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Abstra
t: A
y
li
 preferen
es re
ently appeared as an elegant way to model many distributed systems. An

a
y
li
 instan
e admits a unique stable 
on�guration, whi
h 
an reveal the performan
e of the system. In

this paper, we give the statisti
al properties of the stable 
on�guration for three 
lasses of a
y
li
 preferen
es:

node-based preferen
es, distan
e-based preferen
es, and random a
y
li
 systems. Using random overlay graphs,

we prove using mean-�eld and �uid-limit te
hniques that these systems have an asymptoti
ally 
ontinuous

independent rank distribution for a proper s
aling, and the analyti
al solution is 
ompared to simulations.

These results provide a theoreti
al ground for validating the performan
e of bandwidth-based or proximity-

based unstru
tured systems.
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Con�guration stable des systèmes à préféren
es a
y
liques

Résumé : Les systèmes à préféren
es a
y
liques sont ré
emment apparus 
omme une méthode élégante

de modélisation de 
ertains systèmes ditribués de type pair-à-pair. Une instan
e a
y
lique admet une unique


on�guration stable, auto-stabilisante, qui donne une bonne indi
ation du 
omportement du système. Dans


e rapport, nous donnons la distribution statistique de la 
on�guration stable pour trois types de préféren
es

a
y
liques : les préféren
es globales (basées sur un ordre total des n÷uds), les préféren
es de distan
e (le plus

pro
he est préféré), et les préféren
es a
y
liques aléatoires. Sous l'hypothèse d'un graphe de 
ompatibilité Erdös-

Rényi, nous montrons à l'aide de te
hniques de limites �uides et de 
hamp moyen l'existen
e d'une distribution

limite 
ontinue. La pertinen
e des résultats est véri�ée à l'aide de simulations.

Mots-
lés : Systèmes a
y
liques, distribution, limite �uid, 
hamp moyen, petit-mondes, EDP
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4 Mathieu & al.

1 Introdu
tion

Mat
hing problems with preferen
es have appli
ations in a variety of real-world situations, in
luding dating

agen
ies, 
ollege admissions, roommate attributions, assignment of graduating medi
al students to their �rst

hospital appointment, or kidney ex
hanges programs [8, 9, 10, 19, 20℄.

Re
ently, mat
hing problems also appeared as an elegant way to model many distributed systems, in
luding

ad-ho
 and peer-to-peer networks [12, 6, 16, 15, 7℄. In distributed systems, the preferen
es generally 
ome from

dire
t measurements. Those measurements 
an be node-related (CPU, upload/download bandwidths, storage,

battery, uptime), or edge-related (Round-Trip Time, physi
al/virtual distan
es, link 
apa
ity, 
o-uptime). In

most 
ases, the resulting preferen
es are a
y
li
: there 
annot exist a 
y
le of more than two nodes su
h that ea
h

node prefers its su

essor to its prede
essor. As a 
onsequen
e, there always exists a unique stable 
on�guration,

whi
h is self-stabilizing [6, 1℄. This makes things mu
h easier than in other mat
hing problems, where �nding,


ounting and 
omparing the stable 
on�gurations are some of the main issues [8, 21, 17, 20℄.

Modeling distributed systems with a
y
li
 preferen
es allows us to predi
t the e�e
tive 
ollaborations that

will o

ur, whi
h, in turn, allows us to infer the performan
e of a given system. For 
onvenien
e, the study of

an a
y
li
 distributed system is often split into two main problems:

� How fast is the stabilization pro
ess? Be
ause distributed systems are often highly dynami
, with 
onstant


hurn and preferen
e alteration, the speed of 
onvergen
e 
an be used to determine how far the e�e
tive


on�gurations are from the time-evolving stable 
on�guration.

� What are the properties of the stable 
on�guration? If the stabilization pro
ess is fast enough, the e�e
tive

and stable 
on�gurations will be 
lose. Analyzing the latter 
an then give valuable information on the

former.

In a previous work, Mathieu investigated the �rst question [16, 15℄. He proved that even if the 
onvergen
e


an be prohibitive under an adversary s
heduler, it is fast for realisti
 s
enarios. The se
ond question has

been answered for spe
i�
 a
y
li
 preferen
es: for real-world laten
y-based preferen
es, the stable 
on�gura-

tion shows, for b-mat
hing (several mates per nodes allowed), small-world properties (low diameter and high


lustering 
oe�
ient) [6℄; for node-related preferen
es, the stable 
on�guration tends to pair nodes with similar

values [7℄: this is the strati�
ation e�e
t, whi
h allows, for instan
e, to understand upload/download 
orrelations

in in
entive networks like BitTorrent [4℄.

1.1 Contribution

The studies proposed in [7℄ and [6℄ gave only partial, mostly empiri
al, answers about the link distribution in the

stable 
on�guration, and proposed some 
onje
tures. The goal of this paper is to 
omplete and give theoreti
al

proofs on the shape of the stable 
on�guration.

We extend the seminal results that were given in [7℄ for node-based preferen
es: for b = 1 (simple mat
hing


ase), we prove the existen
e of a limit 
ontinuous distribution and solve the 
orresponding Partial Di�erential

Equation (PDE). Then we apply a similar method for distan
e-based and random-a
y
li
 preferen
es, and also

give the expli
it solution of the 
orresponding PDE.

Lastly, we extend the results for b > 1 (multiple mat
hings). In that 
ase, there is no simple expression that

gives the exa
t solution of the PDEs system, but dis
rete equations are used to observe asymptoti
al behavior

of the distribution. For node-based preferen
es, the exponential behavior validates the strati�
ation e�e
t (the

probability to be mat
hed with a distant peer de
reases exponentially with the distan
e), while the power law

obtained for the two other 
ases indi
ates that the small world e�e
t observed in [6℄ for laten
y is in fa
t 
ommon

to all distan
e-based preferen
es

1

.

1.2 Roadmap

In Se
tion 2 we de�ne the model and notation for preferen
e-based systems. Se
tion 3 gives the generi
 mean

�eld method used in this paper to solve the simple mat
hing 
ase. The 
ase of node-based preferen
es is solved

in Se
tion 4, then the results are adapted to the distan
e-based and random-a
y
li
 preferen
es in Se
tion 5.

Se
tion 6 extend the formulas to multiple mat
hings, and asymptoti
al properties of the distributions are

des
ribed. Lastly, Se
tion 7 
on
ludes.

1

Laten
ies 
annot be 
onsidered as real distan
es, mainly be
ause the triangular inequality is not always veri�ed. However, they

form an inframetri
, whi
h is no too far from a real metri
 [13℄.

INRIA
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2 Model and notation

A preferen
e-based system is a set V of N nodes, whose possible intera
tions are des
ribed by an a

eptan
e

graph G, a mark matrix m and a quota ve
tor b.

The quota ve
tor b limits the 
ollaborations: a peer i 
annot have more b(i) simultaneous mates.

The a

eptan
e graph G = (V,E) is an undire
ted, non-re�exive graph. It des
ribes allowed mat
hings:

a node i and a node j 
an be mated (we say that i is a

eptable for j, and vi
e versa) if, and only if (i�)

{i, j} ∈ E. For instan
e, in peer-to-peer networks, a node 
annot be dire
tly 
onne
ted to all other peers of the

system, be
ause of s
alability, and peers that are not dire
tly 
onne
ted 
annot be mated. In this paper, we


onsider Erdös-Rényi graphs G(N, p) (ea
h possible edge exists with probability p independently of the others;

hen
e the expe
ted degree is d = p(N − 1)).
The mark matrix m is used to 
onstru
t the peers' preferen
es: given two nodes j and k a

eptable for i, i

ranks j better than k i� mi,j < mi,k (the sign is arbitrary). The following marks are 
onsidered in this paper:

Node-based m(., i) is 
onstant (nodes have intrinsi
 values). These preferen
es are suited to modeling peer-

related performan
e, like a

ess bandwidth, storage, CPU, uptime. . .

Geometri
 the nodes are asso
iated to N points pi
ked uniformly at random on a n-dimensional torus

(n ≥ 1). The marks are the distan
es between those points. These preferen
es allow a theoreti
al analysis of

proximity-based performan
e.

Meridian laten
ies we 
onsidered random subsets of N nodes taken from the 2500 nodes dataset of the

Meridian Proje
t [18℄. The marks are the (symmetri
) laten
ies between those nodes. We do not perform

analysis for those marks, but use them in � 6.3.2 for validating the geometri
 approa
h.

Random a
y
li
 ea
h edge re
eives a random uniformly distributed value. The name is justi�ed be
ause all

a
y
li
 preferen
es 
an be des
ribed by marks on the edges (whi
h is equivalent to assume that m is symmetri
).

Hen
e uniformly distributed (symmetri
) random marks are a 
onvenient way to perform a uniform sampling

of the a
y
li
 preferen
es [6, 1℄.

All the 
onsidered marks are a
y
li
, and therefore a (G,m, b) system admits a unique stable 
on�guration

C ∈ E, whi
h is self-stabilizing [12, 16℄. The neighbors of i in C are the stable mates of i, and the notation

i ↔ j is used to express that i and j are stable mates.

We assume for simpli
ity that m is 
omplete and not limited to the edges of G. For all 
onsidered preferen
es
but random a
y
li
, the 
ompletion is straightforward. For random a
y
li
 preferen
es, we assume that dummy

random values are assigned to non-a

eptable edges.

The preferen
es are denoted like follows: if j is a

eptable for i, ri(j) denotes the rank of j in i's list (1
being the best). ri is 
alled the a

eptable ranking of i. If i has more than k a

eptable neighbors, r−1

i (k) is
the kth node in i's a

eptable ranking. Similarly, for j 6= i, Ri(j) denotes the rank of j in the 
omplete graph

(the a

eptability 
ondition is omitted). Ri is 
alled the 
omplete ranking of i For K < N , R−1
i (K) is the Kth

node in i's 
omplete ranking.

All stable mating probabilities that are dis
ussed in this arti
le are designed by D. Subs
ripts and arguments

are used to pre
ise the meaning of D whenever needed. For instan
e:

� DRi
(K) is the probability that i has a stable mate with 
omplete rank K.

� DN,d(i, j) is the probability that i ↔ j, knowing there is N nodes and that the expe
ted degree of the

a

eptan
e graph is d.

� for c ≤ b(i, ), Dri,c(k) is the probability that the cth stable mate of i has relative rank k.

� . . .

The 
omplementary 
umulative distribution fun
tion (CCDF) of D is denoted S, and the s
aled version of D

and S are denoted D and S.

3 A
y
li
 formulas

We �rst 
onsider the 
ase b = 1 (simple mat
hing) (the results will be extended to multiple mat
hings in

Se
tion 6). We give a generi
 formula that des
ribes the 
omplete rank of the mate C(i) of a peer i.

RR n° 6628



6 Mathieu & al.

3.1 Generi
 formula

Let DRi
(K) be the probability that Ri(C(i)) = K (the probability that the mate of i, if any, has rank K).

The CCDF of D is SRi
(K) := 1 −

∑K−1
L=1 , whi
h is the probability that i's mate has a rank greater than K

(Ri(C(i)) ≥ K) or has no mate (short notation: Ri(C(i)) ≮ K). Following the approa
h proposed in [7℄, we

�rst give a generi
 exa
t formula that des
ribes DRi
, then we propose a simpli�ed mean-�eld approximation.

In order to solve DRi
(K), one 
an observe that i is mated with its Kth

peer j = R−1
i (K) i�:

� {i, j} is an edge of the a

eptan
e graph; this happens with probability p as G is supposed to be a G(N, p)
graph.

� i is not mated with a node better than j (Ri(C(i)) ≮ K);

� j is not mated with a node better than i (Rj(C(j)) ≮ Rj(i)).

This leads to the following exa
t formula:

DRi
(K) = pP(Ri(C(i)) ≮ K)×

×P(Rj(C(j)) ≮ Rj(i)|Ri(C(i)) ≮ K)
= pSRi

(K)P(Rj(C(j)) ≮ Rj(i)|Ri(C(i)) ≮ K)
(1)

3.2 Mean-�eld approximation

Solving (1) is di�
ult to handle, mainly be
ause of possible 
orrelations between Rj(C(j)) ≮ Rj(i) and

Ri(C(i)) ≮ K. The solution is to adopt a mean �eld assumption:

Assumption 1 The events node i is not with a node better than j and node j is not with a node better than

i are independent.

This assumption has been proposed in [7℄ to solve (1) in the 
ase of node-based preferen
es. It is reasonable

when N is large and p is small. Then (1) 
an be approximated by

DRi
(K) = pSRi

(K)SRj
(Rj(i)). (2)

Now, in the next two se
tions, we propose to solve Equation 2 for spe
i�
 preferen
es.

4 Node-based preferen
es

We assume here that the preferen
es 
omes from marks on nodes. This is equivalent to assume a total order

among the nodes. Therefore we do not need to expli
it the mark matrix m, and we 
an use an ordered node

labeling instead. We arbitrary 
hoose 1, . . . , N as labels, 1 been the best (if 1 is ranked �rst for all nodes that

a

ept 1, and so on. . . ).

Be
ause the nodes' label express their 
omplete ranks, we 
an dire
tly 
onsider D(i, j), the probability that

node i is mated with node j. Node j has rank j for i if j < i, and j − 1 if j > i, be
ause a rank does not rank

itself. This gives the relation between D and DR:

D(i, j) =







DRi
(j) if j < i,

0 if j = i (mating is not re�exive),

DRi
(j − 1) if j > i.

(3)

Using the CCDF S(i, j) := 1−
∑j−1

k=1 D(i, k), we get the node-based version of Equation 2:

D(i, j) =

{

0 if i = j,

pS(i, j)S(j, i) otherwise.
(4)

This equation, whi
h was originally proposed in [7℄, whi
h also show that it gives a very good approximation of

empiri
al distribution. It 
an be numeri
ally solved by using a double iteration.

INRIA
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4.1 Fluid limit

Our main 
ontribution for node-based preferen
es is to prove that, under a 
onstant degree s
aling, D admits

a �uid limit. This limit gives a 
omplete des
ription of D that 
an be applied to all values of N and p, while

Equation (4) needs to be solved for ea
h set of parameters.

4.2 Constant degree s
aling

In order to 
ompare the distributions for arbitrary values of N , we need a s
aled version of D, where a peer i

is represented by a s
aled ranking 0 ≤ α < 1. In details, we asso
iate to ea
h i the number α(i) = i−1
N

, and to

ea
h real number alpha the node i(α) = ⌊Nα⌋+ 1. The s
aled version of D, denoted D, is then de�ned by

DN (α, β) = ND(⌊Nα⌋+ 1, ⌊Nβ⌋+ 1).

DN is a pie
ewise 
onstant fun
tion. Its set of fun
tion values is the set of the (ND(i, j)) values. The fa
tor
N in its de�nition allows to express D(i, j) as an integral of D:

D(i, j) =

∫
j
N

j−1
N

DN (
i− 1

N
, x) dx =

∫ i
N

i−1
N

DN (x,
j − 1

N
) dx

The s
aling of the CCDF is de�ned by

SN (α, β) = 1−

∫ β

0

DN (α, x) dx, (5)

and the relation between S and S is

S(i, j) = S(
i − 1

N
,
j − 1

N
). (6)

4.3 Convergen
e theorem

We now want to show the existen
e of a 
ontinuous limit for D. The problem is the existen
e of a dis
ontinuity

for α ≈ β, be
ause D(i, i) = 0. However, this dis
ontinuity is just a reminder of the fa
t that a node 
annot

mate with itself, so we propose to make D more �
ontinuous� by introdu
ing

D̃(α, β) =

{

D(α, β) if ⌊Nα⌋ 6= ⌊Nβ⌋,
Np(S(⌊Nα⌋+ 1, ⌊Nα⌋+ 1))2 otherwise.

The �uid limit of D̃ is then given by the following theorem:

Theorem 1 Let d > 0 be a 
onstant. If N → ∞ with p = d
N
, the fun
tion D̃N,d uniformly 
onverge towards

D∞(α, β) =
ded(|β−α|)

(1− e−dmin(α,β) + ed|β−α|)2
. (7)

This result indi
ates that asymptoti
ally, the average degree in the a

eptan
e graph 
ompletely de�nes the

mating distribution. The 
onsequen
e is that we 
an expli
itly des
ribe the so-
alled strati�
ation e�e
t [7℄:

the mating distribution is exponentially de
reasing with |β − α|, with intensity d. In other words, a peer with

s
aled rank α tends to mate with a mate of same s
aled rank, with a standard deviation of the same order than

1
d
.

The proof of Theorem 1 is given in Appendix A. Note, that the existen
e of a �uid limit was proposed

as a 
onje
ture in [7℄, and proved for α = 0 (but the expression of the �uid limit in the general 
ase was not

provided).

Theorem 1 gives two 
orollaries:

� using the CCDF of D∞, the probability that a node of s
aled rank α has no mate is

1
1+e−dα(e−d−1)

;

� for i 6= j (dis
rete 
ase), a good approximation for D(i, j) is

D(i, j) ≈
pep(|j−i|)

(1 − e−pmin(i,j) + ep|j−i|)2
. (8)

RR n° 6628



8 Mathieu & al.

4.4 Validation

We 
ompared our �uid limit approximation, given by (8), to the mean-�eld values given by (4), whi
h are known

to be a

urate ([7℄).

N was set to 50 or 2000, and d to 5 or 30. Be
ause D is 2-dimensional, we arbitrary set the s
aled rank α

to 0.1 or 0.9 (but the 
onvergen
e validation holds for any α). The results are shown in Figure 1.

We observe a gap for j = ⌊Nα⌋+ 1, be
ause the mean �eld formula sets D to 0 whereas the �uid limit uses

a 
ontinuous extension.

Besides this gap, N = 50 (Figures 1a and 1b) shows some di�eren
e between the mean �eld and the �uid

limit. The error is espe
ially noti
eable for d = 30 (1b). However For N = 2000 (Figures 1
 and 1d), there is

pra
ti
ally no error.

These results are 
onsistent with (29) (in the Appendix A), whi
h shows that the 
onvergen
e is O(d
2

N
e8d).
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Figure 1: Validation of the �uid limit for node-based preferen
es.

4.5 Exa
t resolution

For the re
ord, if b = 1, there exists an exa
t re
ursive formula for the node-based stable 
on�guration. This

formula is

D(i, j) = (1− S(1, i))D(i − 2, j − 2)
+ (S(1, i+ 1)− S(1, j))D(i− 1, j − 2)
+S(1, j + 1)D(i− 1, j − 1)

for i < j, (9)

with the border 
onditions D(1, k) = p(1− p)k−2
(k ≥ 2), D(i, i) = 0.
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This equation also admits a �uid limit, whi
h happens to be the same than the �uid limit of the mean �eld

formula. This result appears as a strong validation of the mean �eld approa
h: although the mean �eld formula

is not exa
t (its results di�er from the exa
t formula), its �uid limit is exa
t.

One 
ould wonder why using a mean �eld formula if a usable exa
t formula exists. The issue with the exa
t

formula is that it relies on a �tri
k�: if you remove node 1 and its mate from the system, the remaining nodes

still form a preferen
e-based system with same parameters ex
ept there is two less nodes. However, this tri
k


annot be generalized for other preferen
es or for b > 1. This is why we fo
us on the mean �eld formulas.

A 
omplete proof of the exa
t re
ursive formula, in
luding its PDE 
ounterpart and resolution, 
an be found

in Appendix B.

5 A
y
li
 and distan
e-based preferen
es

We now 
onsider geometri
 and random a
y
li
 preferen
es. Following the approa
h used for node-based pref-

eren
es, we �rst fo
us on the 
omplete rank distribution. Use mean �eld assumptions, we propose a re
ursive

formula for D, then we solve the �uid limit. The results are then extended to the distan
e and a

eptable

rankings distributions.

5.1 Complete rank distribution

Assumption 1 is not enough for solving (2) in the 
ase of geometri
 or random a
y
li
 preferen
es. Therefore,

we propose this additional assumption:

Assumption 2 For geometri
 and random a
y
li
 preferen
es, the following approximations hold:

� DRi
(K) is independent of i (and therefore denoted DR(K));

� the 
omplete ranking is symmetri
: Ri(j) = Rj(i).

The �rst approximation just states that in average, all nodes have the same mate distribution, while the

se
ond one tells that Ri(j) is a good approximation of Rj(i). These approximations were motivated by the uni-

form distributions used for shaping the preferen
es. In parti
ular, they do not apply for node-based preferen
es,

where the mate distribution is strongly a�e
ted by a node's mark. Under these assumptions, we get

DR(K) = pS2
R(K), with SR(K) = 1−

K−1
∑

L=1

DR(L). (10)

This equation gives an immediate re
ursion for SR:

SR(K) =

{

1 if K = 1,
SR(K − 1)− pS2

R(K − 1) otherwise.
(11)

In return, DR is dire
tly given by DR(K) = SR(K)− SR(K + 1).

5.1.1 Fluid limit

We now give the �uid limit of DR. The s
aled version of DR is de�ned like for node-based preferen
es, ex
ept

that there now only one parameter. For 0 ≤ α < 1, we de�ne DR(α) := (N − 1)DR(⌊(N − 1)α⌋⌋ + 1). The

s
aling fa
tor is now N − 1 be
ause it is the upper bound for K (while N was the upper bound for i, j in �4).

DR 
an be expressed as an integral of DR: DR(K) =
∫

K
N−1
K−1
N−1

DR(x) dx. The s
aled CCDF, SR, is then naturally

de�ned as:

SR(α) = 1−

∫ α

0

DR(x) dx.

Theorem 2 We assume that d = p(N − 1) is a positive 
onstant. As N → ∞, SR uniformly 
onverges towards

S∞(α) =
1

dα+ 1
. (12)
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In parti
ular, the probability that a node has no mate in the stable 
on�guration is SR(1) =
1

d+1 , and a good

approximation for SR(K) is

SR(K) =
1

p(K − 1) + 1
. (13)

Sket
h of proof: The proof is a simpler version of the proof of Theorem 1 (
f Appendix A). First we prove

that the DR fun
tions are uniformly Cau
hy (but in this 
ase there is only one variable and there is no need

for a 
ontinuous extension). This proves the uniform 
onvergen
e towards S∞. Then we dedu
e from (11) a

di�erential equation veri�ed by S∞:

− Ṡ∞(α) = dS2
R(α), (14)

with the boundary 
ondition SR(0) = 1. The resolution of (14) gives (12), whi
h 
ompletes the proof. �

5.1.2 Validation

Contrary to the 
ase of node-based preferen
es, the mean �eld formula (10) has not been validated in a previous

work, so we 
ould not 
ompare the �uid limit with it, and used simulations

2

. We 
onsidered random a
y
li


instan
es, and geometri
 preferen
es in a 1-dimensional torus and in a 6-dimensional torus. N was set to 50 or

2000. We used 3 values of p: 1, 1
10 and

1
100 . For ea
h set of parameters, the empiri
al distribution was 
al
ulated

over 100 instan
es. The results are shown in Figure 2.

For p = 1 (Figures 2a and 2b), the mean-�eld assumptions hardly hold. As a 
onsequen
e, the 
urves

depend of the type of preferen
es, and the �uid limit is not a

urate. This is espe
ially visible if K is 
lose to

the boundaries (that is 1 or N). In parti
ular, the non-mate probability is 
learly over-estimated. However, the

�uid limit manages to give the O( 1
K
) behavior that is 
ommon to all 
onsidered preferen
es. From that point

of view, the �uid limit performs better than the re
ursive equation (11), whi
h gives SR(K) = δ1K for p = 1.
For p = 1

10 (Figures 2
 and 2d), the 
urves are nearly indistinguishable. We verify that all types of preferen
es

(a
y
li
 or geometri
) tend to have the same behavior and that Theorem 2 gives pre
ise approximations.

For p = 1
100 (Figures 2e and 2f), the 
urves are indistinguishable.

We 
on
lude that �uid-limit based on the mean-�eld formula is very e�e
tive for 
omputing the 
omplete

ranking distribution, even if N is not very large and p is not very small.

5.2 Distan
e distribution

For geometri
 preferen
es, the a
tual distan
e between a node and its mate may be a more valuable performan
e

indi
ator than the ranking. We 
all SX(x) the probability that the distan
e between a node i and its mate C(i)
is not less than x (in other words, the distan
e is greater than x or i is unmated). Under the �uid limit, we get

a good estimate of SX :

SX(x) =
1

dBn(x) + 1
, (15)

where Bn is the size of a ball of radius x in the n-torus.

Proof: In the �uid limit, a ball of radius x 
ontains NBn(x) nodes, be
ause it o

upies a ratio Bn(x) of the
torus. Therefore the farest node in a x-ball 
entered at a node i should have a 
omplete rank NBn(x) for i,

while being at a distan
e x from i. We dedu
e that SX(x) = SR(NBn(x)). Equation (13) 
on
ludes. �

The value of Bn(x) depends on n and on the norm used. If we 
onside the maximum norm, then Bn(x) =
min((2x)n, 1). For other norms, the formula may be more 
ompli
ated be
ause the ball may partially overlap

itself in the torus. Note, that if we 
hoose Rn
(with uniform point distribution) instead of the n-torus, Bn(x)

is just the size of a ball of radius x.

Figure 3 shows SX for n = 1 and n = 3, with the taxi
ab norm. With this norm, we have B1(x) = min(2x, 1)
and

B3(x) =















4
3x

3
if 0 ≤ x ≤ 1

2 ,
4
3x

3 − 4(x− 1
2 )

3) if 1
2 ≤ x ≤ 1,

1− 4
3 (

3
2 − x)3 if 1 ≤ x ≤ 3

2 ,

1 if x ≥ 3
2 .

We used N = 2000 and p = 1
100 , and the �uid limit and empiri
al distribution of SX were indistinguishable.

2

A
tually, we did validate the mean �eld formula, but our results are to be published.
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Figure 2: Empiri
al validation of the �uid limit.

5.3 A

eptable rank distribution

Now we want to investigate the probability that the mate of a node has an a

eptable rank k. We 
all Dr(k)

this probability. Like for the other distributions, we introdu
e the CCDF Sr(k) := 1−
∑k−1

l=1 Dr(k).
Following the 
omplete ranking method, we 
onsider the 
onditions for a node i to be mated with its kth

best neighbor j = r−1
i (k):

� i must have k neighbors or more,

� it must not be mated with someone better than j,
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Figure 3: Distan
e distribution (N = 2000,p = 1
100 ).

� j must not be mated with someone better than i.

With the a

eptan
e ranking, there is intrinsi
 
orrelations between these events that 
ompli
ates things.

Despite of that, assuming that these events are independent allows us to give a �rst, non-a

urate, re
ursive

formula:

Dr(k) = Sr(k)
1− I1−p(n− k + 1, k)

k + 1
, (16)

where Ix is the regularized in
omplete beta fun
tion.

Proof: i has k neighbors or more with probability 1 − I1−p(n− k + 1, k). The probability that i is not with

better than j is Sr(k). For the re
ipro
al, we 
an use K = k
p
as a (very rough) approximation of the 
omplete

rank; then Equation (13) gives the probability

1
k+1 . Formula (16) follows. �

The results are shown in Figure 4. One 
an observe that Equation (16) is not a

urate for Dr(1), whi
h
provokes a gap between the empiri
al distribution and the formula.

10
0

10
1

10
−2

10
−1

10
0

Acceptable rank k

S
r
(k

)

 

 

Empirical distribution
Fluid limit
Adjusted fluid limit

Figure 4: A

eptable ranking CCDF (N = 2000,p = 1
100 ).

In an attempt to adjust the formula, we propose a more a

urate estimation of Dr(1): under the normalized

�uid limit, the s
aled rank of the �rst neighbor j of a given peer i follows the distribution de−dα
. j and i are

mate if j is mated with someone with a s
aled rank greater or equal to α, whi
h happens with probability

1
dα+1 .
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Thus we have

Dr(1)=
∫∞

0
de−dα

dα+1 dα

=
∫∞

1
e−t+1

t
dt

=eE1(1) ≈ 0.596

(17)
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p

D
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)

 

 
1-torus
3-torus
Random acyclic
eE1(1)

Figure 5: Dr(1) as a fun
tion of p (N = 2000).

The a

ura
y of Dr(1) = eE1(1) (E1 denotes the exponential integral) is veri�ed in Figure 5. If we use this

value for adjusting the �uid limit, we get a better estimation of Sr for small values of k (
f Figure 4). However,

this adjustment introdu
es a gap for larger values of k. In a further version of this paper, we will aim at unifying

these two estimates, whi
h will require a better understanding of the 
orrelations that o

ur when 
onsidering

the a

eptable rank.

6 b-mat
hing generalization

We now extend our results to the 
ase of multiple mat
hings. For simpli
ity, we 
onsider here that the quota

ve
tor b is a s
alar, i.e. that all nodes share the same number of authorized 
ollaborations. For distan
e and

a
y
li
 preferen
es, we fo
us on the 
omplete rank, although distan
e and a

eptable ranking 
ould be derived

using the same te
hniques than for b = 1.

6.1 Mean Field formulas

A peer 
an now have up to b mates. For 1 ≤ c ≤ b, Dc denotes the distribution of the 
omplete ranking of the

cth best mate, and Sc denotes the 
orresponding CCDF. Like we did for b = 1, we 
an give the 
onditions for a

node j = R−1
i (K) to be the cth mate of a node i:

� {i, j} is an a

eptable edge,

� the (c− 1)th mate of i (if c > 1) is better than j, but the cth (if any) is not,

� the bth mate of j (if any) is not better than i.

By extending Assumption 1, we obtain a generi
 mean �eld formula for multiple mat
hings:

DRi,c(K) =

{

pSRi,1(K)SRj ,b(Rj(i)) if c = 1, otherwise
p(SRi,c(K)− SRi,c−1(K))SRj ,b(Rj(i)).

(18)

Like for the simple mat
hing 
ase, this formula 
an be adapted to spe
i�
 preferen
es.
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We �rst 
onsider node-based preferen
es. Dc(i, j) being the probability that the cth mate of i is j, we have

the following system, whi
h 
an be solved by a double iteration on i and j (
f [7℄)

Dc(i, j) =







0 if i = j,

pS1(i, j)Sb(j, i) if i 6= j, c = 1,
p(Sc(i, j)− Sc−1(i, j))Sb(j, i) if i 6= j, c > 1.

(19)

Then, for a
y
li
 and distan
e-based preferen
es, we also extend Assumption 2 (homogeneity of the distri-

butions and symmetry of the 
omplete ranking). This gives the following system:

DR,c(K) =

{

pSR,1(K)SR,b(K) if c = 1,
p(SR,c(K)− SR,c−1(K))SR,b(K) if c > 1.

(20)

Using SR,c(1) = 1 and DRc
(K) = SR,c(K) − SR,c(K + 1), Equation (20) immediately gives an iterative


omputation of SR,c .

Figure 6 shows Sc(i, j) (node-based) and SR,c (a
y
li
/geometri
) as obtained by (19) and (20). The pa-

rameters are b ∈ {2, 3, 4}, N = 2000, p = 1
100 , and i = 1001 (for Sc(i, j)). We veri�ed for ea
h set of parameters

that the 
urves 
oin
ide with the empiri
al distribution. S and SR (CCDF for b = 1) are also plotted for serving

as a landmarks. We see that the 
urves have a behavior that is similar than for the simple mat
hing 
ase: for

node-based preferen
es, it seems that the distribution Dc(i, .) are still exponentially de
reasing, even if seems

that there is now o�sets between the distribution peaks and i. For a
y
li
 and geometri
 preferen
es, we still

observe a kind of power law behavior.

6.2 Fluid limits

Fluid limits also exist for b > 1. We will not present the proofs in this paper, be
ause they are essentially the

same that the uniformly Cau
hy proofs for the simple mat
hing �uid limits, only more 
omplex to write be
ause

of the multiple distribution involved. Therefore we just give the equations veri�ed by the limits.

For node-based preferen
es, the s
aled limit S of the CCDF veri�es:

∂ySc(α, β) =

{

−dS1(α, β)Sb(β, α) for c = 1, otherwise
−d (Sc(α, β) − Sc−1(α, β)) Sb(β, α),

(21)

with border 
onditions Sc(α, 0) = 1.
Similarly, for a
y
li
 and distan
e-based preferen
es, the s
aled limit SR of the CCDF veri�es

ṠR,c =

{

−dSR,1SR,b if c = 1,
−d(SR,c − SR,c−1)SR,b if c > 1,

(22)

with the boundary 
ondition SR,c(0) = 1.
There is no simple expli
it solution for Equations (21) and (22). However, (19) and (20) 
an still be used

as di�eren
e equations to approximate a numeri
al solution. The reason for whi
h we give these limits is

that we think that they 
an give us valuable information about the asymptoti
al behavior of the distribution

(exponentially de
reasing or power law), even if this work is still to be done.

6.3 Dis
ussion

6.3.1 Strati�
ation trade-o�

As we have seen, for node-based preferen
es, the mates of a given peer i have, in average, the same rank than i.

This is the strati�
ation e�e
t ([7℄), whi
h guarantees a some fairness in the stable 
on�guration: the expe
ted

gain of a node tends to be the value o�ered by this node, measured in term of ranking. However, we also

observed that the exponential de
reases of the Dc(i, .) fun
tions provokes a standard deviation of the same

order that

1
d
, where d is the average degree in the a

eptan
e graph. This gives the following strati�
ation

trade-o�:

� if d is too small, the standard deviation is high. In parti
ular, if the mark matrix is non uniformly

distributed, there 
an be a big di�eren
e between the expe
ted gain and gift, measured with the marks.

This issue has been highlighted in [7℄ for explaining a possible workaround of BitTorrent's Tit-for-Tat

poli
y;
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Figure 6: Complete rank CCDFs for b > 1. Node-based (resp. a
y
li
/geometri
) distributions are on the left

(resp. right) side. N = 2000, p = 1
100 , and i = 1001 (for Sc(i, j)

� on the other hand, a high d will enfor
e the fairness. However, the size of the a

eptan
e graph degree

has a 
ost for the nodes (memory usage, overlay management,. . . ). Also, the absen
e of long-range mates

makes the diameter of the stable 
on�guration high, whi
h 
an be problemati
 if messages are to be spread

using stable edges.

Note, that there is a similar trade o� for b, whi
h is the maximal degree in the stable 
on�guration. This

suggests that most node-based preferen
e systems (this in
ludes the systems based on the sharing of an a

ess

bandwidth, a storage or CPU 
apa
ity, an expe
ted uptime,. . . ) should admit an optimal pair (d, b) with respe
t
to the stable 
ollaborations properties, whose values depend on the weight put on the e�e
ts presented above.

6.3.2 Small-World e�e
t in geometri
 preferen
es

A small world is a sparse graph with a low average shortest path length (ASPL) and a high 
lustering 
oe�
ient.

In details:
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Type of preferen
es ASPL Clustering Coe�
ient

1-torus 7.4 0.055
2-torus 6.7 0.043
Meridian 6.1 0.031
3-torus 5.9 0.033
4-torus 5.1 0.027

Random A
y
li
 5 0.0043

Table 1: ASPL and 
lustering (N = 2000,p = 1
10 ,b = 10).

� sparse graph means that the average degree is O(1) or O(log n),

� low ASPL means O(log(n)),

� high 
lustering 
oe�
ient means that two nodes sharing an edge are likely to have a 
ommon neighbor.

The 
lustering 
oe�
ient is a probability, that must be 
ompared to the 
lustering 
oe�
ient of a random

graph with same number of nodes and edges.

In [11℄, Kleinberg proved that a n-dimensional grid 
an be turned into a small world by adding long-range edges

that follow a Ω( 1
xn ) distribution.

For multiple mat
hings, the stable 
on�guration in geometri
 preferen
es is likely to have a high 
lustering


oe�
ient, be
ause most of the stable edges link 
lose nodes. Moreover, the power-law rank distribution tells

that long-range edges exist. So the stable 
on�guration is likely to be eligible as a small-world.

In Table 1, we give the ASPL and 
lustering 
oe�
ient for some preferen
es, using the parameters N =
2000,p = 1

10 ,b = 10. The referen
e 
lustering is here

b
N−1 ≈ 0.005. We verify that the for the n-tori, the stable


on�gurations are small-worlds. On the other hand, like previously observed in [6℄, the stable 
on�gurations

of random a
y
li
 preferen
es are not small-worlds, be
ause of their 
lustering 
oe�
ient (they behave like an

in
omplete b-regular graph).

We also 
al
ulated the ASPL and 
lustering obtained by using the Meridian Proje
t's real-world laten
ies,

whi
h are known to produ
e small-worlds 
on�guration [6℄. One 
an observe that the results are very 
lose

to the one obtained with the tori. Interestingly, the 
losest results are those from the 3-torus, suggesting that

somehow, 3 may be seen as sort of dimension for the laten
y spa
e. Considering the re
ent eager for estimating

the Internet dimension (see for instan
e [2℄), this unexpe
ted result is appealing: it suggests that the stable


on�guration, whi
h is only de�ned by how the nodes rank ea
h other (laten
ies are used for sorting the nodes,

but the a
tual values are never involved in the 
onstru
tion), 
ould reveal valuable insight about the topology

behind a set of distan
es.

7 Con
lusion

We gave a statisti
al des
ription of the stable 
on�gurations obtained from node-based preferen
es, distan
e-

based preferen
es, and from random a
y
li
 preferen
es. Starting from a generi
 formula for the rank distri-

bution, we introdu
ed mean-�eld and �uid limit te
hniques in order to give expli
it formulas. All our results

were validated by means of simulations. An interesting 
onsequen
e of our results is that for distan
e-based

preferen
es, the stable 
on�gurations behave similarly to Kleinberg's grids, and are small-world graphs.
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A Proof of Theorem 1

The proof relies on the following steps:

� we prove that the D̃N fun
tions are uniformly Cau
hy on [0, 1]2;

� we use the Cau
hy 
onvergen
e to show that SN and D̃N have limits S∞ and D∞, and we give a PDE

veri�ed by S∞;

� we solve the PDE, and use the solution to get D∞.

A.1 Uniform 
onvergen
e

Let N be �xed, and N1, N2 be two integers greater than N . The 
orresponding Erdös-Rényi probabilities are

p1 = d
N1

and p2 = d
N2

. We 
onsider the error fun
tion de�ned by

E(α, β) = |DN1(α, β) −DN2(α, β)|. (23)

For proving that D̃N is uniformly Cau
hy, we need to �nd a bound for E that applies for any (α, β) ∈ [0, 1]2,
and that tends towards 0 as N goes to in�nity.

Let α1, β1, α2, β2 be respe
tively

⌊N1α⌋
N1

,

⌊N1β⌋
N1

,

⌊N2α⌋
N2

,

⌊N2β⌋
N2

. Using (4) and (6), we have, for k ∈ {1, 2},

˜DNk
(α, β) = d(1 −

∫ βk

0
DNk

(αk, x) dx)×
×(1−

∫ αk

0 DNk
(βk, x) dx)

It would be ni
e to have α and β instead of αk and βk, and D̃ instead of D. In order to do that, we noti
e

the following:

� DNk
(αk, x) = DNk

(α, x);

� same for DNk
(βk, x);

� S ≤ 1, so we have DNk
≤ Nkpk = d. As α− αk < 1

Nk
≤ 1

N
, it follows that

∫ α

αk
DNk

(β, x) dx ≤ d
N
;

� the same with α and β swit
hed;

� D̃Nk
(α, x) is bounded by d and only di�ers fromDNk

(α, x) for ⌊Nkα⌋ = ⌊Nkx⌋. It follows that |
∫ β

0
D̃Nk

(α, x)−

DNk
(α, x)| ≤ d

N
;

� the same with α and β swit
hed.

We dedu
e that

∣

∣

∣

∣

∣

∫ βk

0

DNk
(αk, x) dx −

∫ β

0

D̃Nk
(α, x) dx

∣

∣

∣

∣

∣

≤
2d

N
,

and the same with α and β swit
hed. Then, if we 
all

S̃Nk
(α, β) = 1−

∫ β

0

D̃Nk
(α, x) dx, (24)

we have

| ˜DNk
(α, β) − dS̃Nk

(α, β)S̃Nk
(β, α)| ≤

8d2

N
. (25)

This gives us

E(α, β) ≤ 16d2

N
+

d
∣

∣

∣
S̃N1(α, β)S̃N1(β, α) − S̃N2(α, β)S̃N2 (β, α)

∣

∣

∣

(26)

Using the de�nition of S̃Nk
, we see that
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∣

∣

∣
S̃N1(α, β)S̃N1(β, α) − S̃N2(α, β)S̃N2(β, α)

∣

∣

∣
≤

∫ β

0

E(α, x) dx +

∫ α

0

E(β, x) dx +

(

∫ β

0

E(α, x) dx

)

(
∫ α

0

E(β, x) dx

)

Note, that both D̃N1(α, .) and D̃N2(α, .) are probabilities, so we 
an bound

∫ β

0
E(α, x) dx by 2 in the integral

produ
t. Then (26) be
omes

E(α, β) ≤ 16d2

N
+ d

(

∫ β

0
E(α, x)dx + 3

∫ α

0
E(β, x)dx

)

(27)

We now want to merge α and β into a single variable. Therefore, we de�ne F (γ) := supα≤1,β≤1,α+β≤γ E(α, β).
For any α ≤ 1, β ≤ 1, γ ≥ α+ β, we have

∫ β

0 E(α, x) dx ≤
∫ β

0 F (α+ x) dx

≤
∫ α+β

α
F (x) dx

≤
∫ γ

0 F (x) dx,

and the same for

∫ α

0
E(β, x) dx. It follows that

F (γ) ≤ 16d2

N
+ 4d

∫ γ

0
F (x)dx (28)

It follows that F (γ) ≤ 16d2

N
e4dγ by Grönwall's lemma [3℄. As a spe
ial 
ase, for all α, β ≤ 1, we have

E(α, β) ≤ F (2) ≤
16d2

N
e8d. (29)

This 
on
ludes the proof that D̃N is uniformly Cau
hy.

A.2 PDE

As D̃N is uniformly Cau
hy on [0, 1]2, it 
onverges towards a fun
tion D∞. Using (24), we dedu
e that S̃N


onverges towards a 
ontinuous fun
tion S∞, and that −D∞ is the partial derivative of S∞ with respe
t to its

se
ond variable.

Then, if we make N go to in�nity in (25), we obtain the PDE veri�ed by S∞:

∂yS∞(α, β) = −dS∞(α, β)S∞(β, α), (30)

with limit 
ondition S∞(α, 0) = 1.
Noti
e that (30) proves that D∞ is 
ontinuous.

A.3 Resolution

Note, that for α = 0, (30) immediately gives S∞(0, β) = e−dβ
.

To go further, we introdu
e the auxiliary fun
tion f(α, β) := log(S∞(β,α)
S∞(α,β) ).

f is skew-symmetri
. Its �rst partial derivative is:

∂xf(α, β) =
∂xS∞(α, β)

S(α, β)
−

∂yS∞(β, α)

S(β, α)

=
∂xS∞(α, β)

S(α, β)
+ dS(α, β)
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By di�erentiating again, we get the mixed derivative

∂xyf(α, β) =
∂xyS∞(α, β)

S∞(α, β)
−

∂xS∞(α, β)∂yS∞(α, β)

(S∞(α, β))
2

+d∂yS∞(α, β)

=
∂yxS∞(α, β)

S∞(α, β)
+

∂xS∞(α, β)dS∞(β, α)

S∞(α, β)

+d∂yS∞(α, β)

= −
d∂xS∞(α, β)S∞(β, α)

S∞(α, β)

−
dS∞(α, β)∂yS∞(β, α)

S∞(α, β)

+d
∂xS∞(α, β)S∞(β, α)

S∞(α, β)
+ d∂yS∞(α, β)

= 0 (= ∂yxf(α, β))

The only global solutions to the wave equation fxy = 0 are those of the form f(α, β) = a(α)+ b(β) (see [14℄,
for instan
e). Given that f is skew-symmetri
, the solution is indeed of the form f(α, β) = a(α) − a(β). The

border 
onditions immediately give f(α, β) = d(β − α).
We dedu
e S(β, α): S(β, α) = S(α, β)ed(β−α)

.

If we treat S∞ as a fun
tion of β with α as parameter, equation (30) be
omes

Ṡα(β) = −dS2
α(β)e

d(β−α)
(31)

From there, one get S∞(α, β) = 1
K+ed(β−α) . Given that S∞(α, 0) = 1, the solution is:

S∞(α, β) =
1

1− e−dα + ed(β−α)
.

Using D∞ = −∂yS∞, one get (8). This 
on
ludes the proof of Theorem 1.
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B Exa
t resolution of the node-based stable 
on�guration

B.1 Re
ursive formula

For b = 1, we 
an give an expli
it re
ursive formula for D(i, j). The �rst step is to 
ompute D(1, k), for
2 ≤ k ≤ n. As 1 is the best node, it 
an 
hoose the best of its neighbors, so D(1, k) is the probability that k

is the best of 1's neighbors. In other words, this is the probability that k is a

eptable for 1, while all nodes l
with 1 < l < k are not. This gives us

D(1, k) = p(1 − p)k−2
. (32)

Now, we 
onsider two nodes i and j su
h that 1 < i < j ≤ n. D(i, j) = P (i ↔ j) 
an be 
al
ulated with a

proper 
onditionning on the mate k (if any) of 1. The key is to noti
e that if 1 is mated with k, the both of

them 
an be virtually removed from the graph. The remaining graph is still Erdös-Rényi and the probabilities

are the same up to a slight relabeling:

� if k = i or k = j, then i 
annot be mated with j;

� if 1 < k < i, i and j 
an be virtually relabeled i− 2 and j − 2 (
f Figure 7a), so we have P (i ↔ j|1 < k <

i) = P ((i − 2) ↔ (j − 2));

� if i < k < j, i and j 
an be virtually relabeled i− 1 and j − 2 (
f Figure 7b), so we have P (i ↔ j|i < k <

j) = P ((i− 1) ↔ (j − 2));

� if 1 is not mated or k > j (notation: k � j), i and j 
an be virtually relabeled i−1 and j−1 (
f Figure 7
),
so we have P (i ↔ j|k � j) = P ((i− 1) ↔ (j − 1)).

1 k i j n

?

(a) 1 < k < i

1 i k j n

?

(b) i < k < j

1 i j k n

?

(
) k > j

Figure 7: Using the mate of 1 to dedu
e D(i, j).

Under this 
onditioning, we get

D(i, j) = P (i ↔ j|1 < k < i)P (1 < k < i)
+P (i ↔ j|i < k < j)P (i < k < j)
+P (i ↔ j|k � j)P (k � j).

(33)

This leads to the following formula for D:

D(i, j) = (1− S(1, i))D(i − 2, j − 2)
+ (S(1, i+ 1)− S(1, j))D(i− 1, j − 2)
+S(1, j + 1)D(i− 1, j − 1).

(34)

From (32), we have S(1, k) = (1− p)k−2
. This gives

D(i, j) = A(i)D(i − 2, j − 2) +B(i, j)D(i− 1, j − 2) + C(j)D(i − 1, j − 1), with
A(i) = 1− (1− p)i−2

B(i, j) = (1− p)i−1 − (1− p)j−2

C(j) = (1− p)j−1

(35)
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Now, in order to give a �uid limit, it 
an be 
onvenient to redu
e 34 to an expression of the 
omplementary


umulative distribution S. Using the de�nition S(i, j) =
∑

l≮j D(i, l), Equation 35 be
omes, after simpli�
ation,

S(i, j) = A(i)S(i− 2, j − 2) +B(i, j)S(i− 1, j − 2) + C ′(j)S(i − 1, j − 1), with
C2(j) = (1− p)j−2

.

(36)

B.2 Uniform 
onvergen
e

Like for the mean formula, we 
an prove that the s
aling DN (α, β) = ND(⌊Nα⌋ + 1 + 1, ⌊Nβ⌋ + 1 + 1) is

uniformly Cau
hy . The sket
h of proof is the same: 
lean the boundary of the integrals and the other O( 1
N
)

o�sets, then use an auxiliary error variable γ and use Grönwall's lemma to 
on
lude. This guarantees the


onvergen
e of DN and SN .

B.3 PDE

We will use the fa
t that if we use the s
aling i → ⌊Nα⌋+ 1, j → ⌊Nβ⌋+ 1, then

� A(i) 
onverges towards 1− e−dα
,

� B(i, j) 
onverges towards e−dα − e−dβ
,

� C(j) and C2(j) both 
onverge towards e−dβ
.

The �rst step is to translate (36) into an expression of SN : with α = i−1
N

and β = j−1
N

, we obtain

SN (α, β) = A(i)SN (α − 2
N
, β − 2

N
) +B(i, j)SN (α− 1

N
, β − 2

N
) + C2(j)SN (α − 1

N
, β − 1

N
).

(37)

We noti
e that (A+B +C)(i, j) = 1− p(1− p)i−2
. If we remove (A+B +C)(i, j)SN (α, β − 2

N
) from ea
h

side of (36), and multiply the result by N :

� the left part be
omes

N(SN (α, β) − SN (α, β −
2

N
)) + d(1 − p)i−2SN (α, β −

2

N
),

whi
h 
onverges as N → ∞ towards

2
∂S∞

∂β
+ de−dαS∞,

� the right part be
omes

A(i)N(SN (α− 2
N
, β − 2

N
)− SN (α, β − 2

N
)) +(B(i, j) + C(j))N(SN (α− 1

N
, β − 2

N
)− SN (α, β − 2

N
))

+C(j)N(SN (α− 1
N
, β − 1

N
)− SN (α− 1

N
, β − 2

N
))

,

whi
h 
onverges as N → ∞ towards

−2(1− e−dα)
∂S∞

∂α
− e−dα∂S∞

∂α
+ e−dβ ∂S∞

∂β
.

So after s
aling, the re
ursive equation is now:

2
∂S∞

∂β
+ de−dαS∞ = −2(1− e−dα)

∂S∞

∂α
− e−dα∂S∞

∂α
+ e−dβ ∂S∞

∂β
.

In other words, S veri�es the PDE:

(2− e−dα)
∂S∞

∂α
+ (2− e−dβ)

∂S∞

∂β
+ de−dαS∞ = 0.
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Theorem 3 With the border 
ondition S∞(0, β) = e−dβ
, the unique solution of this PDE is S∞ = 1

1−e−dα+ed(β−α) .

The s
aled version of D, denoted D∞, thus veri�es:

D∞(α, β) = −
∂S∞

∂β
(α, β) =

ded(β−α)

(1− e−dα + ed(β−α))2
.

Proof: Let us 
hange the variables: put x = edα and y = edβ. We also make the PDE more symmetri
 by

multiplying by x. De�ne u by putting S∞(α, β) = xu(x, y). The PDE then be
omes:

(2−
1

x
)(dx2 ∂u

∂x
+ dxu) + (2−

1

y
)xdy

∂u

∂y
+ d

1

x
xu = 0.

ie:

{

(2x− 1)∂u
∂x

+ (2y − 1)∂u
∂y

+ 2u = 0

u(1, y) = 1
y

This equation is a non-linear �rst order PDE: F (Du, u, x) = 0, where F is linear. To solve this PDE, we use

the 
lassi
al method of 
hara
teristi
s des
ribed in [5℄, 
hapter 3. Let X(s) = (x(x), y(s)) (s in an interval of

R), be a traje
tory in the base spa
e; de�ne p(s) = Du(X(s)) and z(s) = u(X(s)). Then, solving the equation

F (p(s), z(s), S(s)) = 0 leads to the equivalent system of ODE (we forget about p(s), whi
h is not required to

solve the PDE with boundary 
ondition, see [5℄ p 100 for further pre
isions):















ẋ(s) = 2x(s)− 1
ẏ(s) = 2y(s)− 1
ż(s) = −2z(s)

z0 = z(x0 := 1, y0) =
1
y0

where ˙ stands for d
ds
.

These 3 ODEs are with separable variables (Cau
hy-Lips
hitz theorem applies for existen
e and uni
ity).

The solution with the boundary 
ondition at s = 0, x0 = 1, y0 ∈ R, z0 = 1
y0

is:







2x(s)− 1 = e2s

2y(s)− 1 = (2y0 − 1)e2s

z(s) = 1
y0
e−2s

Now given (x, y), we dedu
e s su
h that x(s) = x and y(s) = y then y0 and z(s) = u(x, y): 2y0 − 1 = 2y−1
2x−1

then

u(x, y) =
1

y0

1

2x− 1
=

1

x+ y − 1
.

Repla
ing x and y by edα and edβ 
on
ludes the proof. �
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