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Abstract—This paper presents an efficient protocol for reliably
exchanging information in a single-hop, multi-channel radio
network subject to unpredictable interference. We model the
interference by an adversary that can simultaneously disrupt up
to t of the C available channels. We assume no shared secret
keys or third-party infrastructure. The running time of our
protocol depends on the gap betweenC and t: when the number
of channels C = Ω(t2), the running time is linear; when only
C = t+1 channels are available, the running time is exponential.
We prove that exponential-time is unavoidable in the latter case.

At the core of our protocol lies a combinatorial function,
possibly of independent interest, described for the first time
in this paper: the multi-selector. A multi-selector generates a
sequence of channel assignments for each device such that every
sufficiently large subset of devices is partitioned onto distinct
channels by at least one of these assignments.

I. I NTRODUCTION

We study the problem of reliable information exchange
in a multi-channel single-hop radio network subject to un-
predictable interference. Each device begins the execution
with a value that it wants to distribute to everyone else; the
goal is for as many devices as possible to learn as much
information as possible.1 This problem is at the core of many
distributed applications, including: data aggregation insensor
networks, distributed data storage, fault-tolerant agreement,
group membership, and mobile location services.

As practitioners readily admit, reliably exchanging informa-
tion is challenging in the context of unreliable radio networks.
This holds especially true for devices operating on the increas-
ingly crowded unlicensed bands of the radio spectrum. In this
setting, devices must tolerate unpredictable and perhaps even
adversarial interference from sources as diverse as: the elec-
tromagnetic radiation of nearby microwaves; nearby devices
running unrelated protocols; any combination of fading, multi-
path, or shadowing effects that can render communication
unreliable; and actual malcontents armed with signal jammers.
Shared secrets can be used to mitigate these problems via
pseudo-random frequency hopping, as in Bluetooth [1], but
the establishment of such secrets can be problematic in many
settings. We seek solutions that do not assume such secrecy.

∗This work was supported in part by the Engineering and Physical Sciences
Research Council [grant number EP/G023018/1].

1Elsewhere, the problem of information exchange is occasionally referred
to asgossip. The termgossipalso refers to a specific randomized epidemic
approach. Hence, to avoid confusion, we use the terminformation exchange.

We model disruptive signals in the form of an adaptive
adversary. We assume that it knows the protocol in advance,
and hence it knows, in each round, which channels are used
for communication. We assume that the adversary can disrupt
up to t among theC channels at any given time. Note that
this adversary is simply a useful modeling convention: it does
not necessarily describe an actual malicious entity. It provides
a powerful abstraction for modeling a diversity of different
unpredictable sources of interference.

Our assumption that the adversary knows which channels
are used can be read at least three different ways. First,
this assumption captures the worst-case disruption that an
adversary can achieve, even if it knows the protocol in
advance. A protocol that tolerates such an adversary will work
under any disruption patterns—whether they are adversarial
or random, whether they are caused by a jamming device or
by fading/multipath phenomena. A second interpretation of
this assumption is that the source of disruption is a device
that was formerlyhonest, but is suffering from faults. Such
a faulty device is aware of any secrets shared by the non-
faulty devices; any frequency hopping based on these secrets
provides no security. Third, it may be possible that a malicious
device can scan theC channels quickly to see which are in
use, before choosing which channel to disrupt. (Jamming a
channel, by contrast, requires focusing on a single channel
due to the frequent use of error-correcting codes; thus a device
seems onlikely to be able to rapidly jump between channels
jamming them all.)2

Against such an adversary, reliable communication requires
the simultaneous use of more channels than can be disrupted.
Imagine that we identify a sequence of channel assignments
that guarantees the following: for every subset oft+1 devices,
there exists an assignment that assigns thet + 1 devices to
distinct channels. In this case, we know that at mostt devices
can be disrupted, as all groups of sizet+1 have one round in
which they uset + 1 different channels, onlyt of which can
be simultaneously disrupted. The paper shows how to solve
this simultaneous selectionproblem usingmulti-selectorsand

2By contrast, if we assume the adversary cannot discover whichchannel
is in use until after the transmission is complete, then there is a relatively
simple randomized protocol with polynomial time complexity: thedevices
take round-robin turns broadcasting their data on a randomlychosen channel,
while the remaining devices listen on a randomly chosen channel. If C =
t + 1 then withinO(C2 log n) time, with high probability, every device has
received the data. See [2] for more on such a weak adversary.



generalized multi-selectors, two new combinatorial construc-
tions that generalizeselectors, classical tools for fault-free
radio communication, (see [3], [4]). We show that there exist
efficient multi-selectors and generalized multi-selectors and
that, for certain important cases, these combinatorial objects
are polynomial in length. Moreover, in these cases, we present
a method for constructing polynomial length multi-selectors
using hash functions. These new tools are at the core of our
information exchange protocol.

In addition to avoiding adversarial disruption, we also make
use of multi-selectors toadaptivelyprevent contention, that is,
to determine a broadcast schedule dynamically as the execu-
tion proceeds. If the schedule induces too much contention,
then the information dissemination is delayed by collisions
and lost messages. (As was shown in [5], we need to adapt the
broadcast schedule to the adversary’s behavior; otherwisethere
is no sub-exponential solution.) If the devices share a synchro-
nized view of the world, then it is easy for them to agree on a
schedule that avoids contention; unfortunately, the adversary
can prevent the devices from maintaining such a synchronized
view, which can result in accidental contention. An important
use of multi-selectors is in ensuring that the views do not
divergetoo much, which ensures that the dynamically chosen
schedules result in relatively little contention.

The performance of our protocol depends on the relationship
of t, the number of channels that can be simultaneously
disrupted, andC, the total number of available channels. When
the adversary can block no more than (approximately)

√
C of

the channels, the protocol has a linearO(n) time. When the
adversary can blockt = C − 1 channels, leaving only one
channel free for communication, the protocol is exponential
in t. We derive from a lower bound onmulti-selectorsa proof
that whent = C − 1, every information exchange protocol
requires exponential time. In the intermediate cases where√

C < t < C − 1, we show how the running times increases
as the number of disrupted channels increases. (Figure 5
summarizes the performance in more details.)

In the remainder of this section, we present the basic
communication model (Section I-A), we describe the problem
of information exchange (Section I-B), and we discuss some
related work (Section I-C). In Section II, we introduce the
idea of multiselectors. In Section III, we present our basic
algorithm for exchanging information whenC = Ω(t2). In
Section IV, we show how to modify the protocol for the case
where not as many channels are available, and we show a
lower bound whent = C−1. Finally, we conclude with some
open questions in Section V. For proofs omitted due to space,
see the full version of the paper [6].

A. Basic Model

In this paper, we consider a set ofn deterministic nodesP =
{p1, . . . , pn}. Nodes communicate via a synchronous single-
hop radio network with multiple-access channels (MAC).
In each round, each node chooses a single channelx ∈
{1, . . . , C} and eithertransmits or listens on channelx. If
exactly one node transmits on channelx, then every node

listening onx receives that message. Otherwise, the listening
nodes receive nothing. We do not assume collision detection.

The network is subject to interference that can prevent
communication. We assume that an adaptive adversary can
disrupt up tot channels in each round. When the adversary
chooses to disrupt some channelx ∈ {1, . . . , C}, none of the
nodes listening on channelx receive a message. We assume
that t is polynomially smaller thann: for some ǫ < 1/6,
t = o(nǫ). In real networks, the number of nodes tends to be
much larger than the number of channels; sincet < C, it is
not unrealistic to assume thatn is significantly larger thant.

B. Basic Problem

We study the fundamental problem of information ex-
change: the nodes are initialized with values{v1, . . . , vn}.
Each node attempts to learn as many values as possible. For
t ≥ 1, it is impossible forall the nodes to learnall the values.
To see why, consider the case where the adversary disrupts
communication by some setP ′ of t different nodes. In this
case, no node inP ′ learns any value other than its own, and
no node not inP ′ learns the value of a node inP ′. Thus, the
best we can hope to achieve is(n− t)-to-(n− t) information
exchange: eventually, all butt nodes learn all butt values. We
call this variant:almost-complete information exchange.

C. Related Work

Selectors were first introduced by Komlos and Green-
berg [3], and have been widely studied, particularly in the
context of group property testing and radio networks (e.g.,[4],
[7]–[9]). Given a setS ⊆ P , a setS′ is said to select an
elementi ∈ P if S ∩ S′ = {i}. A k-selector is a sequence of
setsS1, . . . , Sm where for each setS of sizek, at least1 of
the elements inS is selected by some setSi. A multi-selector
generalizes a selector in that itsimultaneouslyselects a set of
elements. We come back to this notion later in the paper.

Much research has been devoted to information exchange
in the context of single-channel, fault-free radio networks
(e.g., [3], [10]–[18]), particularly with respect to channel
contention. There has been some research oncrash failures
in radio networks (e.g., [19]–[21]), and also onByzantine-
resilient broadcast [22], [23]. However, in these latter papers,
communication is reliable and not subject to adversarial dis-
ruption. There have been two main approaches for coping with
disruption. The first assumes that messages may be corrupted
at random (e.g., [24]); the second bounds the number of
messages that the adversary can transmit or disrupt, due, for
example, to a limited energy budget (e.g., [25], [26]).

Some systems use pseudo-random frequency hopping based
on shared “secrets” to avoid disruption (e.g., Bluetooth [1]).
It is often unreasonable, however, to assume the existence of
shared secrets for all possible sets of wireless devices that may
eventually want to communicate.

The present paper, along with [2], [5], are the first, to the
best of our knowledge, to consider multi-channel networks
subject to malicious disruption in which nodes do not possessa



priori shared secrets. Dolev et al. [5] consideroblivious(non-
adaptive) protocols. They prove, for the special case oft = 1, a
tight bound ofΘ(n2/C2) for information exchange. Extended
for generalt, they achieve a running time ofO((en/t)t+1).
The adaptive strategies in this paper outperform the optimal
oblivious solutions in [5].

Dolev et al. [2] consider randomized algorithms in the
context of a weak adversary that cannot determine on which
channel a node is broadcasting until the broadcast is complete.
In this paper, we consider deterministic protocols, and we as-
sume that the adversary can always determine which channels
are in use.

II. SIMULTANEOUS SELECTION

We now introducemulti-selectors, a combinatorial tool that
captures the idea of simultaneous selection, generalizingthe
classical notion ofselectors(see [3], [4]). We then provide
upper and lower bounds on the size of a multi-selector.

A. Definitions

We first define a multi-selector that selects exactly one set
of sizek simultaneously:

Definition 1. An (n,c,k)-multi-selector, wheren ≥ c ≥ k ≥ 1,
is a sequence of functionsM1,M2, . . . ,Mm from P → [1, c]
such that:

For every subsetS ⊆ P where |S| = k, there exists
someℓ ∈ [1,m] such thatMℓ maps each element inS
to a unique value in[1, c].

We say that such a multi-selector has sizem. A generalized
multi-selector selects many sets of sizek simultaneously; it
generalizes both selectors and multi-selectors:

Definition 2. A generalized (n,c,k,r)-multi-selector, where
n ≥ c ≥ k ≥ 1 and n ≥ r, is a sequence of functions
M1,M2, . . . ,Mm from P → [0, c] such that:

For every subsetS ⊆ P where|S| = r, for every subset
S′ ⊆ S where|S′| = k, there exists someℓ ∈ {1, . . . ,m}
such that (1)Mℓ maps each element inS′ to a unique
value in {1, . . . , c}, and (2)Mℓ maps each element in
S \ S′ to 0.

B. Upper Bound

We now show that there exist(n, c, k)-multi-selectors and
determine their size. The proof is non-constructive, and relies
on the probabilistic method.

Theorem 1. For everyn ≥ c ≥ k, there exists an(n, c, k)-
multi-selector of size:

c = k : kec

√
2πc

ln en
k

c/2 < k < c : kek ln en
k

k ≤ c/2 : k22k2/c ln en
k

Proof: We include here the proof for the case wherek ≤
c/2; the other cases are similar and can be found in the full

version of the paper [6]. Letm = k22k2/c ln en
k , the desired

bound.
For eachMℓ, for each i ∈ P , chooseMℓ(i) at random

from [1, c]. We show that with some probability> 0, M is
an (n, c, k)-multi-selector. Fix an arbitrary setS ⊆ P where
|S| = k. Consider a particularMℓ. We calculate the probability
that each element ofS is assigned a unique element in[1, c].
Since there are

(

c
k

)

k! good mappings fromk elements to[1, c],
andck total mappings ofk elements to[1, c] sets, we conclude
that:

Pr {S is uniquely mapped} =

(

c
k

)

k!

ck
=

c!

(c− k)!ck
.

Sincek ≤ c/2 we get the following estimate which we denote
asq:

Pr {S is uniquely mapped} ≥
(

c− k

c

)k

≥ 4−k2/c = q .

The probability thatS is not well-mapped for allMℓ is at
most(1−q)m. Sincem = q−1 ·k ln en

k , the probability thatS

is not well-mapped for allMℓ is at moste−k ln en

k ≤
(

k
en

)k
.

Since there are only
(

n
k

)

<
(

en
k

)k
possible subsetsS of size

k, we argue (by a union bound) that the probability of some
S being incorrectly mapped by allMℓ is at most

(

n
k

)

·
(

k
en

)k
,

which is smaller than1, implying the conclusion.
If c is sufficiently larger thank, there are efficient(n, c, k)-
multi-selectors:

Corollary 2. For everyn ≥ c ≥ k2, there exists an(n, c, k)-
multi-selector of sizeO(k log(n/k)).

The same argument extends to bound the size of generalized
multi-selectors:

Theorem 3. For every n ≥ r ≥ c ≥ k such that
n ≥ 2r, there exists (n, c, k, r)-multi-selectors of size

O
(

r (c+1)rek

kk log (en/r)
)

or O
(

r (c+1)r

(c−k)k log (en/r)
)

.

The proof can be found in the full version of the paper [6].

C. Constructing Multi-Selectors

There exists a connection between good hash functions and
multi-selectors whenk2 < c. (In general, however, for other
values of k and c, it is not immediately clear how multi-
selectors relate to hash functions.) We discuss some of these
connections and derive some multi-selector constructions.

First, we show how to use a universal family of hash func-
tions to construct a(n, c, k)-multi-selector. A (two)-universal
family of hash functions is a set of functions from universeP
to some domain{1, . . . , c} such that for each pairx, y ∈ P ,
at least a(1 − 1/n) fraction of the hash functions mapx
and y to a unique value. Carter et al. [27] present such a
family of size Θ(n2). This family of hash functions is also
an (n, c, k)-multi-selector, for anyk <

√
c: consider some

set S of k elements; for each of theO(k2) = O(c) pairs,
there are≤ n hash functions that collide; thus there are at
mostO(cn) < O(n2) hash functions for which elements ofS
collide. The resulting multi-selector is of sizeO(n2).



We now derive a more efficient construction. Assume thatc
is sufficiently large such that there existp1, . . . , pΘ(k2 log n), a
set ofΘ(k2 log n) distinct primes less thanc. Fix a setS ⊆ P
of size k. For every pairx, y ∈ S, there are at mostlog n
primespi such thatx = y mod pi. Thus there is some prime
pi such that none of theΘ(k2) pairs inS collide. This results
in an (n, c, k)-multi-selector of sizeO(k2 log n).

If k2 = c then there are not a sufficient number of
primes≤ c; the two techniques can be combined. The second
technique reduces the channel range toO(k2 log2 n) (using
the Prime Number Theorem to demonstrate sufficient prime
numbers) usingO(k2 log n) mappings; the two-universal hash
family of [27] reduces the channel range toc, multiplying each
mapping byO(k4 log4 n). From this we conclude:

Theorem 4. For every n > c > k2, we can construct a
(n, c, k)-multi-selector of sizeO(k6 log5 n).

It is also possible to construct multi-selectors using selec-
tors. The resulting construction is not particularly efficient, but
illustrates a connection between selectors and multi-selectors.
The following theorem can be found in the full version of the
paper [6]:

Theorem 5. For everyn, c, k, there exists a construction of a
(n, c, k)-multi-selector of sizeO(kk logk n).

D. Lower Bound

In this section, we prove a lower bound on the size of an
(n, c, k)-multi-selector.

Theorem 6. For somem > 0, let M = M1, . . . ,Mm be an
(n, c, k)-multi-selector wheren ≥ 2c and c ≥ k. ThenM has
size at least:

c = k :
2c

4
√

2πc

c/2 < k < c : ek ln c

c−k
−k2/n ·

√

n(c− k)

4
√

c(n− k)

k ≤ c/2 : ek2/c−k2/n ·
√

n(c− k)

4
√

c(n− k)

Proof: We consider the case wherek = c; for the
remaining cases, see the full version of the paper [6]. We
begin by choosing a subsetS ⊆ P of size c at random. We
calculate the probability thatS is correctly mapped by some
Mℓ. We show that ifm < 2c

4
√

2πc
, then this probability is

smaller than one, thus the probability that a random setS
violates the definition of multi-selectorM is positive. By the
probabilistic argument, such a setS exists, which contradicts
that M is an (n, c, k)-multi-selector.

Fix someℓ ∈ [1,m], and defineSd = {i : Mℓ(i) = d},
that is, the subset ofP that Mℓ maps tod. To calculate the
probability thatMℓ correctly maps each element ofS to a
unique element of[1, c], we first approximate the number of
subsets ofP that are correctly mapped byMℓ:

∏c
d=1 |Sd| ≤

(n/c)c . (The inequality follows from the relationship between
the arithmetic and geometric means.) Since there are

(

n
c

)

sets

of sizec, and since(n−c) ≥ n/2, we conclude (via Stirling’s
approximation) that the probability thatS is correctly mapped
by Mℓ is at most

nc

cc
(

n
c

) ≤ nc

nn

(n−c)n−c·4
√

2πc

=
4
√

2πc
(

n
n−c

)n−c ≤
4
√

2πc

2c
.

Thus, the probability thatS is correctly mapped byanyof the
m functions is at mostm · 4

√
2πc2−c (by a union bound).

If m < 2c

4
√

2πc
, then with positive probability the setS

is not correctly mapped by any of theMℓ, resulting in a
contradiction.

III. R ELIABLE INFORMATION EXCHANGE

We now present our protocol for solving the problem of
reliable information exchange. In this section, we assume that
C ≫ t, specifically C = Θ(t2). In Section IV, we show
how to adapt this protocol to the case whereC = t + 1, and
conclude with a discussion of the remaining cases.

The protocol adaptively chooses a set of nodes to transmit
in each round based on which nodes have already succeeded
in previous rounds. Adapting to the past proves challengingas
nodes do not share a uniform view: a node does not knowa
priori which transmissions succeeded, unless it was listening
on that channel. Our protocol circumvents this challenge by
using a (n, c, t + 1)-multi-selector to ensure thatalmost all
the nodes have the same view. Nodes use a multi-selector
to guide their channel selection when attempting to receive
updates on the system state; since a multi-selector guarantees
the simultaneous selection of any subset of sizet + 1, it
follows that for any group of sizet + 1 nodes, there exists
a round during which these nodes are listening on different
channels. Therefore, at mostt total can be kept ignorant by
the adversary. This bound on ignorance allows efficient and
consistent adaptation.

Preliminaries: For the remainder of this section, we fix
the constantc = (5t + 1)2. Of the C available channels, our
protocol will use exactlyc. Recall here thatn is assumed to
be large compared tot, specifically, thatt = o(nǫ) for some
ǫ < 1/6. It follows: (a)n ≥ c2(5t+1)+5t; and (b)n ≥ c2t+c.

We refer to values as eithercompleteor incomplete. Initially,
each value isincomplete; when a value is received by at least
n− t nodes, it is designated ascomplete; the node at which it
originated is said to havecompleted. We use the notationS[k]
to refer to thekth value in a setS under some fixed ordering.
When given a setS comprised of sets, we useS[j][k] to refer
to thekth value of thejth set also under some fixed ordering.

Information Exchange:The main routine for the infor-
mation exchange protocol is in Figure 1. It consists of two
parts, each consisting of a set ofepochs. In each part, a set
of listenersis chosen, and they facilitate the dissemination of
incomplete values. The listeners’ own initial values are not
disseminated, however, as they are busy listening; hence each
part chooses a disjoint set of listeners:{p1, . . . , pc2} in the
first part, and{pc2+1, . . . , p2c2} in the second part. Each part
disseminates (i.e.,completes) all but at most2t non-listener



Figure 1: Information exchange routine for node pi.

1 InfoExchange()i ⊲ E defines the length of each epoch.
2 L← a partition of the set{1, . . . , c2} into c sets of sizec. ⊲ EachL[k] is a set of listeners.
3 for e = 1 to |E| do ⊲ First set of epochs:
4 knowledgeable ←Epoch(L, knowledgeable, E[e])i

5

6 L← a partition of the set{c2 + 1, . . . , 2c2} into c sets of sizec.
7 for e = 1 to |E| do ⊲ Second set of epochs:
8 knowledgeable ←Epoch(L, knowledgeable, E[e])i

9

10 ⊲ Lastly, do the special epoch which attempts to transmit the final ≤ 4t values.
11 Special-Epoch(knowledgeable)i

values. Thus, after the two parts, at most4t values are left
incomplete in total. The final call toSpecial-Epoch reduces
the number of incomplete values from4t to t, as required.

The functionE(r) bounds the length of epochr and the
number of epochs. We define it recursively. LetE(1) = ⌈n/c⌉.
For all r > 1, let E(r) =

⌈

2t·E(r−1)
c

⌉

. The sequence

terminates whenE(r) = 1. Notice that|E| = O(log n) and
∑

E = O(n/c).
Epochs: In each call toEpoch, some set of incomplete

values arecompleted; i.e., disseminated to at leastn − t
nodes. At the end of an epoch, each node is designated as
knowledgeableor unknowledgeablebased on the outcome of
the epoch: a knowledgeable node knows the results of all pre-
ceding epochs, including the current set of completed values;
an unknowledgeable node does not have this information.

The epoch pseudocode is in Figure 2. For each epoch, we
are given (1) a set of listenersL, (2) a flagknowledgeable,
indicating the status of nodei, and (3) a numberrnds

indicating the length of the aggregation phase. We conclude:

Lemma 7. If some epoch begins withs incomplete nodes in
the setP \ L, then at the end of the epoch, there are at most
2t⌊s/c⌋ incomplete nodes inP \ L.

Aggregation: In the first phase of an epoch (lines 2–9),
values are transmitted to the listeners in the setL. Let S be
the set of nodes that have not yet completed. The setS is
divided into subsets of sizec, each of which is scheduled
to transmit in one of the subsequent⌊|S|/c⌋ rounds. Only
knowledgeable nodes can calculateS; thus only nodes that
are both knowledgeable and incomplete transmit.

Throughout, c listeners are scheduled to listen on each
channel. In each of these rounds, the adversary can block up to
t; moreover, up tot of the nodes “scheduled” to transmit in a
round may in fact be unknowledgeable and hence not transmit.
Thus, in each round, at most2t values are not successfully
received by the listeners. By the end of the aggregation phase,
only 2t⌊|S|/c⌋ values remain incomplete.

Dissemination: In the second phase of an epoch, the
listeners disseminate their information. The pseudocode for
Disseminate is in Figure 3. The disseminate routine ensures:

Lemma 8. If some valuev is known to a set of listeners when

the disseminate routine begins, then the value is complete at
the end of the disseminate routine.

In Part 1 (lines 3–9), each of thec sets ofc listeners attempts
to disseminate its set of values. For each set (lines 5–9), each
of the c listeners in the set transmits continually on a unique
channel (line 7). An(n, c, t + 1)-multi-selectorM is used to
schedule the non-listener nodes (line 8). While the listeners
are broadcasting, the non-listeners choose which channel to
receive on according toM . This ensures that for any set of
t + 1 non-listeners, there is some round in which they are all
receiving simultaneously on different channels. As a result, at
most t can be disrupted by the adversary. Since there arec
sets of listeners, this results in at mostct nodes that do not
receive a value fromall c sets of listeners.

In Part 2 (lines 11–19), we select a larger set ofc(ct + 1)
nodes, which we partition into sets of sizec. (Recall thatn ≥
c(ct + 1).) At least one of thesect + 1 partitions consists
only of nodes that have received a message from allc sets of
listeners in Part 1. Thus, all the nodes in the set know all the
values known to all the sets of listeners. As before, each of
these sets transmits its information to the remaining nodesin
such a way that at mostt nodes can fail to learn these values.

Special Epoch: In order to transmit the remaining
values, we execute a special epoch. The pseudocode for
Special-Epoch is in Figure 4. The special epoch operates
somewhat differently, as there are very few values left to
transmit. As before, we use listeners to collect the values;we
need to choose a set of listeners that have already completed.
Recall, up to4t values may be incomplete after the two sets of
epochs. An additionalt nodes might be complete but not aware
of it because they are unknowledgeable. This leaves at most5t
nodes that are not complete and knowledgeable. We refer to
these asspecialnodes. We choose a set ofc2(5t+1) possible
listeners, and divide them into5t + 1 sets of sizec2; at least
one of these sets contains only nodes that are complete and
knowledgeable. We use a(n, c, 5t)-multi-selector to ensure
that in some round, each of thek ≤ 5t special nodes is
assigned to a different channel to transmit; at mostt can be
blocked. Dissemination proceeds as before.

Performance: Each epoche spendsE(e) rounds dur-
ing the aggregation phase, resulting inO(n/c) rounds of



Figure 2: Epoch routine for node pi.

1 Epoch(L, knowledgeable, rnds)i ⊲ L is an array of sets of listeners.
2 S ← ∅
3 if knowledgeable = true then
4 let S be the set of nodes that are not inL and not completed.
5 PartitionS into ⌈|S|/c⌉ sets of sizec. ⊲ Denote byS[k] the rth such set.
6 for r = 1 to rnds do
7 if (knowledgeable = true) and (r ≤ ⌈|S|/c⌉) then
8 if ∃k ∈ {1, ..., c} : i = S[r][k] then schedulei to transmit on channelk.
9 if ∃k ∈ {1, ..., c} : i ∈ L[k] then schedulei to receive on channelk.

10 knowledgeable ←Disseminate(L[1], . . . , L[c])i

11 return knowledgeable

Figure 3: Disseminate routine for nodepi.

1 Disseminate(L[1], . . . , L[c])i ⊲ EachL[k] is a set of former listeners.
2 let M be a(n, c, t + 1)-multiselector.
3 ⊲ Part 1: Ensure that for each listener group, all but some set of t nodes receive its value set.
4 knowledgeable ← true
5 for k = 1 to c do
6 for each roundr = 1 to |M |
7 if ∃j ∈ {1, ..., c} : i = L[k][j] schedulei to transmit on channelj.
8 if i /∈ L[k] then schedulei to receive on channelMr(i).
9 if i does not receive a message in any of the|M | roundsthen knowledgeable ← false.

10

11 ⊲ Part 2: Ensure that all but some set oft nodes receive all the value sets from all the listener groups.
12 L′ ← an arbitrary subset of{1, . . . , n} of sizec(ct + 1).
13 PartitionL′ into ct + 1 setsL′[1], . . . , L′[ct + 1] of sizec
14 for each s = 1 to ct + 1 do
15 for each r = 1 to |M | do
16 if ∃j ∈ {1, ..., c} : i = L′[s][j] schedulei to transmit on channelj
17 if i /∈ L′[s] then schedulei to receive on channelMr(i).
18 if i receives a message in any of the|M | rounds from a node withknowledgeable = true then
19 knowledgeable ← true
20 return knowledgeable

Figure 4: Special Epoch routine for nodepi.

1 Special-Epoch(knowledgeable)i

2 let M be an(n, c, 5t)-multiselector.
3 special ← false
4 if (knowledgeable = false) or (i has not completed) then special ← true
5 if knowledgeable = true then
6 L← set ofc2(5t + 1) smallest nodes that have completed in a previous epoch.
7 PartitionL into (5t + 1) setsL1, . . . , Lt+1 of sizec2.
8 Partition eachLk into c setsLk[1], . . . , Lk[c] of sizec.
9 for s = 1 to 5t + 1 do

10 for r = 1 to |M | do
11 if special = true then schedulei to transmit on channelMr(i)
12 if ∃k : i ∈ Ls[k] then schedulei to receive on channelk.
13 Disseminate(Ls[1], . . . , Ls[c])i



aggregation. Each epoche performs c|M | + (ct + 1)|M |
rounds of dissemination. By Corollary 2, we conclude that
|M | = O((t + 1) log n/(t + 1)); and thus duringO(log n)
epochs, there areO(ct2 log2 n) rounds of dissemination. Fi-
nally, we observe that the special epoch aggregation has
running time(5t+1)|M | whereM is a multi-selector of size at
mostO(t log n/(5t)) (again by Corollary 2). Thus the special
epoch has round complexityO(t2 log n/t), along with O(t)
disseminations. Summing these costs and substituting in for
c = O(t2) and t = o(n1/6), we conclude that:

Theorem 9. Within O(n) rounds, all butt values are com-
plete. More precisely, the information exchange protocol has
round complexityO(n/t2 + t5 log2 n).

IV. L IMITING THE NUMBER OF CHANNELS

We consider here the case where there are fewer thant2

channels available. We first describe how to adapt the protocol
of Section III to the setting whereC = t + 1, the minimal
number of channels for which information exchange is fea-
sible. We then present a lower bound showing that the time
complexity is inherently exponential int. Finally, we briefly
discuss the intermediate cases wheret + 1 < C < Θ(t)2.

A. Protocol Description

In this section, we modify the information exchange routine
to use onlyC = t + 1 channels. The disseminate protocol
(Section III) can be used without modification. We replace,
however,Epoch andSpecial-Epoch with Limited-Epoch (Fig-
ure 6) andLimited-Special-Epoch (Figure 7), respectively.

The key problem addressed is as follows: since onlyt + 1
channels are available, if any of thet + 1 nodes scheduled
in a round are unknowledgeable and therefore choose not to
transmit, then the adversary can disrupt all≤ t nodes that
do broadcast. In order to circumvent this problem, we use a
(n,C,C, 2t + 1)-generalized-multi-selector in the aggregation
phase ofLimited-Epoch. Nodes know at the beginning of a
round if they are scheduled or if they are unknowledgeable.
Such nodes will attempt to transmit according to the schedule
described by the generalized multi-selector. The multi-selector
guarantees that one of the rounds will simultaneously select
the t + 1 nodes that are actually scheduled to transmit during
this round of the epoch, some of which might be unknowl-
edgeable. From this we conclude that at least1 incomplete
value is transmitted to the listeners for each round of the
schedule. The functionE is redefined as follows: forr > 1,
E(r) = ⌈E(r−1)t

C ⌉. In this case,Limited-Special-Epoch only
has to cope with at most3t “special” nodes—t from each set of
epochs, and as many ast additional unknowledgeable nodes. A
(n,C,C, 3t)-generalized-multi-selector is used to ensure that
all subsets of sizet + 1 of these (no more than)3t special
nodes get an opportunity to transmit concurrently.

Performance:The total running time of the aggregation
phases is nowO(n|Ma|), where |Ma| = O((2t + 1)(C +
1)2t+1 log n/(2t + 1)) by Theorem 3 and the fact thate <
t+1. Dissemination has running time(Ct+1)|Md|, where in
this case|Md| = O((t+1)et+1 log n/(t + 1)) by Theorem 1;

the number of disseminations is bounded byn/t. Finally, the
special epoch costs a factor ofO(t) more than a regular epoch.
We conclude (with some loose approximations) that:

Theorem 10. WhenC = t + 1, the information exchange
protocol terminates in time:

O
(

n(C + 1)3t log
n

t

)

B. Lower Bound

In this section, we show that ifC = t+1, every information
exchange protocol is exponential int.

Theorem 11. Every almost-complete information exchange
protocol where C = t + 1 requires at least time
Ω(2t+1/

√
t + 1).

Proof: Consider a protocol that solves almost-complete
information exchange inm rounds. We construct a(n,C, t +
1)-multi-selector of lengthm, and invoke Theorem 6 to con-
clude the proof. We construct the multi-selector by simulating
the information exchange protocol in each round:

• Every node that is scheduled to listen is simulated as if
it receives no messages in that round (as if the adversary
had disrupted the channel).

• Every node that is scheduled to transmit on some channel
is simulated as if it transmits its message.

(Notice, the resulting simulation might violate our model
assumptions by allowing more thant channels to be disrupted.)
For each roundr of this simulated execution, we constructMr

as follows: if a nodei listens on channelk, thenMr(i)← k;
otherwise, if nodei does not listen on any channel (either
because it transmits or because it does nothing), thenMr maps
i to 1, a default.

We argue thatM is a (n,C, t + 1)-multi-selector. Assume
for the sake of contradiction that it is not. Then, for some set
S of size t + 1, no Mℓ mapsS to unique channels. We now
construct a new execution. This time the adversary always and
only disrupts the channels occupied by nodes inS, ignoring
the other nodes in the system. To the nodes inS this execution
looks indistinguishable from our original simulated execution
(in both, they receive nothing in all rounds). Therefore, they
behave the same, never occupying more thant channels. It
follows that the adversary never has to disrupt more thant
channels per round in this second simulation, meaning that it
is feasible in our model. This feasible execution cannot solve
almost-complete information exchange because none of the
t + 1 nodes inS ever receive a message. This contradicts the
assumption that the protocol under consideration solves the
problem inm rounds.

We can therefore conclude that the original assumption
was wrong, and conclude thatM is indeed an(n,C, t + 1)-
multi-selector. The lower bound then follows from applying
Theorem 6 withC = t + 1.

C. Generalizing the Number of Channels

We have discussed the case whereC = Θ(t2) and the case
whereC = t + 1. We briefly addresses the performance of



Channels Running time Calculation

C ≥ (5t + 1)2 O(n) O(n/c + ct|M1| log n + ct2|M1|+ t|M2|)

C ≥ 10t O
(

n2
2t

2

C + t22
50t

2

C log n
)

O(n/c + ct|M1| log n + ct2|M1|+ t|M2|)

C ≥ 5t O
(

n2
2t

2

C + t2et log n
)

O(n/c + ct|M1| log n + ct2|M1|+ t|M2|)

C ≥ 2t + 1 O
(

n2
2t

2

C + t(C + 1)3tec log n
5t

)

O(n/c + ct|M1| log n + ct2|M1|+ t|M3|)

C ≥ t + 1 O
(

nt(C + 1)2t+1 log n
2t+1 + t2(C + 1)3t log n

3t

)

O(n|M4|+ nct|M1|+ ct2|M1|+ t|M5|)

M1 : (n,C, t + 1)-multi-selector M2 : (n,C, 5t)-multi-selector

M3 : (n,C,C, 5t)-multi-selector M4 : (n,C,C, 2t + 1)-multi-selector

M5 : (n,C,C, 3t)-multi-selector

Fig. 5. For each value ofC, there exists an protocol that runs in the specified time. The secondary table specifies the parameters of the multi-selectors. The
running time is calculated by instantiating each multi-selector with the best bound presented in Section II.

information exchange for intermediate values ofC; running
times are summarized in Figure 5. WhenC < 2t + 1, the
aggregation phase requires generalized multi-selectors as in
Limited-Epoch. It follows that the running time does not differ
significantly for t + 1 ≤ C ≤ 2t + 1. For C ≥ 5t + 1, we
can use the protocol described in Section III, where the multi-
selectors are sized appropriately; asC grows the running time
decreases, as the greater number of available channels reduces
the size of the multi-selectors. For2t + 1 < C < 5t + 1,
we use a hybrid protocol in whichDisseminate stays the
same, butSpecial-Epoch uses generalized multi-selectors as
in Limited-Special-Epoch. It is straightforward to calculate the
associated running times which can be found in Figure 5.

V. OPEN QUESTIONS

Beyond the results in this paper, we believe that multi-
selectors may prove to be an important tool in developing
other protocols for multi-channel networks, especially given
that multi-channel networks are increasingly viewed as the
most promising approach for coping with malicious disruption.
We expect that multi-selectors will play a key role in adapt-
ing single-channel protocols for a multi-channel environment.
(This is especially the case for the large subset of single-
channel protocols that are themselves based on selectors.)
Moreover, much in the way that selectors have proved useful in
a variety of settings, ranging from wireless communicationto
group property testing, we hope that multi-selectors will find
a similar wide range of applications. For example there are
possible connections torenamingand k-set agreement, both
of which depend on simultaneously allocating a set of scarce
resources (in this case, names or decision values).

Interesting open questions include: (1) deriving better con-
structive bounds for multi-selectors; (2) studying other algo-
rithmic uses of multi-selectors; (3) determining the complexity
of information exchange ast approachesn; (4) studying the
tradeoff between the number of channels, the resilience, and
the performance in terms of different complexity measures,
such as energy usage; (5) studying the capacity of a wireless
network under the influence of a strong, malicious adversary.
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