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Abstract—We study throughput-optimal scheduling/routing
over mobile ad-hoc networks with time-varying (fading) channels.
Traditional back-pressure algorithms (based on the work by
Tassiulas and Ephremides) require instantaneous network state
(topology, queues-lengths, and fading channel-state) in order to
make scheduling/routing decisions. However, such instantaneous
network-wide (global) information is hard to come by in practice,
especially when mobility induces a time-varying topology.

With information delays and a lack of global network state,
different mobile nodes have differing “views” of the network,
thus inducing uncertainty and inconsistency across mobilenodes
in their topology knowledge and network state information. In
such a setting, we first characterize the through-optimal rate
region and develop a back-pressure-like scheduling algorithm,
which we show is throughput-optimal. Then, by partitioning the
geographic region spatially into disjoint tiles, and sharing delayed
topology and network state information only among mobile nodes
currently within each tile, we develop a localized low-complexity
scheduling algorithm. The algorithm uses instantaneous local
information (the queue length, channel state and current position
at a mobile node) along with delayed network state information
from nodes that were within its tile (i.e., from nodes that were
within a nearby geographic region as opposed to network-wide
information). The proposed algorithm is shown to be near-
optimal, where the geographic distance over which delayed
network-state information is shared determines the provable
lower bound on the achievable throughput.

I. I NTRODUCTION

Mobile ad hoc networking is one of the most innovative
emerging networking technologies and has broad applications
in various domains (e.g., battlefield communications, search
and rescue operations, range extension for rural networks).
Mobile nodes communicate with each other using wireless
communication, where simultaneous nearby transmissions can
cause significant interference. To develop a high-performance
mobile ad hoc network, a key step is to design scheduling
algorithms that selectively activate a subset of links according
to the known network state information in order to avoid
excessive interference as well as maximize network through-
put. In this paper, we study scheduling algorithms for mobile
ad-hoc networks with time-varying (fading) channels. Most
studies in literature that build on the on the work of Tassiulas
and Ephremides [1], [2]) (in the context of time-varying
channels and/or topology) require all nodes in the network
to have (globally shared) instantaneous network state (e.g.,
topology knowledge, queues-lengths, and fading channel-state)

in order to make scheduling/routing decisions. However, in
a mobile network with a time-varying topology, it does not
seem reasonable to expect all nodes to have such instantaneous
network-wide (global) information. Furthermore, in general,
there is no central controller in mobile ad hoc networks, so
each mobile has to make transmission decisions based on
the information it collects. Thus, a challenging problem isto
develop distributed scheduling algorithms with channel and
topology uncertainty.

We consider a network withN sender-receiver (S-R) pairs,
where the S-R pairs move according to Markovian processes.
We assume that each mobile knows its own current position
and instantaneous channel state, but it only has other mobiles’
information with delayτ. This information delay along with
the lack of global network state induces uncertainty and
inconsistency in the topology knowledge and network state
information (due to the fact that different mobile nodes have
different “views” of the network). Our focus of this paper is
to first understand the fundamental network throughput region
under the information inconsistency and topology uncertainty,
and then develop online scheduling algorithms that are optimal
or near optimal.

A. Main Contributions

The main contributions of this paper include:

(1) We first characterize the network throughput region
under the information structure that each pair has own
instantaneous channel and geographic information, but
only other pairs’ information with a delay ofτ time
slots.

(2) We then propose a back-pressure-like scheduling al-
gorithm where each mobile first computes a location-
based threshold function with the global delayed infor-
mation; and then makes transmission decisions based
on its current position, instantaneous channel state and
the threshold value. We show that the algorithm is
throughput-optimal, i.e., it can stabilize the network as
long as the traffic is within the network throughput
region. Each mobile, however, needs to compute the
threshold function, and the computation complexity is
proportional to the network size.

(3) Finally, we propose a localized scheduling algorithm,
where we partition the geographic region spatially into
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disjoint tiles and delayed topology and network state in-
formation are sharedonly among mobile nodes currently
within each tile.We develop a near-optimal algorithm for
distributed scheduling. The algorithm uses instantaneous
local information along with delayed network state infor-
mation from nodes that were within its tile (i.e., from
nodes that were within a nearby geographic region as
opposed to network-wide information). We show that
this algorithm is near-optimal; more formally, we show
that traffic λ[t] is supportable if(1 + ε) (λ[t] + δ) is
supportable under some throughput-optimal algorithm,
where δ is the parameter depending on the spatial
scale of the tiles. The computation complexity of the
algorithm is only determined by the size of the tiles and
the corresponding mobile nodes within a tile (as opposed
to all mobile nodes in the network).

B. Related Work

Throughput-optimal routing/scheduling algorithm was first
proposed in [1], [2]. Assuming that all mobile or static nodes
have perfect global knowledge of the queue, channel and topol-
ogy state, throughput-optimal routing/scheduling algorithms
have been developed for different networks [3], [4], [5], [6],
[7], [8], [9], [10], [11]. There has also been much work in
developing distributed and low-complexity implementations
[12], [13], [14], [15], [16], [17]. Please see [18], [19] fora
survey.

There have been some studies in the context of incomplete
network state information (missing/delayed channel, queue or
topology state). To the best of our knowledge, the earliest
work to consider delayed queue-length information and its
impact on stability of back-pressure algorithms is [20]. In
a down-link/up-link wireless scenario that explore the trade-
off between channel measurements and opportunistic gain,
studies include [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30]. With i.i.d. channels and a static network, [31] has
developed routing/scheduling algorithms with noisy channel
estimates. In [32], the authors have studied throughput-optimal
scheduling/routing in static ad hoc networks with delayed
network state information (queue length and channel state).
However, to the best of our knowledge, we are not aware
of (near) throughput-optimal routing/scheduling resultswith
limited and delayed channel/topology knowledge in a mobile
context.

II. M ODEL AND NOTATIONS

We consider a wireless network withN sender-receiver (S-
R) pairs. We useL to denote the set of the S-R pairs. Without
loss of generality, we assume theN S-R pairs are deployed
in a square area with side-lengthY as in Figure 1.

Traffic Model: We assume single-hop traffic in this paper,
i.e., there is a traffic flow from senderl to receiverl for each
l ∈ L. We denote byλl[t] the number of packets arriving at
senderl at time t. We assume that{λl[t]}l∈L are stationary
random variables, independent across different sender-receiver
pairs, and bounded.

Y

Fig. 1. N S-R pairs deployed in a square area with side-lengthY

Mobility Model: We consider a discrete-time system. We
assume that the pairs move at the beginning of each time
slot, and stay still within a time slot. The mobility of each
pair is Markovian and over a discrete square-lattice over the
square region, i.e., the next location of a mobile is determined
by its current location, and does not depend on the other
history information, and the next location is on a (possibly
fine resolution) grid. We assume that the distance a mobile
can move at the beginning of a time slot is no more than
vmax. Furthermore, we assume that the mobility processes
are stationary and ergodic, and the stationary distribution is
uniform over the square area (we abuse notation in that the
square area actually means the discrete-lattice over the square
area). For simplicity, we also assume that the distance between
a sender and its receiver isD, which is fixed for all t. Our
results can be easily extended to the case where the distance
between a sender and its receiver is time-varying, but upper
and lower bounded. We denote bySl[t] the location of the
senderl at time slott, andRl[t] the location of receiverl at
time slot t.

Channel Model: We assume that time-varying wireless
channel between each S-R, and each channel can be character-
ized with a finite-state Markov chain. We denote byCl[t] the
channel capacity of pairl at timet, and assumeCl[t] ≤ Cmax

for all l ∈ L and all t. Further, the channels are independent
across sender-receiver pairs.

Queue Management:We assume that each sender main-
tains a queue, and the length of the queue at senderl at time
t is denoted byQl[t].

Information Set for Sender l: We assume that at time
t, senderl has {Cl[s], (Sl[s], Rl[s]), Ql[s]} for s ≤ t, and
{Cj [s], (Sj [s], Rj [s]), Qj [s]} for all other j ∈ L and all s ≤
t − τ, whereτ is the delay.

Scheduling-Decision Vector:We define a vectorA[t] to be
the scheduling-decision vector at timet such thatAl[t] = 1 if
the senderl transmits at timet; andAl[t] = 0 otherwise. Note
that Al[t] is a function of the information available to sender
l.

Location-Based Threshold Scheduling: We study a
class of scheduling policies which we denote aslocation-
based threshold scheduling policies. A location-based thresh-
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old scheduling policy is defined by a real-valued function
Θl(sl, rl), which depends on the mobile’s current location for
given delayed channel and queue length information available
at the sender (please see Section III-C for a more precise
description). If senderl is at location(sl, rl) and the channel
statecl ≥ Θl((sl, rl)), then senderl will transmit. We further
defineΘ(s, r) = {Θl(sl, rl)}l.

Interference Model: We assume a geographic-based col-
lision model in this paper. If two links interfere with each
other, simultaneous transmissions on the two links will lead
to a collision and no information (packet) can get through.
Consider pairl, the transmission of pairj will interfere with
the transmission of pairl if |Sj [t]−Rl[t]| ≤ (1+∆)D, where
|Sj [t]−Rl[t]| is the Euclidean distance, and∆ is the a protocol
specified guard-zone to prevent interference.

Note thatC[t] = {Cl[t]}l∈L, S[t] = {Sl[t]}l∈L andR[t] =
{Rl[t]}l∈L are random variables, and we assume that they are
independent.

III. T HROUGHPUT-OPTIMAL SCHEDULING ALGORITHM

WITH TOPOLOGYUNCERTAINTY

In this section, we first characterize the network throughput
region under channel and topology uncertainty.

A. Optimal Throughput Region

It is easy to see that the transmission rates of the pairs at
time t are determined by the following three parameters: (i)
channel conditionC[t], (ii) network topology, which is defined
by the mobiles’ positions(S[t],R[t]), and (iii) the scheduling
decisionA[t].

Now assume thatC[t] = c, (S[t],R[t]) = (s, r), and
A[t] = a (we use lower-cases to denote the realizations
of random variables). Under the collision-model defined in
Section II, a maximum link ratecl can be achieved over link
l if there is no other active pairs interfering pairl; otherwise,
the link rate is zero. Mathematically, we can define a link-rate
vectorL{c,(s,r),a} such that

L{c,(s,r),a},l = cl

if ah = 0 for any pairh such that|sh− rl| ≤ (1+∆)|sl − rl|;
and

L{c,(s,d),a},l = 0

otherwise.
Given the delayed information

{C[t − τ ], (S[t − τ ],R[t − τ ])} = {c, (s, r)},

we defineΛ{c,(s,r)} such that

Λ{c,(s,r)}

= CHΘ

(

E
[

L{C[t],(S[t],R[t]),1C[t]≥Θ(S[t],R[t])

∣

∣

∣

C[t − τ ], (S[t − τ ],R[t − τ ]) = {c, (s, r)}
])

,

where

1C[t]≥Θ(S[t],R[t]) = {1Cl[t]>Θl(Sl[t],Rl[t])}l.

Note thatΛ{c,(s,r)} is independent oft because bothC[t] and
(S[t],R[t]) are assumed to be stationary random variables.
Finally, we define

Λτ =







λ : λ =
∑

{c,(s,r)}

π{c,(s,r)}η{c,(s,r)},

η{c,(s,r)} ∈ Λ{c,(s,r)}

}

, (1)

where π{c,(s,r)} is the stationary distribution of
{C[t], (S[t],R[t])} = {c, (s, r)}.

Given trafficλ[t], we saythe traffic is within the network
throughput region (or the traffic is supportable) if there exists
a scheduling under whichE[Ql[t]] ≤ Qmax for all l and all
t, whereQmax is some positive number.

In the following theorem, we prove thatΛτ is the network
throughput region.

Theorem 1:Traffic λ[t] is supportable if and only if
E[λ[t]] ∈ Λτ .

Remark:The key idea to prove the theorem above is to
show that if there exists a scheduling policy which can support
the traffic, then we can construct a corresponding location-
based threshold policy under which the mean queue lengths
are also bounded. The theorem then follows since the service-
rate vector under any location-based threshold policy is inthe
set Λτ . The proof is similar to the analysis in [32], and is
omitted due to page limitation.

Next we use a simple example to illustrateL{c,(s,d),a} and
throughput-regionΛτ .

B. An Illustrative Example

(0,0) (4,0)

(4,4)(0,4)

S
-R

-1


S
-R

-2


S
-R

-2


Fig. 2. Mobile ad hoc network example

Consider a simple example with two S-R pairs (S-R-1
and S-R-2) as in Figure 2, where S-R-1 is not mobile and
located at((0, 4), (0, 1)), and S-R-2 moves between locations
((3, 4), (3, 1)) and ((4, 4), (4, 1)) respectively. Assume that
link capacities are unity for both of the links, i.e.,C1[t] =
C2[t] = 1 (in other words, there is no channel fading).
However, the two pairs interfere with each other when S-R-2
is at location((3, 4), (3, 1)). The mobility of S-R-2 follows a
Markov process as shown in Figure 3.



4

((3,4), (3, 1)) ((4,4), (4, 1))

1/3

2/3 2/3

1/3

Fig. 3. Markovian mobility

Note that when S-R-2 at position((3, 4), (3, 1)), the two
pairs cannot be active (i.e., successfully transmit packets)
simultaneously. Thus, we have

L„

1
1

«

,

„

((0, 4), (0, 1))
((3, 4), (3, 1))

«

,

„

1
1

«ff =

(

0
0

)

,

and

L„

1
1

«

,

„

((0, 4), (0, 1))
((3, 4), (3, 1))

«

,

„

1
0

«ff =

(

1
0

)

.

Next we assume that the information delayτ = 1.
Since both channels are time-invariant and the position
of S-R-1 is fixed, the information S-R-1 has is com-
pletely determined by the delayed information from S-R-
2. It is easy to verify that given(S2[t − 1], R2[t − 1]) =
((3, 4), (3, 1)), Λ„

1
1

«

,

„

((0, 4), (0, 1))
((3, 4), (3, 1))

«ff is as shown in

Figure 4(a); and given(S2[t− 1], R2[t− 1]) = ((4, 4), (4, 1)),
Λ„

1
1

«

,

„

((0, 4), (0, 1))
((4, 4), (4, 1))

«ff is as in shown Figure 4(b).
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(a) Case 1
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λ1

λ2

(b) Case 2

Fig. 4. Throughput regions under different delayed information

Note that

Pr ((S2[t], R2[t]) = ((3, 4), (3, 1)))

= Pr ((S2[t], R2[t]) = ((4, 4), (4, 1)))

=
1

2
,

so the throughput regionΛτ=1 is as shown in Figure 5. The
throughput region without any information delay is also shown
in Figure 5 using the dotted line as a comparison. We can see
that the throughput region shrinks when we have delays in
topology/channel knowledge.

C. Throughput-Optimal Scheduling Algorithm

In this section, we propose a throughput-optimal scheduling
algorithm which stabilizes the network forλ[t] within the
network throughput region.

0 11/3

1





2/3

3/4

λ1

λ2

Fig. 5. Throughput regionΛτ=1

Threshold-Based Scheduling:Given the delayed informa-
tion Q[t − τ ] and

J[t − τ ] := {C[t − τ ], (S[t − τ ],R[t − τ ])},

which is available at all senders, the senders make transmission
decisions according to the following two steps:

Step 1:Each sender computes a set of threshold function
Θ∗

l (Sl[t], Rl[t]) (for all l ∈ L) that solves the following
optimization problem.

max
∑

l∈L

Ql[t − τ ]E
[

Cl[t]1Cl[t]≥Θl(Sl[t],Rl[t]) ×

∏

j 6=l

(

1 − 1 |Sj [t] − Rl[t]| ≤ (1 + ∆)D,

Cj[t] ≥ Θj(Sj[t], Rj [t])

)

∣

∣

∣

∣

∣

∣

J[t − τ ]



 . (2)

Note that(S[t],R[t]) is random variable in this calculation,
i.e., the instantaneous geographic information is not usedin
computing the threshold function.

Step 2: Senderl transmits with rateCl[t] if its current
location is(Sl[t], Rl[t]) and

Cl[t] ≥ Θ∗
l (Sl[t], Rl[t]).

�

The following theorem shows that the algorithm proposed
above is throughput optimal.

Theorem 2:Given a trafficλ[t] such that(1 + ε)E[λ[t]] ∈
Λτ , the network is stochastically stable under the threshold-
scheduling algorithm.

Proof: Define a Lyapunov function

V [t] =
∑

l∈L

Q2
l [t].

The key idea is to prove that

E[V [t + 1] − V [t]|Q[t − τ ]] ≤ −2ε
∑

l∈L

E[λl[t]]Ql[t − τ ] + B,

for some positiveB. The detail proof is provided in Appendix
A.

Remark:Since the delayed informationQ[t−τ ] andJ[t−τ ],
and channel state distributions are available at all mobiles, each
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mobile can solve the optimization problem (2), and makes
their transmission decisions based on its current location,
instantaneous channel state, and the threshold value. Thus, the
algorithm is a distributed algorithm. However, the optimization
problem (2) involves network-wide delay information, so
the complexity is at the scale as the network size, which
could be very high when the network size is large. In the
next section, we will develop a low-complexity (where the
decision depends only on “local”’ delayed information) and
near optimal implementation.

IV. L OW-COMPLEXITY AND NEAR-OPTIMAL

IMPLEMENTATION

In this section, we propose a scheduling algorithm whose
information and computation complexity is independent of the
network size. The idea is to partition the geographic region
spatially into disjoint tiles and only share delayed topology and
network state information among mobile nodes within each
tile. Then the computation complexity is determined by the
size of the tiles.

We first assume that each mobile is equipped with a GPS or
appropriate technology (e.g., cell tower based triangulation),
so the mobiles have knowledge of their geographic locations.
We partition the square area into tiles with side-length2W +X
as shown in Figure 6, whereW andX are positive numbers
and

W ≥ max{τvmax, (1 + ∆)D}. (3)

Each tile is further separated into two areas as shown in Figure
6: (i) active-area:a square with side-lengthX centered at the
corresponding square-cell; (ii)inactive-area:the area outside
the active-area.

active-area

Y

W

X

inactive-area

Fig. 6. Low complexity implementation

The tile-partition information is assumed to be known by
mobiles so that the mobiles can determine their current tileand
type (active or inactive). We consider scheduling schemes such
that senders (transmitters) within an inactive-area keep silent
(i.e., do not transmit), which guarantees that transmissions
within different active-areas will not interfere with eachother
(this follows because the inactive area is ”wider” than the radio
range).

Also, we observe thatthe mobiles in an active-area at time
t must be in the tile containing the active-area at timet − τ.

This follows directly from (3), and the fact that a mobile can
move a distance no more thanvmax per time slot.

We usez to denote the index of a tile,za to indicate the
active-area in tilez, andzi to indicate the inactive-area in tile
z. Furthermore, letCz[t] denote the set of senders in the cell
z. As explained, we have

Cza [t] ⊆ Cz[t − τ ].

Thus the senders who are in the same active-area at timet were
in the same tile at timet−τ. We also note that since there is no
transmission in the inactive-area, the transmissions in different
active-areas do not interfere. Thus, we can decompose the
network-wide optimization problem into those corresponding
to individual tiles, and the delayed state information onlyneeds
to be shared within tiles.

Recall that mobiles know which tile they are located in.
The topology and channel information are exchanged among
mobile nodes within each tile with delayτ. The queue-length
information is also assumed to be periodically exchanged with
delayτq, and we assume thatτq ≥ τ.

In this setting, we propose the following localized schedul-
ing algorithm.

Localized Threshold-Based Scheduling:At tile z, the
mobiles knowQl[t− τq] and{Cl[t− τ ], (Sl[t− τ ], Rl[t− τ ])}
for all l such thatSl[t−τ ] ∈ Cz[t−τ ]. The senders then make
transmission decisions according to the following two steps:

Step 1: Sender l computes a set of threshold function
Θ̂l(Sl[t], Rl[t]) that solves the following optimization prob-
lem.

max
∑

Cz:Sl[t]∈Cz

Qj [t − τ ]E
[

Cj [t]1Cj[t]≥Θj(Sj [t],Rj[t])×

∏

k 6=j

(

1 − 1 |Sk[t] − Rj [t]| ≤ (1 + ∆)D,

Ck[t] ≥ Θk(Sk[t], Rk[t])

)

∣

∣

∣

∣

∣

∣

Jz[t − τ ]



 , (4)

where

Jz[t − τ ] = {Cj [t − τ ], (Sj [t − τ ], Rj [t − τ ])}j∈Cz
,

and the threshold function needs to satisfy that
Θ̂(Sj [t], Rj [t]) = ∞ if Sj [t] /∈ Cza (senderj needs to
keep silent if it is in an inactive-area).

Step 2: Senderl transmits with rateCl[t] if its current
location is(Sl[t], Rl[t]) and

Cl[t] ≥ Θ̂l(Sl[t], Rl[t]).

�

Recall that the location of a mobile is uniformly distributed
over the square domain. Thus, the fraction of time a mobile
is positioned in inactive-areas is by

(2W + X)2 − X2

(2W + X)2
= 1 −

(

X

2W + X

)2

.

Further, since the link capacity is upper bounded byCmax,
the throughput-loss because of a mobile moving into inactive-

areas is upper bounded byCmax

(

1 −
(

1
2 W

X
+1

)2
)

, which

goes to zero whenW/X → 0.



6

In the next theorem, we prove that given a trafficλ[t] such
that

(1 + ε)



E[λ[t]] + Cmax



1 −

(

1

2W
X

+ 1

)2

1







 ∈ Λτ

where1 is anN identity vector, then the network is stochas-
tically stable under the localized threshold-based scheduling.

Theorem 3:Given

(1 + ε)



E[λ[t]] + Cmax



1 −

(

1

2W
X

+ 1

)2


 1



 ∈ Λτ ,

the network is stochastically stable under the localized
threshold-based scheduling algorithm.

Proof: To prove the theorem, the idea is to consider a
virtual network, where when senderl is in an inactive-area,
the arrivals isλl[t] + Cmax, and senderl can transmit with
rateCmax without causing any interference to other pairs.

Consider a modified localized threshold-based scheduling,
which is the same as the original algorithm except that
Θl(Sl[t], Rl[t]) = 0 (instead ofΘl(Sl[t], Rl[t]) = ∞). It is
easy to see that the queue-evolution of the virtual network
under the modified algorithm is the same as the original
network. Thus, we analyze the virtual network with arrival
λ[t].

GivenQ[t− τq] and{C[t− τ ], (S[t− τ ],R[t− τ ])}, let Θ∗

denote the optimal solution to (2), and̃Θ denote the threshold
function of the modified algorithm. First, for an active area
Cza , we have

∑

l:Sl[t]∈Cza

Ql[t − τq]E
[

Cl[t]1Cl[t]≥Θ̃l(Sl[t],Rl[t])
×

∏

j 6=l

(

1 − 1 |Sj[t] − Rl[t]| ≤ (1 + ∆)D,

Cj [t] ≥ Θ̃j(Sj [t], Rj [t])

)

∣

∣

∣

∣

∣

∣

J[t − τ ]





≥
∑

l:Sl[t]∈Cza

Ql[t − τq]E
[

Cl[t]1Cl[t]≥Θ∗
l
(Sl[t],Rl[t]) ×

∏

j 6=l

(

1 − 1 |Sj[t] − Rl[t]| ≤ (1 + ∆)D,

Cj [t] ≥ Θ∗
j (Sj [t], Rj [t])

)

∣

∣

∣

∣

∣

∣

J[t − τ ]



 .(5)

Next for an inactive areaCzi , we have
∑

l:Sl[t]∈C
zi

Ql[t − τq]E
[

Cl[t]1Cl[t]≥Θ̃l(Sl[t],Rl[t])
×

∏

j 6=l

(

1 − 1 |Sj[t] − Rl[t]| ≤ (1 + ∆)D,

Cj [t] ≥ Θ̃j(Sj [t], Rj [t])

)

∣

∣

∣

∣

∣

∣

J[t − τ ]





=
∑

l:Sl[t]∈Cza

Ql[t − τq]Cmax

≥
∑

l:Sl[t]∈C
zi

Ql[t − τq]E
[

Cl[t]1Cl[t]≥Θ∗
l
(Sl[t],Rl[t]) ×

∏

j 6=l

(

1 − 1 |Sj[t] − Rl[t]| ≤ (1 + ∆)D,

Cj [t] ≥ Θ∗
j (Sj [t], Rj [t])

)

∣

∣

∣

∣

∣

∣

J[t − τ ]



 .(6)

Inequalities (5) and (6) imply value of (2) under the virtual
network is larger than the one under the original network. This
is the key fact and can be used to prove theorem. The detailed
proof is provided in Appendix B.

V. SIMULATIONS

In this section, we further study the performance of our
algorithms using simulations. We consider a network as shown
in Figure 7, in which there are four sender-receiver pairs. At
beginning of each time slot, an S-R pair moves to its left or
right with equal probability if the pair is not at the boundary
of the network. Otherwise (at the network boundary), the S-R
pair moves away from the boundary with probability1/2, or
stays at the current position with probability1/2.

S
-R

-1


S
-R

-2


S
-R

-3


S
-R

-4


(0,0)

(7,7)

Fig. 7. Network used in simulations

We assume that two transmissions collide if the senders are
at the same location or next to each other. We further assume
the link rates are one packet per time slot for all links and
all time, and the information delayτ = 1. The arrivals are
assumed to be Bernoulli arrivals with rateλ1 = λ2 = λ3 =
λ4 = λ.

A. Threshold-based scheduling algorithm versus the mismatch
algorithm

We first compare the performance of threshold-based
scheduling algorithm with an algorithm where the senders
treat the most recent information they have as instantaneous
information (i.e., they ignore the fact that it is delayed)
and make scheduling decisions based on the back-pressure
algorithm. Note that the back-pressure algorithm is throughput
optimal when global instantaneous information is used. The
algorithm is named as the mismatch scheduling algorithm
because the information the senders use is different from that
for which the algorithm was designed for.

Mismatch Scheduling Algorithm: Given the delayed in-
formationQ[t − τ ] and

J[t − τ ] := {C[t − τ ], (S[t − τ ],R[t − τ ])},

which is available at all senders, the senders make transmission
decisions according to the following two steps:

Step 1:Senderl computes decision vector̃Al,∗ that solves
the following optimization problem:

max
Ãl

∑

j

Q̃l
j [t]C̃

l
j [t]Ã

l
j

∏

k 6=j

(

1 − Ãl
k1|S̃l

k
[t]−R̃l

j
[t]|≤(1+∆)D

)

,

where(·)l

j [t] = (·)j [t] if j = l; otherwise(·)l

j [t] = (·)j [t−τ ].
Note that senderl has its own instantaneous channel-state,
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location, and queue information, and delayed information of
other pairs (which are all however treated as instantaneous
information by senderl in this algorithm).

Step 2:Senderl transmits ifÃl,∗
l = 1.

�

We chooseλ = 0.20, 0, 21, 0.22, . . . , λmax, whereλmax is
the arrival rate under which the network is critically loaded (we
say the network is critically loaded if the average queue lengths
are larger than100). We executed the simulation for105

iterations under both algorithms, and computed the average
queue-lengths. The results are shown in Figure 8, which
includes the average queue-lengths of S-R-1 for different
values of λ (similar results hold for other sender-receiver
pairs).
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Fig. 8. Threshold-based algorithmvs the mismatch algorithm

From Figure 8, we can see that the threshold-based schedul-
ing algorithm (which is throughput-optimal) has smaller av-
erage queue-length. We also have thatλmax = 0.49 under
the threshold-based algorithm, andλmax = 0.44 under the
mismatch algorithm, i.e., the threshold-based algorithm yields
more than10% throughput improvement.

B. Localized threshold-based algorithm versus localized mis-
match algorithm

We divide the network into two subnetworks as shown
in Figure 9, and compare the performance of the localized
threshold-based scheduling algorithm with a localized mis-
match algorithm under this tiling. The localized mismatch
algorithm is an algorithm where senderl only has delayed
information of the pairs in the same subnetwork (tile). The
scheduling decision is computed similar to the mismatch algo-
rithm with the delayed information limited to the subnetwork
(tile) the senderl is in.

We chooseλ = 0.20, 0.21, 0.22, . . . , λmax. For eachλ, we
executed the simulation for105 iterations under both algo-
rithms, and computed the average queue-lengths. The results
are shown in Figure 10. Again, we can see that the localized
threshold-based scheduling algorithm yields a smaller average
queue-length. In this simulation,λmax = 0.40 under the
localized threshold-based scheduling, andλmax = 0.36 under
the localized mismatch algorithm.
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Fig. 9. Network partition
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Fig. 10. Localized threshold-based algorithmvs localized mismatch algo-
rithm

From the simulations above, we can see that properly ex-
ploiting delayed information can improve the network through-
put and reduce the backlogs.

VI. CONCLUSION

In this paper, we studied throughput-optimal rout-
ing/scheduling for mobile ad hoc networks with information
delays. We characterized the network throughput region un-
der channel and topology uncertainty. We also proposed a
scheduling algorithm where the scheduling decisions are made
based each mobile’s instantaneous information and delayed
information from local geographic regions. Future directions
of this research include:(i) considering multi-hop traffic flows
instead of only peer-to-peer communications; and(ii) consider-
ing physical interference model and design joint power control
and scheduling algorithms.
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APPENDIX A: PROOF OFTHEOREM 2

We define a Lyapunov function such that

V [t] =
∑

l∈L

Q2
l [t].

First, it can be shown that there existsB > 0, which is
independent ofQ such that

E [V [t + 1] − V [t] |J[t − τ ],Q[t − τq]] ]

≤ B + 2
∑

l∈L

Ql[t − τq] ×

(E[λl[t]] − E [Cl[t]Φ
∗
l [t]|J[t − τ ]] ,Q[t − τq]) ,

where

Φ∗
l [t] = 1Cl[t]≥Θ∗

l
(Sl[t],Rl[t]) ×

∏

j 6=l

(

1 − 1 |Sj [t] − Rl[t]| ≤ (1 + ∆)D,

Cj [t] ≥ Θ∗
j (Sj[t], Rj [t])

)

, (7)

andΘ∗
j(Sj [t], Rj [t]) is the optimal solution to problem (2).

Now given that (1 + ε)E[λ[t]] ∈ Λτ , according to the
definition of Λτ , there exists a set ofη{c,(s,r)} ∈ Λ{c,(s,r)}

such that

(1 + ε)E[λ[t]] =
∑

{c,(s,r)}

π{c,(s,r)}η{c,(s,r)}. (8)

Assuming thatJ[t − τ ] = {c, (s, r)}, we have that

E [V [t + 1] − V [t] |{c, (s, r)},Q[t − τq]] ]

≤ B + 2
∑

l∈L Ql[t − τq]
(

E[λl[t]] − η{c,(s,r)}

)

+2
∑

l∈L Ql[t − τq]η{c,(s,r)} (9)

−2
∑

l∈L Ql[t − τq]E [Cl[t]Φ
∗
l [t]| {c, (s, r)}] . (10)

According to the definition ofL, it is easy to see that the
optimization problem (2) can be re-written as

max
Θ

QT [t − τq]E[L{C[t],(S[t],R[t]),1C[t]≥Θ(S[t],R[t])}

∣

∣

∣J[t − τ ]].

(11)

Also we have that

η{c,(s,r)} ∈ Λ{c,(s,r)} =

CHΘ

(

E
[

L{C[t],(S[t],R[t]),1C[t]≥Θ(S[t],R[t])}

∣

∣

∣
J[t − τ ]

])

.

Thus, we have that

QT [t − τq]η{c,(s,r)} ≤ (11)
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which implies that

(9) ≤ (10)

holds for all{c, (s, r)}. Furthermore,{C[t−τ ],S[t−τ ],R[t−
τ ]} is independent ofQ[t − τq] sinceτ ≤ τq. Thus, we can
conclude that

E [V [t + 1] − V [t] |Q[t − τq] ]

=
∑

{c,(s,r)}

π{c,(s,r)}E [V [t + 1] − V [t] |{c, (s, r)},Q[t − τq] ]

≤ B + 2
∑

l∈L

Ql[t − τq]×



E[λl[t]] −
∑

{c,(s,r)}

π{c,(s,r)}η{c,(s,r)}





≤ B − 2ε
∑

l∈L

Ql[t − τq]E[λl[t]],

where the last inequality holds due to (8). Now the theorem
follows from the Foster’s Criterion.

APPENDIX B: PROOF OFTHEOREM 3

We consider the virtual network and let̃Q[t] denote the
queue-lengths of the network system. We define a Lyapunov
function such that

V [t] =
∑

l∈L

Q̃2
l [t].

First, it can be shown that there existsB > 0, which is
independent of̃Q such that

E
[

V [t + 1] − V [t]
∣

∣

∣J[t − τ ], Q̃[t − τq]
]

≤ B + 2
∑

l∈L

Q̃l[t − τq] ×

(

E
[

λl[t] − Cl[t]Φ̃l[t]
∣

∣

∣J[t − τ ]
]

, Q̃[t − τq]
)

,

whereΦ̃ is defined similar as (7).
Now given that

(1 + ε)



E[λ[t]] + Cmax



1 −

(

1

2W
X

+ 1

)2


 1



 ∈ Λτ ,

there exists a set ofη{c,(s,r)} ∈ Λ{c,(s,r)} such that

((1 + ε)



E[λ[t]] + Cmax



1 −

(

1

2W
X

+ 1

)2


 1





=
∑

{c,(s,r)}

π{c,(s,r)}η{c,(s,r)}.

Assuming thatJ[t − τ ] = {c, (s, r)}, we have that

E
[

V [t + 1] − V [t]
∣

∣

∣{c, (s, r)}, Q̃[t − τq]
]

≤ B + 2
∑

l∈L

Q̃l[t − τq] ×

(

E
[

λl[t] + Cmax1Sl[t]∈Ci |Sl[t − τ ] = sl

]

− η{c,(s,r)}

)

+2
∑

l∈L

Q̃l[t − τq]η{c,(s,r)}

−2
∑

l∈L

Q̃l[t − τq]E
[

Cl[t]Φ̃l[t]
∣

∣

∣ {c, (s, r)}, Q̃[t − τq]
]

.

Let Θ∗ denote the optimal decision policy in the original
network with the complete delayed network information, we
have that

∑

l∈L

Q̃l[t − τq]η{c,(s,r)}

≤
∑

l∈L

Q̃l[t − τq]E
[

Cl[t]Φ
∗
l [t]| {c, (s, r)}, Q̃[t − τq]

]

≤
∑

l∈L

Q̃l[t − τq]E
[

Cl[t]Φ̃l[t]
∣

∣

∣ {c, (s, r)}, Q̃[t − τq]
]

.

Furthermore,{C[t− τ ],S[t − τ ],R[t− τ ]} is independent of
Q̃[t − τq] sinceτ ≤ τq. Thus, we can conclude that

E
[

V [t + 1] − V [t]
∣

∣

∣Q̃[t − τq]
]

=
∑

{c,(s,r)}

π{c,(s,r)}E
[

V [t + 1] − V [t]
∣

∣

∣{c, (s, r)}, Q̃[t − τq]
]

≤ B + 2
∑

l∈L

Q̃l[t − τq]
(

E[λl[t]]+

Cmax

∑

sl∈Ci

π{c,(s,r)} −
∑

{c,(s,r)}

π{c,(s,r)}η{c,(s,r)}



 .

Note that

∑

{c,(s,r)}:sl∈Ci

π{c,(s,r)} = 1 −

(

X

2W + X

)2

.

Thus, we can conclude the theorem holds because

E
[

V [t + 1] − V [t]
∣

∣

∣Q̃[t − τq]
]

=
∑

{c,(s,r)}

π{c,(s,r)}E
[

V [t + 1] − V [t]
∣

∣

∣{c, (s, r)}, Q̃[t − τq]
]

≤ B − 2ε
∑

l∈L

Q̃l[t − τq]×

(

E[λl[t]] + Cmax

(

1 −

(

X

2W + X

)2
))

.


