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Abstract— Security breaches and attacks are critical problems
in today’s networking. A key-point is that the security of each
host depends not only on the protection strategies it chooseo

adopt but also on those chosen by other hosts in the network.
The spread of Internet worms and viruses is only one example.
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A major source of complication in network security is
the typically autonomous nature of decision making in the
network, most notably in the Internet. Indeed, adminigirat
and policy enforcement are not possible at the inter-nétngr

This class of problems has two aspects. First, it deals with level (as opposed to intra-networking within a company),
epidemic processes, and as such calls for the employment ofhence a majority of users is left to make independent dewsio

epidemic theory. Second, the distributed and autonomous rare
of decision-making in major classes of networks (e.g., P2Rd-
hoc, and most notably the Internet) call for the employment &
game theoretical approaches. Accordingly, we propose a uigd
framework that combines the N-intertwined, S S epidemic model
with a noncooperative game model.

We determine the existence of a Nash equilibrium of the
respective game and characterize its properties. We show &l
its quality, in terms of overall network security, largely depends
on the underlying topology. We then provide a bound on the
level of system inefficiency due to the noncooperative behiaw,
namely, the “price of anarchy” of the game. We observe that tle
price of anarchy may be prohibitively high, hence we proposea
scheme for steering users towards socially efficient behaori

I. INTRODUCTION

including the choice of the protection strategy. Clearlijles

such decisions are made autonomously by users and nodes,
they do influence other users, through the potential irdecti
processes. This gives rise to rencooperative game [17],
whose investigation is the subject of this paper.

The noncooperative nature of the process of protecting
against viruses potentially has major implications on the
network and its users. Indeed, the trade-offs between the
damage infection and the price and overhead of a protection
strategy may be vastly different across users, hence pgjacin
certain nodes in an unfair position to protect much of the
network by investing more than other nodes. For example,
consider an internetwork that includes a company network
that has servers with vital data, as well as hosts of indafidu

Network security has become one of the major challengesers that are divided into subnetworks. Suppose that each

of communication networking. Security breaches come mmachine is administrated by an independent decision maker.
many forms, such as the spread of viruses and worms in tfige company’s servers will seek a higher level of protection
Internet, as well as social engineering compromises argttdirdue to the importance of the information they contain and the
exploitation of a host’s vulnerability. In such a breach, afact that many users’ hosts will be able to connect to them.
exposed iffected) host becomes a new source of infection®n the other hand, for individual users, the price of toolshsu
which attacks other unprotected machines. We shall term asy antivirus software and host's firewall will often be togthi
such breach asrus, and its spread as dnfection process. compared to the value of the security they provide. Morgover
In order to overcome such breaches and their implied user host often has just a small number of neighbors,
damage, network users and nodes can be equipped with gramely other hosts that can connect to them hence potgntiall
tection and curing tools, to which we shall refer@stection endangering them. Therefore, these hosts would compromise
strategies (or curing strategies). For example, a protection with a lower level of protection, hence decreasing the lefel
strategy is an antivirus software, with its signature dualisecurity of the whole network, and, in turn, putting a higher
and the speed of response to new virus strains. An importéotrden on the company’s servers.
property of a protection strategy is the frequency with Wwhic Investigating such aetwork security gamerequires a proper
the host is checked and secured. Several factors influeecefodel, which captures both the process of infection spread a
choice of the protection strategy, most notably the sigaifi® well as the game’s structure. We obtain such a model by com-
and value of the protected information, the probability dfining game theoretic principles with epidemic theory [28]
infection, the overhead of employing the protection stiate While extensive studies have been done on spreading pro-
and its (monetary) price. cesses in networks, its game theoretic perspectives haglly ha



been considered. Epidemics on computer networks were stpdint (NEP) [17] and characterize the strategies of noées at
ied in [11]-[14]. TheS'S (Susceptible Infected Susceptible) equilibrium, as well as the overall network performance.
model and the influence of the topology on the spreadingQur contributions

process were extensively studied in [7]-[10]. We shall eypl The main contributions of this study can be summarized as
theN-intertwined model, proposed and studied in [1], to modeFfollows.

the spreading process under the influence of a curing process) |ntroduction of a novel framework for network security

With the rapid growth of Internet and decentralization  ynder the presence of autonomous decision makers with
of services, the game theoretical framework has become an yitiple (possibly infinite) protection strategies. The

important tool for network modeling. Game theoretic models  odel encompasses general (arbitrary) topologies.
have been employed in various networking contexts, such a9y Establishment of the existence of a Nash equilibrium

flow control [18], [19], routing [20], [26], and bandwidthla4 point and characterization of its properties.

cation [21]. These studies mainly investigated the stmectd 3) Discussion of the related global (i.e., “social”) optaai

the network operating points i.e., the Nash equilibria ef - tion problem, and establishment of an upper bound on
spective games. Such equilibria are inherently inefficj2i the price of anarchy.

and, in general, exhibit suboptimal network performanc®@aA ) proposal of schemes for a network manager to influence

result, the question of how much worse the quality of a Nash ~ the game, resulting in a potentially major improvement
equilibrium is with respect to a centrally enforced optimum in the level of network security.

has received considerably attention e.g., [22]-[24]. Ideor
to quantify this inefficiency, several conceptual measbeas Il. THE N-INTERTWINED MODEL

been proposed in the literature. Most notably, itece of  \ye hroceed to review thBi-intertwined model introduced
anarchy [25] corresponds to a worst-case analysis and it Ig\y giscussed in [1]. A relation network is modeled as a con-
the ratio between thavorst Nash equilibrium and the Soc'alnected graph with users being nodes. By separately obgervin

optimum. each node, the security breach (virus) spread is modeled in

Recently, network security under a game theoretical £t p;irectional network specified by a symmetric adjacency
was considered in [5]. That study addressed the interplgy,qj. o A nodei at timet can be in one out of two states:

between protection and infection and noted the influence | e with probability vi(t) = PriX, = 1] or healthy, with
the underlying topology, however it focused on the case i, pijity 1 vi(t). The sum of the probabilities of being

just wo simple strategies, namely being fully protected Gisoctaq and susceptible are equal to 1 because a node can
totally unprotected. In particular, if a node chooses thdlyf only be in one of these two states. The state of a rioie
protected” strategy, its security level does not depenhoBe. e ifieq by a Bernoulli random variabi € {0,1}: X = 0

of its neighbors. Somewhat similar work appears in [30]},[31|LOr a susceptible node ang — 1 for an infected node. We

where Lelargeet al. Qe”efa”ze game settings to ipcorporatgssume that the curing process per noidea Poisson process
weak security solutions. However, the problem is tractabifiy, rate 5, and that the infection rate per link is a Poisson

only for sparse random g.raphs and trees. In [29], Jeetra. rocess with rat§ which is imminent for all nodes and thus
consider a network security game, where the level of SegcurEonstant in the network. For a nodewe can formulate the
is determined by weights assigned to a topology and tlﬂﬂ

infection process is not modeled. A framework that is closer .

to the present study is that ¢DS (Interdependent security dv;(t

games) [15], [16]. As opposed to [5], iDS games security % =B(1-v (t)),zla”vj (t) = 3vi(t)

levels of agents are interdependent even when they choose =

the “protected strategy”. However, tH®S framework does wherea;j is the element of the adjacency matAxand it is

not consider the influence of the underlying topology, as @&qual to 1 if the nodesand j are connected, otherwise it is 0.

restricts its attention to the case of a complete graph. A node is not considered connected to itself, iag.= 0. The
The N-intertwined epidemic model takes into account therobability of a node being infected depends on the proltbil

topology of therelation network. Each host stores IP ad-that it is not infected1— v;(t)) multiplied with the probability

dresses, e-mail accounts and passwords of other hosts @ a neighboj is infecteda;jv;(t) and that it tries to infect

systems. This stored information defines a relation betwed¢ node with the rate3. We denote the set of curing rates for

hosts. If a host is compromised, then all reachable hosts @metwork by the vecto® =[ & & .. &y |'. Detailed

be attacked as well. The relation network is an abstractiderivations are given in [1] and [2].

that determines the hosts that can be infected. The relationn the steady statg‘gtﬂ =0, vi(t) = Vie, for each node ¥

topology is a significant aspect of the spreading process [VkK N, we have that

lowing differential equation

[13], [14]. N
For given curing strategies of the individual nodes, it ispo BY aijVijwo
sible to calculate the probability of infection and the age Vi = =t (1)
@ N

infection time for individual nodes [1]. With such a powdrfu

: iiVjo 1+ Oi
model, we establish the existence of a Nash equilibrium ngla” joo O
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Fig. 1. Fraction of infected nodes as a function of infectiate B. The Fig. 2. Fraction of infected nodes as a function of curing fat all curing
epidemic threshold is denoted If3y. rates equal.

This system of equations has\Zolutions with one positive topology is significantly higher than for a line topology it
solution and one solution equal to 0 [1]. The positive soluti the same number of nodes.

gives the probability of nodes being in the infected state. | Figure 2 illustrates the behavior of the fraction of infette
the general case, the positive solution is differentiabléht nodes as a function of the curing raie

threshold, where two solutions meet. At the threshold, theTo simplify the analysis, we scale all the rates such that the
solution is not differentiable in general. We shall expltie spreading rate per link ig = 1.

meaning of the threshold later. For a fixedp =1 we can vary the curing rates such that

The fraction of infected nodes at any given timnean be whenAmax(As,) = 1, we have reached the threshold point. The
o . ©>
calculated as a sum of probabilities that the nodes aretmeccritical curing rates are denoted by the vectar As shown

N N
y(t) = % > Vj(t) and in the steady staig, = ﬁ S Vjoo. in [2], there are three possibilities:
=1 =1
For a Bernoulli random variable with infection probability Amax(As) <1 uninfected network
vi(t), we haveE[X;(t)] = vi(t). For a fixed set of curing rates Amax(As) =1  critical threshold 4)
per nodes, the fraction of infected nodes as a function of the Amax(As) >1  infected network

spreading rate per link is given in Figure 1 . The model has“q Fi 1 he threshol havi f
threshold valugd = 3¢ below which the epidemic extinguishesﬂfeclgal:jriet\’lv;vri can observe the threshold behavior of an
fe .

and the number of infected nodes in the steady state is O. ‘Il

threshold [2] is equal to A. A bound on the largest eigenvalue of the matrix Ag
Be — 1 @) We shall employ the following lower bound, derived in [2].
7 Amax(As) The bound on the largest eigenvalue of the mafgxs
where Amax(As) is @ maximal eigenvalue of the matris = Amax(As) > 2L )
diag(#)A. There are many different matrice with the maxiTol =N 5
same largest eigenvalue, and as a consequence, there are man gl !

-
different curing rate vectorsd that result with the same . . . . .
herelL is th f link h k. Th I
thresholdfc. The epidemic threshold is defined as foIIows\{v erel.is the number o IE[DS] In the networ & inequality

. - N .
for B < Bc, the infection dies out - the mean epidemic lifetiméS equivalent toAmax(As) > £ » WhereE[D] = ﬁ_zldi is the
is of orderlog(n) and for > 3¢ the epidemic persists with the LN = _
average number of infected nodes. If all the curing rates average degree arid] = Y & is the average curing rate.

are the sam@, = 0, = .. = On = 9, the threshold is given by The inequalities become ec'lfja"ties&f: d..
% = Wlx(A)' For B¢ = 1, critical curing rate [1] is

Ill. THE VIRUS PROTECTION GAME

B = Amax(A) (3) Consider a network wittN nodes defined by an adjacency
For example, the largest eigenvalue of a line graph matrix A. This is an underlying topology over which a virus
Amax(A) >~ 2 = &, while that of a star topology i3max(A) = can spread with an infection rafle= 1 per link. Each node
vN—1=29&.. These two graphs are interesting examples, akooses its curing rate among an infinite humber of stradegie
both have the same number of links= N— 1. Thus, in the from the intervald; € [0, 8yux]|, Where Syax > 1/Cmin, SO as
homogenous case, the level of protection required for a starminimize itscost function JV = & + Vi, Whereg is a



pOSItlve Value that Stands for thel atlve p”ce Of prOteCtlon ' c1<1, c2<1, optimum is at the threshold c1>1, cz>1, optimum is below the threshold
and quantifies the trade-off of the user between the money = '
(and any overhead) invested in protection and the penalty of .

being infectedcyin is the minimum of allc;. The curing rate

state space can be boundeddyx > 1/Cnin Without loss of s :

generality as shown in Lemma 5. For example, a firm may . “

give much importance to security, hence its relative prite o L B
protection would be smaller than that of a private Interrsetru . ,

Thus, the cost function of a nodes a weighted sum of the p T e bR e

curing rate per node);, and the probability of infection in -

the steady-statejc. -

To sum up, the game has players, corresponding to the
nodes of a graph. Each nodehooses a curing strate@y so .
as to minimize its cost functiod(). The strategies chosen by
all nodes result in a certain steady-sate infection prdipabi
for each nodeyi.. The latter is also the percentage of tim‘iﬁig. 3. Cost function for a network with two nodes and difféarparameters
that the node is in the infected state. We term this game @sndc,. The curing rated; of the first node is optimal.
the virus protection game.

A Nash equilibrium point (NEP) is a strategy profile such
that no user can benefit from unilgt)erally changing its stmat
We shall denote an NEP by avectdr=[ & & .. o]0 [
and a corresponding vector of individual probabilities of!’
infection Ve = [Vie, Vow, ..Viw| | . The probability of infection
Vi depends on the states of otﬂ)er nodes as in equation (1)
therefore, the cost functiod’)( §,A) depends on the vector Cid + Viea (81, 8_i a3+ (1-0)8,)
of curing strategies and the system (network) parameters. :

In the Appendix, a simple case with just two nodes and one
link illustrates the cost function behavior and the optiatian which holds for anyci. The probability of a node being
process of individual nodes. An example of a cost functidnfectedvi«(3i,d_i) is convex function in%. Wheng; reaches
for a network with two nodes is given in Figure 3. The coghe threshold value for the curing rac, the infection
function of the second noda? is calculated for different probability becomes zero. The cost functidfl is a sum of a
values of the constants andc,. The cost function can only convex function and a linear - strictly increasing functao,
increase due to the fact that the curing rate price is mugetar therefore, it is quasi-convex in the domain of interest. m
than the corresponding security it offers as in the case Theorem 3: For a set of strategied & € [0, dmax] Which is
1,co > 1. It can decrease due to the decrease of the infection-empty, compact and convex, and for the continuous and
probability if the curing rate price is not that significarg aquasi-convex cost function in ead, the game has at least
in the casec; < 1,c, < 1. A network is clean of viruses if one Nash equilibrium.
the curing rates of all nodes satisfy the threshold relat®)n Proof: The set of minimizers of a quasi-convex function
Whether the network is able to reach the threshold deperifsa convex set is convex. Continuity of the cost function im-
on the price each node is prepared to pay. plies upper-hemicontinuity of the point to set correspore

Clearly, it is of interest to establish the existence of arPNHS3]- ]
and characterize it. We shall show that a Nash equilibrium The existence of an NEP means that the protection game has
always exists. We shall also show that the NEP’s quality! least one stable point. We proceed to explore the pregerti
in terms of overall network security and protection again&f the Nash equilibria, which indicate the ability of a netwo
viruses, largely depends on the properties of the undeylyitp protect itself from epidemics.
topology.

0 01 04 05 08 1 12 14 16 18 2

Lemma 2: For the cost function defined ak" (5,5 ;) =
Gidi + Vio(8i,0_i), ¢ > 0, the function is quasi-convex in each
j=1.N. |

Proof: Let us first show thad() is quasi-convex irb;.
Jrop anyj #1i, the cost function)V) is quasi-convex in

< max{Gdi+Vieo(8i,8 i), G + Vieo(1,3i5 )}

B. Characterization of equilibrium

A. Nash Equilibrium An NEP can be in two very different regions, n_amely above
) o o o or at the threshold (4). The NEP does not exist below the
First we indicate that the individual probabilities of inf®n  hreshold: in order to realize why, consider the following
Vi, are strictly convex ir;. This will be later used to establishexamp|e_ A nodé has a curing rat&; and the curing rates
the quasi-convexity of the cost function, with which we $hahf other nodes are fixed. If inequality holdsnax(As,) < 1,
prove the existence of a Nash equilibrium. the cost function of a nodeis J) = ¢;&,. Therefore, a node
The following result is taken from [2]. i is able to reduce the curing rate such that its cost function

Lemma 1: For fixed curing rates of other nodes, the probjecreases, because the probability of infectian= 0 will not
ability of infection vi»(&;) is a strictly convex function idi.  change.



If the optimum of the cost function is reached at th&quality holds forN = 2. °

threshold poigt, we can have multiple Nash equilibria. A2 th  For a nodd to increased; from zero it has to hold that for

critical point & ¢, we have that somed; >0

)\maX(ABC) =1 (6) J(i.éi:O) > J(i.6i>0) (8)
This can be easily shown on a simple example of a two- 1 > €6+ Vie
nodes network (see the Appendix). This infinite set of NEPs Vie < 1—¢io

is bounded and we will establish the worst case scenario.
When the network is in the regime above the threshold, n
merical calculations suggest that only one equilibriunsesxi
However, this was not established formally, and the unigasn 8 >cdi+c—1 9)
of the NEP above the threshold remains an open problem. .
In the case of two nodes (see the Appendix), a uniq@d similarly, for nodej it holds

Nash equilibrium exists if¢/cic3 + {/cico > 1, (3182 < 1). & >cjdj+cj—1 (10)

ﬁnd similarly for nodej.
From (7) and (8) we have

For ¢/cics + ¢/c2c, < 1, (318, > 1), the example with two from (9) and (10) we have
nodes shows multiple NEPs.

Next, we determine the influence of the relative price of
protection vectof¢ on the Nash equilibria. This shall be latefyhich gives for positiver;, cj, 8
used to bound the equilibrium value of the cost function.

In some cases, all the nodes of a network decide not % > —Lac<l
to protect themselves against infection, leaving the dvera 9 < -1cci>1
network unsecured. If a node is unprotected, de= 0, the
infection probability is always equal to 1 and it does noi
depend on the curing rates of other nodes.

(1—-cicj)d; > —1+cic;

And similarly we have ford;. We can conclude that fag >
,Cj > 1 for nodesi and j there is no other solution than
o = 6j = 0. We can continue the process for any other two

The next theorem makes a distinction between networRgdes in the network concluding that the only solutiordis=

with a vector € such that every node chooses not to be® O - 0], which proves the first point of the theorem.
protected at all and networks where the equilibrium point is Point 2. ) ) .
reached with curing rates larger than 0. For scaled rates such th@t= 1, the infection probability

Theorem 4: In a virus protection game, for a network with®f & nodei is N
N nodes and with cost function for a nodeefined as _Xlaijvjw

. i=
I = 68 + Vieo Vi = 1
z aljvjoo + 6i

the following hold:
1) IfVig >1,the onﬂ Nash equilibrium is defined by therpe first derivative of the cost function for a notler =
curing rate vectord =[ 0 0 .. 0] is

2) If g < di' whered; is the degree of a nodethe curing

N N
rate of a nodé in the Nash equilibrium is different from 430 &y aaj%/—éf — > @ijVjw
zero, &, # 0. e I =1 (11)
Proof: Point 1. dd, 5—=0 (garv- +5)2

Consider any two nodes in the netwoik j. Since the ' j=1 e 50

network is a connected network witi nodes, at least one 1

node from the pair will be connected to at least one other node = G-} —

For the same);, dj,we can compare the infection probability Z a{JVJoo

of neighboring nodes in a network witN nodes Yiw,Vjew),

with the case of a network with only two connected nodes
Vico, V ( ) . The infection probability of a connected node WI|| =
mcrease due to possible connections to infectious nodes dinst derivative of the cost functlon is smaller than zero for
its neighbor will also feel this effect. It holds that any set of curing rates of other nodes. This proves the second
2 1-59; point of the theorem. [ |

foo (7) Theorem 4 shows that if antivirus software or other means
of protection against viruses are too expensive, such that
Vi ¢ > 1, the NEP is unique and the network will end up in the
@ s 1- 99 completely infected state. In order to steer a decision make
Jor TI =g d; i to chose protection over infection, the relative price $tiou

which achieves its maximum fo[ aw,l di. If ¢ < gll the

Vie > Vi Vieo >

— 1+9

Similarly, we have

Vi > Vi




satisfy the inequalitgi < &. The higher the degree of a nodec Z 3j. A manager can be interested in optimizing the overall
the more it is exposed to infection, hence the requiredivelat j=1

price is lower. For example, a large firm typically has manyrotection, such thatz Vjw = 0, which reduces the problem
interactions over the Internet and thus its degree is higher
Therefore, its required relative price of antivirus softevas CS 5
lower than that of a smaller firm, which has less opportusntle I = Z I

to get infected. In Sectlon II, we have seen that a network can be in two

In order to determine the global optimum and the worsignificantly different states, namely above or at the thoés

case scenario that can happen in a virus protection garhbgse two states have to be discussed separately. Thuslitve sp
we establish an upper bound on the minimum of the cddte optimization problem into two different problems, ndyne

function 3V optimization of the network at the threshold and above the
Lemma 5: The minimum of the cost functiorﬂ,(];?n is thrr]esholrc]i.We asstml\(laEtSqta_mqniger opt|m|ie§“|5npthe reﬁlme
bounded byl where the networ is, i.e.: if a networ reaches

min < . the threshold, the manager will optimize with the constrain
Proof: For curlng rated; > 0, Vie is bounded. The cost y g P

function ford; =0 is J(')(al ) 1 and the minimum cannot z Vjoo =0 while if a network NEP is above the threshold,
be larger than this value. Therefore, we have
the network manager will optimize the functidi = Z Vjoo—‘r

IO = CiSiopt + Viopt < 1 (12)
Sop < 1—CYiom < cl C z 5 with the constralntz Vi > 0. In the case of multiple
(| (|

NEPs where some are above and others are at the threshold,
In the case of a network above the threshold, inequality (1} network manager optimizes at the threshold.

holds because the function’s minimum cannot be larger thanthe network is below the threshold if the curing rates of

1 (J9(& =0) =1). We have individual nodes satisfy the mequallty
() J— '
= Ci&opt <1 Amax(diag( = Ly <1
1
0 < =
o= If the strict mequallty)\max(dlag( ) A) < 1 holds, the vector

_, n 6 cannot be a Nash equmbrlum point, because there is a

If multiple Nash equilibria exist, the curing vectd is point & < 5J such that)\max(mag(y) A) = 1. The equality
bounded as in Lemma 5. If the relative price of a protecthp

strategy for a nodeis too high, the other nodes in the network

will have to pay more for the security of the whole networkcond't'on(v') 55 =0 is satisfied.
Above the critical threshold, as in Figure 1, the probabiit

IV. GLOBAL OPTIMUM AND PRICE OF ANARCHY of infectionvi., are larger than zero and interesting parameters
if we could dictate the security strategy of théor the optimization are the sum of |nfect|on probabilitarsd

dlag( -) )— 1 can be a Nash equilibrium point, if the

Clearly,
whole network, we would be able to obtain a better solutiothe sum of curing ratedy = Z v,m+C Z 6J
However, as mentioned, the Internet is a decentralize@syst
and it is challenged by persistent virus infections. Thenef A. Optimization at the threshold
security of the whole network depends on the decisions ofas shown in section 111-B, there can be an infinite number
independent users. Yet, is it possible and feasible to cei@iyl of NEPs in this regime. What is the best possible strategy
cure the Internet? How far is the Internet from the globg] network manager can apply with the respect to the total
optimal point in the presence of a virus protection game? protection used? What is the lowest total price for the ceepl

In an attempt to address these questions, in this section Mearmet security and what is the worst state of the network?
discuss the global (social) optimization problem and theepr The set of Nash equilibria is bounded in this regiméésd; <
of anarchy for a network wittN nodes. 1 thus the worst NEP is also bounded.

Assume that a “network manager” has the same relativewe proceed to determine the worst possible case of an NEP
price of securityC for all the nodes. The correspondingand the global optimal point.

(glopql) pptimization problem is Lemma 6: The worst case Nash equilibrium, when the
Minimize N \ network is at the threshold, is bounded by
v = Vi +C Y 0j
2 VimtC 2 0 u<C Zf (13)

For someC a network will be in the regime at the threshold  Proof: Each curing rate is bounded by the constant
as in Lemma 5 and the set of Nash equilibria is therefore
and Y Vvjo = 0. The global cost function becom
E : g e = bounded as in (13). [ |



The minimum price that has to be paid for a network which Lemma 8: If & = (1 — a)di,a < 1, the probabilities 7of
is clean of viruses is determined by the number of links. infection are all equal, namelfi)vi, = a.
Theorem 7: The minimum global price for a network at the Proof: If § = (1—a)di,a <1, we have that

threshold is N N N
0j=1-a)Y dj < § d;
m|n -C sz jzl ) jZl J le J

o we are certainly above the threshold. Let us assurﬂ)a/ﬁaai
and it is reached for ead = d;. a, from 1 we have thab; = (1— a)d;. BecauseV.(3) is a
Proof: The lower bOUﬂd (5) on the largest eigenvalue Q:fljectlve function [1], the solution is unique aldd= (1—a)d;
matrix As, we have that |f > 1, the largest eigenvalueimplies that(Vi)Vvie, = Q. m
_Z 3j
=1
obeys Amax(As) > 2~ > 1. If Amax(As) > 1 the network
33 Na. Th|s function shows threshold behavior around the point
j=

C= Zd|

The optimization function reduces Iy =C(1—a) Z dJ

N
is above the threshold. Therefore, it 2 S d; which is
j=1

j N, C>d%
N N _ :
equivalent to y d; > 3 §; the network is infected. The v = Cydi C< N (14)
=L i
equalityAmax(As) = = = 1 holds ifd; = d; and the epidemic

z J ForC < the threshold is reached and the cost function

zd|
threshold is reached B s equal to the sum of degredg = CzdI < N. In the case
The above result is in agreement with the results obtain(e:d

from subcritical branching process theory [6]. the optimum is reached for curlng rates equal to zero

zd.
and JM =
Compared with the optimization at the threshold, where the
gpst function minimum can b#™" = O(N2) for the complete
graph, the cost function minimum cannot be larger than the
size of the networll™” = O(N).

N
It is possible that other curing distributions satis}ydj =

z 6,, however the minimum of the sum of curing rates cann
J7
be lower thanz dJ = 2L. At the threshold, the minimum of

the global cost functlon is a linear function of the number 9 Price of Anarchy

links in the networkJMm'”) — 2LC. The protection’s efficiency N @ noncooperative networking game, it is important to
depends on topological properties. In particular, for a plete know the social welfare attained at the operating points,

graph, the m|n|mum of the cost function is largest among dIRMely the Nash equilibria. A Nash equilibrium typically
min) —N(N-1)C. exhibits nonoptimal social welfare. This penalty of selfish

the graphsJM
For an NEP such thab; — &, = .8y = &: (homogenous iosegz;ﬁ]o;dlsaguantlfled by the price of anarchBoA), which

case), the price iy = NAmax(A). In section I, we compared
the largest eigenvalues of two topologies, namely line and poa = Cost of worst NEP

star topologies, both with the same number of links= Social optimum

N — 1. The minimal global price is the same for these two For the virus protection game, we have two significantly
topologies; however, in the homogenous case, the NEP pridifferent regimes. At the threshold, the cost of the social

is significantly higher for a star topologyy = CNv/N — 1), C Z d;. The cost of the worst Nash
than for a line topologyJdu = 2CN).

optimum is I =
equilibrium is upper bounded as in lemma 6, under the
B. Optimization above the threshold constraint that the network’s NEP is at the threshold, which
depends on the vectoc .

S Theorem 9: The price of anarchy for a network that reaches
an NEP at the threshold is bounded by

The network is above the threshold if the curing rates
satisfy the mequahty)\max(dlag(él) A > 1 In general, the

optimization function isjy = C 2 o + Z Vjo. Due to the N
=1 =1 ,Z =1

complexity of the general problem, we will not discuss it POA <
here. Instead, we will consider a simpler case wh&re-
(1-o)d,a < 1. CJZ dj

In theorem 7, the minimu of the cost function on the Proof: Follows from Lemma 6 and Theorem7. ®
threshold is reached fad = di; it is of interest to proceed It is interesting to note that if nodes regard security as an
with the same tactic above the threshold and determine
cost function for this strategy.

N
ﬁpr?portant issueqj <1, 5 % is large), the price of anarchy
j=1



can be very high. It is necessary to help the network reactwdl be on the bound such thafi vi. < Bj. Nodes that :fre
more efficient NEP, by starting the system from a point clogbove the bound will tend to decrease their curing rates,
to the optimal. which draws other nodes to do the same till they all reach the
If a network is above the thresholdd > 0), we considered constraint of infection probability;. Thus, the minimum is
a special case where curing rates are proportional to degresached fowvi vi. = Bj. The minimum point for all the nodes
with the same factor + a. For this special case, we carexists, and the corresponding curing rate can be calculated
estimate the price of anarchy. from Equation (1), fovj. = B
Theorem 10: For global optimum calculated for curing

. . B
rates proportional to the degrees, the price of anarchyebov %a” !
the threshold is bounded by B = SaiB] 5
N 1 J
J§1°J’ c>N Now, the curing rates are
N > = ydi
POA<C N, ' (1—Bi)§aqu
2 T AP
J:’g‘_ ] : C < % (\Vll) 6|m|n BI
C_zldj T -
i= .
Proof: Follows from Lemma 6 and equation (14). B For B; — 0 andB; finite for j #1i , the curing rate of node
V. MANAGING A NETWORK BY CONSTRAINING THE i will tend to infinity & — co. _
INFECTION PROBABILITIES ForB; =B, & =di(1-B), wheredu)s the degree of a node

We proceed to discuss how a manager can influence ani€ have the vector of curing rate3

cont_rol the Nash equilibria of the virus protg_ctiqn game. In m} _ [ Bdi(1-B) PBda(1—B) .. Bdn(1—B) }T

section IlI-B, we have shown how a Nash equilibrium depends

on the relative price of protection vector. If a network However, this is not a stable point. If there is an unfair play

is at the epidemic threshold, more Nash equilibrium poini8 the game, which reduces its security against the nylesB,
exist. By varying the relative price of protection vecfor a it can cause other players to pay more than what was planned.
manager can influence the network equilibrium point. A mar-he security of the whole network is harmed.

ager may be able to do that by determining (or affecting, e.g. This result suggests a strategy for steering autonomous
through subsidies) the cost of protection means, e.gyviargi Systems (ASs), or Internet service providers, to investegon
software, hence indirectly influencirgg Here, the “manager” in their own security, which is proportional to the number of
may be an antivirus supplier, which gives cheaper (per unitinks”, that is, interactions they have with other ASs. The
antivirus to entities that have many Internet interactiand way to “force security” upon ASs is by asking a certain fixed
are densely connected to other nodes. probability of infectionv; < B, for all relative pricesc; > 1.

In section 11I-B, Theorem 4, some conditions are introducetbgether with the fact that the cheapest threshold, in terms
that can give guidance to the choice of the relative price of the total security ¥ §;), is reached when the nodes are
protection. If allc; > 1, there is only an unprotected state, angrotected proportionally to their own degrees, this seemns t
no one will buy antivirus protection. I§ < Eli' a node will be a very fair way to provide overall security. Bigger ASs
always invest some money in protecting itself. These resuwith more connections towards other ASs will have to protect
make it possible for an antivirus supplier to estimate whiagp themselves more, in order to provide the same level of sgcuri
will make a network more secure. In Theorem 9, we have sewhile smaller ASs will invest proportionally to their sizasd
that too low relative prices can lead a network further awgyrofits.
from the global optimum. If large firms invest in expensive

. - VI. CONCLUSION
security, other nodes can buy cheaper antivirus softwasck su
that the network reaches the threshold. We presented a novel framework for network security

The other option for a manager is to set up upper boundgder the presence of autonomous decision makers. We have
on infection probabilities, for all relative prices> 1, which established the existence of a Nash equilibrium point (NEP)
will determine the Nash point as presented in Theorem 11investigated its properties. In particular, we showed, tvaen

Theorem 11: If Vi vie < Bj, Vi ¢ > 1, the only Nash the price of protection is relatively high (namekj, ¢; > 1),
equilibrium is reached for the only equilibrium point is that of a completely unprostt

network; while if this price is sufficiently low for a node
(1-Bi)3aiB (namely,ci < ), it will always i i ing i
i ] G < F) ys invest in protecting itself.
(V1) Bimin = : A network can be in two significantly different regimes,
Proof: The result for the unconstrained case wih namely above or at the threshold. If a network reaches Nash
nodes shows that a node will tend to decrease its curing ragemiilibrium at the threshold, multiple equilibria may éxis
till they all become terminally infected (Theorem 4). Thdyon The question of uniqueness of the Nash equilibrium above
NEP is out of the bounded region, thus the feasible minimutine threshold remains an open question.



We determined the global (social) optimum for the cases]
that the network is at the threshold and for a specific case
when it is above the threshold. At the threshold, the minimu
of the social cost function i©(L), wherelL is the number
of links in the network. Although the optimal value of the
social cost is the same for networks with the same number
links L, the non-optimal distribution of curing rates at an NEP
results in much worse social welfare in some topologies (e.g8!
a star graph) than in other topologies (e.g., a line grapleiV g,
optimizing above the threshold, we considered a specifie,cas
for which we showed that the global cost function is alwayd°l
smaller than the number of nodes in the network. This specific
case provides some insight on the social performance in thg
general case.

Finally, we have proposed two methods for steering tl%z]
network equilibrium, namely by influencing the relativeqas
and by imposing an upper bound on infection probabilities.[lg]
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[17]

APPENDIX [18]

A. Unconstrained case with 2 nodes

For a network with two nodes and one link, each nod&”!
chooses its strategy out of the intervidl € [0,0max]. The
cost function is defined a3(") = ¢;&; +vi. The probabilities [20]
of infection follow from (1) asvy = ll_f%??VZ = 1;?%22_
The Nash equilibrium point (NEP) is reached oy =

\3/%— 1, &o0pt = f/%_ 1. If optimal solutionsdiopt, d20pt
satisfy \/Sioptd20p > 1, the network NEP will be at the [?2
threshold and the cost functions reducelt = ¢181,J? = 23
C202. In this case, both nodes will choose smaller curing
rates thandiopt, d20p Such that new valued,; &, satisfy

\/B1opBaop = 1- All the solutions that satisf,, < 3/;1% — 4]

1.8 < /g5 — 1 @nd | /8,850y = 1 are optimal and [

[21]

C
nodes will not change their curing rates. This yields an itdin

number of Nash equilibrium points. [26]
In Figure 3, for a network with two nodes, the cost function
of the second nodé® is calculated for different values of [27]

constant; andc;.

[28]

29
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