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Abstract—Opportunistic routing (OR) has received much at-
tention as a new routing paradigm due to its efficient utilization
of broadcasting and spacial diversity of the wireless medium.
Although numerous OR algorithms and protocols have been
proposed to apply to various environments and integrate with
numerous techniques, as far as we know, none of the existing
works have used mathematical tools such as routing algebra to
analyze the compatibility of routing metrics and routing protocols
so as to provide a guideline for routing protocol design. In this
paper, we design a new OR algebra based on the routing algebra
proposed for inter-domain routing [1], identify the essential
properties of OR in the mathematical language of the OR algebra,
and analyze the design space in terms of routing metrics for
various routing requirements.

Index Terms—Consistency, loop-free, multi-hop wireless net-
works, opportunistic routing (OR), optimality, routing algebra,
routing metrics.

I. INTRODUCTION

Over the past decade, multi-hop wireless networks have
received an increased amount of attention due to their broad
applications and the easy deployment at low cost without rely-
ing on the existing infrastructure. However, this infrastructure-
less property and the unstable nature of the wireless medium
incur the problem of unreliable communication. To address
this problem, opportunistic routing (OR) [2] has been proposed
as a new routing paradigm. OR utilizes the broadcast advan-
tage of wireless communication to increase the reliability of a
single transmission. Instead of relying on one next-hop node to
forward a data packet (or simply, packet), OR pre-determines
a set of candidate relays (or simply, relays) with a priority
order and selects the highest-priority relay that indeed receives
the packet as the actual forwarder based on the instantaneous
channel conditions and node availability.

Although numerous variants of OR protocols [3]-[20] have
been proposed for a variety of multi-hop wireless networks,
none of the existing works have systematically studied the
compatibility between routing metrics and routing protocols
under the OR paradigm. Unscrupulously applying an arbitrary
routing metric to an OR protocol may degrade network perfor-
mance, such as routing loops, sub-optimality, or inconsistency.

Consider the ExOR model [2], where the expected transmis-
sion counts (ETXs) are used as a routing metric. ETX is actu-
ally the minimum expected number of transmissions required
to achieve 100% transmission reliability for an unreliable
link/path under the assumption of unlimited retransmissions.
In ExOR, relays are prioritized in ascending order of their
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Fig. 1. An example network for ExXOR. The number on each link represents
the success probability of a single transmission. 0 < p < 0.3 and k& > 1.

ETXs. The smaller the ETX, the higher the priority. While
simulations [2] show EXOR’s good performance, we can use
the simple network topology shown in Fig. 1 to illustrate the
problem of combining ETX with a link-state routing protocol
using a Dijkstra-based algorithm. In this figure, each link
is associated with a reliability value (success probability of
a single transmission), which is equal to the reciprocal of
its ETX value. When s uses the Dijkstra-based algorithm to
calculate its OR scheme to d, it will incorrectly select a single
path < s, w,d > as the OR scheme with minimum ETX value.
However, the actual minimum-ETX OR scheme is that in
which s selects v as its only relay and v selects uy,--- ,uy as
its relays because the ETX from v to d is greatly reduced due
to v’s multiple relays. Hence, the incompatible combination
of ETX and Dijkstra’s algorithm creates a suboptimal routing
decision. The details of computing the ETX-based OR scheme
can be found in Section V-A.

The focus of this research is to provide a systematic analysis
of the relationship between routing metrics and routing proto-
cols in the OR paradigm. Our work identifies the basic prop-
erties that a routing metric needs to satisfy in order to work
with different proactive or reactive OR protocols. The result
of our research provides an important guideline for selecting
the appropriate combinations of routing metrics and routing
protocols under different communication environments. Based
on our study, we consider several specific ORs as case studies.

The major contributions of this paper can be summarized as
follows: 1) We design an OR algebra by exploring the nature
of OR. 2) We identify several essential properties of our OR
algebra. 3) We establish the relationship between the properties
of our OR algebra and the requirements of OR protocols. 4)
We use several existing routing metrics as case studies to show
how to use our results to design OR protocols. 5) Our research
results provide guidelines for designing OR protocols.
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Fig. 2. An example of opportunistic routing. The number on each link
represents the reliability of the link, i.e., the success probability of a single
transmission over the link.

II. PRELIMINARIES AND RELATED WORKS
A. Opportunistic Routing

The underlying idea behind OR is that a stable route is
likely available in unreliable multi-hop wireless networks if
each node can utilize its multiple neighbors as potential relays.
For example, in Figure 2, although the link between s and d
is highly unreliable, node 1 is likely to receive the packet
sent by s and forward it to d. To find a stable and least-
cost (in terms of ETX) route, ExXOR [2] specifies two rules:
the rule of the selection of a relay set for each node, and
the rule of relay prioritization. Besides ExOR, numerous
other OR protocols [3]-[20] have recently been proposed.
For example, Dubois-Ferriere et al. [8] considered a least-
cost OR scheme for wireless sensor networks with stringent
energy constraints. Shah et al. [13] analyzed an OR model for
the application environment of low traffic scenarios. Fiifler et
al. [9] studied an OR protocol for mobile wireless networks.
Zorzi and Rao [20] applied the idea of OR to geographic
routing. Chachulski et al. [5] integrated network coding into
OR. Wu et al. [15] adopted OR in utility-based routing.
However, none of the existing works provided a systematic
analysis on the compatibility between routing objectives and
diversified application environments in the OR framework.

B. Routing Algebras

Routing algebras are best understood as a generalization
of shortest-path routing as developed by Sobrinho [1]. Fig. 3
illustrates the similarity between shortest-path routing and
routing algebra. In both shortest-path routing and routing al-
gebra, paths are extended by incorporating unexplored links to
known paths. The difference is that routing algebra generalizes
link/path length in shortest-path routing to link label and path
signature. The routing algebra [1] is a 5-tuple (X, <, L, ®, ¢),
where X is a set of signatures for describing paths, < is a
preference relation over signatures, L is a set of labels for
links, & is a label application function mapping L x ¥ to ¥,
and ¢ is a special signature for a single node.

A preference relation conforms to completeness and tran-
sitivity, where completeness means that x < y or y <X = (or
both) for each x,y € X, and transitivity denotes that x <X y
and y =< z implies * <X z for each z,y,z € X. The joint
function and the preference relation have different implications
for different metrics. Table I shows four concrete examples.
Among them, the shortest-widest metric represents a path with
the max-capacity among the set of paths with the minimum
cost. The weight of this metric is in the form of (s, w), where
s represents the min-cost metric and w represents the max-
capacity metric. (s1,w1) P (82, w2) = (81 + $2, min(wy, wa)).
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(a) Path length computation.

asb
(b) Path signatures computation.
Fig. 3. Comparison of path computation for (a) shortest-path routing and (b)

routing algebra, where dotted curves represent paths from u to d, and solid
lines denote the link between u and v.

metric | C | R w shortest-widest
D + | X | min (s1 + s2, min(wi,w2))
= S | 2] = | (s1<sg)or(si =s2and wi > wa)

TABLE I
EXAMPLES OF THE ROUTING ALGEBRA. ‘C’ FOR MIN-COST (SHORTEST),
‘R’ FOR MAX-RELIABILITY, AND ‘W’ FOR MAX-CAPACITY (WIDEST).

In the preference relation, the min-cost metric has higher
priority. (s1,w1) = (S2,ws) if 81 < sy or s = s and
w1 Z wy.

Sobrinho [1] designed a routing algebra to study the
Dijkstra-based shortest path algorithm for Internet-based rout-
ing and inferred the relation between routing requirements
(optimality and loop-freeness) and properties of the routing
algebra. Later, Sobrinho [21] studied the routing algebra for
the distributed Bellman-Ford algorithm and included rout-
ing convergence as another routing requirement. Yang and
Wang [22] refined the properties of the routing algebra [1] and
showed how these refined properties affect a wireless routing
protocol’s ability to meet the three routing requirements:
optimality, consistency, and loop-freeness. In this work, we
design an OR algebra (based on the properties of OR), which
is significantly different from existing routing algebra [1], [21],
[22], and use it to analyze how the properties of a routing
metric affect the routing requirements of an OR protocol.

III. THE ALGEBRA FOR OPPORTUNISTIC ROUTING
A. Network Model

We consider a set V' of n wireless devices (called nodes
hereafter) deployed in a given area. Each node has a unique
ID v; € {v1,va, - ,vn}, Where n = |V|. Each node has
an omnidirectional antenna, and a single transmission of a
node can be received by any node within its transmission
range. The network is then modeled as a graph (V, E), where
V = {v1,va, -+ ,v,} is the set of nodes and E is the set of
directional wireless links. A link (u,v) is in E if node v is in
the transmission range of node w.

B. Opportunistic Routing Algebra

Compared with traditional single-path routing and multi-
path routing, OR can be regarded as any-path routing [19].
For any source-destination pair, OR pre-determines a set of
candidate paths, but only one candidate path will be selected as
the actual forwarding path. The path selection is dynamic and
dependent on the instantaneous channel conditions and node
availability. The set of candidate paths for a source-destination
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(b) Corresponding OR-tree

(a) An example network topology

Fig. 4. An example network and its OR-tree for source s and destination d,
where each link is associated two metrics: link cost/reliability.

pair can be regarded as a tree called OR-tree. For example,
an OR-tree from s to d in Fig. 4(a) is shown in Fig. 4(b).
We use Sr(s)(s, d) to represent the OR-tree from source s to
destination d with r(s) representing s’ relay sequence (relays
in a specific order). For example, in Fig. 4(b), r(s) = 12
(node 1 preceding node 2). In the context where d and r(s)
are explicit, we use S(s) for short.

In order to model opportunistic routing, we design an
opportunistic routing algebra O as follows:

O = (27@)l’ j)

where X is the set of OR-trees, & is a function that joints
two OR-trees into a new OR-tree, [ is a function that assigns
a weight to an OR-tree, and < is a preference relation over
OR-trees in terms of weights. V.S(v), S(u) € 3, it says S(v)
is strictly preferred to S(u) (or S(v) has higher preference
than S(w)) if I[S(v)] < I[S(u)].

S(v) @ S(u) is interpreted as OR-tree S(v) merging OR-
tree S(u) as its least-preference sub-OR-tree. It is illustrated
by Fig. 5, where S(v) has already had two sub-OR-trees, S(a)
and S(b), before jointing S(u). Note that existing sub-OR-
trees are preferred to a newly jointed sub-OR-tree. In S(v) ®
S(u), the preference among three sub-OR-trees is [[S(a)] <
[[S(b)] < [S(w)]. Sub-OR-trees are ordered from left to right
in descending order of preference.

Unlike the joint operation in [1], which simply merges two
paths into a single path, our joint operation does not satisfy
the commutation and association laws, i.e., S(v) & S(u) #
S(u) @ S(v) and (S(v) & S(u)) & S(w) # S(v) & (S(u) ®
S(w)), as shown in Fig. 6. Three concrete examples of our
joint operation can be found in Section V.

C. Properties of the OR Algebra

Similar to the shortest-path routing, whether an OR protocol
can satisfy various routing requirements depends on different
properties of the OR algebra. In this section, we abstract and
summarize the properties of our OR algebra.

The first property specifies the criterion for a node to select
its relays. Intuitively, a node v selects a node w as its relay only
if u can enhance v’s performance to forward packets to the
destination. Based on the notations of our OR algebra, it can
be rephrased as S(v) jointing S(u) only if [S(v) @ S(u)] <
[[S(v)]. In this case, u is said to be beneficial to v. Note
that relays can only be selected from neighbors. We use N (v)

S(v)

/\K

I

S(u) S(v)&® S(u)

Fig. 5. The illustration of the & operation in the OR algebra.
S(v) ® S(u)  S(u) ®S(v)  (S(v) ®S(w) ®S(w)  S(v) G (S(u) ® S(w))
Fig. 6. Illustrate that OR algebra does not satisfy commutation law and

association law.

to denote v’s neighbors and R(v) to denote v’s relay set. In
Definitions 1 and 2, we assume that S(v) is the OR-tree before
u is added into v’s relay set.

Definition 1: (Relay beneficial condition) In the OR al-
gebra O, relay w is conditionally beneficial to node v if
I[S(v) ® S(u)] < I[S(v)] implies I[S(u)] < I[S(v)] and vice
versa. O is relay conditionally beneficial if Vo € V and
Yu € R(v), node u is conditionally beneficial to v.

Intuitively, if an OR protocol satisfies the relay-beneficial-
condition, any node under this protocol can only select neigh-
bors with higher preference as its relays. Note that not all OR
are relay conditionally beneficial as illustrated in the utility-
based OR [15]. If Definition 1 does not satisfy, the OR-tree
in Fig. 4 (b) is possible. The second property compares the
weight of an OR-tree with its newly jointed sub-OR-tree. If
the sub-OR-tree is preferred to the OR-tree before the joint
operation, the sub-OR-tree should be still preferred to the OR-
tree that has jointed the sub-OR-tree.

Definition 2: (Preference preservation) The OR algebra
O is preference-preservable if [[S(u)] =< [S(v)] implies
[[S(u)] 2 I[S(v)®S(u)] for Vv € V,Vu € N(v). Similarly, O
is strictly preference-preservable if I[S(u)] < I[S(v)] implies
1[S(w)] < I[S(v) & S(u)].

The preference-preservation property can also be rephrased
as I[S(v) ® S(u)] < I[S(w)] implying I[S(v)] < I[S(u)]. The
third and fourth properties preserve the preference among OR-
trees in a different manner. The third (fourth) property states
that S(v) preferred to S(u) implies S(v) still preferred to
S(u) if both of them joint (are jointed by) a common third
OR-tree. The third (fourth) property resembles the right (left)-
isotonicity introduced in [22], which states that the preference
of two paths is preserved if both of them are appended
(prefixed) by a common third path. Thus, we name the third
(fourth) property quasi-right (left)-isotonicity.



Definition 3: (Quasi-right-isotonicity) The OR algebra O
is quasi-right-isotonic if I[S(v)] = 1[S(u)] implies I[S(v) ®
S(w)] 2 I[S(u)®S(w)] for VS(w), S(v), S(u) € ¥ satisfying
w € N(v) [ N(u). Similarly, O is strictly quasi-right-isotonic
if I[S(v)] < I[S(u)] implies I[S(v) B S(w)] < I[S(u) B S(w)].

Definition 4: (Quasi-left-isotonicity) The OR algebra O
is quasi-left-isotonic if {[S(v)] =< {[S(u)] implies [S(w) &
S(v)] X U[S(w)®S(u)] for VS(w), S(v), S(u) € ¥ satisfying
v,u € N(w). Similarly, O is strictly quasi-left-isotonic if
[[S(v)] < [S(w)] implies I[S(w) & S(v)] < I[S(w) & S(u)].

In Definitions 3 and 4, v and v can be the same node
but their corresponding OR-trees are different. If the joint
operation is idempotent, Definitions 1 and 2 can be regarded
as special cases of Definitions 3 and 4. However, @ is not
necessarily idempotent as illustrated by the utility-based OR
model [15]. The fifth property specifies the criterion for a node
to prioritize its relays. The priority of relays is based on the
preference of associated OR-trees. The higher the preference,
the higher the priority. We use Sg(,)(v) to represent the set of
OR-trees rooted at v with R(v) being v’s relay set. Once all
the sub-OR-trees of an OR-tree are determined, the OR-tree
is uniquely determined by the sequence of relays associated
with the sub-OR-trees. Hence, different relay sequences r(v)
correspond to different OR-trees S..(,)(v). We also use 7(v) to
represent the sequence of relays in R(v) in descending order
of preference. For example, in Fig. 4(a), 7(s) = 12. Sy(,)(s) is
uniquely determined, as shown in Fig. 4 (b), if sub-OR-trees
S(1) and S(2) are determined. S, (s)(s) with r(s) = 21 is a
totally different OR-tree.

Definition 5: (Relay-order-optimality) A node is relay-
order-optimal if the sufficient and necessary condition to
optimize the weight of its associated OR-tree with respect to a
given relay set is to order its relays in descending order of the
preferences of associated sub-OR-trees. The OR algebra O is
relay-order-optimal if every node is relay-order-optimal, i.e.,
l[SF(v) (U)] = Z[ST(U) (U)L Vv € V and vSr(v) (’U) € SR('U) (U)

Since the relay-order-optimality property is relatively hard
to verify for a given metric, we break it into two sub-properties
and prove their equivalence by Lemma 1. One sub-property is
a special case of the relay-order-optimality, which considers
the order-optimality for only two relays.

Definition 6: (2-relay-order-optimality) A node v is 2-
relay-order-optimal if [[S(u)] < I[S(w)] implies I[S(v) &
S(u) ® S(w)] < 1[S(v) ® S(w) & S(u)] for Vu,w € N(v)
and vice versa. The OR algebra O is 2-relay-order-optimal if
every node is 2-relay-order-optimal.

Note that S;.(y)yw (V) = Sy (v) DS (u)®S(w). The other sub-
property is quasi-right-isotonicity. Without loss of generality,
we can assume R(v) = {uy,---,ugx} with {[S(u;)] =
[[S(uiq1)] for i = 1,2,--- k — 1. We also define R;(v) =
{ui,ug, -+ ,u;} 1 < i < k) (R;™(v) = Ri(v)/{um}
(I <m <)), ri(v) (r;™(v)) as a permutation of R;(v)
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(R;™(v)), and 7;(v) (¥; ™(v)) as the permutation of R;(v)

(R;™(v)) in descending order of preference. We have the
following lemma to prove the claimed equivalence.

Lemma 1: The OR algebra is relay-order-optimal iff it is
quasi-right-isotonic and 2-relay-order-optimal.

Proof: Sufficiency is proved by induction on the relay set
size k. The inductive basis (k = 1 and k& = 2) is trivial (directly
from Definitions 5 and 6). For the inductive step, assume that
the OR algebra is relay-order-optimal for any relay set with
size k = i. Consider any relay set R(v) with k = ¢+ 1 for any
node v. Since any permutation 7(v) of R(v) can be regarded
as the sequence of the first ¢ relays appended by the last relay,
r(v) can be represented by r~ ™ (v)u,, if we use wu,, to denote
the last relay. Because u,, can be any relay in R(v), proving
Z[SF(U)('U)] = Z[Sr—m(v)um ('U)] (m =10+ 1) is equal
to proving the objective, I[Si(,)(v)] = [Sy(y)(v)]. Note that
Sp—m (v)u,, (V) can be written as S, —m () (v) ® S (um).

By the inductive hypothesis, we have I[Sy—m)(v)] =
U[Sy=m(v)(v)]. According to the quasi-right-isotonicity, we
have I[Si—m (1) (V) ® S (Um )] = 1[Sy—m(v)(v) ©S(um)]. Hence,
to prove the objective, it is sufficient to prove [[Sy(,)(v)] =
U[S7m(v)(v) @ S(tm)]. Note that Sy, (v) and Si—m(,) can
be written as Sy, () (v) © S(ui41) and Sﬁm(v)(v) @ S(uit1),
respectively. If m = ¢ + 1, it automatically holds. If m <
i+ 1, we have [[Sr,(,)(v)] = l[S;i_m(v)(v) @ S(um,)] due
to inductive hypothesis. Thus, [Sy,)(v)] =< U[Srm (V) &
S(um,) ® S(u;r1)] because of quasi-right-isotonicity. By the
2-relay-order-optimality property, we also have [[S () (v)®
S(ttm) @ S(uis1)] = 1[Spmiyy(v) & S(uirr) & S(unm)).
Therefore, 1[Sy(y) (V)] = 1[S7-m(v)(v) © S(uy)] holds and the
sufficiency is proved.

The necessity of the 2-relay-order-optimality is obvious
since it is a special case of the relay-order-optimality. The
necessity of the quasi-right-isotonicity is proved by contra-
diction. If the OR algebra is not quasi-right-isotonic, v and
ri(v) exist such that I[S7, () (v)] = I[Sy, ) (v)], 3Sy, () (v) €
SRi(w) (), Bt I[Sy(0) (V) &S (tir1)] < U[S7; () (V) BS (wit1)].
This contradicts the definition of relay-order-optimality. |

A specific example that satisfies the relay-order-optimality
property but not the relay-beneficial-condition and the
preference-preservation property will be shown in Sec-
tion V-B. The last property specifies a phenomenon where
all relays of a node are strictly preferred to the node.

Definition 7: (Monotonicity) The OR algebra O is mono-
tonic if all relays of any node are preferred to that node,
ie, ([S(u)] =X [Srw(v)], Yv € V, Yu € R(v), and
VSrw)(v) € Sgew)(v). Similarly, OR algebra O is strictly
monotonic if I[S(u)] < 1[Sy)(v)].

Lemma 2: The OR algebra is (strictly) monotonic if it is
relay conditionally beneficial, (strictly) preference-preservable
and relay-order-optimal.

Proof: Since the OR algebra is relay-order-optimal, we
have [[Si.)(v)] = 1[Syw)(v)], Yo € V and VS, (v) €
SRr(v)(v). Because a node will only select a beneficial relay, we



have I[Sy(,)(v)] < 1[SF, _,(v)(v)]. Due to the relay-beneficial-
condition, we have I[S(ux)] < I[SF, _, (v)(v)]. According to the
(strict) preference-preservation property, we have [[S(ug)] <
USr(e) ()] Q1S (k)] < 1[Sruy (). Since 1[S(ue)] = 1[S (e

(¢ =1,---,k), the sufficiency can be easily inferred. [ |

Among the three sufficient conditions, the relay-beneficial-
condition and the (strictly) preference-preservation property
are necessary, but the relay-order-optimality property is not.
We illustrate their necessity as follows. First, assume that only
the relay-beneficial-condition is not satisfied. Thus, a w;1
exists such that [[Sy, . | () (v)] < 1[SF () (v)] but I[S7, () (v)] <
1[S(uiy1)]. Hence, U[Sww)(v)] = 1[S7 vy (v)] < 1[S(uit1)]
contradicts the definition of monotonicity. Second, assume
that only the property of (strictly) preference-preservation
does not hold. Thus, a wu;11 exists such that I[S(u;y1)] =<
U[S7, () (V)] U[S(wir1)] < U[SF, ) (v)]) but I[S7,,, (v)(v)] <
1S (uir1)] ([S7 4 (0) (V)] 2 1S (uigr)]- Since U[Sr)(v)] =
I[S7,,(v)(v)], it also contradicts the definition of (strictly)
monotonicity. Third, the relay-order-optimality is not neces-
sary, since the OR algebra can be monotonic, even if it is not
relay-order-optimal.

In the end, we specify the necessary and sufficient condition
to ensure that every sub-OR-tree of an optimal OR-tree is
optimal. This is specified by Lemma 3, where we use S*(s)
to denote the optimal OR-tree from s to d.

Lemma 3: Every sub-OR-tree of an optimal OR-tree is
optimal iff the OR algebra is strictly quasi-left-isotonic.

Proof: Sufficiency proved by contradiction. Assume that
an optimal OR-tree S*(s) exists such that at least one of its
sub-OR-trees is not optimal. Assume that S(v) is the first
non-optimal sub-OR-tree. Note that order is first from top
to bottom and then from left to right. Let w be a parent
node of v on S*(s) and S(u) denote u’s associated OR-tree
before jointing S(v). Due to the strict quasi-left-isotonicity
property, we have [[S(u) & S*(v)] < I[S(u) & S(v)] since
[[S*(v)] < I[S(v)]. Hence, the sub-OR-tree associated with u
is not optimal, contradicting our assumption. The sufficiency
is thus proved.

Necessity also proved by contradiction. Assume that the OR
algebra is not strictly quasi-left-isotonic. A possibility exists
that [[S(s) @ S(v)] = [S(s) & S'(v)] but S'(v) < S(v).
Hence, the sub-OR-tree may not be the optimal OR-tree -
a contradiction. The necessity is thus proved. |

IV. APPLICATION OF THE OR ALGEBRA

Numerous routing requirements are necessary to ensure
efficient and robust routing operations. These requirements
include (but are not limited to) optimality, loop-freeness,
and consistency. In this section, we first define these three
requirements. We then discuss the properties required for the
OR algebra to meet these requirements for two different OR
algorithms.

Algorithm 1 Dijkstra-Based Opportunistic Routing Algorithm

Dijkstra(G, d)
Q—V;
while Q # () do
u « Extract-Best(Q) {node to visit};
for each v € N(u) (@ do
if I[S(v) ® S(u)] < I[S(v)] then
S(v) «— S(v) ® S(u);

AN A T

A. Requirements for Opportunistic Routing Protocols

Definition 8: (Optimality) An OR protocol is optimal if it
always routes packets along the highest-preference OR-tree
between every pair of nodes in any connected network.

Definition 9: (Consistency) An OR protocol is consistent
if, for any source and destination pair (s,d) and any node v
on the OR-tree S(s,d), v forwards packets from s to v and
from v to d always along S(s,d).

Definition 10: (Loop-freeness) An OR protocol is loop-
free if it does not create any packet forwarding loop for any
connected network.

B. Opportunistic Routing Using Dijkstra’s Algorithm

Numerous opportunistic routing protocols depend on
Dijkstra-based algorithms to compute the opportunistic routing
schemes from all the other nodes to the destination. We
presented the general Dijkstra-based OR algorithm in Algo-
rithm 1, where procedure Extract-Best extracts the highest-
preference node from (). Each time a node has been extracted,
it will relax its neighbors remaining in () by providing itself
as a relay candidate. A relay will be inserted into the relay set
of a node only if the relay is beneficial to the node’s OR-tree.

As mentioned in the introduction, the optimality of the
OR scheme depends on the combination of the underlying
OR algorithm and the associated routing metric. Theorem 1
presents the sufficient properties that a routing metric should
have to guarantee optimality when combined with the Dijkstra-
based OR algorithm. The proof of Theorem 1 needs the
following lemma, where v; denotes the i-th node extracted
from @ and S(v;) represents the associated OR-tree after v;
is extracted from (. Lemma 4 specifies the sufficient and
necessary conditions that the preferences of associated OR-
trees decrease in the order of nodes being extracted from Q.

Lemma 4: In Algorithm 1, I[S(v;)] = [S(viy1)] G =
1,---,|V| = 1) iff the OR algebra is preference-preservable.

Proof: Sufficiency proved by contradiction. Assume that
v; is the first node satisfying [[S(v;41)] < I[S(v;)]. Right
before v; is extracted from @, we have I[S(v;)] < I[S"(vj4+1)],
where S’(vj41) represents the OR-tree associated with v, 4
at that moment. Otherwise, v;; will be extracted before v;.
Between v;’s and v;41’s extractions from @, v; is the only



available relay candidate for v; ;. If vj41 does not select v;,
S(vj41) = S’ (vj41), and thus 1[S(v;)] =< 1[S(vjy1)], a con-
tradiction. Otherwise, we have S(vj1) = S'(vj41) ® S(vj).
By the assumption, we have [[S'(vj11) @ S(v;)] < I[S(v;)].
Because the OR algebra is preference-preservable, we have
[[S"(vj41)] < I[S(vj)], a contradiction. Hence, the sufficiency
is proved.

Necessity also proved by contradiction. Assume that the OR
algebra is not preference-preservable. Hence, 35(v), S(u) €
Y st I[S(u)] = 1[S(W)] and I[S(v) @& S(u)] < I[S(u)].
Therefore, it is possible for some v; and v;y; satisfying
S (u)] = 1S (vy40)] and 1[S"(v741) @ S(vy)] < 1S,
a contradiction. The necessity is thus proved. |

In Algorithm 1, when a node u is going to be extracted from
Q, its associated OR-tree has the highest preference among all
OR-trees of remaining nodes in ). However, it is possible that
the associated OR-tree of a remaining node v in @ will have
a higher preference later so that [[S(v)] < [[S(u)]. Lemma 4
specifies a necessary and sufficient condition that the above
situation will not occur. In the proof of Theorem 1, we use
R*(v) to denote v’s optimal relay set associated with optimal
OR-tree S*(v), and define (v) = I[S*(v)].

Theorem 1: The Dijkstra-based OR algorithm can find the
optimal OR scheme if the combined OR algebra is relay-
conditionally-beneficial, strictly preference-preservable, and
relay-order-optimal.

Proof: To prove optimality, it is sufficient to prove that
I[Sg(v)(v)] = d(v) for any node v when v is extracted from
@ because the OR-tree associated with a node will not change
after its extraction. We prove via induction. The inductive basis
is trivial since {[S(d)] = d(d) when d is extracted from . For
the inductive step, assume [[Sr(.,)(w)] = d(w) for all nodes
w that have been extracted from () before v. For contradiction,
suppose (v, d) < [Sp(v)(v)] when v is extracted from Q).

From Algorithm 1 and Lemma 4, it can be inferred that
v’s extracted neighbors are inserted into R(v) in descending
order of their preferences until v itself is extracted from Q.
Hence, when v is extracted from Q, [[Sg(,)(v)] is optimized
with respect to R(v) due to the relay-order-optimality property.
According to the inductive hypothesis, every sub-OR-tree
S(u;) (Vu; € R(v)) should be optimal. Hence, the preference
of Sg(y)(v) cannot improve by increasing the preference
of S(u;). Based on Line 5 of Algorithm 1, every relay
in R(v) is beneficial. Therefore, the preference of Sp(,)(v)
cannot improve by removing relays from R(v). Thus, we can
conclude that the optimal relay set R*(v) is not a strict subset
of R(v). Hence, at least one beneficial relay in R*(v)/R(v)
must exist if §(v) < I[Sgre)(v)].

Without loss of generality, assume that u is the relay in
R*(v)/R(v), the OR-tree of which has the highest preference.
Let S(u) denote the sub-OR-tree of S*(v) and = be the first
node along S(u) that is still in @ before v is extracted. Note
that the existence of u relies on the existence of x, which can
also be u. According to Lemma 2, the OR algebra is strictly

monotonic. Hence, for any v’ € S*(v), we have I[S(u')] <
1[[S*(v)], especially, I[S(x)] < I[S*(v)]. Thus,  should be
extracted from @) before v, which is a contradiction. Hence,
R(v) = R*(v) and I[Sg(,(v)] = 0(v) when v is extracted
from Q. |

If the OR computation is executed in a centralized way,
such as source routing, loop-freeness and consistency are
automatically guaranteed. For distributed OR computation,
loop-freeness and consistency require the properties of the OR
algebra as shown in Theorem 2 and Theorem 3, respectively.
Note that the sufficient conditions for loop-freeness and opti-
mality are in fact the same, while the sufficient conditions for
consistency are stronger than those for optimality.

Theorem 2: The distributed OR based on Dijkstra-based
OR algorithm is loop-free if the OR algebra is strictly mono-
tonic.

Proof: We use contradiction to prove this theorem. As-
sume that a routing loop exists while packets are forwarded
from source s to destination d in the OR-tree. Denote the
first node appearing in the routing loop along OR-tree S(s)
as v. To cause a routing loop, in the OR-tree S(v), at least
one node w; (other than v and d) must deviate from S(v).
In S(w;), another node wo might also deviate from S(wy).
This process continues until some node wy deviating from
S(wy—1) reaches v along S(wy). Since the OR algebra is
strictly monotonic, according to Lemma 2, we have [[S(v)] <
I[S(wg)] < -+ < I[S(w1)] < I[S(v)], a contradiction. Thus,
this theorem is proved. |

Theorem 3: The distributed OR based on Dijkstra’s algo-
rithm is consistent if the OR algebra is relay-conditionally-
beneficial, strictly preference-preservable, relay-order-optimal,
strictly quasi-left-isotonic, and no two OR-trees have the same
preference.

Proof: The relay-beneficial-condition, strict preference-
preservation, and relay-order-optimality guarantee that the
Dijkstra-based OR algorithm can always find the optimal OR-
tree between source s and destination d (Theorem 1). We prove
consistency by contradiction. According to the definition of
consistency, an OR protocol is inconsistent only if at least one
node on S(s) might not forward packets along S(s). Assume v
is such a node on S(s). Since both s and v will forward packets
along their optimal OR-trees, we have S(v) # S*(v), where
S(v) is a sub-OR-tree of S*(s). Note that I[S*(v)] < I[S(v)]
because no two OR-trees have the same preference. Because
of the strict quasi-left-isotonic and Lemma 3, we also have
I[S(v)] < {[S*(v)], a contradiction. Therefore, no such node
v exists. The theorem is thus proved. |

C. Opportunistic Routing Using Bellman-Ford Algorithm

Another algorithm to compute the OR scheme is the
Bellman-Ford based algorithm, which can compute the OR
scheme for all source-destination pairs. We present a Bellman-
Ford algorithm specified for the OR scheme as shown in



Algorithm 2 Bellman-Ford-Based OR Algorithm

RelayCompute(v)
1: Sort u; € N(v) in descending order of preference;
. Initialize: S(v) < Sp(v); j « 1;
while [[S(v) & S(u;)] < 1[S(v)] do
S(v) — S(v) & 5(uy);
JeJi+ L
return [[S(v)];
MainProgram
. Initialize: I[S(v;)] < oo, I[S(d)] < 0;
repeat
Sort nodes in descending order of preference;
for i =2 to |V| do
1[S(vi)] < RelayCompute(v;);
until no further update

AN

A A

Algorithm 2. To simplify the presentation, we consider a fixed
destination d for this Bellman-Ford algorithm. It is easy to
extend the algorithm to all source-destination pairs.

In line 3 of the main program of Algorithm 2, all nodes
are sorted in the descending order of their weight preferences
and labeled as v; with smaller subscripts representing higher
preference. The tie-breaking rule is that the node with smaller
ID will have higher preference if two nodes are equally
preferred. v represents destination d, which is not counted in
the update process. Each time when a node calls procedure
RelayCompute, it will empty its relay set and re-insert its
relays in the descending order of their preferences.

Theorem 4: The Bellman-Ford-based OR algorithm can
find the optimal OR scheme if the OR algebra is relay-
conditionally-beneficial, strictly preference-preservable, and
relay-order-optimal.

Proof: Tt is sufficient to prove that in the MainProgram
of Algorithm 2 the first m nodes with higher preference
in the nodes sorted by line 3 converge to their optimality
after m — 1 iterations of the outer loop. We prove this by
induction. The inductive basis is trivial since the first node
is the destination, which has the highest preference. For the
inductive step, assume that the claim holds for the first m — 1
iterations. During the m-th iteration, the first m nodes will
not update their preferences and corresponding relays since
they have converged to their optimality, while the remaining
n — m nodes will insert beneficial neighbors in descending
order of their preferences. After the m-th iteration, one node,
denoted as v,,+1, will have the highest preference among the
remaining 7 — m nodes. Because v,,,4+1 ranks (m + 1)-th in
terms of preference, it selects relays only from the first m
nodes according to the strict monotonicity property. Hence,
Vu; € R(Vm+1), S(u;) is optimal due to the inductive hypoth-
esis. Based on the relay-order-optimality property, it can be
inferred that Sy, ,)(vm41) is optimal with respect to 5™ (u;)
for all u; € R(vs,+1). Since every relay is beneficial, the
preference of Sp(,, . ,)(Vm+1) cannot improve by removing

relays from R(v;,+1). Thus, we can conclude that the optimal
relay set R*(vp41) is not a strictly subset of R(Upy1).
Hence, at least one beneficial relay in R*(vy11)/R(Vim+t1)
must exist if §(vmy1) < [Siw,., ) (Vm1)]. Without loss of
generality, assume that u is the relay in R* (vyp41)/R(Vm+1),
the OR-tree of which has the highest preference. Let S(u)
denote the sub-OR-tree of S*(vy,+1) and w be the first
node in S(u), which is still in the n — m remaining nodes,
satisfying [[Sy(y,. . ) (Ums1)] = [[S(w)]. Note that w ex-
ists because u & R(v;,+1). Since the OR algebra is strict
monotonic, for any v’ € S*(vp41), we have I[S(u')] <
[[S*(vm+1)], especially, I[S(w)] < I[S*(vm+1)], a contra-
diction (Note I[S*(vm+1)] = {[S#w,11)(Vm+1)]). Therefore,
USR(wms1)(Vms1)] = 0(vmq1) after m iterations. [ |

V. CASE AND EXPERIMENT STUDY

In previous sections, we analyzed the sufficient and nec-
essary conditions to maintain loop-freeness, optimality, and
consistency for Dijkstra’s routing protocols. In this section,
we use several existing routing metrics to demonstrate how to
use our research results to design OR protocols.

A. ETX-based OR

The first example is the OR model called ExOR, which was
proposed by Biswas and Morris [2] to minimize the expected
transmission counts (ETX) in multi-hop wireless networks. In
ExOR, the weight of an OR-tree S(v) is recursively defined
as follows:

[[S(v)] =

min {I[S(V)],1[S(u;)] + ETX (v, u;)},

u; ER(v)
where ETX (v,u;) = —— is the expected number of trans-
missions along link (v, ui)Lto guarantee reliable transmission.
Here, p, ., is the success probability of a single transmission

along link (v,u;). The joint operation is defined as follows:
[[S(v) @ S(w)] = min{l[S(v)],1[S(v)] + ETX (v,u)}.

An OR-tree S(v) is preferred to an OR-tree S(u), i.e.,
[[S(v)] X U[S(w)]if I[[S(v)] is smaller than or equal to I[.S(u)],
ie., [[S(v)] < I[S(u)]. The ExXOR model is preference-
preservable, since [[S(uw)] < = min{l[S(W)],I[S(u)] +
ETX(v,u)} if I[S(u)] < I[S(v)]. Tt is also relay-order-
optimal since the weight of an OR-tree does not depend on
the relative order of its sub OR-trees. However, it is not
relay-conditionally-beneficial since I[S(u)] < [[S(v)] does
not imply min{l[S(v)],![S(u)] + ETX (v,u)} < I[S(v)] if
I[S(v)] <[S(u)]+ ETX (v,u). Hence, we can conclude that
the Dijkstra-based OR algorithm cannot achieve optimal OR
scheme by using the ETX metric.

However, if ExOR adopts the EOTX metric [23], the
Dijkstra-based OR algorithm can find the optimal OR scheme.
Assuming 7(v) = wujusg, - ,ug, the EOTX of an OR-tree
S(v) can be recursively defined as follows:

Sy US ()] po, - TIZ1 (1= Pow,)
L= TT (1= pow)

1[S(v)] =



d w U; v S
ETX 0| lp 1 1+1/p | 1+1/p
EOTX | 0 | l/p 1 1+1/q | 2+1/q

TABLE II
THE ETX AND EOTX VALUES OF NODES IN FIG. 1 AFTER THE
EXECUTION OF THE DIJKSTRA-BASED OR ALGORITHM. ¢ = 1 — (1 — p)*.

The corresponding joint operation can be defined as follows:

USW)] - (1 = P(v)) +U[S(w)] - po,u - P(v)
1—(1—pyu) - P) ’

where P(v) = [T5_, (1 = py.u,)-

The EOTX metric is strictly preference-preservable and
relay-conditionally-beneficial as I[S(u)] < I[S(v) & S(u)] <
[[S(v)] when {[S(u)] < I[S(v)] and 0 < p,., P(v) < 1.
Hence, the combination of the EOTX metric and the Dijkstra-
based OR algorithm can compute the optimal OR scheme.

We use Fig. 1 to illustrate the gap between the ETX and
EOTX metrics. After the execution of the Dijkstra-based OR
algorithm, the ETX and EOTX values of each node in Fig. 1
are shown in Table II. When p < 0.3 and & > 1, the
EOTX(s) < ETX(s) and limpﬂo% = k. Hence,
the performance of ETX metric can be arbitrarily worse than
that of EOTX.

[S(v)@S(u)] =

B. Utility-based OR

Wu et al. [15] proposed a utility-based OR model to bal-
ance the trade-off between transmission cost and transmission
reliability. In their work, the weight of an OR-tree S(v) is
recursively defined as:

k 1—1
Z[S(v)] = ZZ[S(U7)] “Po,u; H(l 7pU,7l/]') —c, (D

where u; and p, ,,, are the same as defined in subsection V-A,
and c represents the transmission cost of v. The value of
¢ depends on v’s transmission range. The weight [[S(v)]
essentially represents the expected utility for delivering a
packet over OR-tree S(v). Especially, I[S(d)] reflects the
packet importance. The joint operation for a given value of
c is defined as follows:

k

1[S() @ S(w)] = U[S(0)] +US ()] - pou - [T = Po,ur).

i=1

An OR-tree S(v) is preferred to an OR-tree S(u), i.e.,
[[S(v)] =< U[S(w)] if I[S(v)] is larger than I[S(u)], i.e.,
USW)] > 1[S(uw)].

This utility-based OR scheme is relay-order-optimal as
proved by Theorem 1 in [15], but it is not relay-conditionally-
beneficial and preference-preservable. For example, in Fig-
ure 4(a), if 1[S(d)] = 20, then I[S4(1)] = I[S4(2)] = 15 and
[[Sq1(2)] = 16.05 as computed by Algorithm 1, assuming that
the node with lower ID will be extracted from () first in the
case of a tie. It is easy to verify that [[Sq1(2)] = 1[Sq(2) ®
Sa(1)] < 1[Sa(2)] but {[S4(2)] = 1[S4(1)], contradicting the

relay-beneficial-condition. Also, since [[Sq(2)] = 1[S4(1)] but
1[Sa(2) @ Sq(1)] < I[Sa(1)], it is not preference-preservable.
Therefore, the Dijkstra-based OR algorithm cannot compute
the optimal OR scheme for this utility-based OR model.

C. Simulation

Previously, we applied our OR algebra to three concrete
OR schemes, i.e., ETX, EOTX, and utility-based OR. Among
them, the EOTX-based OR and the utility-based OR can be
regarded as two extreme cases. The EOTX-based OR allows
unlimited retransmissions, while the utility-based OR forbids
any retransmission. Their difference on the retransmission
restriction produces different results on routing optimality
when combining with Dijkstra-based OR algorithm. In this
simulation study, we will explore the relationship between the
EOTX-based OR and the utility-based OR and the underling
reason of their optimality gap by evaluating the effect of
retransmission counts. All simulations are conducted in our
customized simulator.

1) Simulation Environment: We set up the simulation in a
900m x 900m area. We assume nodes are homogeneous and
can be deployed in this area arbitrarily. We fix the position
of source s and destination d at locations (50m,450m) and
(850m, 450m), respectively, and randomly deploy the interme-
diate nodes. For each set of parameters, we run each algorithm
100 times and use the average value of the results to evaluate
the performance. We set the maximum transmission range to
300m. Since the transmission range is fixed, the connectivity
of the network is controlled solely by the number of nodes.

2) Simulation Results: We first compare the EOTX metric
with the utility metric. To be consistent, we transform the
transmission cost in the utility-based OR to the transmission
count by setting ¢ = 1 in Formula (1). The simulation results
are shown in Figs. 7 (a) and (b), where [[S(d)] = 1000 and
the number of nodes varies from 10 to 100 in increments
of 10. From Fig. 7 (a), we can conclude that increasing the
upper bound of retransmissions can increase the reliability of
the utility-based OR. However, the reliability cannot be 100%
unless the retransmissions become unlimited. The reliability
for EOTX is not 100% when the number of nodes is less
than 30 because the network may not be connected when the
number of nodes is too sparse. The increment of reliability
is at the expense of retransmissions as shown in Fig. 7 (b).
Hence, a trade-off exists between the increment of reliability
and the increment of transmission counts. Utility-based OR
can help balance this trade-off.

However, the Dijkstra-based OR algorithm for utility-based
OR is not optimal as shown by the simulation result in
Fig. 7 (c), where we compute the approximation ratio of the
Dijkstra-based OR algorithm to the optimal solution (with
exponential time complexity) proposed in [15]. We compare
the approximation ratio for three values of I[S(d)] with the
tunable parameter, retransmission upper bound, from 0 to 10
in increments of 1. The result shows that the approximation
ratio does not depend on the value of I[S(d)]. As the upper
bound of retransmissions increases, the approximation ratio
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will increase. However, the approximation ratio cannot be 1
unless the retransmissions become unlimited. The underlying
reason is that the utility-based OR is not relay-conditionally-
beneficial if the upper bound of retransmissions is a finite
number. When the retransmission count does not reach its
upper bound, a retransmission is strictly preferred to the nodes
with lower preference. However, when it reaches its upper
bound, nodes with a lower preference can provide additional
transmission opportunities. Hence, the utility-based OR is not
relay-conditionally-beneficial.

VI. CONCLUSIONS

In this work, we have presented a systematic study of the
design of a routing algebra for opportunistic routing. To the
best of our knowledge, our research is the first to model
opportunistic routing by means of a routing algebra, and
identifies the relationship between the properties of a routing
metric and the routing requirement of an OR protocol. Our
work provides a systematic method of designing a proper
routing metric for opportunistic routing. In the future, we will
use our OR algebra to explore more OR algorithms and design
new OR algorithms with fewer restrictions on the properties
of routing metrics.
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