
Distributed Arrays: A P2P Data Structure for
Efficient Logical Arrays

Daisuke Fukuchi∗, Christian Sommer∗, Yuichi Sei∗ and Shinichi Honiden†∗
∗The University of Tokyo, Tokyo, Japan, †National Institute of Informatics, Tokyo, Japan

Email: {daisuke1, sommer, sei, honiden}@nii.ac.jp

Abstract—Distributed hash tables (DHT) are used for data
management in P2P environments. However, since most hash
functions ignore relations between items, DHTs are not efficient
for operations on related items. In this paper, we modify a DHT
into a distributed array (DA) that enables efficient operations on
logical arrays. The array elements of a DA are placed in a P2P
overlay network according to a simple rule such that the load is
balanced and the number of messages required to access elements
sequentially is reduced. The number of messages required for
array operations is much smaller than that for operations on
DHTs. We demonstrate this theoretically and experimentally.

I. INTRODUCTION

Peer-to-peer (P2P) technologies are useful for constructing
large systems. Since P2P systems provide functions by coordi-
nating large numbers of nodes, they do not have to use central
servers and they do not require nodes to persist. This allows
for large systems. For example, some P2P file sharing systems
are run by millions of users.

Distributed hash tables (DHT) [1]–[3] enable P2P systems
to be used as data management systems. DHTs provide the
basic functions of hash tables. Each item is represented by
a (key, value) pair and is registered, referred, and deleted
by using that key. The number of required messages for an
operation is only O(log n), where n denotes the number of
nodes (Table I).

DHTs do not consider relations between registered items.
Therefore, after registering related items, executing an oper-
ation on some of those items results in a set of individual
accesses with a high message cost. For example, let us assume
that, out of a set of files, we want to find the first file matching
certain given conditions. In this case, we access the first file
and check whether it matches. If it does not, we access the next
file. This process is repeated until a matching file is found. The
number of messages required for each access is the same as
that to access the target file from scratch. Therefore, if the first
matching file is the w-th file, it requires O(w log n) messages.

TABLE I
NOTATION.

n Number of nodes.
b Number of bits for indices and IDs.
fr b-bit reverse bit order mapping.

d(x, y) Distance from ID x to ID y on a circular ID space in the
ascending direction.

γ(x) Number of 1’s in the upper log n bits of the b-bit binary
expression of x if n is a power of 2. γ of x means the same.

A P2P network

Hash tables Arrays

DHT DA

Fig. 1. Enhancement of P2P data management systems.

This paper proposes using a distributed array (DA) to
support efficient operations on items stored in a logical array
in a P2P environment. In the above example, by storing the
sequence of files in an array, the first matching file is found
in O(w + log n) messages instead of O(w log n) messages.
Splitting data is another situation in which array operations
are useful. In DHTs, each item is assigned to one node. Large
data beyond the capacity of a single node can not be managed
as one item. As such, the data has to be split into multiple
items. One of the simplest data splitting methods is cutting
and sequentially indexing from the front. Such indexed items
are considered to be elements of a logical array. Any operation
on the data can be achieved by performing array operations.
For example, assume that in a file sharing system we want to
retrieve information from a large log and that the log is split
into parts and new information is appended to the last file.
As soon as the size threshold for one file is reached, a new
log file is added. Since a large number of shared files causes
proportionally large loads for the retrieval process, the whole
log can not be managed by one node. Therefore, we ensure
that the new entry is added to the latest log and if the size of
the log exceeds a threshold, a new log is added. The log as
a whole is a logical array. The operation of adding an entry
entails an access to the tail of the array and the addition of a
new element at the tail. Retrieval is achieved by accessing all
elements. Querying a specific period is done by searching for
corresponding elements and accessing them.

The base P2P network of the DA can be simultaneously
used for making the DHT without any additional stabilization
cost. This enables DHT-based systems to select a hash table
and an efficient array for each item at the same time (Fig. 1).

II. RELATED WORK

To the best of our knowledge, there are no previous studies
on efficient array operations in P2P environments. DHTs can
use logical arrays if we do not have to consider the efficiency



of the array operations. Studies on range queries are relevant
for making some efficient array operations.

There are a number of DHTs based on consistent hashing [4]
and the distributed data location protocol developed by Plaxton
et al. [5], e.g., Chord [3], CAN [1], and Pastry [2]. The P2P
network of a DHT forms a logical ID space and enables stable
access to a target ID in O(log n) messages (for details, see
Section III). DHTs are created by computing the hash value
of the key and interpreting it as the ID of a (key, value) pair.

In a DHT, multiple arrays can be managed by considering
the concatenation of an array name and an index to be a key.
Any array operation can be achieved by manipulating elements
one by one. Unfortunately, the resulting message cost is large.
Access to an element is independent of other accesses because
the hash function pseudo-randomly places array elements in
the ID space. Accessing w target elements requires O(w log n)
messages. Specific operations can be optimized. However,
such optimizations are rather complex and their result is
probably not efficient on top of the pseudo-random element
placement. For example, assume that we want to manipulate
all elements of an array. In this case, we can calculate the
order to minimize the number of messages required to access
all elements consecutively on the basis of the analysis in
Section III-B. However, this calculation is computationally
hard (by a reduction to the traveling salesman problem [6]),
and even the optimal solution does not guarantee efficiency.

Studies on range queries in P2P environments focus on
related items and can be applied to array operations. A range
query searches for items whose target-attribute value is in a
given range. A range query achieves efficient array operations
like sequential access by considering an array name to be an
attribute and an index to be an attribute value.

There are two kinds of P2P range query systems: placing
items in a P2P network to preserve orders or differences
between attribute values [7], [8] and adding management
structures like a linked list to items [9]–[11]. Both approaches
face problems when actual arrays are necessary.

In placing elements in a P2P network to preserve the orders
or differences between indices, not a few elements are con-
centrated in a small area because array indices tend to be used
sequentially. This causes load concentration. This is especially
problematic for splitting large data into an array. Although
load balancing by moving nodes or items is supported, it is
not only costly; it has bad affinity to single-element operations.
For example, moving light-load nodes to the neighborhood of
heavy-load nodes increases the density of nodes as well as
the density of elements. This increases the virtual number of
nodes in a place. The number of required messages to access
one of the elements increases in accordance with that virtual
number.

Adding management structures to elements does not affect
operations that are not conducted within these structures.
For example, pointers composing PHT [11] connect elements
whose indices are adjacent. Therefore, a search in a sorted
array is executed by following pointers one by one or as a
binary search using the DHT’s access function. This is not

DHT

P2P array network

Hash table

Hash function
- Pseudorandom

item placement

(a) Composition of the DHT.

DA

P2P array network

Logical array unit

New function
- Systematic element

placement

(b) Composition of the DA.

Fig. 2. P2P data structures.

efficient. Moreover, the DHT’s access function is used to
complement operations when the pointers are invalid. There-
fore, performance greatly decreases when nodes join and leave
frequently. Although adding generic and redundant structures
like skip graphs [9] can alleviate such problems, stabilization
costs and system complexity increase.

The reverse bit order mapping described in Section IV-A
was used before by Shao et al. [12] and in split-ordered
lists [13] for other purposes than the one described here.
Shao et al. reversed the bit order in converting between
logical addresses and physical addresses to improve memory
performance. In split-ordered lists, to construct a lock-free
hash table from a lock-free linked list, each entry of a hash
table is made to point to an element of a linked list at the
position made from the entry’s index by reversing the bit order.

III. ANALYSIS OF DISTRIBUTED HASH TABLES

In this section, we analyze DHTs in order to construct a
DA from a DHT in Section IV.

A DHT can be divided into two layers (Fig. 2(a)). The
upper layer is a hash table implemented on an array. The lower
layer is an important P2P technology that we will refer to as
P2P array network. P2P array networks have the following
properties.

• Any node can access any ID in [0, 2b) in O(log n)
messages. b is the number of bits of IDs and a constant
parameter in the system (Table I).

• They support node joining and leaving.
We will not focus on node joining and leaving in the following.
In Section VI, we experimentally demonstrate that the DA is
efficient in dynamic environments as well.

A DHT uses a hash table for item placement in its ID space.
Its hash function, for example SHA1 [14], entails a pseudoran-
dom element placement that inhibits efficient array operations.
Therefore, one approach to enable efficient array operations is
to change the element placement scheme. Fig. 2(b) illustrates
the composition of a DA in such a case. To obtain an efficient
element placement scheme, we will analyze the Chord [3]
network as the base P2P array network.

A. Chord network

The Chord network is a simple and useful P2P array
network. It is constructed as follows:

• It uses a circular ID space [0, 2b). 0 follows after 2b − 1.
If x > y, the ID range [x, y] denotes [x, 2b) ∪ [0, y]. If



x

y

d(x, y)
d(y, x)

Fig. 3. Illustration of distances between ID x and ID y.

x ≥ 2b, ID x denotes x mod 2b. Let d(x, y) denote the
distance from ID x to ID y in the ascending direction
(clockwise in Fig. 3).

d(x, y) = y − x (mod 2b)

• Nodes are placed in the ID space by using a hash
function. The node placed at ID x is denoted by x. For
all IDs x, successor(x) denotes the first node placed at x
or after x. predecessor(x) denotes the first node placed
before x.

• A node x is responsible for the segment [x, successor(x+
1)) of the ID space. Note that this is different from
the original Chord where node x is responsible for the
segment (predecessor(x), x]. The original Chord finds the
successor of a target ID, whereas we want to operate an
item placed at the ID.

• A node x has neighbor pointers to predecessor(x) and
successor(x + 1).

• A node x has pointers to successor(x + 2k) (∀k < b).
Such a pointer is called a finger, and the set of all fingers
of a node is called its finger table.

ID access in a Chord network is conducted as follows:
• Let x denote the node executing the access process, and

let y denote the target ID.
1. If y ∈ [x, successor(x + 1)), x is responsible for y. The

access process stops at x.
2. Otherwise, x selects the finger x′ with the minimum

distance to y. The access process is then transferred to x′.
• Repeat these steps until the access process stops.

B. Analysis of Chord network
To better understand the access procedure of the Chord

network, assume that n is a power of 2, i.e., n = 2m (m ≤ b),
and nodes are placed in the ID space at equal ID intervals.
This is an ideal Chord network. We cope with non-ideal
environments in Section IV-B and show the coping effects
experimentally in Section VI (Fig. 6). For each node x,
successor(x + 1) is x + 2b−m and x has the following finger
table (Fig. 4(a)):

{x + 0 . . . 01︸ ︷︷ ︸
k

0 . . . 0︸ ︷︷ ︸
b−k

(2) | 1 ≤ k ≤ m}

The notation z(2) emphasizes that z is a binary expression.
In the following, we implicitly use a b-bit binary expression
and call it a bit sequence.

The access starting at node x0 is executed as follows:
• xi denotes a node that is executing the access process,

and y denotes the target ID.

0000100010
00100

01000

10000

(a) Finger table. A value de-
notes the bit sequence of the
distance to a finger.

01110

00110
01000

00010

00100

00000

00010

(b) Routing of ID access. An
external value denotes the bit
sequence of the distance to the
target ID. An internal value de-
notes the bit sequence of the
distance to a used finger.

Fig. 4. Ideal Chord network in b = 5 and n = 25.

1. If all the upper m bits of d(xi, y) are 0, then y ∈
[xi, successor(xi + 1)) and xi is responsible for y. The
access process stops at xi.

2. xi finds k ≤ m s.t.

d(xi, y) = 0 . . . 01︸ ︷︷ ︸
k

zk+1 . . . zb(2)

and selects the finger xi+1 with the minimal distance to
y from xi’s finger table.

xi+1 = xi + 0 . . . 01︸ ︷︷ ︸
k

0 . . . 0︸ ︷︷ ︸
b−k

(2)

The access process is transferred to xi+1.
• Repeat these steps until the access process stops.

In step 2, the distance from the current executing node to the
target ID changes from

d(xi, y) = 0 . . . 01︸ ︷︷ ︸
k

zk+1 . . . zb(2)

to
d(xi+1, y) = 0 . . . 00︸ ︷︷ ︸

k

zk+1 . . . zb(2) .

Step 2 eliminates the highest 1 in the bit sequence.
The access procedure in the ideal Chord network eliminates

1’s in the bit sequence of d(x0, y) from above (Fig. 4(b)). Let
γ0 denote the number of 1’s in the upper log n(= m) bits
of d(x0, y). After step 2 has been executed γ0 times, all the
1’s in the upper log n bits of d(x0, y) are cancelled out and
step 1 stops the access process at xγ0 . Since x0, x1, . . . , xγ0
are visited, the number of required messages is γ0. If y is
arbitrary, d(x0, y) can be an arbitrary bit pattern. Therefore,
the average γ0 is

log n/2 . (1)

This is the average number of required messages for an ID
access in the ideal Chord network.

IV. CONSTRUCTION OF A DISTRIBUTED ARRAY

Based on the analysis in Section III-B, we can construct
a DA by introducing an element placement rule in order to
execute efficient array operations. We place each element at
an ID made from its index by reversing the bit order (Sec-
tion IV-A). We can then cope with the discrepancy between the
assumptions in the analysis and real environments by tuning
the topology of the Chord network (Section IV-B).



A. Reverse bit order mapping

A placement rule for array elements is represented by a
mapping f from an index space of arrays to the ID space of
a P2P array network. An element indexed by x is placed in
ID f(x). To manage multiple arrays, an element indexed by x
is mapped to h + f(x) by using the hash value h of an array
name. In the following, we consider only one array and omit
h for the sake of readability.

An appropriate mapping has to satisfy the following require-
ments. First, there is a certain locality assumption. Namely,
elements indexed by numbers close to each other tend to
be operated on at the same time. Moreover, there are three
requirements: (1) We want to execute array operations effi-
ciently; (2) we want to balance the load among elements in
order to use arrays for splitting data; (3) we need a simple
mapping rule to optimize other operations.

The analysis in Section III-B indicates that it is effective
to reduce the number of 1’s in the upper log n bits of the
distances between IDs at which target elements are placed.
Let γ : [0, 2b) → [0, b] be a function from an ID to an integer
in [0, b] as follows (Table I):

γ(x1 . . . xb(2)) :=

log n∑
k=1

xk (n is a power of 2)

Then, by operating on target elements consecutively, a whole
operation requires only a small number of messages. To enable
such a placement, the following property is useful.

Property 1. If ID x and y have the same lower b − k bits
(k ≤ b), d(x, y) has no 1’s in the lower b − k bits.

That is, by mapping 2k(k ≤ b) or fewer indices to IDs that
have the same lower b−k bits, the 1’s in the bit sequences of
the distances between the IDs are limited to only the upper k
bits.

The locality assumption implies that indices for which only
lower bits are different tend to be manipulated at the same
time. Since these elements tend to be operation targets at the
same time, for load balancing, they should be assigned to
different nodes. It is effective to place them at distant IDs, that
is IDs with different upper bits. Furthermore, from Property 1,
IDs having the same lower bits will satisfy Requirement 1.
Therefore, the desired mapping should map indices with the
same upper bits and different lower bits to IDs with different
upper bits and the same lower bits. In accordance with
Requirement 3, we define the reverse bit order mapping fr
as follows:

Definition 1 (Reverse bit order mapping fr). fr is a mapping
from index space [0, 2b) to ID space [0, 2b). It is defined by

fr(xb . . . x1(2)) := x1 . . . xb(2) .

In the rest of this section, we determine whether fr satisfies
Requirements 1 and 2.

Let Ak,x denote a sequence of indices as follows.

Ak,x := [x2k, (x + 1)2k) (k < b and x < 2b−k) (2)

Theorem 1. For different indices y 6= z, the average value of
γ(fr(y), fr(z)) is

(k + 1)/2 (if k < log n)

log n − (k − 1)/2 (if log n ≤ k < log n + 1)

log n/2 (if log n + 1 ≤ k) ,
(3)

where k is the minimum k s.t. y, z ∈ Ak,x.

Proof: Let k′ be the minimum k s.t. y, z ∈ Ak,x and let
x′ be x s.t y, z ∈ Ak′,x. Since Ak,x = Ak−1,2x ∪ Ak−1,2x+1,
y and z belong to Ak′−1,2x′ or Ak′−1,2x′+1. If both y and
z belong to the same interval Ak′−1,2x′ or Ak′−1,2x′+1, it
contradicts the assumption of k′ being minimal. Therefore, y
and z belong to different intervals Ak′−1,2x′ and Ak′−1,2x′+1.
Without loss of generality, y ∈ Ak′−1,2x′ ∧ z ∈ Ak′−1,2x′+1.
Let xb . . . xk′+1(2) denote the (b−k′)-bit binary expression of
x′. We can write

y = xb . . . xk′+1 0 ∗ · · · ∗︸ ︷︷ ︸
k′

(2)

z = xb . . . xk′+1 1 ∗ · · · ∗︸ ︷︷ ︸
k′

(2) .

Since the lower b − k′ bits of fr(y) and fr(z) are the same,
Property 1 ensures that the lower b−k′ bits of d(fr(y), fr(z))
are 0. Furthermore, since the lower (b − k′ + 1)-th bits of
fr(y) and fr(z) are different, the lower (b − k′ + 1)-th bit of
d(fr(y), fr(z)) are 1. Since the upper k′ − 1 bits of fr(y) and
fr(z) are arbitrary, the upper k′− 1 bits of d(fr(y), fr(z)) can
be arbitrary. Therefore, the average γ of the distance between
fr(y) and fr(z) is as follows. If k′ < log n, it is

(k′ − 1)/2 + 1 = (k′ + 1)/2.

If log n ≤ k′ < log n + 1, it is

(k′ − 1)/2 + log n − (k′ − 1) = log n − (k′ − 1)/2.

If log n + 1 < k′, it is log n/2.
Theorem 1 ensures that we can complete a whole operation

in a small number of messages by selecting indices of con-
secutively accessed elements from as small Ak,x as possible.

Theorem 2. fr in Definition 1 maps a set of indices Ak,x to
a set of IDs at equal ID intervals.

Proof: The set of indices in Ak,x is represented by

[xb . . . xk+1 0 . . . 0︸ ︷︷ ︸
k

(2), xb . . . xk+1 1 . . . 1︸ ︷︷ ︸
k

(2)] .

All indices in this set have the same upper b − k bits and
include all 2k bit patterns in the lower k bits. Therefore, all
IDs mapped from the indices by fr include all 2k bit patterns
in the upper k bits and have the same lower b − k bits. After
sorting the IDs, the intervals between them are equal:

0 . . . 01︸ ︷︷ ︸
k

0 . . . 0︸ ︷︷ ︸
b−k

(2) .

Theorem 2 ensures that sequentially indexed elements are
managed by different nodes among a large number of nodes.
Thus, we can balance loads by splitting large data and storing
the parts into elements of an array.



10 . . . 0

(a) Finger tables of successors. Since
each finger represented by a dashed
line points beyond the target ID, the
previous finger, which points to about
half the distance is used instead.

10 . . . 0

(b) Finger tables of predecessors. One
transfer reaches the neighborhood of
the target ID.

Fig. 5. Effect of components of finger tables on access to a 2b−1 distant
ID.

B. Adaptation to realistic environments

In section IV-A, we assumed that n is a power of 2
and nodes are placed at equal ID intervals. However, this
assumption hardly holds in real environments. The discrepancy
between the ideal environment and a real one reduces the
performance of a DA composed of a Chord network and
reverse bit order mapping. In the following, we adapt the DA
to non-ideal environments by tuning the topology of the Chord
network by using predecessors instead of successors as fingers.

In Section III-B, we showed that the number of messages
required in the ideal Chord network is the γ of the distance
from a start node to the target ID. Theorem 1 shows that the
reverse bit order mapping fr makes the γ’s of the distances
between IDs at which indices of consecutively accessed ele-
ments are placed smaller than those in pseudorandom element
placement. However, this effect does not obviously appear
in real environments because of the difference between ideal
fingers and real fingers. In real environments, since it is
unlikely that n is a power of 2 and nodes are placed at equal
ID intervals, a finger of x, successor(x+2k) (k < b), is usually
placed at after x + 2k. The average distance l from x + 2k to
successor(x + 2k) is half the average node interval.

l = (2b/n)/2 = 2b−log n−1 = 0 . . . 0︸ ︷︷ ︸
dlog ne

1 ∗ · · · ∗︸ ︷︷ ︸
b−dlog ne

(2)

Here, let x denote the node executing an access process, and
let y denote the target ID. Let us assume that

d(x, y) = 2m (m > b − dlog ne) . (4)

The best transfer destination in x’s finger table is

x′ ≈ x + 2m−1 + l .

The next distance from x′ to the target ID is

d(x′, y) ≈ 2m−1 − l = 0 . . . 0︸ ︷︷ ︸
b−m

01 . . . 1︸ ︷︷ ︸
m−b+dlog ne

1 ∗ · · · ∗︸ ︷︷ ︸
b−dlog ne

(2) .

Roughly
m − b + dlog ne − 1 (5)

messages are required in order to set all the upper dlog ne bits
to 0. As described in Section III-B, the 1’s in the bit sequence
of the distance to the target ID are deleted from above by
performing the access process. Therefore, a situation can occur
in which only one 1 remains in the upper dlog ne bits. This

situation can be approximated as (4). The proof of Theorem 1
shows that even the last 1 is often an upper bit to operate on
array elements consecutively. That is, m ≈ b in (4); hence,
additional (5) ≈ dlog ne − 1 messages are required to access
a target element (Fig. 5(a)). This is inefficient.

This problem can be avoided by using predecessors instead
of successors as fingers. In this approach, each finger of x
points to predecessor(x + 2k) and the average distance from
predecessor(x+2k) to x+2k is l. The parts of step 2 described
in Section III-A and III-B have to be modified to check
successor(x+1) besids fingers in selecting transfer destinations
of access processes. In the above situation, the best finger is

x′ ≈ x + 2m − l .

The distance to the target ID is

d(x′, y) ≈ l .

Since the average node interval is 2l, the access probably
finishes at x′ (Fig. 5(b)). The above shows that using prede-
cessors instead of successors as fingers confers the advantages
of Theorem 1 in realistic environments. This effect was
experimentally evaluated (see Section VI and Fig. 7(a)).

V. ARRAY OPERATIONS ON A DISTRIBUTED ARRAY

We theoretically show that the DA enables efficient array
operations. The measure of performance is average message
complexity, i.e., the average number of required messages in
order to access target elements. We use the ideal Chord net-
work as an approximate environment for the sake of simplicity.
When the need occurs, we will approximate the message
complexity needed to access a target element from a node
managing another element by the γ of the distance between
IDs at which the elements are placed. The actual message
complexity in realistic environments basically corresponds to
this approximation (see Section VI). In the following, we show
that the DA enables operations to be executed more efficiently
than in the source DHT. We also give examples showing that
more improvements are possible for specific operations.

First, let us consider the operations. Theorem 1 says that
the average message complexity of the DA in order to access
array elements consecutively follows (3), where k is the
maximum k of x2k−1 representing indices skipped by indices
of the consecutively accessed elements. On the other hand,
the average message complexity of the DHT is (1), log n/2,
because it does not relate to the element indices. The difference
in average message complexities of the DA and DHT is

(log n − k − 1)/2 (if k < log n)

(k − log n − 1)/2 (if log n ≤ k < log n + 1)

0 (if log n + 1 ≤ k) .

If k < log n−1, the smaller the k, the better the DA performs.
If log n−1 < k < log n+1, although the DA performs worse
than the DHT, the maximum difference is 1/2, when k =
log n. That is, by selecting indices of consecutively accessed
elements whose skipped indices are represented by x2k−1

with as small k as possible, we need only a small number of
messages to complete any operation. The DA performs worse
than the DHT if maximum k of x2k−1 representing indices
skipped by the indices of consecutively accessed elements



frequently satisfies log n − 1 < k < log n + 1. However, if n
is large enough, this situation rarely occurs. For example, if
n = 10000, then disadvantageous k’s for the DA would be 13
and 14. The indices that should not be skipped are multiples
of 4096.

Next, we give examples of useful array operations – sequen-
tial access, and a search in a sorted array – to show that the
DA can make these operations more efficient.

Sequential access means accessing all elements indexed
by a given range in ascending order. It can be used for
the example in Section I to find the first matching file in a
sequence of files in an array.

DA can efficiently execute sequential accesses. For example,
assume that b = 5 and the target range is [7, 11]. The distances
between IDs at which consecutively accessed elements are
placed are as follows:

Index ID Distance
7 = 00111(2)

fr7→

11100(2) 00110(2)

8 = 01000(2) 00010(2) 10000(2)

9 = 01001(2) 10010(2) 11000(2)

10 = 01010(2) 01010(2) 10000(2)

11 = 01011(2) 11010(2)

The number of 1’s in the ID distances is 1 or 2. This property
is analyzed in the following theorem.

Theorem 3. The average value γ(d(fr(x), fr(x + 1))) is less
than or equal to 3/2.

Proof: If x is even (x mod 2 ≡ 0), that is, the target
index changes from xb . . . x20(2) to xb . . . x21(2), the ID
distance d is

d(0x2 . . . xb(2), 1x2 . . . xb(2)) = 10 . . . 0︸ ︷︷ ︸
b

(2)

and γ(d(fr(x), fr(x + 1))) ≤ 1.
Otherwise, if x is odd, for k ≥ 2, one access out of 2k

accesses, if x mod 2k ≡ 2k−1 − 1, that is, the target index
changes from

xb . . . xk+1 01 . . . 1︸ ︷︷ ︸
k

(2) to xb . . . xk+1 10 . . . 0︸ ︷︷ ︸
k

(2) ,

the distance is
d(1 . . . 10︸ ︷︷ ︸

k

xk+1 . . . xb(2), 0 . . . 01︸ ︷︷ ︸
k

xk+1 . . . xb(2))

= 0 . . . 011︸ ︷︷ ︸
k

0 . . . 0︸ ︷︷ ︸
b−k

(2) .

and γ(d(fr(x), fr(x + 1))) ≤ 2.
Therefore, the average γ(d(fr(x), fr(x+1))) is less than or

equal to 3/2.
Theorem 3 gives the average message complexity in order

to find the first matching file in a sequence of files in an array.
If the first matching file is the w-th file, the average message
complexity of the whole operation is less than or equal to

log n/2 + (w − 1)(3/2)

because the average message complexity to access the first
file is log n/2 and the complexities of the following accesses
behave according to Theorem 3.

In sequential access in the DHT, the γ of the distances be-
tween IDs at which consecutively accessed elements are placed
is log n/2 because the element placement is pseudorandom.

A search in a sorted array searches a sorted array for an
element equal to or closest to a given value. It can be used for
the example in Section I to search a file entry log split into
elements of an array for an element corresponding to a given
date.

A simple and useful search in a sorted array is the binary
search. It repeatedly selects the mean index in a search space
as a pivot, accesses the pivot and reduces the search space.
The first search space is determined by checking registered
and unregistered elements managed by the start node.

However, the binary search is not so efficient in the DA.
The following simple modification greatly reduces message
complexity. Change the pivot selection as follows. If the search
space is

[xb . . . xk+10xk−1 . . . x1(2), xb . . . xk+11x′
k−1 . . . x′

1(2)] , (6)

then the pivot to specify the lower k-th bit of the search space
is

xb . . . xk+1 10 . . . 0︸ ︷︷ ︸
k

(2) . (7)

For example, assume that b = 5 and the target value v is equal
to the element indexed by 7 in an array sorted in ascending
order. We want to detect the index 7. If the first search space
is [3, 14], then [3, 14] = [00011(2), 01110(2)] gives a pivot
01000(2) = 8. Since the element indexed by 8 is greater than
v, the next search space is [3, 7]. Similarly, the subsequent
pivots are as follows:

Search space Pivot
[3, 14] = [00011(2), 01110(2)] 01000(2) = 8
[3, 7] = [00011(2), 00111(2)] 00100(2) = 4
[5, 7] = [00101(2), 00111(2)] 00110(2) = 6
[7, 7] = [00111(2), 00111(2)] 00111(2) = 7

Consequently, index 7 is found. The distances between the IDs
to which pivots are mapped by fr are as follows:

Pivot ID Distance
01000(2)

fr7→

00010(2) 00010(2)

00100(2) 00100(2) 01000(2)

00110(2) 01100(2) 10000(2)

00111(2) 11100(2)

1’s appear in different bits of the ID distances. The analysis
of this search method yields the following theorem.

Theorem 4. For a search in a sorted array, the total number
of higher order 1 bits γ(·) in the distances between all
consecutively accessed pivots is less than or equal to log n.

Proof: Let p be the pivot of (7) of the search space of
(6). After accessing p, the next search space is either
(<) [xb . . . xk+10xk−1 . . . x1(2), xb . . . xk+1 01 . . . 1︸ ︷︷ ︸

k

(2)]

(>) [xb . . . xk+1 10 . . . 01︸ ︷︷ ︸
k

(2), xb . . . xk+11x′
k−1 . . . x′

1(2)]

In the case of (<), the next pivot is

p′ = xb . . . xk+1 01 . . . 1︸ ︷︷ ︸
k−k′

10 . . . 0︸ ︷︷ ︸
k′

(2) ,



where k′ is such that the lower k-th bits are the largest
different bits in the search space of (<). fr maps the pivots to
IDs as follows:

fr(p) = 0 . . . 01︸ ︷︷ ︸
k

xk+1 . . . xb(2)

fr(p
′) = 0 . . . 01︸ ︷︷ ︸

k′

1 . . . 10︸ ︷︷ ︸
k−k′

xk+1 . . . xb(2) .

Thus, d(fr(p), fr(p′)) is
0 . . . 01︸ ︷︷ ︸

k

0 . . . 0︸ ︷︷ ︸
b−k

(2) (k − k′ = 1)

0 . . . 01︸ ︷︷ ︸
k′

1 . . . 101︸ ︷︷ ︸
k−k′

0 . . . 0︸ ︷︷ ︸
b−k

(2) (k − k′ > 1) .

In a similar way, d(fr(p), fr(p′)) in the case of (>) is

0 . . . 01︸ ︷︷ ︸
k′

0 . . . 0︸ ︷︷ ︸
b−k′

(2) .

In both cases, 1’s only appear from the lower (b − k + 1)-th
bit to the lower (b − k′ + 1)-th bit, and the number of 1’s is
not greater than k− k′. Therefore, in order to specify all bits,
the sum of the γ(d(fr(p), fr(p′))) is not greater than log n.

For the whole search operation in a sorted array, we have
to access the first pivot in log n/2 messages. Accordingly, the
average message complexity of the whole operation is less
than or equal to

log n/2 + log n = 3 log n/2 .

In the binary search of the DA, p and p′ in the proof
of Theorem 4 do not have useful properties except for the
same upper b − k bits. Therefore, since the bits in which
1’s appear overlap, the message complexity is worse than
in Theorem 4. The actual message complexity was found
experimentally (Section VI).

In the DHT, in order to search a sorted array, we use a
binary search in the first search space [x, x+w). The average
width of the ID segment managed by one node is 2b/n.
Accordingly, the average interval of indices mapped to the
ID segment is 2b/(2b/n) = n. This is the average of w. The
average number of required pivots is log n. Since IDs at which
elements indexed by pivots are placed are pseudorandom, the
overall performance is

log n(log n/2) = log2 n/2 .

VI. EVALUATION

To verify the analysis of the previous sections, we imple-
mented the DA and DHT in our simulator and compared their
performances. The performance measure was the same as in
Section V, the average message complexity.

A. Setting

The Chord network was constructed in the way described in
Section III-A, except for fingers in the DA. Fingers in the DA
were composed of predecessors as described in Section IV-B.
We set b = 64 and placed each node in the ID space by
referring to the upper 64 bits of the SHA1 hash value of its
node number in [0, n). This is not the ideal Chord network.

-1
0
1
2
3
4
5
6
7
8
9

101 102 103 104 105 106

N
o.

 o
f m

sg
. (

un
tu

ne
d 

- 
tu

ne
d)

No. of nodes
Inter-elem.

Fig. 6. Inter-element accesses of the DA in non-ideal environments. The
ordinate is the difference in average message complexities as a result of the
tuning described in Section IV-B ((untuned DA) − (tuned DA)). Parameters
are the same as in Fig. 7(a).

Each array element in the DHT was placed at the ID that had
the upper 64 bits of the SHA1 hash value of the concatenation
of its array name and its index. We used the average of 1000
tests in which the start nodes and target elements for operations
were selected at random.

In order to evaluate dynamic environments, we simulated a
situation in which rn nodes (we call r the join-leave ratio)
leave and join while finger tables are updated. The node
set containing (1 + r)n nodes was randomly partitioned into
3 groups: rn leaving nodes (Group 1), rn joining nodes
(Group 2) and the remaining (1 − r)n nodes (Group 3).
Groups 2 and 3 had n nodes in total, and only the n nodes were
active in simulations. Fingers were selected from Groups 1 and
3. Neighbor pointers were selected from Groups 2 and 3. If a
finger pointed to a node in Group 1, transfers using this finger
failed. A failed transfer was retried any number of times by
using the next better pointer. Since neighbor pointers were
correct, all access processes finished at some time.

In the following, we use Inter-element access to denote an
access from a node managing an element to another element.
This access was used to access elements consecutively.

B. Results and interpretation

Fig. 6 shows the effect of the tuning described in Sec-
tion IV-B. The figure plots the difference in inter-element
accesses between the tuned and the untuned DA. The ordinate
is the difference in the average message complexity of the
tuned case from that of the untuned case. The bigger the value,
the better the tuning effect. The result shows that tuning effects
are proportional to log n. This is consistent with the theoretical
value of m − b + dlog ne − 1 in (5).

Fig. 7 shows the results of inter-element access. Fig. 7(a)
shows that the DA performance is independent of n for large
enough n. Fig. 7(b) shows that the DA performs better as
the range that we select target indices from becomes smaller.
These results indicate that the DA can greatly reduce message
complexity, although they are not completely consistent with
Theorem 1 because the tuning described in Section IV-B does
not erase all the differences between an ideal environment
and realistic ones. Fig. 7(c) shows that the average message
complexity of the DA is lower than that of the DHT even in
the case of frequent node joining and leaving.



Fig. 8 shows the results for sequential accesses. Fig. 8(a)
shows that the average message complexity of the DA is
almost independent of n; the average message complexity per
target element is constant. Fig. 8(b) shows that the value is
close to the theoretical one. Fig. 8(c) are results in dynamic
environments, showing that the DA performs better than the
DHT.

Fig. 9 shows the results of a search in a sorted array.
Fig. 9(a) shows that the DA improves the binary search a
little. Furthermore, the pivot selection described in Section V
greatly improves the average message complexity. In Fig. 9(b)
showing the results in dynamic environments, the pivot selec-
tion performs much better than the binary search of the DHT.

Fig. 10 shows that the average message complexities to
access a single element in the DA and in the DHT are the same.
Since a single-element access is an ID access of the base P2P
array network, this result proves that the P2P array network
of the DA can be used instead of the P2P array network of
the DHT.

The above results indicate that the DA greatly reduces
message complexity, as expected. They also show that the DA
is effective when node joining and leaving are frequent.

VII. CONCLUSION

We constructed a distributed array (DA) that enables ef-
ficient operations for logical arrays managed in P2P envi-
ronments. DAs are useful in situations in which we want to
manage a large database by splitting and sequentially indexing
it. Since the P2P overlay network of the DA can be used
for that of a distributed hash table (DHT) without additional
stabilization costs, the DA can enable DHT-based systems to
support a hash table and an efficient logical array for each
item at the same time.

We showed that the number of required messages to ma-
nipulate array elements consecutively can be reduced in many
cases by modifying the item placement rule of DHTs. We
devised a reverse bit order mapping based on an analysis of
the DHT overlay network. This approach is not limited to this
research. We may be able to construct other DAs by combining
reverse bit order mapping or other item placement rules and
various P2P networks.

The DA may be able to support useful operations besides
sequential access and searches in a sorted array.

REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker, “A
scalable content-addressable network,” in SIGCOMM, 2001, pp. 161–
172.

[2] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Middleware, ser. Lecture Notes in Computer Science, R. Guerraoui, Ed.,
vol. 2218. Springer, 2001, pp. 329–350.

[3] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM, 2001, pp. 149–160.

[4] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in STOC,
1997, pp. 654–663.

[5] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies
of replicated objects in a distributed environment,” Theory Comput. Syst.,
vol. 32, no. 3, pp. 241–280, 1999.

[6] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.,
1972, pp. 85–103.

[7] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting
scalable multi-attribute range queries,” in SIGCOMM, R. Yavatkar, E. W.
Zegura, and J. Rexford, Eds. ACM, 2004, pp. 353–366.

[8] D. Li, X. Lu, B. Wang, J. Su, J. Cao, K. C. C. Chan, and H. V. Leong,
“Delay-bounded range queries in DHT-based peer-to-peer systems,” in
ICDCS. IEEE Computer Society, 2006, p. 64.

[9] J. Aspnes and G. Shah, “Skip graphs,” ACM Transactions on Algorithms,
vol. 3, no. 4, 2007.

[10] J. Gao and P. Steenkiste, “An adaptive protocol for efficient support
of range queries in DHT-based systems,” in ICNP. IEEE Computer
Society, 2004, pp. 239–250.

[11] S. Ramabhadran and J. M. Hellerstein, “Prefix hash tree: An indexing
data structure over distributed hash tables,” Tech. Rep., 2004.

[12] J. Shao and B. T. Davis, “The bit-reversal SDRAM address mapping,” in
SCOPES, ser. ACM International Conference Proceeding Series, K. M.
Kavi and R. Cytron, Eds., vol. 136, 2005, pp. 62–71.

[13] O. Shalev and N. Shavit, “Split-ordered lists: Lock-free extensible hash
tables,” J. ACM, vol. 53, no. 3, pp. 379–405, 2006.

[14] D. Eastlake and P. Jones, “RFC 3174: US secure hash algorithm 1
(SHA1),” 2001. [Online]. Available: http://www.ietf.org/rfc/rfc3174.txt



0
1
2
3
4
5
6
7
8
9

10

101 102 103 104 105 106

N
o.

 o
f m

sg
.

No. of nodes
DA
DA (theory)

DHT
DHT (theory)

(a)

0
1
2
3
4
5
6
7
8

0 2 4 6 8 10 12 14 16

N
o.

 o
f m

sg
.

k of selection range [x2k,(x + 1)2k)
DA
DA (theory)

DHT
DHT (theory)

(b) The abscissa is minimum k s.t. target in-
dices belong to [x2k, (x + 1)2k).

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5

N
o.

 o
f m

sg
.

Join-leave ratio
DA (all)
DA (success)

DHT (all)
DHT (success)

(c) “success” means the number of success
transfers. “all” means the sum of “success” and
the number of failed transfers.

Fig. 7. Inter-element accesses. For each graph, the number of nodes is 10000, k of the index selection range is 4, and the join-leave ratio is 0.0.

0
1
2
3
4
5
6
7
8
9

10

101 102 103 104 105 106

N
o.

 o
f m

sg
. /

 e
le

m
.

No. of nodes
DA
DA (theory)

DHT
DHT (theory)

(a)

0
1
2
3
4
5
6
7

100 101 102 103 104 105

N
o.

 o
f m

sg
. /

 e
le

m
.

No. of target elem.

DA
DA (theory)

DHT
DHT (theory)

(b)

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5

N
o.

 o
f m

sg
. /

 e
le

m
.

Join-leave ratio
DA (all)
DA (success)

DHT (all)
DHT (success)

(c) “success” means the number of success
transfers. “all” means the sum of “success” and
the number of failed transfers.

Fig. 8. Sequential accesses. The ordinate is the average message complexity per target element. For each graph, the number of nodes is 10000, the number
of target elements is 100, and the join-leave ratio is 0.0.

0
20
40
60
80

100
120
140
160
180
200

101 102 103 104 105 106

N
o.

 o
f m

sg
.

No. of nodes
DA
DA (theory)
DA (binary)

DHT
DHT (theory)

(a) “DA (binary)” means the binary search of
the DA.

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5

N
o.

 o
f m

sg
.

Join-leave ratio
DA (all)
DA (success)

DHT (all)
DHT (success)

(b) “success” means the number of success
transfers. “all” means the sum of “success” and
the number of failed transfers.

Fig. 9. Searching a sorted array. The number of nodes is 10000, and the join-leave ratio is 0.0.

0
1
2
3
4
5
6
7
8
9

10

101 102 103 104 105 106

N
o.

 o
f m

sg
.

No. of nodes
DA DHT Theory

Fig. 10. Single element access. The join-leave ratio
is 0.


