Distributed Storage Management of Evolving Files
in Delay Tolerant Ad Hoc Networks

Eitan Altmart, Philippe Naid, Jean-Claude Bermo#d
L' INRIA, 2004 Route des Lucioles, BP 93 06902 Sophia-Antgdfirance
2 I3S/INRIA, 2004 Route des Lucioles, BP 93, 06902 Sophiaigris, France
Email: {Eitan.Altman, Philippe.Nain, Jean-Claude.Bermp@dsophia.inria.fr

Abstract— This work focuses on a class of distributed storage In such applications, the DTN becomes a distributed storage

syste:jns V;/V;ﬁse tcontent m?y evolve bQIVer tlénﬁ{ EaCth ?progentsystem that contains copies of a file that is being transdhitte

or node of the storage system is mobile and the set of all nodes ; ; :

forms a delay tolerant (ad hoc) network (DTN). The goal of the Ig this pagler" We,, foc|u§ or:rla”sgectlﬁal ttype of file tfhlat V\k/]e call

paper is to study efficient ways for distributing evolving files ynamic ie” or “evolving ile". by tha W? meane} lle whose
content may evolve and change from time to time. One (or

within DTNs and for managing dynamically their content. We
specify to dynamic files where not only the latest version isseful  various) sources wish to make a file available to mobile npodes

but also previous ones; we restrict however to files where a 8l and to send updates from time to time. Some examples are:

has no use if another more recent version is available. The ON'
is composed of fixed number of nodes including aingle source.
At some points in time the source makes available a new versio
of a gingle file F. We consider both the cases when (a) nodes
do not cooperate and (b) nodes cooperate. In case (a) only the
source may transmit a copy of F' to a node that it meets, while
in case (b) any node may transmit a copy ofFf' to a node that
it meets. Scenario (a) is studied under the assumption thathe

« a source has a file containing update information such

as weather forecast or news headlines. The file changes
incrementally from time to time with new information
updates;

a source wishes to make backups of some directories and
to store them at another nodes in order to increase the

source updatesF' at discrete timest = 0,1,.... Within each reliability;
slot [t,t 4 1) there is a fixed probability that a node meets the ’ L
source. A file management policy is a set of rules specifyinghen - some software updates or patches may be distributed
the source transmits a copy of F' to a node (say node:) that regularly.

it meets; this decision only depends on the age of the version
of F (if any) that node ¢ is carrying, where the age isk if this
version was createdk — 1 slots ago. We find the optimal static
(resp. dynamic) policy which maximizes a general utility function
under a constraint on the number of transmissions within a
slot. In particular, we show the existence of a threshold dyamic
policy. In scenario (b) F' is updated at random points in time. . > X
Similar to scenario (a) we assume that each node knows the age standardized format. Updates can originate from various
of the file it carries (the case where nodes only know the datef o sources;

creation of a file is studied in [1]). Under Markovian assumptons « another format called the “Atom Syndication Format” has

regarding nodes mobility and update frequency of F', we study been adopted as IETF Proposed Standard RFC 4287.
the stability of the system (aging of the nodes) and derive an

(approximate) optimal static policy. We then revisit scendo (a)  \ve gpecify to dynamic files where not only the latest version
when the source does not know the number of nodes and the. . . .
probability that the source meets a node in a slot, and we deve 1S Useful but also previous ones; we restrict however to files
a stochastic approximation algorithm which we show to convge Where a file has no use if another more recent version is
to the optimal static policy found in the complete information available. For example, consider an evolving file contajnin
setting. Numer_ical results illystratg _the respective pertﬁrman_ce the weather forecast for seven consecutive days. If a useisne
of optimal static and dynamic policies as well as the benefitfo the weather forecast for the next day then any version of the
hode cooperation. file from the six last days is useful. The more recent the file is
the more accurate the requested information is. Furthesmor
having access to a given file makes all previous files irreleva
to the user.

Several formats of dynamic files have been standardized:

o the RSS (“Real Simple Syndication” [6]) family of Web
feed formats used to publish frequently updated content
such as blog entries, news headlines, and podcasts in a

Keywords: Evolving files; Storage systems; Delay-tolerant(ad
hoc) networks; Performance evaluation; Optimization.

|- INTRODUCTION The goal of our paper is to study efficient ways for distribgti

yolving files within DTNs and for managing dynamically

Much work has been devoted for the study of Delay Toleral . .
Networks (DTNs). Most of the work on protocol design ha§1e|r content. The obvious way to provide the most up-tedat

o information is to use epidemic routing (e.g. see [11]) foclea

focused on the use of mobility in order to reach one or : .
. L new version ofF’. This however consumes a lot of network

more disconnected destinations. The protocols are baSEdrogources

distribution of the file to relay nodes so as to increase the '

successful delivery probability [3], [4], [5], [10], [11]. We start with a general description of the model. More dstalil



will be given in the subsequent sections. There Aret 1 static policy is enforced. We then use this result to qugntif
mobile nodes including one source node. From now ode in Figures 5-6 the benefit of having nodes to cooperate.
griselgga;ii: T%erlzt::?:eng?eeat%t: E;ntzaré;?:ds\?:rggnpgf Zoﬂie deployment of optimal policies derived in Sections I-
P upaated v an requires that the source has a complete information on
F. When the source meets a node (i.e. is within transm|35|81n , .
. . . . e network (node mobility, number of nodes). In Section IV
range of this node) it may transmit a copy Bfto this node.

S X . we rel hi mption. We f n the non rativ
Similarly, when two nodes meet the one which carries thee elease this assumptio e focus on the noncooperative

: . . . setting and restrict to static policies, and we assume tiet t
more recent version of’ may transml'g a copy of this version_ e does not know the number of nodésand does not
:)?c t;etr?;ze:hréogiév:ihvigsaga()r?;r:gcggvae:y? ir:]g:aelertee Csegi \(/)?@é%gw the probability that a n_ode meer thg source in a slot. By
the oldest version of F using the thepry of stochastic approxn'natlons,'we cqnstmc
' algorithm which converges to the optimal static policy fdun
The setting in which only the source may transmit (a cogp Section Il. Section V concludes the paper.
of) F' to another node is called th@on-cooperativesetting, Remark on the notation: by convention™,- — 0 and
while in thecooperativesetting any mobile node may transmit—m —1if[>m R+ aenotes the set gf:Iélll nonnegative

to any other node. We assume that transmissions are always=.
réal numbers.
successful.

We say that a node is of age> 1, or equivalently in state II. NON-COOPERATIVE NODES

k, if the source has updated filgé k£ — 1 times since the file

that this nodes carries has been created. In particularda nd? this section we consider the scenario where nodes do not
in statel holds the most up-to-date version Bt A node is cooperate and may only receive fiféfrom the source. Nodes

in state0 if it does not hold any file. There is a utility (k) &'¢ labeledl,2,....N. At times ¢ = 0,1,... the source
associated with a node in state creates a new version of fil€. In the following, a slot denotes

any time-period[t,t + 1), ¢ > 0, and slot¢ stands for the
A file management policyor simply a policy, is a set of time-period[t,t+1). There is a probability(i) > 0 that node
rules specifying whether the source and a node, or two nodgs; 1, ..., N meets the source in a slot. We define theeting
should communicate when they meet. A policistatic (resp. timesbetween the source and a node as the successive slots
dynamig if the decision to transmit does not (resp. doesdt which they meet. The meeting times of each node which
depend on the state of the nodes. the source form a sequence of independent and identically

Section Il addresses the non-cooperative setting. Time distributed (iid) random variables (rvs) and all meetingei
slotted and there is a fixed probability that a node meets tREPCEsses are assumed to be mutually independent. For sake
source in a slot. At the beginning of each slot the sour@ Simplicity, we assume that all transmissions between the
creates a new version @, so that each node carrying a copy?°Urce ar_ld the nod_es_ |n|t|_aI|zed in a slot are _comple_ted by th
of F knows that its state has increased by one unit. A copy de of this slot. This |mpl|es that the transmission timefof

F reaching agek + 1 (with K < o) is immediately deleted. 'S Small w.r.t. the duration of a slot.

We find the optimal static policy (Proposition 1) and showvhen a node receives an updated versiorFoit deletes at

that there is an optimal dynamic policy of a threshold typgnce the previous version df it was carrying, if any. We
(Proposition 2) which we fully characterize (Propositioh 3 define the age of a version d@ as the number of slots that
The performance of the optimal static and dynamic policigfave elapsed since this version was generated by the source.
are compared (Figures 1-4) for two different utility furmis \We assume that a version of agé+ 1 or more is useless
(U(k) =1 andU(k) = 1/k). and that a node deletes at once a file that has reached age

Section IIl investigates the cooperative setting. We dgvel & + 1. Therefore, the age of a version 6f varies between
continuous-time model in which mobile nodes meet at randokn(the version was generated in the current slot) @ndthe
times and fileF" is updated by the source also at random time¥€rsion was generatefl’ — 1 slots ago). We further assume
We assume that at any time nodes know their age and tH}t & < oo (see Remark 2.1).

the age of a node may only increase unless it receives a My state of a node is defined as the age of the versidh of
recent version of” (i.e. K = co). (The case wher& < cc as it carries, if any. A node is in stat@ if it does not carry any
well as the case where nodes only know the date of creationgfsion of F. A node in stateX at the end of a slot switches
the file they hold are studied in [1].) In Proposition 4 we Ueri to state( at the beginning of the next slot.

conditions for stability in a Markovian framework, where ) . N
stability refers to the state of each node being finite (a.sj/N€n the source meets node with probability ax (i) it
Under the more restrictive assumptions where node meetihgSMits to it the newest version df if that node is in

times and update times are modeled by independent PoisS&e* (k = 0.1,..., K). We assume that the transmission
processes, we derive a “mean-field like” approximation Far t is always successful. The decision by the source to transmit

expected number of nodes in state> 1 in the case where a ©© @ node is independent of all past decisions made by the
source and is also independent of all meeting time processes



Introducepy (i) := q(i)ax(i) the probability that nodé in
state k receives the newest version &f in a slot. Define
p5 (i) == 1—pg(7). At equilibrium, letmy(:) be the probability
that nodei is in statek at the end of a slot, and leX; be
the average number of nodes in statat the end of a slot.
We have

N

D mli), k=0,1,...,
=1

with S+ X, = N. For eachi = 1,..., N, the probabilities
{me (i)}, satisfy the Chapman-Kolmogorov equations

7o (i) mo(1)p5 (i) + 7k ()P () )

(i) = mea(pi_ (@), k=2,...,K, (3
K

1= ) mi). (4)
k=0

There is one additional equilibrium equation givenhyi) =

S o ™k ()P (i)

for everyi as K 1 oco. This is so iflimgeo pr(i) > 0 fo?
i=1,...,N (Hint: apply d’Alembert’s criterion to the series
Sis1 L1121 p§(3))). Note from (6) thatXo = 0 if K = cc.

Remark 2.2 (Intermittently available nodes)he  situation
where nodes are intermittently available can be handled by
replacing px (i) by r(i)pr(i) with r(:) the probability that
nodei is available in a slot.

A. Performance metrics

There are several performance metrics of interest whichhean
derived from (7). One of these is the expected number copies
of file F' given by

K
X=) Xy=N-X, (10)
k=1

Another one is the expected age of the copies given by
(1/N) Zszl kX. Of particular interest is to evaluate the

which we will not consider since it can bepqyer consumption. We assume that the power consumption,

derived by summing up equations (2)-(3). Equations (2)-(bnoted asQ, is proportional to the expected number of

define a linear system df +1 equations and+1 unknowns.

From now on we will assume thak (i) > 0 (i.e. ap(é) > 0

since we have assumed th@t) > 0) for all i as otherwise the

transmissions during a slot, and define it as

Q=7X1. (11)

solution to (2)-(4) may not be unique. The non-uniqueness Wiithout loss of generality we assume from now on that 1.

the solution corresponds to situations where the steaatg-sf
node: will depend upon its initial state (e.g. take(i) = 1

B. Energy efficient file management policies for homogeneous

and pi(i) = 0 for k # 1), a degenerated situation that camodes
easily be handled and that we will not consider from now on.

Solving for (2)-(4) gives

K ¢ N TTE=1 /s
7_‘_0(2-) — Hk:éjjk (Z), Wk(l) — pO(Z) ‘lD:ll by (Z) (5)
for k = %,...,K, i = 1,...,N, with D, :=
. =1 - c/e
po(d) Xok—y [ 11— pi(é) + [T}=, Pi(4). Hence, by (1),
N K . . k—1 .
< _ e () = o po(@) 1=y pi(0)
XO - ; Dz ) Xk — s Dz (6)
fork=1,..., K.
In the particular case wherg, (i) = p; for all ¢, k then
K k—1
N[ —px) Npo [T —m)
Y _ k=1 Y — =1 7
o= —Es— X n (7)
fork=1,..., K, where
K k-1 K
Di=poY [ =p)+ ][] —pe). (8)
k=1 l=1 k=1
If we further assume that, = p for k =0,1,..., K then

Xo=N1-p)¥, Xp=Npl-pklk=1,...,K (9
Remark 2.1 i = c0): Formulas (6) hold if K = o (i.e.

Until the end of Section Il we assume that nodes are homoge-
neous in the sense thaf:) := ¢ anday (i) := ay, for all i,k
with ¢ > 0. We assume that, > 0. In this setting{ X} =,
are given in (7). To stress the dependency of the power
consumption@ (see (11)) on the vectop := (po,...,Px)
we will denote it byQ(p) from now on, so tha)(p) = X;.

A file management policy is any decision vectar =
(ao,-..,ax) € (0,1] x [0, 1]%, where we recall thaty, is the
(conditional) probability that the source transmit¢o a node

in statek when it meets such a node. An equivalent definition
of a file management policy is any vecter= (po, . ..,px) €
(0,¢] x [0, q]* sincep = ga. Unless otherwise mentioned we
will work with the latter definition.

Our objective is to find an optimal file management policy
p which maximizes the system utility given a power con-
sumption constraint. More precisely, |ét(k) be the utility
for having a file of agek in the system. We assume that the
mappingU : {0,1,..., K} — R™ is non-increasing. Without
loss of generality we assunié(0) = 0. The system utility is
defined as

K
C(p) =Y XwU(k). (12)
k=1

If U(k) =1 for all k > 0 thenC(p) = X, given in (10).

nodes never delete the file they carry unless they receivaMe will assume that/ is not identically zero as otherwise the

new version from the source) provided thag in (5) is finite

system utility is always zero.



The optimization problem is the following:

P: Maximize C(p) over the set0, ¢] x [0, q]% givenQ(p) <
V, whereV is a positive constant.

We will solve P in two different settings: thestatic setting

where management policies are restricted to policies of the (

form p = (p,...,p) with p € (0,q], and the dynamic

Any threshold policyx = (x4, ..

., Tx) IS such thatz, 24
... > xx_1. More precisely, it is easily seen that a threshold
policy if either of Type | or of Type Il with

Type I: fork=1,..., K

setting where the optimization is made over all vectprs= wherel — ¢ < o < 1 is the k-th entry;

(p07 cee 7pK) € (07 q] X [Oa Q]K

1) Static optimal policy: In the static setting, problen®
becomes (see (9)):

P’: Maximize C(p) := Np Yt (1 — p)*"'U(k) overp
(0,¢] given thatNp < V.

Proposition 1 (Optimal static policy):

If Ng <V thenp* = ¢ is the optimal solution; otherwise
p* = V/N is the optimal solution or, equivalently* =
min(g, V/N).

Proof. It is enough to show that the mappipg— C(p) is
strictly increasing in(0, ¢). DefineU(K + 1) = 0. We have

k,a)::(17"'517a71_Q7---51_Q7(1_Q)/Q) (13)
Type II:
In terms of the file management poligy = (po,...,px) €

(0,q] x [0,q]%, Type | threshold policyx(a), uniquely

translates into
a07 ]- - 7q’Q) (15)

pr(@) = (q,0,... a,q...

wherel —a € (0,q] isthe(k+1)-stentry ¢ =1,...,K) (as
already observeg@y, = px = ¢ in (15) since this is the only
solution of the equatiofl — px)/po = (1 — ¢)/q when0 <

< i - i - - DRI .
from (12) and (9) po, P < q With pg # 0). In particularp; (1 —¢) = (¢,...,q)
K & Any file management policy
C = Uk)-U(k+1 X

K
N (Uk) = Uk +1)(1 = (1 -p)*),
1
HencedC(p)/dp = N S0, (U (k) —U(k+1))k(1—p)*~1 >
0 for p € (0, ¢), sinceU is non-increasing and not identically
zero (which necessarily implies th&t(K) > 0).

2) Dynamic optimal policyLet us introduce the new decision
variableszy, 1—pgfork=1,..., K andzg = (1 —
pk)/po- Note thatl — ¢ <z, < 1fork =1,...,K and
zx > (1 — q)/q with equality if and only ifpy = px = q.
Letx = (z1,...,2k). Introduce the set

E={x:xe[l-q¢1]" '"x[1-q)/q,0)}.
Any vectorx € E is called apolicy. Define the mappings

K k-1 K41 k-1
F(x):ZU(k)Hxl, G(X)ZZHZ‘[
k=1 I=1 k=1 I=1

and letH (x) := F(x)/G(x). Note thatF'(x) does not depend
on the variablerx. From (8) D = poG(x), and so by (7)

C(p) = NH(x) and Q(p)= N/G(x).

In this new notation probler® becomesnaxxcg H(x) sub-
ject to the constraingéz(x) > C, with C := N/V.

An admissible policy is any policy such that(x) > C.
Definition 2.1 (Threshold policy):

A policy x = (x1,...,2k) € E is a threshold policy if either
zx=10rap1 =1—¢qfork=1,..., K —2 and if either
zx_1=10orzxg =(1-q)/q.

with (1 — px)/po := B corresponds to the uniqugype Il
threshold policyxx (53).

Proposition 2 (Optimality of threshold dynamic policy)Jn-
der the assumption that the utility functién: {1,..., K} —
R™ is non-increasing there exists an optimal threshold policy

Proof. Assume that the optimal policx is not a threshold
policy. Hence, there exists & 1 < k < K — 1, such that
eitherzy, <1l andxyiy >1—qif k#K —-1orag_1 <1
andzg > (1—¢q)/qif k=K —1.

Assume first thats; - - - 2,1 # 0. Let us show that one can
always finde;, > 0 ande,; > 0 such thatr), := x,+¢, < 1,
Thyy = Tpy1 — o1 > 1 —qif b # K —1 (resp.x, =
Tpt1 — €kt1 > (1 —q)/q if k=K —1) andG(x) = G(x'),
wherex’ = (o1,..., 51,2}, T} 1, Thy2,- -, TK)-

Setd, = :C;;C;H_l — TpTh41 = €kTht1 — €kr1Tk — €ELEL+1-
The identityG(x") = G(x) is equivalent to

x1- - Tp—1 (e + 0k Ak) =0
that ise, + 0, A = 0, with A, =1+ Tk42 + Tht2Tl+3 +
o+ ZTpyo - Tr. The equatiore, + d; Ax = 0 rewrites

e 1+ Apxpta
= k)

So, we can findj;, andeg1 small enough so that they satisfy
the conditions.

Observe thaty + 0 A = 0 with ¢, > 0 yields §; < 0 since
Ak > 0.



Let us finally show that"(x’) > F(x) which will contradict

the optimality ofx. We have
F(x')-F
F) = FO) (e +1) + 00U (5 + 2)
:1;1 cee xk)*l

+$k+2U(k + 3) + o+ Ty -a:K_lU(K)]

(k + OkAk — OpTri2 -2 )U (K + 1)
+0x[U(k+2) —U(k +1)

+2pi2(Uk+3)— Uk +1))+ -+

Fopt2 - rx-1(U(K) = Uk +1))]

_5k$k+2 s xKU(k + 1) + 5k[U(/€ + 2)

—Uk+1)+ 22Uk +3)—U(k+ 1))+~
gtz rx—1(U(K) = Uk +1))] (17)
where we have used the identity+ §; A, = 0 to derive (17).
SinceU is non-increasing and; < 0 as noticed earlier, we

deduce that the right-hand side of (17) is strictly positiaed
thereforeF'(x') > F(x).

Assume now thatr; ---xp—; = 0. This may only happen
wheng = 1sincel —g <z <1fork=1,...,K. Let
le{l,...,k— 1} be the smallest integer such that= 0.

If the optimal policy is such that; = 0 then the value of
ri41,- .., are irrelevant since; = 0 implies thatX;,; =

... = X = 0 so that both the cost and the constraint will no

depend on the values af;,1, ..
thatz;y; = --- = xx = 0 so that policyx is of the form
x = (x1,...,2,-1,0,...,0). It this is not a threshold policy
then one can findi’ € {1,...,] — 2} such thatx, < 1

.,xx. Assume for instance

and zx11 > 1 — ¢ = 0. We can then duplicate the sam

argument used to establish (17) withreplaced byk’. Since
x1---xp—1 # 0 from the definition ofl we conclude that
F(x") > F(x). This completes the proof. I

S0 thatG(xi (o)) < -~ < G(xx_1(ax_1)) < Glxx(8))
forall aq,...,ax—1 € [1—¢,1), 8 > (1—q)/q. From this we
deduce that there are three different cases to consideall(rec
that C' = N/V):

(@) C < G(x1(1 —q)) =1/q or equivalentlyV > Ng;
(b) G(xx(1 —¢q)) < C < G(xk+1(1 — ¢)) or equivalently

Nq Nq .
a1 <V = o

(c) C > G(xk((1—q)/q)) or equivalentlyV < ﬁ

Case (a): In this case any threshold policy satisfies the
constraint, so that the optimal policy is the policy which
maximizes the cost{ (x). It is shown in Lemma 1 in the
appendixthatforeach = 1,..., K, the mapping; — H(x)

is non-increasing for ang = (z1,...,zx) € E. Therefore,
policy x;(1—¢q)=(1—gq,...,1—¢q,(1—q)/q) is optimal, or
equivalently (see (15)) the file management pojigyl—q) =
(g,...,q) is optimal.

Case (b):Assume thatG(x;(1 —¢q)) < C < G(xx+1(1 —q))

for somel < k < K — 1. By Lemma 1 in the appendix we
see that the best threshold policy is the one which saturates
the constraint, namely policyx («) such thaiG (xx(a)) = C,

that isa = ¢(C — k). By (18) this policy is unique and is
given by x;(¢(C — k)). Equivalently (see (15)), the optimal
file management policy ipy(q(C — k)).

&ase (c): In this case there is ndype | policy which
satisfies the constrain@z(x) > C. Among all Type |l
policies satisfying this constraint the one with the snsille
K-th entry is the policy such tha&(xx(3)) C, that
is (see (16)) policyxx((C — K)) = (1,...,1,C — K).

Sve conclude again from Lemma 1 that this is the optimal

policy. Equivalently (see (16)), any file management policy
px(C — K) = (po,0,...,0,pk) such that(1 — px)/po =
C — K is optimal. This concludes the proof. ]

Itis actually possible to find the best dynamic file managemen

policy in explicit form, as now shown.
Proposition 3 (Best dynamic file management policy):

Assume that the utility functiod/ : {1,..., K} — R" is
non-increasing. The following results hold:

(a) if Ng < V the optimal file management policy js (1 —

) = (g, q); N
(b) if qk—fl <V < ﬁ for somek = 1,... K,

the optimal file management policy s (¢(C — k))

(©) if V < ceid any file management policp (C' —
K) = (po,0,...,0,px) such thatl —px)/po = C—- K
is optimal.

Proof. Since we have shown in Proposition 2 that there existd

C. Numerical results

Letp? (resp.p};) be the static (resp. dynamic) file management
policy which solves the optimization proble — as found

in Proposition 1 g(resp. Proposition 3). Figures (1)-(4)ptay
mappingsy — >, , U(k)X} under policiep; andp}; (cor-
responding curves are referred to as “static” and “dynamic”
respectively), for two different utility functionst{(k) = 1,
U(k) = 1/k) and for two different values of the constraint
V (V = 10,20). In all figuresN = 100 and K = 5. These
results show that the use of the optimal dynamic policy may
yield substantial gains (e.g. f@f(k) = 1 gain of =~ 22% for

all ¢ > 0.2 — see Fig. 2; gain ofc 45% for ¢ close to 1 —
see Fig. 1. Gain is halved fdv (k) = 1/k.). The gain is an
creasing function of the meeting probabiligy

an optimal threshold policy, we only need to focus on thré&sho

policies as defined in (13)-(14). Easy algebra show that

E+2 k=1, K
q

K+ 8,

(18)
(19)

I11. COOPERATIVE NODES

In this section we assume that nodes cooperate in the sense
that when two nodes meet the one with the most recent version
of F' may send a copy to the other one. A node may only
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Fig. 2. ¢ — 22:1 X1, under optimal static/dynamic policy: V=10 (N=100,

delete the version o it carries when it receives a m%re
recent version either from the source or from another node.
This implies that the age of a node is unbounded (a situation
refers to ask’ = oo in Section II).

The identity of the source i9) and nodes are labeled
1,2,...,N. We observe the system at discrete tinfes},,>o,
wheret,, is the time of thenth event. Aneventis either the
meeting of the source with a node, the meeting of two nodes or
the creation of a new version df by the source. Lef¢i7},
and{¢,}. be{0,1}-valued rvs wher¢’7 = 1 if nodei meets
nodej # i at timet,, £&Y = 1 if node i meets the source at
time ¢,,, and(, = 1 if the source creates a new version i6f

at timet,,. We assume that, + 3, ; &,/ = 1 for all n (only

one event at time,,).

Let Y;! be the state of nodé just before timet,, (denoted
by t,—), whereY,! = k > 1 if the source has generated
k — 1 updates ofF’ since it created the version @ held by
node: at timet,,—. Without loss of generality we assume that
Y{ > 1 for all i. We introduce the additiong]0, 1}-valued
rvs {a%7 (k,1)} and{a’ (k)}, wherea’’ (k,1) = 1 if node i in
statek receives a copy of’ from nodej in statel < k if they
meet att,,, anda’ (k) = 1 if the source transmits the latest
version of F' to node: in statek if they meet att,,.

Let 0; ;(k,1) := P(ak?(k,l) = 1) and §;(k) := P(a’ (k) =
1). The following recursions holdi (= 1,..., N):
Yo =Y, + (1= Y)E a (Yy) (20)
N
+ Z(Yrg - YT’LL)1Y7Z—Y7:<O E;LLJG‘;ZJ (YT1£7 Yrg) + Cn
=
Let & = {,2,..}V, Y, = (Y,1,...,Y'N) and Z,, =
(&7} Cn)-

Assumptions Al:
(D) {Cutn s {€57} and {€5°},, are mutually independent iid

sequences. Let:= P(¢, = 1), ¢;; == P(&’ = 1) and
qi = P(&;° =1);

(2)

r>0,¢>0,q;>0;

> _, X /k under optimal static/dynamic policy: V=20 (3) the probability that two nodes communicate when they

K=5)
T T T T T T T T T
50 1
aofF T -
30 1
| static
20 dynamic --------
10 1
0 1 1 1 1 1 1 1 1 1
0 0102030405060.70809 1
(N=100, K=5)
25 T T T T T T T T T
20 F -
15 . 1
stat!c
10 b dynamic -------- i
5 -
0 1 1 1 1 1 1 1 1 1
0 0102030405060.70809 1
Fig. 4. q — Zi:lyk/k’ under optimal static/dynamic policy: V=10
(N=100, K=5)

meet only depends on their identity and state, namely
P (VY1) = 1{Yim, Zinbmen) = 035(Y,, V) for
all i # j;

(4) given that the source meets a node, the probability that i
communicates with it only depends on the node’s identity
and state, i.eP(a’,(Y,}) = 1 {Yom, Zm fm<n) = 0;(V}})
for all 1.

A. Stability
Proposition 4 (Stability of Y., },.):

Assume thatAl holds. Then,{Y,}, is an homogeneous,
irreducible and aperiodic Markov chain ah It is positive

recurrent if there exist an intege¥l, and 6 > 0 such that

0;(k) >0 forall k> My andi=1,...,N.
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Proof. Only the positive recurrence property does not trivially =

follow from A1. We will show it by applying Foster’s criterion —A ; b E[Xk ()X (1))
to {Y,}» (see e.g. [8]). For this we need to show that there - -
exist a (Lyapounov) functiorf : € — R, a finite setF c £ —(Aak + ) Xi(t), k=2 (25)

ande > 0 such that ()A(y) < —efory € &€ —F and  Let X}, := limyoo Xi(t) (a.5.) andXy, = E[X}]. From (24)-
(i) A(y) == E[f(Yn41) — f(Ya)|Yn = y] is finite onF. (25) we find
Consider the Lyapounov functiof((y) := Zfil y; With y =

(y1,...,yn). We have from (20) and assumptioAs pX1 =AY arXip+AY b E[X1X)] (26)
v E>2 1>2
A = 1 —i)qi0:i (i 21 -
(¥) ;( vi)qi0i (y:) (21) WX A Y buBXD 27)
N N I>k+1
+ (yj — i) Ly, —yi<04i,j95,5 (yi, y;) + N7 k-1 _
; Z: ! I =\ b BIXe X))+ (ag, + m) X5, k> 2.
JAi =
N . .
< —Zyiqﬂi(yi) FN@F+1), yek&. (22) We will consider two cases.
i=1 Case (a):b,; = 0 for all £,!. This corresponds to the non-

Fix ¢ > 0. Let M be any finite integer such thay > cooperative setting studied in Section II. We find (Hint: use
max{Mo, (e + N(r +1))/(0mini<i<y ¢:)}. Let F:= {y € 2_p>1 Xk =N)
€ : maxi<i<n y; < M}. Note thatF is a finite subset of.

k o
Fix y € £ — F and leti* be such thai;» = max;<;<n y; SO X, = Nl utia; E>1 (28)
. g T L. l b puiy
thaty,~ > M. From (22) and the definition of/ we find lel IL,.— ﬁ
Aly) < —M0Ogi» + N(r+1) < —¢ (23) If we perform the change of variable/ (1 + Aa;) =1 —p;—1

) ) o in (28) we retrieve the corresponding results (7) found ia th
which proves part (i) of Foster’s criterion. On the other #an yiscrete-time setting with = oo (see Remark 2.1), thereby

(21) implies thatA(y) is finite for all y € F, which proves gshowing that this model is the continuous-time analog of the
part (i) of Foster's criterion. This completes the proof. g giscrete-time model.

Case (b):ary = a > 0 andby; = b > 0 for all &, I.
Because of the term&[X,X;] equations (26)-(27) cannot

We make additional assumptions in order to compitg, D€ solved. To solve them we will assume that (v, X1)

the expected number of files of age> in steady-state. We 1S Negligible for k 7 [ so that E[X; X)] ~ X;X:. we
assume that the source and nade 1,. .., N (resp. any pair gonjecture that th|s approximation (refgrred to as the ‘mea

of nodesi and j, i # j) meet according to a Poisson procesi€!d approximation” — see e.g. [2]) is accurate for large
with rate A > 0 and that the source creates a new version of (the mean-field approach in [7, Theorem 3.1] does not
F at each occurrence of a Poisson process with giate 0. apply here_ and ca_nnot _therefore_ be _used to validate these
TheseN (N +1)/2 + 1 Poisson processes are assumed to ngrqmmatloni). With this approximation an_d the use of the
mutually independent. We further assume ték) := a, > 0 19entity 32,5, Xk = N, (26)-(27) become (witlp := A/4)

and; ;(k,1) := by, for any i, j, k,I. In other words, when -2 = o B B

two nodes (i.e. source or nodes) meet the probability that a bXy — Xi(BN —a—1/p) —aN =0 (29)
transmission occurs only depends on the node state and not , k-1 o

on their identity. By Proposition 4 we observe that the syste bX; — Xx | ON —a—1/p— 2bZXl + Xp-1/p=0

B. Quantitative performance

is stable (in this setting; = ¢; ; = A/v andr = p/v with =1

— (30)
vi= ANN +1)/2 4+ p). for k£ > 2. The unique nonnegative root of (29) is
Let Xj(t) be number of nodes in state at time ¢. Set o
Xi(t) := E[Xk(t)]. We have the Kolmogorov equations X = (D1 +1/D3 + 4abN> /2b, (31)
= _uXa(f) )\ X (¢ while for k£ > 2 we get from (30)
i pXo(t) + ,éak k(1)
- Xy = ( Dy +1/D3? +4bX}._ ) 2b 32
Db BIX (4 X0(1)] (24) i ( b k =1/ )/ (32)
p =2 with Dy, == bN —a —1/p—2b "7} X, Equations (31)-(32)
d]jf(t) = uXp_1(t)+ A Z b B[ X5k (1) X1 (2)] define a recursive scheme allowing the computatio pffor

I>k+1 any k.



C. Numerical results IV. IMPERFECT STATE INFORMATION

We want to quantify the impact of node cooperation on the S))g_ this section we consider the static setting of Section Il
tem performance when the source has limited power resaurc¥9€ré nodes do not cooperate. We assume that the source
We want to optimize the system utiIiEle U (k)X under a di)es not. know parametené and g, SO that it can_no@ compute
constraint, denoted by, on the expected number of transmis?" = min(1, V/Ng) , the (conditional) transmission proba-

sionsby the sourcebetween the creation of two consecutiv@llity that solves problen® (cf. Proposition 1). Instead, we
version of F. To this end, we will assume that the sourc¥/ill @ssume that everji/ > 1 slots the source updates the

transmits to any node that it meets with the probability a*, transmissipn probabilitys, WhereM_is an arbitrar_y integer._
where a* := min(1, (1 + p)V/Np) is the static policy that More precisely, let,,, be the transmission probability used in

solves problenP (Proposition 1). Letg, be the probability slotsmM, ..., (m+1)M — 1. Define the projection operator

that the source meets a given node between two creations of 1 ifu>1
a new version off’. We haveq, = \/(A + u) = p/(1 + p) Mygu)={ u fo<u<l
thanks to the Poisson assumptions. In all experiments tegbor 0 ifu<o.

below we setV = 20, V = 2 and K = 5. Figures 5-6 display i ) )

the mappingg, — 25:1 U(K) X, (with U(k) = 1 in Fig. 5 Consider the stochastic recursion

andU (k) = 1/k in Fig. 6) for two values of the probability Omir = g (gm + e (MV — ym)> (33)

b. The valueb = 0 corresponds to the non-cooperative setting

(case (i); curve referred to as “noncooperative”) and tHeeva Where Y,,, is the total number of transmissions in slots

b = 0.05 corresponds to the cooperative setting (case (ii)). ForM,...,(m + 1)M — 1, and {¢,,},, are nonnegative real

b = 0.05 the results have been obtained both by simulatiomsimbers satisfying

and from the approximation formulas (31)-(32). Note that th 9

approximation developed in Section IlI-B is fairly accurat Z €m < 00, Z €m = 00

whenb = 0.05 (results are not as good asincreases). One

observes that the cooperative setting outperforms the sron©bserve that the source know$, for every m. Recursion

operative setting even when the “probability of coopertib  (33) is motivated by the fact that* is the unique zero of

is small, and that the gain of node cooperation increasds wit(a) := V — X, if k(1) > 0 and a* = 1 otherwise, so

dp- that the source’s target is to find the zero, if anyhéf) (or,
equivalently, the zero of\fh(a)) in [0,1].

(34)

m>0 m>0

20 : Proposition 5 (Stochastic approximation algorithm):

1 As m — o0, 6,, in (33) converges with probability one to,
Br the optimal static policy of Section 1I-B.1.
10 |

Proof. The proof directly follows from the remark after The-
orem 2.1in [9, p. 127]. Let us briefly checked that conditions
b=0.05: approximation (A2.1)-(A2.5) of Theorem 2.1 hold. Sinceé < Y, < MN
S A noncooperative - for all m, condition (A2.1) holds (this condition requires that
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 sup,, E|Ym|? < 00). By an inductive argument applied to (33)
) A . we see thatt[Y,,|00,Y:,i < m] = E[Y;,|0m,0:,Yi,i < m].
29-155-) dp = 2p=1 X (@ = a% b € {0,005} N =20V =2 \we then note thaB[Yy, |0p, 0:, Vi, i < m] = E[Vy|0n] =
g(0m) since the decision by the source to transmit a copy
of F' to a node only depends on the enforced transmission
probability. This implies that condition (A2.2) holds (adition
(A2.2) in [9, p. 126] states thak[Y,,|0o, Yi,i < m] has the
form of ¢g(0,,) + B where s, is a r.v.). We havey(z) =
M(V — Ngz) so that conditions (A2.3)g(is continuous)
and (A2.5) §, ~o€emlBm| < oo w.p.1) are satisfied. Last,
8 condition (A2.4) §°, -, €2 < oc) holds from (34).

""""""""""""""""""""""""""""""" Consider the ODHIz(t)/dt = g(z(t)). Its solution isz(t) =

T (z(0) — V/Nq)e=MNat + V/Ngq. It has a unique equilibrium

! point, given byzy = V//Ng¢, which is asymptotically stable in
0 0050101502025 03 035 04 045 05 the sense of Lyapounov [9, p. 104] (i.e. for each 0, there

Fig. 6. qp — S20_ Xu/k (a = a*, b € {0,005}, N = 20, V = 2, €Xistsn > 0 such that ifz(0) — zo| < n then|z(t) —zo| < e

K =5) for all ¢ > 0). By [9, Remark p. 127] we conclude thid,, } .,

converges tanin(1, V/Nq) with probability 1. I

b=0.05: simulation +

12 T T T T T T T T T

10 | b=0.05: simulation ~ +
b=0.05: approximation
noncooperative --------

o N A O ©




Figure 7 below provides a numerical illustration of the cemv so that

gence of algorithm (33) to the optimal poliey for M =1, P k—1 K
N =100, V =10 andg = 0.2. In this casez* = 0.5. a_F(x) = zp Y UG = UG +1)]Bi(j — 1)
Lk j=1  j=k+1
1 T T T T T T T T T a ( ) B (K) k—1
e X = X
08 | 1 Oxy, ; =1 !
0.6 . Therefore
] 9 (5= 25)* (&
— Hx)= -~ UG+1)—-U(@y
o _ ) = =G0 J;[ (G+1)—U(@)]
stochastic approximation K
0 0 5;)0 10IOO 15I00 20IOO 25IOO SOIOO 35IOO 40IOO 45IOO 5000 XB(J - 1)Bk (K) =+ Z [U(j + 1) - U(j)]
j=k+1

Fig. 7. m — 0m: M =1, a* = 0.5 (N = 100, V = 10, ¢ = 0.2)

x[B(j — 1)Bk(K) — Bi(j — 1)B(K)]>-
V. CONCLUSION
The first summation is non-positive sin€eis non-increasing
We have developed simple stochastic models for evaluatiagd B(j — 1)Bx(K) > 0 for all x € E. Using again the
the performance of file management policies in DTNs storingecreasingness &f a sufficient condition for the second sum-
dynamic files. Both static and dynamic policies have beenation to be non-positive is that coefficier®$j — 1) By, (K) —
investigated. We have shown that using dynamic policigs, (j—1)B(K) are all non-negative. To see that this is indeed
instead of static policies yields substantial gain in thefgre true, note thatB(j) = B(k — 1) + 21 ..., 2 Bx(j) so that
mance. This result holds both in the non-cooperative SgttinB(j — 1)By(K) — Bi(j — 1)B(K) = B(k — 1)[Bx(K) —
where only the source is allowed to communicate with thg, (j—1)] which is non-negative for alt € E. This completes
other nodes, and in the cooperative setting where all pa@rwithe proof. I
communications are possible. Future works include theystud
of multi-source and multi-file scenarii. REFERENCES
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