⋆ = q is the optimal solution; otherwise
p⋆ = V/N is the optimal solution or, equivalently,p⋆ =
min(q, V/N).

Proof. It is enough to show that the mappingp → C(p) is
strictly increasing in(0, q). DefineU(K + 1) = 0. We have
from (12) and (9)

C(p) =

K
∑

k=1

(U(k) − U(k + 1))

k
∑

l=1

Xl

= N
K
∑

k=1

(U(k) − U(k + 1))(1 − (1 − p)k),

Hence,dC(p)/dp = N
∑K

k=1(U(k)−U(k+1))k(1−p)k−1 >
0 for p ∈ (0, q), sinceU is non-increasing and not identically
zero (which necessarily implies thatU(K) > 0).

2) Dynamic optimal policy:Let us introduce the new decision
variablesxk = 1 − pk for k = 1, . . . , K and xK = (1 −
pK)/p0. Note that1 − q ≤ xk ≤ 1 for k = 1, . . . , K and
xK ≥ (1 − q)/q with equality if and only ifp0 = pK = q.
Let x = (x1, . . . , xK). Introduce the set

E =
{

x : x ∈ [1 − q, 1]K−1 × [(1 − q)/q,∞)
}

.

Any vectorx ∈ E is called apolicy. Define the mappings

F (x) =

K
∑

k=1

U(k)

k−1
∏

l=1

xl, G(x) =

K+1
∑

k=1

k−1
∏

l=1

xl

and letH(x) := F (x)/G(x). Note thatF (x) does not depend
on the variablexK . From (8)D = p0G(x), and so by (7)

C(p) = NH(x) and Q(p) = N/G(x).

In this new notation problemP becomesmaxx∈E H(x) sub-
ject to the constraintG(x) ≥ C, with C := N/V .

An admissible policy is any policy such thatG(x) ≥ C.

Definition 2.1 (Threshold policy):

A policy x = (x1, . . . , xK) ∈ E is a threshold policy if either
xk = 1 or xk+1 = 1 − q for k = 1, . . . , K − 2 and if either
xK−1 = 1 or xK = (1 − q)/q.

Any threshold policyx = (x1, . . . , xK) is such thatx1 ≥
. . . ≥ xK−1. More precisely, it is easily seen that a threshold
policy if either of Type I or of Type II with

Type I: for k = 1, . . . , K

xk(α) := (1, . . . , 1, α, 1 − q, . . . , 1 − q, (1 − q)/q) (13)

where1 − q ≤ α < 1 is thek-th entry;

Type II :

xK(β) := (1, . . . , 1, β) with β ≥ (1 − q)/q. (14)

In terms of the file management policyp = (p0, . . . , pK) ∈
(0, q] × [0, q]K , Type I threshold policyxk(α), uniquely
translates into

pk(α) := (q, 0, . . . , 0, 1 − α, q . . . , q, q) (15)

where1−α ∈ (0, q] is the(k+1)-st entry (k = 1, . . . , K) (as
already observedp0 = pK = q in (15) since this is the only
solution of the equation(1 − pK)/p0 = (1 − q)/q when0 ≤
p0, pK ≤ q with p0 6= 0). In particularp1(1−q) = (q, . . . , q).

Any file management policy

pK(β) = (p0, 0, . . . , 0, pK) (16)

with (1 − pK)/p0 := β corresponds to the uniqueType II
threshold policyxK(β).

Proposition 2 (Optimality of threshold dynamic policy):Un-
der the assumption that the utility functionU : {1, . . . , K} →
IR+ is non-increasing there exists an optimal threshold policy.

Proof. Assume that the optimal policyx is not a threshold
policy. Hence, there exists ak, 1 ≤ k ≤ K − 1, such that
eitherxk < 1 andxk+1 > 1 − q if k 6= K − 1 or xK−1 < 1
andxK > (1 − q)/q if k = K − 1.

Assume first thatx1 · · ·xk−1 6= 0. Let us show that one can
always findǫk > 0 andǫk+1 > 0 such thatx′

k := xk +ǫk < 1,
x′

k+1 = xk+1 − ǫk+1 > 1 − q if k 6= K − 1 (resp.x′
k+1 =

xk+1 − ǫk+1 > (1 − q)/q if k = K − 1) andG(x) = G(x′),
wherex′ = (x1, . . . , xk−1, x

′
k, x′

k+1, xk+2, . . . , xK).

Set δk := x′
kx′

k+1 − xkxk+1 = ǫkxk+1 − ǫk+1xk − ǫkǫk+1.
The identityG(x′) = G(x) is equivalent to

x1 · · ·xk−1 (ǫk + δkAk) = 0

that is ǫk + δkAk = 0, with Ak := 1 + xk+2 + xk+2xk+3 +
· · · + xk+2 · · ·xK . The equationǫk + δkAk = 0 rewrites

ǫk+1 = ǫk

1 + Akxk+1

Ak(xk + ǫk)
.

So, we can findǫk andǫk+1 small enough so that they satisfy
the conditions.

Observe thatǫk + δkAk = 0 with ǫk > 0 yields δk < 0 since
Ak > 0.
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Let us finally show thatF (x′) > F (x) which will contradict
the optimality ofx. We have

F (x′) − F (x)

x1 · · ·xk−1
= ǫkU(k + 1) + δk[U(k + 2)

+xk+2U(k + 3) + · · · + xk+2 · · ·xK−1U(K)]

= (ǫk + δkAk − δkxk+2 · · ·xK)U(k + 1)

+δk[U(k + 2) − U(k + 1)

+xk+2(U(k + 3) − U(k + 1)) + · · ·

+xk+2 · · ·xK−1(U(K) − U(k + 1))]

= −δkxk+2 · · ·xKU(k + 1) + δk[U(k + 2)

−U(k + 1) + xk+2(U(k + 3) − U(k + 1)) + · · ·

+xk+2 · · ·xK−1(U(K) − U(k + 1))] (17)

where we have used the identityǫk +δkAk = 0 to derive (17).
SinceU is non-increasing andδk < 0 as noticed earlier, we
deduce that the right-hand side of (17) is strictly positive, and
thereforeF (x′) > F (x).

Assume now thatx1 · · ·xk−1 = 0. This may only happen
when q = 1 since1 − q ≤ xk ≤ 1 for k = 1, . . . , K. Let
l ∈ {1, . . . , k − 1} be the smallest integer such thatxl = 0.

If the optimal policy is such thatxl = 0 then the value of
xl+1, . . . , xK are irrelevant sincexl = 0 implies thatXl+1 =
· · · = XK = 0 so that both the cost and the constraint will not
depend on the values ofxl+1, . . . , xK . Assume for instance
that xl+1 = · · · = xK = 0 so that policyx is of the form
x = (x1, . . . , xl−1, 0, . . . , 0). It this is not a threshold policy
then one can findk′ ∈ {1, . . . , l − 2} such thatxk′ < 1
and xk′+1 > 1 − q = 0. We can then duplicate the same
argument used to establish (17) withk replaced byk′. Since
x1 · · ·xk′−1 6= 0 from the definition ofl we conclude that
F (x′) > F (x). This completes the proof.

It is actually possible to find the best dynamic file management
policy in explicit form, as now shown.

Proposition 3 (Best dynamic file management policy):

Assume that the utility functionU : {1, . . . , K} → IR+ is
non-increasing. The following results hold:

(a) if Nq < V the optimal file management policy isp1(1−
q) = (q, . . . , q);

(b) if Nq

qk+1 < V ≤ Nq

q(k−1)+1 for some k = 1, . . . , K,
the optimal file management policy ispk(q(C − k)) =
(q, 0 . . . , 0, 1 − q(C − k), q, . . . , q) (see (15));

(c) if V ≤ Nq

q(K−1)+1 any file management policypK(C −

K) = (p0, 0, . . . , 0, pK) such that(1−pK)/p0 = C −K
is optimal.

Proof. Since we have shown in Proposition 2 that there exists
an optimal threshold policy, we only need to focus on threshold
policies as defined in (13)-(14). Easy algebra show that

G(xk(α)) = k +
α

q
, k = 1, . . . , K (18)

G(xK(β)) = K + β, (19)

so thatG(x1(α1)) ≤ · · · ≤ G(xK−1(αK−1)) ≤ G(xK(β))
for all α1, . . . , αK−1 ∈ [1−q, 1), β ≥ (1−q)/q. From this we
deduce that there are three different cases to consider (recall
that C = N/V ):

(a) C < G(x1(1 − q)) = 1/q or equivalentlyV > Nq;
(b) G(xk(1 − q)) ≤ C < G(xk+1(1 − q)) or equivalently

Nq

qk+1 < V ≤ Nq

q(k−1)+1 ;

(c) C ≥ G(xK((1 − q)/q)) or equivalentlyV ≤ Nq

q(K−1)+1 .

Case (a): In this case any threshold policy satisfies the
constraint, so that the optimal policy is the policy which
maximizes the costH(x). It is shown in Lemma 1 in the
appendix that for eachk = 1, . . . , K, the mappingxk → H(x)
is non-increasing for anyx = (x1, . . . , xK) ∈ E. Therefore,
policy x1(1− q) = (1− q, . . . , 1− q, (1− q)/q) is optimal, or
equivalently (see (15)) the file management policyp1(1−q) =
(q, . . . , q) is optimal.

Case (b):Assume thatG(xk(1− q)) ≤ C < G(xk+1(1− q))
for some1 ≤ k ≤ K − 1. By Lemma 1 in the appendix we
see that the best threshold policy is the one which saturates
the constraint, namely policyxk(α) such thatG(xk(α)) = C,
that is α = q(C − k). By (18) this policy is unique and is
given by xk(q(C − k)). Equivalently (see (15)), the optimal
file management policy ispk(q(C − k)).

Case (c): In this case there is noType I policy which
satisfies the constraintG(x) ≥ C. Among all Type II
policies satisfying this constraint the one with the smallest
K-th entry is the policy such thatG(xK(β)) = C, that
is (see (16)) policyxK((C − K)) = (1, . . . , 1, C − K).
We conclude again from Lemma 1 that this is the optimal
policy. Equivalently (see (16)), any file management policy
pK(C − K) = (p0, 0, . . . , 0, pK) such that(1 − pK)/p0 =
C − K is optimal. This concludes the proof.

C. Numerical results

Let p∗s (resp.p∗
d) be the static (resp. dynamic) file management

policy which solves the optimization problemP – as found
in Proposition 1 (resp. Proposition 3). Figures (1)-(4) display
mappingsq →

∑K

k=1 U(k)Xk under policiesp∗s andp∗
d (cor-

responding curves are referred to as “static” and “dynamic”,
respectively), for two different utility functions (U(k) = 1,
U(k) = 1/k) and for two different values of the constraint
V (V = 10, 20). In all figuresN = 100 and K = 5. These
results show that the use of the optimal dynamic policy may
yield substantial gains (e.g. forU(k) = 1 gain of ≈ 22% for
all q ≥ 0.2 – see Fig. 2; gain of≈ 45% for q close to 1 –
see Fig. 1. Gain is halved forU(k) = 1/k.). The gain is an
increasing function of the meeting probabilityq.

III. COOPERATIVE NODES

In this section we assume that nodes cooperate in the sense
that when two nodes meet the one with the most recent version
of F may send a copy to the other one. A node may only
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delete the version ofF it carries when it receives a more
recent version either from the source or from another node.
This implies that the age of a node is unbounded (a situation
refers to asK = ∞ in Section II).

The identity of the source is0 and nodes are labeled
1, 2, . . . , N . We observe the system at discrete times{tn}n≥0,
wheretn is the time of thenth event. Aneventis either the
meeting of the source with a node, the meeting of two nodes or
the creation of a new version ofF by the source. Let{ξi,j

n }n

and{ζn}n be{0, 1}-valued rvs whereξi,j
n = 1 if nodei meets

nodej 6= i at time tn, ξi,0
n = 1 if node i meets the source at

time tn, andζn = 1 if the source creates a new version ofF
at time tn. We assume thatζn +

∑

i,j ξi,j
n = 1 for all n (only

one event at timetn).

Let Y i
n be the state of nodei just before timetn (denoted

by tn−), where Y i
n = k ≥ 1 if the source has generated

k − 1 updates ofF since it created the version ofF held by
nodei at timetn−. Without loss of generality we assume that
Y i

0 ≥ 1 for all i. We introduce the additional{0, 1}-valued
rvs {ai,j

n (k, l)} and{ai
n(k)}, whereai,j

n (k, l) = 1 if node i in
statek receives a copy ofF from nodej in statel < k if they
meet attn, andai

n(k) = 1 if the source transmits the latest
version ofF to nodei in statek if they meet attn.

Let θi,j(k, l) := P (ai,j
n (k, l) = 1) and θi(k) := P (ai

n(k) =
1). The following recursions hold (i = 1, . . . , N ):

Y i
n+1 = Y i

n + (1 − Y i
n)ξi,0

n ai
n(Y i

n) (20)

+

N
∑

j=1

j 6=i

(Y j
n − Y i

n)1
Y

j
n−Y i

n<0 ξi,j
n ai,j

n (Y i
n, Y j

n ) + ζn.

Let E := {1, 2, . . .}N , Yn := (Y 1
n , . . . , Y N

n ) and Zn :=
({ξi,j

n }), ζn).

Assumptions A1:

(1) {ζn}n , {ξi,j
n } and{ξi,0

n }n are mutually independent iid
sequences. Letr := P (ζn = 1), qi,j := P (ξi,j

n = 1) and
qi := P (ξi,0

n = 1);
(2) r > 0, qi > 0, qi,j > 0;
(3) the probability that two nodes communicate when they

meet only depends on their identity and state, namely
P (ai,j

n (Y i
n, Y j

n ) = 1|{Ym, Zm}m≤n) = θi,j(Y
i
n, Y j

n ) for
all i 6= j;

(4) given that the source meets a node, the probability that it
communicates with it only depends on the node’s identity
and state, i.e.P (ai

n(Y i
n) = 1 | {Ym, Zm}m≤n) = θi(Y

i
n)

for all i.

A. Stability

Proposition 4 (Stability of{Yn}n):

Assume thatA1 holds. Then,{Yn}n is an homogeneous,
irreducible and aperiodic Markov chain onE . It is positive
recurrent if there exist an integerM0 and θ > 0 such that
θi(k) ≥ θ for all k ≥ M0 and i = 1, . . . , N .



7
Proof. Only the positive recurrence property does not trivially
follow from A1. We will show it by applying Foster’s criterion
to {Yn}n (see e.g. [8]). For this we need to show that there
exist a (Lyapounov) functionf : E → IR+, a finite setF ⊂ E
and ǫ > 0 such that (i)∆(y) ≤ −ǫ for y ∈ E − F and
(ii) ∆(y) := E[f(Yn+1) − f(Yn) |Yn = y] is finite on F .
Consider the Lyapounov functionf(y) :=

∑N

i=1 yi with y =
(y1, . . . , yN). We have from (20) and assumptionsA1

∆(y) =

N
∑

i=1

(1 − yi)qiθi(yi) (21)

+

N
∑

i=1

N
∑

j=1

j 6=i

(yj − yi)1yj−yi<0qi,jθi,j(yi, yj) + Nr

≤ −
N
∑

i=1

yiqiθi(yi) + N(r + 1), y ∈ E . (22)

Fix ǫ > 0. Let M be any finite integer such thatM ≥
max{M0, (ǫ + N(r + 1))/(θ min1≤i≤N qi)}. Let F := {y ∈
E : max1≤i≤N yi ≤ M}. Note thatF is a finite subset ofE .
Fix y ∈ E −F and leti⋆ be such thatyi⋆ = max1≤i≤N yi so
that yi⋆ > M . From (22) and the definition ofM we find

∆(y) ≤ −Mθqi⋆ + N(r + 1) ≤ −ǫ (23)

which proves part (i) of Foster’s criterion. On the other hand,
(21) implies that∆(y) is finite for all y ∈ F , which proves
part (ii) of Foster’s criterion. This completes the proof.

B. Quantitative performance

We make additional assumptions in order to computeXk,
the expected number of files of agek ≥ in steady-state. We
assume that the source and nodei = 1, . . . , N (resp. any pair
of nodesi andj, i 6= j) meet according to a Poisson process
with rateλ > 0 and that the source creates a new version of
F at each occurrence of a Poisson process with rateµ > 0.
TheseN(N + 1)/2 + 1 Poisson processes are assumed to be
mutually independent. We further assume thatθi(k) := ak > 0
and θi,j(k, l) := bk,l for any i, j, k, l. In other words, when
two nodes (i.e. source or nodes) meet the probability that a
transmission occurs only depends on the node state and not
on their identity. By Proposition 4 we observe that the system
is stable (in this settingqi = qi,j = λ/ν and r = µ/ν with
ν := λN(N + 1)/2 + µ).

Let Xk(t) be number of nodes in statek at time t. Set
Xk(t) := E[Xk(t)]. We have the Kolmogorov equations

dX1(t)

dt
= −µX1(t) + λ

∑

k≥2

akXk(t)

+λ
∑

l≥2

b1,lE[X1(t)Xl(t)] (24)

dXk(t)

dt
= µXk−1(t) + λ

∑

l≥k+1

bk,lE[Xk(t)Xl(t)]

−λ
k−1
∑

l=1

bk,lE[Xk(t)Xl(t)]

−(λak + µ)Xk(t), k ≥ 2. (25)

Let Xk := limt↑∞ Xk(t) (a.s.) andXk = E[Xk]. From (24)-
(25) we find

µX1 = λ
∑

k≥2

akXk + λ
∑

l≥2

b1,lE[X1Xl] (26)

µXk−1 + λ
∑

l≥k+1

bk,lE[XkXl] (27)

= λ

k−1
∑

l=1

bk,lE[XkXl] + (λak + µ)Xk, k ≥ 2.

We will consider two cases.

Case (a):bk,l = 0 for all k, l. This corresponds to the non-
cooperative setting studied in Section II. We find (Hint: use
∑

k≥1 Xk = N )

Xk =
N
∏k

l=2
µ

µ+λal
∑

l≥1

∏l

m=2
µ

µ+λam

, k ≥ 1 (28)

If we perform the change of variableµ/(µ +λal) = 1− pl−1

in (28) we retrieve the corresponding results (7) found in the
discrete-time setting withK = ∞ (see Remark 2.1), thereby
showing that this model is the continuous-time analog of the
discrete-time model.

Case (b): ak = a > 0 and bk,l = b > 0 for all k, l.
Because of the termsE[XkXl] equations (26)-(27) cannot
be solved. To solve them we will assume that cov(Xk, Xl)
is negligible for k 6= l so that E[XkXl] ≈ XkX l. We
conjecture that this approximation (referred to as the “mean-
field approximation” – see e.g. [2]) is accurate for large
N (the mean-field approach in [7, Theorem 3.1] does not
apply here and cannot therefore be used to validate these
approximations). With this approximation and the use of the
identity

∑

k≥1 Xk = N , (26)-(27) become (withρ := λ/µ)

bX
2

1 − X1(bN − a − 1/ρ) − aN = 0 (29)

bX
2

k − Xk

(

bN − a − 1/ρ− 2b

k−1
∑

l=1

Xl

)

+ Xk−1/ρ = 0

(30)
for k ≥ 2. The unique nonnegative root of (29) is

X1 =

(

D1 +
√

D2
1 + 4abN

)

/2b, (31)

while for k ≥ 2 we get from (30)

Xk =

(

Dk +
√

D2
k + 4bXk−1/ρ

)

/2b (32)

with Dk := bN −a−1/ρ−2b
∑k−1

l=1 Xl. Equations (31)-(32)
define a recursive scheme allowing the computation ofXk for
any k.
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C. Numerical results

We want to quantify the impact of node cooperation on the sys-
tem performance when the source has limited power resources.
We want to optimize the system utility

∑K

k=1 U(k)Xk under a
constraint, denoted byV , on the expected number of transmis-
sionsby the sourcebetween the creation of two consecutive
version of F . To this end, we will assume that the source
transmits to any node that it meets with the probabilitya = a⋆,
where a⋆ := min(1, (1 + ρ)V/Nρ) is the static policy that
solves problemP (Proposition 1). Letqρ be the probability
that the source meets a given node between two creations of
a new version ofF . We haveqρ = λ/(λ + µ) = ρ/(1 + ρ)
thanks to the Poisson assumptions. In all experiments reported
below we setN = 20, V = 2 andK = 5. Figures 5-6 display
the mappingqρ →

∑K

k=1 U(k)Xk (with U(k) = 1 in Fig. 5
and U(k) = 1/k in Fig. 6) for two values of the probability
b. The valueb = 0 corresponds to the non-cooperative setting
(case (i); curve referred to as “noncooperative”) and the value
b = 0.05 corresponds to the cooperative setting (case (ii)). For
b = 0.05 the results have been obtained both by simulations
and from the approximation formulas (31)-(32). Note that the
approximation developed in Section III-B is fairly accurate
when b = 0.05 (results are not as good asb increases). One
observes that the cooperative setting outperforms the nonco-
operative setting even when the “probability of cooperation” b
is small, and that the gain of node cooperation increases with
qρ.
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IV. I MPERFECT STATE INFORMATION

In this section we consider the static setting of Section II
where nodes do not cooperate. We assume that the source
does not know parametersN andq, so that it cannot compute
a⋆ := min(1, V/Nq) , the (conditional) transmission proba-
bility that solves problemP (cf. Proposition 1). Instead, we
will assume that everyM ≥ 1 slots the source updates the
transmission probabilitya, whereM is an arbitrary integer.
More precisely, letθm be the transmission probability used in
slotsmM, . . . , (m + 1)M − 1. Define the projection operator

ΠH(u) =







1 if u > 1
u if 0 ≤ u ≤ 1
0 if u < 0.

Consider the stochastic recursion

θm+1 = ΠH

(

θm + ǫm(MV − Ym)
)

(33)

where Ym is the total number of transmissions in slots
mM, . . . , (m + 1)M − 1, and {ǫm}m are nonnegative real
numbers satisfying

∑

m≥0

ǫ2m < ∞,
∑

m≥0

ǫm = ∞. (34)

Observe that the source knowsYm for every m. Recursion
(33) is motivated by the fact thata⋆ is the unique zero of
h(a) := V − X1 if h(1) > 0 and a⋆ = 1 otherwise, so
that the source’s target is to find the zero, if any, ofh(a) (or,
equivalently, the zero ofMh(a)) in [0,1].

Proposition 5 (Stochastic approximation algorithm):

As m → ∞, θm in (33) converges with probability one toa⋆,
the optimal static policy of Section II-B.1.

Proof. The proof directly follows from the remark after The-
orem 2.1 in [9, p. 127]. Let us briefly checked that conditions
(A2.1)-(A2.5) of Theorem 2.1 hold. Since0 ≤ Ym ≤ MN
for all m, condition (A2.1) holds (this condition requires that
supm E|Ym|2 < ∞). By an inductive argument applied to (33)
we see thatE[Ym|θ0, Yi, i < m] = E[Ym|θm, θi, Yi, i < m].
We then note thatE[Ym|θm, θi, Yi, i < m] = E[Ym|θm] :=
g(θm) since the decision by the source to transmit a copy
of F to a node only depends on the enforced transmission
probability. This implies that condition (A2.2) holds (condition
(A2.2) in [9, p. 126] states thatE[Ym|θ0, Yi, i < m] has the
form of g(θm) + βm where βn is a r.v.). We haveg(x) =
M(V − Nqx) so that conditions (A2.3) (g is continuous)
and (A2.5) (

∑

m≥0 ǫm|βm| < ∞ w.p.1) are satisfied. Last,
condition (A2.4) (

∑

m≥0 ǫ2n < ∞) holds from (34).

Consider the ODEdx(t)/dt = g(x(t)). Its solution isx(t) =
(x(0) − V/Nq)e−MNqt + V/Nq. It has a unique equilibrium
point, given byx0 = V/Nq, which is asymptotically stable in
the sense of Lyapounov [9, p. 104] (i.e. for eachδ > 0, there
existsη > 0 such that if|x(0)− x0| < η then |x(t)− x0| < ǫ
for all t ≥ 0). By [9, Remark p. 127] we conclude that{θm}m

converges tomin(1, V/Nq) with probability 1.



9
Figure 7 below provides a numerical illustration of the conver-
gence of algorithm (33) to the optimal policya⋆ for M = 1,
N = 100, V = 10 andq = 0.2. In this casea⋆ = 0.5.
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Fig. 7. m → θm: M = 1, a⋆
= 0.5 (N = 100, V = 10, q = 0.2)

V. CONCLUSION

We have developed simple stochastic models for evaluating
the performance of file management policies in DTNs storing
dynamic files. Both static and dynamic policies have been
investigated. We have shown that using dynamic policies
instead of static policies yields substantial gain in the perfor-
mance. This result holds both in the non-cooperative setting,
where only the source is allowed to communicate with the
other nodes, and in the cooperative setting where all pairwise
communications are possible. Future works include the study
of multi-source and multi-file scenarii.
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APPENDIX

Lemma 1 (Monotonicity ofH(x)):

For eachk = 1, . . . , K, the mappingxk → H(x) is non-
increasing for anyx = (x1, . . . , xK) ∈ E.

Proof. First, notice that the mappingxK → H(x) is clearly
non-increasing sincexK only appears inG(x), the denomina-
tor of H(x), and sinceG(x) is non-decreasing inxK . Assume
now thatk = 1, . . . , K. Let

B(j) := 1 + x1 + x1x2 + · · · + x1 · · ·xj

Bk(j) := 1 + xk+1 + xk+1xk+2 + · · · + xk+1 · · ·xj

with B(0) = 1, Bk(k) = 1. SetU(K + 1) = 0. We have

F (x) =

K
∑

j=1

[U(j) − U(j + 1)]B(j − 1), G(x) = B(K)

so that

∂

∂xk

F (x) =

k−1
∏

j=1

xj

K
∑

j=k+1

[U(j) − U(j + 1)]Bk(j − 1)

∂

∂xk

G(x) = Bk(K)

k−1
∏

j=1

xj .

Therefore

∂

∂xk

H(x) =
(
∏k−1

j=1 xj)
2

G(x)2

(

k
∑

j=1

[U(j + 1) − U(j)]

×B(j − 1)Bk(K) +

K
∑

j=k+1

[U(j + 1) − U(j)]

×[B(j − 1)Bk(K) − Bk(j − 1)B(K)]

)

.

The first summation is non-positive sinceU is non-increasing
and B(j − 1)Bk(K) ≥ 0 for all x ∈ E. Using again the
decreasingness ofU a sufficient condition for the second sum-
mation to be non-positive is that coefficientsB(j−1)Bk(K)−
Bk(j−1)B(K) are all non-negative. To see that this is indeed
true, note thatB(j) = B(k − 1) + x1 . . . , xkBk(j) so that
B(j − 1)Bk(K) − Bk(j − 1)B(K) = B(k − 1)[Bk(K) −
Bk(j−1)] which is non-negative for allx ∈ E. This completes
the proof.
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