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Abstract— Security breaches and attacks are critical problems
in today’s networking. A key-point is that the security of each
host depends not only on the protection strategies it chooses to
adopt but also on those chosen by other hosts in the network.
The spread of Internet worms and viruses is only one example.
This class of problems has two aspects. First, it deals with
epidemic processes, and as such calls for the employment of
epidemic theory. Second, the distributed and autonomous nature
of decision-making in major classes of networks (e.g., P2P,ad-
hoc, and most notably the Internet) call for the employment of
game theoretical approaches. Accordingly, we propose a unified
framework that combines theN-intertwined, SIS epidemic model
with a noncooperative game model.

We determine the existence of a Nash equilibrium of the
respective game and characterize its properties. We show that
its quality, in terms of overall network security, largely depends
on the underlying topology. We then provide a bound on the
level of system inefficiency due to the noncooperative behavior,
namely, the “price of anarchy” of the game. We observe that the
price of anarchy may be prohibitively high, hence we proposea
scheme for steering users towards socially efficient behavior.

I. I NTRODUCTION

Network security has become one of the major challenges
of communication networking. Security breaches come in
many forms, such as the spread of viruses and worms in the
Internet, as well as social engineering compromises and direct
exploitation of a host’s vulnerability. In such a breach, an
exposed (infected) host becomes a new source of infection,
which attacks other unprotected machines. We shall term any
such breach as avirus, and its spread as aninfection process.

In order to overcome such breaches and their implied
damage, network users and nodes can be equipped with pro-
tection and curing tools, to which we shall refer asprotection
strategies (or curing strategies). For example, a protection
strategy is an antivirus software, with its signature quality
and the speed of response to new virus strains. An important
property of a protection strategy is the frequency with which
the host is checked and secured. Several factors influence the
choice of the protection strategy, most notably the significance
and value of the protected information, the probability of
infection, the overhead of employing the protection strategy
and its (monetary) price.

A major source of complication in network security is
the typically autonomous nature of decision making in the
network, most notably in the Internet. Indeed, administration
and policy enforcement are not possible at the inter-networking
level (as opposed to intra-networking within a company),
hence a majority of users is left to make independent decisions,
including the choice of the protection strategy. Clearly, while
such decisions are made autonomously by users and nodes,
they do influence other users, through the potential infection
processes. This gives rise to anoncooperative game [17],
whose investigation is the subject of this paper.

The noncooperative nature of the process of protecting
against viruses potentially has major implications on the
network and its users. Indeed, the trade-offs between the
damage infection and the price and overhead of a protection
strategy may be vastly different across users, hence placing
certain nodes in an unfair position to protect much of the
network by investing more than other nodes. For example,
consider an internetwork that includes a company network
that has servers with vital data, as well as hosts of individual
users that are divided into subnetworks. Suppose that each
machine is administrated by an independent decision maker.
The company’s servers will seek a higher level of protection,
due to the importance of the information they contain and the
fact that many users’ hosts will be able to connect to them.
On the other hand, for individual users, the price of tools such
as antivirus software and host’s firewall will often be too high
compared to the value of the security they provide. Moreover,
a user host often has just a small number of neighbors,
namely other hosts that can connect to them hence potentially
endangering them. Therefore, these hosts would compromise
with a lower level of protection, hence decreasing the levelof
security of the whole network, and, in turn, putting a higher
burden on the company’s servers.

Investigating such anetwork security game requires a proper
model, which captures both the process of infection spread as
well as the game’s structure. We obtain such a model by com-
bining game theoretic principles with epidemic theory [28].

While extensive studies have been done on spreading pro-
cesses in networks, its game theoretic perspectives have hardly



2
been considered. Epidemics on computer networks were stud-
ied in [11]–[14]. TheSIS (Susceptible Infected Susceptible)
model and the influence of the topology on the spreading
process were extensively studied in [7]–[10]. We shall employ
theN-intertwined model, proposed and studied in [1], to model
the spreading process under the influence of a curing process.

With the rapid growth of Internet and decentralization
of services, the game theoretical framework has become an
important tool for network modeling. Game theoretic models
have been employed in various networking contexts, such as
flow control [18], [19], routing [20], [26], and bandwidth allo-
cation [21]. These studies mainly investigated the structure of
the network operating points i.e., the Nash equilibria of the re-
spective games. Such equilibria are inherently inefficient[27]
and, in general, exhibit suboptimal network performance. As a
result, the question of how much worse the quality of a Nash
equilibrium is with respect to a centrally enforced optimum
has received considerably attention e.g., [22]–[24]. In order
to quantify this inefficiency, several conceptual measureshave
been proposed in the literature. Most notably, theprice of
anarchy [25] corresponds to a worst-case analysis and it is
the ratio between theworst Nash equilibrium and the social
optimum.

Recently, network security under a game theoretical setting
was considered in [5]. That study addressed the interplay
between protection and infection and noted the influence of
the underlying topology, however it focused on the case of
just two simple strategies, namely being fully protected or
totally unprotected. In particular, if a node chooses the “fully
protected” strategy, its security level does not depend on those
of its neighbors. Somewhat similar work appears in [30], [31],
where Lelargeet al. generalize game settings to incorporate
weak security solutions. However, the problem is tractable
only for sparse random graphs and trees. In [29], Jianget al.
consider a network security game, where the level of security
is determined by weights assigned to a topology and the
infection process is not modeled. A framework that is closer
to the present study is that ofIDS (Interdependent security
games) [15], [16]. As opposed to [5], inIDS games security
levels of agents are interdependent even when they choose
the “protected strategy”. However, theIDS framework does
not consider the influence of the underlying topology, as it
restricts its attention to the case of a complete graph.

The N-intertwined epidemic model takes into account the
topology of the relation network. Each host stores IP ad-
dresses, e-mail accounts and passwords of other hosts and
systems. This stored information defines a relation between
hosts. If a host is compromised, then all reachable hosts can
be attacked as well. The relation network is an abstraction
that determines the hosts that can be infected. The relation
topology is a significant aspect of the spreading process [7],
[13], [14].

For given curing strategies of the individual nodes, it is pos-
sible to calculate the probability of infection and the average
infection time for individual nodes [1]. With such a powerful
model, we establish the existence of a Nash equilibrium

point (NEP) [17] and characterize the strategies of nodes at
equilibrium, as well as the overall network performance.

Our contributions
The main contributions of this study can be summarized as

follows.

1) Introduction of a novel framework for network security
under the presence of autonomous decision makers with
multiple (possibly infinite) protection strategies. The
model encompasses general (arbitrary) topologies.

2) Establishment of the existence of a Nash equilibrium
point and characterization of its properties.

3) Discussion of the related global (i.e., “social”) optimiza-
tion problem, and establishment of an upper bound on
the price of anarchy.

4) Proposal of schemes for a network manager to influence
the game, resulting in a potentially major improvement
in the level of network security.

II. T HE N-INTERTWINED MODEL

We proceed to review theN-intertwined model introduced
and discussed in [1]. A relation network is modeled as a con-
nected graph with users being nodes. By separately observing
each node, the security breach (virus) spread is modeled in
a bidirectional network specified by a symmetric adjacency
matrix A. A node i at time t can be in one out of two states:
infected, with probability vi(t) = Pr[Xi = 1] or healthy, with
probability 1− vi(t). The sum of the probabilities of being
infected and susceptible are equal to 1 because a node can
only be in one of these two states. The state of a nodei is
specified by a Bernoulli random variableXi ∈ {0,1}: Xi = 0
for a susceptible node andXi = 1 for an infected node. We
assume that the curing process per nodei is a Poisson process
with rate δi, and that the infection rate per link is a Poisson
process with rateβ which is imminent for all nodes and thus
constant in the network. For a nodei, we can formulate the
following differential equation

dvi(t)
dt

= β(1− vi(t))
N

∑
j=1

ai jv j(t)− δivi(t)

whereai j is the element of the adjacency matrixA and it is
equal to 1 if the nodesi and j are connected, otherwise it is 0.
A node is not considered connected to itself, i.e.,aii = 0. The
probability of a node being infected depends on the probability
that it is not infected(1−vi(t)) multiplied with the probability
that a neighborj is infectedai jv j(t) and that it tries to infect
the nodei with the rateβ. We denote the set of curing rates for
a network by the vector

−→
δ = [ δ1 δ2 .. δN ]T . Detailed

derivations are given in [1] and [2].
In the steady statedvi(t)

dt = 0, vi(t) = vi∞, for each node 1≤
i ≤ N, we have that

vi∞ =

β
N
∑
j=1

ai jv j∞

β
N
∑
j=1

ai jv j∞ + δi

(1)
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Fig. 1. Fraction of infected nodes as a function of infectionrate β. The
epidemic threshold is denoted byβc.

This system of equations has 2N solutions with one positive
solution and one solution equal to 0 [1]. The positive solution
gives the probability of nodes being in the infected state. In
the general case, the positive solution is differentiable to the
threshold, where two solutions meet. At the threshold, the
solution is not differentiable in general. We shall explainthe
meaning of the threshold later.

The fraction of infected nodes at any given timet can be
calculated as a sum of probabilities that the nodes are infected

y(t) = 1
N

N
∑
j=1

v j(t) and in the steady statey∞ = 1
N

N
∑
j=1

v j∞.

For a Bernoulli random variable with infection probability
vi(t), we haveE[Xi(t)] = vi(t). For a fixed set of curing rates
per nodes, the fraction of infected nodes as a function of the
spreading rate per link is given in Figure 1 . The model has a
threshold valueβ = βc below which the epidemic extinguishes
and the number of infected nodes in the steady state is 0. The
threshold [2] is equal to

βc =
1

λmax(Aδ)
(2)

whereλmax(Aδ) is a maximal eigenvalue of the matrixAδ =
diag( 1

δi
)A. There are many different matricesAδ with the

same largest eigenvalue, and as a consequence, there are many
different curing rate vectors

−→
δ that result with the same

thresholdβc. The epidemic threshold is defined as follows:
for β < βc, the infection dies out - the mean epidemic lifetime
is of orderlog(n) and forβ > βc the epidemic persists with the
average number of infected nodesy∞. If all the curing rates
are the sameδ1 = δ2 = .. = δN = δ, the threshold is given by
βc
δc

= 1
λmax(A)

. For βc = 1, critical curing rate [1] is

δc = λmax(A) (3)

For example, the largest eigenvalue of a line graph is
λmax(A) ≃ 2 = δc, while that of a star topology isλmax(A) =√

N −1 = δc. These two graphs are interesting examples, as
both have the same number of linksL = N −1. Thus, in the
homogenous case, the level of protection required for a star
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Fig. 2. Fraction of infected nodes as a function of curing rate for all curing
rates equal.

topology is significantly higher than for a line topology with
the same number of nodes.

Figure 2 illustrates the behavior of the fraction of infected
nodes as a function of the curing rateδ.

To simplify the analysis, we scale all the rates such that the
spreading rate per link isβ = 1.

For a fixedβ = 1 we can vary the curing rates such that
whenλmax(Aδc) = 1, we have reached the threshold point. The

critical curing rates are denoted by the vector
−→
δc . As shown

in [2], there are three possibilities:






λmax(Aδ) < 1 uninfected network
λmax(Aδ) = 1 critical threshold
λmax(Aδ) > 1 infected network

(4)

In Figure 1, we can observe the threshold behavior of an
infected network.

A. A bound on the largest eigenvalue of the matrix Aδ

We shall employ the following lower bound, derived in [2].
The bound on the largest eigenvalue of the matrixAδ is

λmax(Aδ) ≥
2L
N
∑

i=1
δi

(5)

whereL is the number of links in the network. The inequality

is equivalent toλmax(Aδ) ≥ E[D]
E[δ]

, whereE[D] = 1
N

N
∑

i=1
di is the

average degree andE[δ] = 1
N

N
∑

i=1
δi is the average curing rate.

The inequalities become equalities ifδi = di.

III. T HE VIRUS PROTECTION GAME

Consider a network withN nodes defined by an adjacency
matrix A. This is an underlying topology over which a virus
can spread with an infection rateβ = 1 per link. Each nodei
chooses its curing rate among an infinite number of strategies
from the intervalδi ∈ [0,δmax], where δmax > 1/cmin, so as
to minimize its cost function J(i) = ciδi + vi∞, whereci is a
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positive value that stands for therelative price of protection
and quantifies the trade-off of the user between the money
(and any overhead) invested in protection and the penalty of
being infected.cmin is the minimum of allci. The curing rate
state space can be bounded byδmax > 1/cmin without loss of
generality as shown in Lemma 5. For example, a firm may
give much importance to security, hence its relative price of
protection would be smaller than that of a private Internet user.
Thus, the cost function of a nodei is a weighted sum of the
curing rate per node,δi, and the probability of infection in
the steady-state,vi∞.

To sum up, the game hasN players, corresponding to the
nodes of a graph. Each nodei chooses a curing strategyδi so
as to minimize its cost functionJ(i). The strategies chosen by
all nodes result in a certain steady-sate infection probability
for each node,vi∞. The latter is also the percentage of time
that the node is in the infected state. We term this game as
the virus protection game.

A Nash equilibrium point (NEP) is a strategy profile such
that no user can benefit from unilaterally changing its strategy.
We shall denote an NEP by a vector

−→
δ = [ δ1 δ2 .. δN ]T

and a corresponding vector of individual probabilities of
infection V∞ = [v1∞,v2∞, ..vN∞]T . The probability of infection
vi∞ depends on the states of other nodes as in equation (1) and,
therefore, the cost functionJ(i)(

−→
δ ,A) depends on the vector

of curing strategies and the system (network) parameters.
In the Appendix, a simple case with just two nodes and one

link illustrates the cost function behavior and the optimization
process of individual nodes. An example of a cost function
for a network with two nodes is given in Figure 3. The cost
function of the second nodeJ(2) is calculated for different
values of the constantsc1 andc2. The cost function can only
increase due to the fact that the curing rate price is much larger
than the corresponding security it offers as in the casec1 >
1,c2 > 1. It can decrease due to the decrease of the infection
probability if the curing rate price is not that significant as
in the casec1 < 1,c2 < 1. A network is clean of viruses if
the curing rates of all nodes satisfy the threshold relation(2).
Whether the network is able to reach the threshold depends
on the price each node is prepared to pay.

Clearly, it is of interest to establish the existence of an NEP
and characterize it. We shall show that a Nash equilibrium
always exists. We shall also show that the NEP’s quality,
in terms of overall network security and protection against
viruses, largely depends on the properties of the underlying
topology.

A. Nash Equilibrium

First we indicate that the individual probabilities of infection
vi∞ are strictly convex inδi. This will be later used to establish
the quasi-convexity of the cost function, with which we shall
prove the existence of a Nash equilibrium.

The following result is taken from [2].
Lemma 1: For fixed curing rates of other nodes, the prob-

ability of infection vi∞(δi) is a strictly convex function inδi.

c1<1, c2<1, optimum is at the threshold c1>1, c2>1, optimum is below the threshold

c1<1, c2<1, optimum is below the threshold

c1<1, c2<1, optimum is at the threshold c1>1, c2>1, optimum is below the threshold

c1<1, c2<1, optimum is below the threshold

Fig. 3. Cost function for a network with two nodes and different parameters
c1 and c2. The curing rateδ1 of the first node is optimal.

Lemma 2: For the cost function defined asJ(i)(δi,δ−i) =
ciδi + vi∞(δi,δ−i), ci > 0, the function is quasi-convex in each
δ j, j = 1..N.

Proof: Let us first show thatJ(i) is quasi-convex inδ j.
For any j 6= i, the cost functionJ(i) is quasi-convex inj

ciδi + vi∞(δi,δ−i,λδ j+(1−λ)δ′j
)

≤ max{ciδi + vi∞(δi,δ−i,δ′j
),ciδi + vi∞(δi,δ−iδ j

)}

which holds for anyci. The probability of a node being
infectedvi∞(δi,δ−i) is convex function inδi. Whenδi reaches
the threshold value for the curing rateδic, the infection
probability becomes zero. The cost functionJ(i) is a sum of a
convex function and a linear - strictly increasing functionand,
therefore, it is quasi-convex in the domain of interest.

Theorem 3: For a set of strategies∀i δi ∈ [0,δmax] which is
non-empty, compact and convex, and for the continuous and
quasi-convex cost function in eachδi, the game has at least
one Nash equilibrium.

Proof: The set of minimizers of a quasi-convex function
on a convex set is convex. Continuity of the cost function im-
plies upper-hemicontinuity of the point to set correspondence
[3].

The existence of an NEP means that the protection game has
at least one stable point. We proceed to explore the properties
of the Nash equilibria, which indicate the ability of a network
to protect itself from epidemics.

B. Characterization of equilibrium

An NEP can be in two very different regions, namely above
or at the threshold (4). The NEP does not exist below the
threshold: in order to realize why, consider the following
example. A nodei has a curing rateδi and the curing rates
of other nodes are fixed. If inequality holdsλmax(Aδc) < 1,
the cost function of a nodei is J(i) = ciδi. Therefore, a node
i is able to reduce the curing rate such that its cost function
decreases, because the probability of infectionvi∞ = 0 will not
change.
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If the optimum of the cost function is reached at the

threshold point, we can have multiple Nash equilibria. At the
critical point

−→
δ c, we have that

λmax(Aδc) = 1 (6)

This can be easily shown on a simple example of a two-
nodes network (see the Appendix). This infinite set of NEPs
is bounded and we will establish the worst case scenario.

When the network is in the regime above the threshold, nu-
merical calculations suggest that only one equilibrium exists.
However, this was not established formally, and the uniqueness
of the NEP above the threshold remains an open problem.

In the case of two nodes (see the Appendix), a unique

Nash equilibrium exists if 3
√

c1c2
2 + 3

√

c2
1c2 > 1, (δ1δ2 < 1).

For 3
√

c1c2
2 + 3

√

c2
1c2 ≤ 1, (δ1δ2 ≥ 1), the example with two

nodes shows multiple NEPs.
Next, we determine the influence of the relative price of

protection vector−→c on the Nash equilibria. This shall be later
used to bound the equilibrium value of the cost function.

In some cases, all the nodes of a network decide not
to protect themselves against infection, leaving the overall
network unsecured. If a node is unprotected, i.e.,δi = 0, the
infection probability is always equal to 1 and it does not
depend on the curing rates of other nodes.

The next theorem makes a distinction between networks
with a vector−→c such that every node chooses not to be
protected at all and networks where the equilibrium point is
reached with curing rates larger than 0.

Theorem 4: In a virus protection game, for a network with
N nodes and with cost function for a nodei defined as

J(i) = ciδi + vi∞

the following hold:
1) If ∀i ci ≥ 1, the only Nash equilibrium is defined by the

curing rate vector
−→
δ = [ 0 0 .. 0 ]T .

2) If ci <
1
di

, wheredi is the degree of a nodei, the curing
rate of a nodei in the Nash equilibrium is different from
zero,δi 6= 0.

Proof: Point 1.
Consider any two nodes in the networki, j. Since the

network is a connected network withN nodes, at least one
node from the pair will be connected to at least one other node.
For the sameδi,δ j ,we can compare the infection probability
of neighboring nodes in a network withN nodes (vi∞,v j∞),
with the case of a network with only two connected nodes
vi∞,v(2)

j∞ . The infection probability of a connected node will
increase due to possible connections to infectious nodes and
its neighbor will also feel this effect. It holds that

vi∞ ≥ v(2)
i∞ ,vi∞ ≥ 1− δiδ j

1+ δi
(7)

Similarly, we have

v j∞ ≥ v(2)
j∞ ,v j∞ ≥ 1− δiδ j

1+ δ j

Equality holds forN = 2.
For a nodei to increaseδi from zero it has to hold that for

someδi > 0

J(i,δi=0) > J(i,δi>0) (8)

1 > ciδi + vi∞

vi∞ < 1− ciδi

and similarly for nodej.
From (7) and (8) we have

δ j > ciδi + ci −1 (9)

and similarly, for nodej it holds

δi > c jδ j + c j −1 (10)

from (9) and (10) we have

(1− cic j)δ j > −1+ cic j

which gives for positiveci,c j,δ j

δ j > −1, cic j < 1

δ j < −1, cic j > 1

And similarly we have forδi. We can conclude that forci >
1,c j > 1 for nodesi and j there is no other solution than
δi = δ j = 0. We can continue the process for any other two

nodes in the network concluding that the only solution is
−→
δ =

[ 0 0 .. 0 ], which proves the first point of the theorem.
Point 2.
For scaled rates such thatβ = 1, the infection probability

of a nodei is

vi∞ =

N
∑
j=1

ai jv j∞

N
∑
j=1

ai jv j∞ + δi

The first derivative of the cost function for a nodei for δi = 0
is

dJ(i)

dδi

∣

∣

∣

∣

∣

δi=0

= ci +

δi

N
∑
j=1

ai j
∂v j∞
∂δi

−
N
∑
j=1

ai jv j∞

(
N
∑
j=1

ai jv j∞ + δi)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

δi=0

(11)

= ci −
1

N
∑
j=1

ai jv j∞

which achieves its maximum for
N
∑
j=1

ai jv ji = di. If ci < 1
di

, the

first derivative of the cost function is smaller than zero for
any set of curing rates of other nodes. This proves the second
point of the theorem.

Theorem 4 shows that if antivirus software or other means
of protection against viruses are too expensive, such that
∀i ci ≥ 1, the NEP is unique and the network will end up in the
completely infected state. In order to steer a decision maker
i to chose protection over infection, the relative price should
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satisfy the inequalityci <

1
di

. The higher the degree of a node,
the more it is exposed to infection, hence the required relative
price is lower. For example, a large firm typically has many
interactions over the Internet and thus its degree is higher.
Therefore, its required relative price of antivirus software is
lower than that of a smaller firm, which has less opportunities
to get infected.

In order to determine the global optimum and the worst
case scenario that can happen in a virus protection game,
we establish an upper bound on the minimum of the cost
function J(i)

min.

Lemma 5: The minimum of the cost functionJ(i)
min is

bounded byJ(i)
min ≤ 1.

Proof: For curing rateδi > 0, vi∞ is bounded. The cost
function forδi = 0 is J(i)(δi = 0) = 1 and the minimum cannot
be larger than this value. Therefore, we have

J(i)
min = ciδiopt + viopt ≤ 1 (12)

δiopt ≤ 1− viopt

ci
≤ 1

ci

In the case of a network above the threshold, inequality (12)
holds because the function’s minimum cannot be larger than
1 ( J(i)(δi = 0) = 1). We have

J(i) = ciδiopt ≤ 1

δiopt ≤ 1
ci

If multiple Nash equilibria exist, the curing vector
−→
δc is

bounded as in Lemma 5. If the relative price of a protection
strategy for a nodei is too high, the other nodes in the network
will have to pay more for the security of the whole network.

IV. GLOBAL OPTIMUM AND PRICE OF ANARCHY

Clearly, if we could dictate the security strategy of the
whole network, we would be able to obtain a better solution.
However, as mentioned, the Internet is a decentralized system,
and it is challenged by persistent virus infections. Therefore,
security of the whole network depends on the decisions of
independent users. Yet, is it possible and feasible to completely
cure the Internet? How far is the Internet from the global
optimal point in the presence of a virus protection game?

In an attempt to address these questions, in this section we
discuss the global (social) optimization problem and the price
of anarchy for a network withN nodes.

Assume that a “network manager” has the same relative
price of securityC for all the nodes. The corresponding
(global) optimization problem is

Minimize

JM =
N

∑
j=1

v j∞ +C
N

∑
j=1

δ j

For someC, a network will be in the regime at the threshold

and
N
∑
j=1

v j∞ = 0. The global cost function becomesJM =

C
N
∑
j=1

δ j. A manager can be interested in optimizing the overall

protection, such that
N
∑
j=1

v j∞ = 0, which reduces the problem

to JM = C
N
∑
j=1

δ j.

In Section II, we have seen that a network can be in two
significantly different states, namely above or at the threshold.
These two states have to be discussed separately. Thus, we split
the optimization problem into two different problems, namely:
optimization of the network at the threshold and above the
threshold. We assume that a manager optimizes in the regime
where the network NEP is, i.e.: if a network NEP reaches
the threshold, the manager will optimize with the constraint

N
∑
j=1

v j∞ = 0 while if a network NEP is above the threshold,

the network manager will optimize the functionJM =
N
∑
j=1

v j∞ +

C
N
∑
j=1

δ j with the constraint
N
∑
j=1

v j∞ > 0. In the case of multiple

NEPs, where some are above and others are at the threshold,
the network manager optimizes at the threshold.

The network is below the threshold if the curing rates of
individual nodes satisfy the inequality

λmax(diag(
1
δi

)A) ≤ 1

If the strict inequalityλmax(diag( 1
δi

)A) < 1 holds, the vector
−→
δ cannot be a Nash equilibrium point, because there is a
point δ∗j < δ j such thatλmax(diag( 1

δ∗i
)A) = 1. The equality

λmax(diag( 1
δi

)A) = 1 can be a Nash equilibrium point, if the

condition(∀i) ∂J(i)

∂δi
= 0 is satisfied.

Above the critical threshold, as in Figure 1, the probabilities
of infectionvi∞ are larger than zero and interesting parameters
for the optimization are the sum of infection probabilitiesand

the sum of curing ratesJM =
N
∑
j=1

v j∞ +C
N
∑
j=1

δ j.

A. Optimization at the threshold

As shown in section III-B, there can be an infinite number
of NEPs in this regime. What is the best possible strategy
a network manager can apply with the respect to the total
protection used? What is the lowest total price for the complete
Internet security and what is the worst state of the network?
The set of Nash equilibria is bounded in this regime as(∀i)δi <
1
ci

, thus the worst NEP is also bounded.
We proceed to determine the worst possible case of an NEP

and the global optimal point.
Lemma 6: The worst case Nash equilibrium, when the

network is at the threshold, is bounded by

JM < C
N

∑
j=1

1
c j

(13)

Proof: Each curing rate is bounded by the constantci

as in Lemma 5 and the set of Nash equilibria is therefore
bounded as in (13).
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The minimum price that has to be paid for a network which

is clean of viruses is determined by the number of links.
Theorem 7: The minimum global price for a network at the

threshold is

J(min)
M = C

N

∑
j=1

d j

and it is reached for eachδi = di.

Proof: The lower bound (5) on the largest eigenvalue of
matrix Aδ, we have that if 2L

N
∑

j=1
δ j

≥ 1, the largest eigenvalue

obeys λmax(Aδ) ≥ 2L
N
∑

j=1
δ j

≥ 1. If λmax(Aδ) ≥ 1 the network

is above the threshold. Therefore, if 2L ≥
N
∑
j=1

δ j which is

equivalent to
N
∑
j=1

d j ≥
N
∑
j=1

δ j the network is infected. The

equalityλmax(Aδ) = 2L
N
∑

j=1
δ j

= 1 holds ifδi = di and the epidemic

threshold is reached.
The above result is in agreement with the results obtained

from subcritical branching process theory [6].

It is possible that other curing distributions satisfy
N
∑
j=1

d j =

N
∑
j=1

δ j, however the minimum of the sum of curing rates cannot

be lower than
N
∑
j=1

d j = 2L. At the threshold, the minimum of

the global cost function is a linear function of the number of
links in the networkJ(min)

M = 2LC. The protection’s efficiency
depends on topological properties. In particular, for a complete
graph, the minimum of the cost function is largest among all
the graphsJ(min)

M = N(N −1)C.
For an NEP such thatδ1 = δ2 = ..δN = δc (homogenous

case), the price isJM = Nλmax(A). In section II, we compared
the largest eigenvalues of two topologies, namely line and
star topologies, both with the same number of linksL =
N − 1. The minimal global price is the same for these two
topologies; however, in the homogenous case, the NEP price
is significantly higher for a star topology(JM = C N

√
N −1),

than for a line topology(JM = 2C N).

B. Optimization above the threshold

The network is above the threshold if the curing rates
satisfy the inequalityλmax(diag( 1

δi
)A) > 1. In general, the

optimization function isJM = C
N
∑
j=1

δ j +
N
∑
j=1

v j∞. Due to the

complexity of the general problem, we will not discuss it
here. Instead, we will consider a simpler case whereδi =
(1−α)di,α < 1.

In theorem 7, the minimu of the cost function on the
threshold is reached forδi = di; it is of interest to proceed
with the same tactic above the threshold and determine the
cost function for this strategy.

Lemma 8: If δi = (1− α)di,α < 1, the probabilities of
infection are all equal, namely(∀i)vi∞ = α.

Proof: If δi = (1−α)di,α < 1, we have that

N

∑
j=1

δ j = (1−α)
N

∑
j=1

d j ≤
N

∑
j=1

d j

we are certainly above the threshold. Let us assume thatvi∞ =

α, from 1 we have thatδi = (1−α)di. BecauseV∞(
−→
δ ) is a

bijective function [1], the solution is unique andδi = (1−α)di

implies that(∀i)vi∞ = α.

The optimization function reduces toJM = C(1−α)
N
∑
j=1

d j +

Nα. This function shows threshold behavior around the point
C = N

∑
i
di

.

JM =







N, C ≥ N
∑
i
di

C∑
i
di C < N

∑
i
di

(14)

For C < N
∑
i
di

, the threshold is reached and the cost function

is equal to the sum of degreesJM = C∑
i
di < N. In the case

C ≥ N
∑
i
di

, the optimum is reached for curing rates equal to zero

andJM = N.
Compared with the optimization at the threshold, where the

cost function minimum can beJ(min)
M = O(N2) for the complete

graph, the cost function minimum cannot be larger than the
size of the networkJ(min)

M = O(N).

C. Price of Anarchy

In a noncooperative networking game, it is important to
know the social welfare attained at the operating points,
namely the Nash equilibria. A Nash equilibrium typically
exhibits nonoptimal social welfare. This penalty of selfish
behavior is quantified by the price of anarchy (PoA), which
is defined as:

PoA =
Cost o f worst NEP

Social optimum

For the virus protection game, we have two significantly
different regimes. At the threshold, the cost of the social

optimum is J(min)
M = C

N
∑
j=1

d j. The cost of the worst Nash

equilibrium is upper bounded as in lemma 6, under the
constraint that the network’s NEP is at the threshold, which
depends on the vector−→c .

Theorem 9: The price of anarchy for a network that reaches
an NEP at the threshold is bounded by

PoA ≤

N
∑
j=1

1
c j

C
N
∑
j=1

d j

Proof: Follows from Lemma 6 and Theorem 7.
It is interesting to note that if nodes regard security as an

important issue (c j ≪ 1,
N
∑
j=1

1
c j

is large), the price of anarchy



8
can be very high. It is necessary to help the network reach a
more efficient NEP, by starting the system from a point close
to the optimal.

If a network is above the threshold (vi∞ > 0), we considered
a special case where curing rates are proportional to degrees
with the same factor 1− α. For this special case, we can
estimate the price of anarchy.

Theorem 10: For global optimum calculated for curing
rates proportional to the degrees, the price of anarchy above
the threshold is bounded by

PoA ≤































N
∑

j=1

1
c j

N , C ≥ N
∑
i
di

N
∑

j=1

1
c j

C
N
∑

j=1
d j

, C < N
∑
i
di

Proof: Follows from Lemma 6 and equation (14).

V. M ANAGING A NETWORK BY CONSTRAINING THE

INFECTION PROBABILITIES

We proceed to discuss how a manager can influence and
control the Nash equilibria of the virus protection game. In
section III-B, we have shown how a Nash equilibrium depends
on the relative price of protection vector−→c . If a network
is at the epidemic threshold, more Nash equilibrium points
exist. By varying the relative price of protection vector−→c a
manager can influence the network equilibrium point. A man-
ager may be able to do that by determining (or affecting, e.g.,
through subsidies) the cost of protection means, e.g., antivirus
software, hence indirectly influencingci. Here, the “manager”
may be an antivirus supplier, which gives cheaper (per unit)
antivirus to entities that have many Internet interactionsand
are densely connected to other nodes.

In section III-B, Theorem 4, some conditions are introduced
that can give guidance to the choice of the relative price of
protection. If allci > 1, there is only an unprotected state, and
no one will buy antivirus protection. Ifci < 1

di
, a node will

always invest some money in protecting itself. These results
make it possible for an antivirus supplier to estimate what price
will make a network more secure. In Theorem 9, we have seen
that too low relative prices can lead a network further away
from the global optimum. If large firms invest in expensive
security, other nodes can buy cheaper antivirus software such
that the network reaches the threshold.

The other option for a manager is to set up upper bounds
on infection probabilities, for all relative pricesci ≥ 1, which
will determine the Nash point as presented in Theorem 11.

Theorem 11: If ∀i vi∞ ≤ Bi, ∀i ci > 1, the only Nash
equilibrium is reached for

(∀i) δimin =

(1−Bi)∑
j
ai jB j

Bi
Proof: The result for the unconstrained case withN

nodes shows that a node will tend to decrease its curing rates
till they all become terminally infected (Theorem 4). The only
NEP is out of the bounded region, thus the feasible minimum

will be on the bound such that∀i vi∞ ≤ B j. Nodes that are
above the bound will tend to decrease their curing rates,
which draws other nodes to do the same till they all reach the
constraint of infection probabilityB j. Thus, the minimum is
reached for∀i vi∞ = B j. The minimum point for all the nodes
exists, and the corresponding curing rate can be calculated
from Equation (1), forv j∞ = B j

Bi =

∑
j
ai jB j

∑
j
ai jB j + δi

Now, the curing rates are

(∀i) δimin =

(1−Bi)∑
j
ai jB j

Bi

For Bi → 0 andB j finite for j 6= i , the curing rate of node
i will tend to infinity δi → ∞.

For B j = B, δi = di(1−B), wheredi is the degree of a node

i, we have the vector of curing rates
−→
δ

−−→
δmin =

[

βd1(1−B) βd2(1−B) .. βdN(1−B)
]T

However, this is not a stable point. If there is an unfair player
in the game, which reduces its security against the rulesvi > B,
it can cause other players to pay more than what was planned.
The security of the whole network is harmed.

This result suggests a strategy for steering autonomous
systems (ASs), or Internet service providers, to invest money
in their own security, which is proportional to the number of
“links”, that is, interactions they have with other ASs. The
way to “force security” upon ASs is by asking a certain fixed
probability of infectionvi < B, for all relative pricesci > 1.
Together with the fact that the cheapest threshold, in terms
of the total security (∑δi), is reached when the nodes are
protected proportionally to their own degrees, this seems to
be a very fair way to provide overall security. Bigger ASs
with more connections towards other ASs will have to protect
themselves more, in order to provide the same level of security,
while smaller ASs will invest proportionally to their sizesand
profits.

VI. CONCLUSION

We presented a novel framework for network security
under the presence of autonomous decision makers. We have
established the existence of a Nash equilibrium point (NEP)
investigated its properties. In particular, we showed that, when
the price of protection is relatively high (namely,∀i ci ≥ 1),
the only equilibrium point is that of a completely unprotected
network; while if this price is sufficiently low for a node
(namely,ci < 1

di
), it will always invest in protecting itself.

A network can be in two significantly different regimes,
namely above or at the threshold. If a network reaches Nash
equilibrium at the threshold, multiple equilibria may exist.
The question of uniqueness of the Nash equilibrium above
the threshold remains an open question.
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We determined the global (social) optimum for the case

that the network is at the threshold and for a specific case
when it is above the threshold. At the threshold, the minimum
of the social cost function isO(L), whereL is the number
of links in the network. Although the optimal value of the
social cost is the same for networks with the same number of
links L, the non-optimal distribution of curing rates at an NEP
results in much worse social welfare in some topologies (e.g.,
a star graph) than in other topologies (e.g., a line graph). When
optimizing above the threshold, we considered a specific case,
for which we showed that the global cost function is always
smaller than the number of nodes in the network. This specific
case provides some insight on the social performance in the
general case.

Finally, we have proposed two methods for steering the
network equilibrium, namely by influencing the relative prices
and by imposing an upper bound on infection probabilities.
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APPENDIX

A. Unconstrained case with 2 nodes

For a network with two nodes and one link, each node
chooses its strategy out of the intervalδi ∈ [0,δmax]. The
cost function is defined asJ(i) = ciδi + vi. The probabilities
of infection follow from (1) as v1 = 1−δ1δ2

1+δ1
; v2 = 1−δ1δ2

1+δ2
.

The Nash equilibrium point (NEP) is reached forδ1opt =
3
√

1
c2c2

1
−1,δ2opt = 3

√

1
c2
2c1

−1. If optimal solutionsδ1opt,δ2opt

satisfy
√

δ1optδ2opt > 1, the network NEP will be at the
threshold and the cost functions reduce toJ(1) = c1δ1,J(2) =
c2δ2. In this case, both nodes will choose smaller curing
rates thanδ1opt ,δ2opt such that new valuesδ′1optδ′2opt satisfy
√

δ′1optδ′2opt = 1. All the solutions that satisfyδ′1opt < 3
√

1
c2c2

1
−

1,δ′2opt < 3
√

1
c2
2c1

− 1 and
√

δ′1optδ
′
2opt = 1 are optimal and

nodes will not change their curing rates. This yields an infinite
number of Nash equilibrium points.

In Figure 3, for a network with two nodes, the cost function
of the second nodeJ(2) is calculated for different values of
constantsc1 andc2.
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