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Abstract—We study the distributed desynchronization problem  graph withA +1 colors — corresponding to target intervals of
for graphs with arbitrary topology. Motivated by the severe |ength <1 —inn rounds by the centralized greedy algorithm,
computational limitations of sensor networks, we present a wheren is the total number of nodes anl is the maximum

randomized algorithm for network desynchronization that uses d f th h. O lis t hi
an extremely lightweight model of computation, while being egree o € graph. Lur goal IS o achieve convergence

robust to link volatility and node failure. These techniques time exponentially faster than the sequential greedy &tyar
also provide novel, ultra-lightweight randomized algorithms for while using target intervals of comparable length.

quickly computing distributed vertex colorings using an asymp- .

totically optimal number of colors. B. Computational Model

The key consideration when designing sensor network pro-

I. INTRODUCTION ‘ v - S
As inh v distributed ional tocols is to keep them lightweight. As nodes are limited
S Inherently distributed computational systems, sensf processing power, simple computations are crucial. More

netwqus rely critically on .coordinatic.)n between _nodes tﬁ’nportantly, communication between nodes is expensivi [17
effectlvely sense, communicate and interpret enV|rona1gngo all but the most critical message-passing should be edoid
data. Individual nodes face severe battery and computdtion Motivated by these concemns, we consider an extremely
limitations, so a notion of coordinated task-sharing anty-du lightweight, novel computational model. We definécad)-bit

cycling Is criical 10 mai”tai”ing the longevity a“‘?' .effinte local algorithmon the graphG, such that each node maintains
operation of the network. In this sens#esynchronizinghe a legal output (e.g. a color, or an interval)bits of additional

actions of nodes IS desirable. Efﬂuent desynchronizaian . state, and bases its actions in a given round only on its urre
t_OCOIS can b.e app",ed 'to a variety of sensor netvvprk app“céfate and some-bit feedback from previous rounds. In the
tions, including periodic resource sh_arlng, coordinatizks distributed vertex coloring context, we define the feedback
schedules, and evenly shared sensing burden across N€3PY¥hether or not a node’s color conflicts with any of its
nodes [3]. neighbor’s colors. In the sensor network context, the motio
A. The Problem: Desynchronization of feedback is adjusted to suit the continuous nature of the

We consider the following desynchronization problenroblem. Itis defined as whether any of a naceneighbors
given an undirected graphi = (V, E), a target interval length are broadcasting whenis listening.
I, for every nodev € V, and a circle of circumferencg, we C. Our Results
wish to feasiblyassign to each node a contiguous interval
of the circle of lengthl,. The assignment is feasible if for
each (u,v) € E, the assigned intervals af and v do not
overlap. Observe that the vertex coloring problem is a sphec
case of desynchronization, where given a set Glvailable
colors, each node has the same target interval Ie@gﬂmd

;hoen-f)?/zﬁ; pﬁS'ti)rlﬁe'rC:j;Vsﬁe%n t%he circle is restricteds to node has claimed a subinterval (of Ien@ch(d}, +1)) of the
ppIng gt repeating period (of lengtf’), such that the intervals of any

Our aim is to solve this problem in a decentralized mann \r/vlg neighbors do not overlap. This is achieved with each node

nodes are modeled as processors that may select intervals . . . . . :
. . . . requiring only a single bit of state beyond what is required t
based only on local information. Time proceeds in round

S . .
. . . . Maintain an interv n m wo bits of f k from
and in each round nodes can interact only with their 1-h aintain an intervl| and at most two bits of feedback fro

neighbors. In the vertex coloring context, we think of time e previous period.

S The techniques we use are based on a novel lightweight
as proceeding irsynchronousrounds. For the more general - ! .

2 . X ~way to compute a distributed vertex coloring. In particular
desynchronization problem we think of time as proceedi

n : . . . .

continuously in phases of lengif, with intervals of the circle Ve give a randomizedl, 1)-bit Iocgl coloring algorithm that

; . . usesA + 1 colors and converges i@(Alogn) rounds with
corresponding to intervals of time.

Wh”? minimum graph-coloring is N.P_'hard [6] (and hard to 1An interval is fully specified by two parameters: the interlaigth and
approximate better thaf(|V|*~¢) [4]), it is easy to color any the phase of the repeating period at which the interval Isegin

We present a randomiz€@, 1)-bit local desynchronization
algorithm withl, = 7'/2(d,+1), that converges if)(A log n)
Periods with high probability. A period has lendih so each
node v is feasibly assigned a subinterval of that period of
length Z,,. Parameterl, denotes the maximum degree ifs
1-hop neighborhood. At convergence, this means that each



high probability, and a randomize(, 0)-bit local coloring each round a node receives a single bit of feedback — whether
algorithm that use€)(A) colors and converges i®(logn) or not it has a conflict with any of its neighbors — and then
rounds with high probability. We also prove a lower bound afan select a new color if it wishes. No message passing of any
Q(logn/log A) rounds for(1, 3)-bit local algorithms that use kind is permitted. We also assume that each no#teows its
O(A) colors, for anys > 0. own degree, denoted hy,.

Our general desynchronization solution has several prop- . .
erties that are particularly appealing in the sensor nédsvor ™ Conflict Detection Model

context: In the most restrictive model that we study — Conflict

1) Our algorithm is very robust to network volatility, easil Detection — nodes must select a color for rodfsedonly on
handling changes in network topology. their color and conflict status from rourtd- 1. In particular,

2) Nodes need not synchronize to a global clock (assumifigch nodev is endowed with a color selection functiofy
no clock drift). that is either deterministic or randomized, and seletstsiext

3) Nodes in sparse neighborhoodstfre assigned larger color based on feedback from last round. Formally,
interval_s than _those in dense neighborh_oods. f, = C, x {conflict, no conflic} — C,

4) There is a simple trade-off characterization between _ .
convergence time and interval length values. where C, is the set of colors available to. If ¢; € C,

D. Related Work is the color selected by in round: and I; € {0,1} the

' conflict status in round, nodev generates a sequence of colors

To the best of our knowledge, the only past work oqcl Ca,c3,...} wherecisy = folei, Ii).
desynchronization is [3] and [14], where the problem iS&dlV ~ \ye present a randomized algorithm in the Conflict Detec-
for the complete graph using target values of On the {ion Model that converges to a proper coloring dhlog 1)
other hand, distributed vertex coloring is a well-studied® (5 nds with high probability using onl)(A) colors. That
lem. The standard model of communication is the powerfid o5-h node has a set of color§’ from which to choose
message-passingaradigm [12], where in each round nodeghere || = kA for a constant: > 1. In fact, a stronger
can trade messages of arbitrary size with their neighboi, gegit holds: individual nodes need not know the maximum
engage in arbitrary computation. The best upper bound f9&green of the entire graph, but instead only the maximum
arbitrary graphs in this model is given by [12] and [13]_, whic degree of its 1-hop neighborhood, denotéd Each nodev
colors a graph using\ + 1 colors in expected(logn) time,  can instead select only from a potentially much smaller et o
by means of a reduction to the maximal independent set (M|§3Iors(}v C C, where|C,| = kd, (for the samek as above).
problem. Linial [12] also gives a dtherministi(; algoritrlhat For purposes of technical and notational clarity, we pravig o
colors an arbitrary graph wittO(A®) colors in O(log™ n) - the result where nodes draw colors from the entiredisbut

rounds. Such bounds do not carry over to our computationgh sironger result follows by the same proof with only minor
model due to the complexity of the messages traded betweoﬁﬂustments to the algebra.

nodes; Luby’'s MIS algorithm [13], for instance, requires . . .
neighbors to compare degree values if they discover a conffdgorithm 1 (Conflict Detection)
with respect to the independent set property. 1) Each nodev initializes with an arbitrary color drawn

For lower bounds, there is a time lower bound of fromC,.t « 1.
QA/ 10g2 A + log"m) rounds when usingD(A) colors 2) In roundt, nodev checks whether or not it has a conflict
(m = # of edges) [10]. For the related (and potentially easier)  with any of its neighbors
problem of computing a MIS (there is an easy distributed 3) If no neighbor ofv is also colored, v selects the same

way to go from a coloring to a MIS [9]) the best lower color ¢ for roundt + 1; otherwise, selects a color for
bounds areQ(,/logn/loglogn) and Q(log A/loglog A) roundt + 1 uniformly at random front,,. In either case,
rounds [8]. Separately, work on thzst complexitymodel [1] return to steR.t — ¢t + 1.

gives lower bounds on the number of communication bits

required to complete various network tasks like leadertielec Itis notimmediately clear why the algorithm should achieve

O(logn) round convergence. Since a node that is without a
In Sectigh Il Wgonflict in some _round may very well become conflicted in
a later round, it is not sufficient to show only that a constant
v\{éaction of conflicted nodes become unconflicted in any round
n Sectior 1I=G we show that by adding a single bit of memory
{n effect turning nodes into two-state machines — we avoid
e problem of nodes moving back and forth between being
conflicted and being unconflicted. Nevertheless, obserae th
onceall nodes in the graph are simultaneously unconflicted,
Il. DECENTRALIZED VERTEX COLORING the graph has converged to a proper coloring and no node
For our study of the decentralized vertex coloring problermishes to switch its color; the global solution is verifiedyon
we assume that time proceeds in synchronous rounds, wherafter it passes a local test at every node. Observe also that

The plan for the paper is as follows.
discuss lightweight procedures for decentralized cogpand
prove the lower bound on convergence time. In Se¢fidn IlI
present the desynchronization algorithm, prove its cayemce
time and study several extensions. In Secfioh 1V, we prese_ﬂ
simulation results for the desynchronization algorithme
conclude in Sectioh V.



the algorithm isself-maintaining in the sense that adjusting It is a lower bound in the following sense: given a node set
the coloring for newly formed or dropped edges is handldd and a pre-determined degrég for eachv € V, then for
on-the-fly by the algorithm at a local level. any (1, 5)-bit local algorithm there exists a graph satisfying
Suppose each node has a setC' of available colors, these degree constraints for which the algorithm requires
common to all nodes in the graph, whej@| = kA for Q(logn/log A) rounds to converge with high probability. This
constantt > 1. We say thaty is goodin roundt if each of means in particular that Algorithfd 1 is optimal for small

its neighbors is colored differently from during that round; . . .
otherwise the node isad Let the random variablé&(, denote Theorem 2 For every(1, §)-bit local algorithm usmgO(A) .
colors, wheres > 0, the lower bound on convergence time is

the number of good nodes (out eftotal) at roundt. Since o .
the algorithm halts at a proper coloring — when all nodes a%log n/log A) rounds with high probability.
good — we wish to characterize the time it takes #or to See Appendix B for the proof.

reachn. The following key proposition establishes that in th%_ Conflict Detection with Memory

course of a round, in expectation at least a constant fractio

of bad nodes become good. In Section[-A, we achieved an upper bound ®@flogn)

time usingO(A) colors in the very restrictive Conflict Detec-

Proposition 1 If X, is the number of good nodes in round tion model, asymptotically matching the best known colgrin
thenE[X,,|X,] > X, + 0.1(n — X,) whenk > 5. algorithm in the message-passing model for arbitrary ggaph
[12], [13]. In this section, however, we seek to match theaupp
See AppendiX_A for the proof. The next proposition followgound of A + 1 colors exactlywhile still using a restrictive
from a simple application of the law of iterated expectation model. For this purpose, we consider a more powerful version
of the Conflict Detection Model, where nodes use an extra bit
of memory to act as a switch between two algorithmic modes:
asearchmode and germanentnode. As a two state machine,
nodes must select a color and a state for rotifiéised only
on their color in round — 1, conflict status in round— 1, and
state in round—1. Each node uses a color selection function
P(R > [log,n] +m) < (1 —¢)™ g that is either deterministic or randomized, and seleds
next color based on feedback from last round. Formally,

Proposition 2 Let n > 0 be an integer, andX; an integer
random variable in0, »] for t € {0,1,2,...}. Define variable
R to be the smallest such thatX; = n. Suppose there exists
value0 < ¢ < 1 such thatvt, E[X;1|X;] > X +c(n— Xy).
Then for any integern > 0,

whereb = .
_ . _ g» - Cy x {conflict, no conflic} x {search permaneng
We can now establish the convergence time of AlgorifBm 1. — C, x {search permanen}

Theorem 1 Algorithm 1 converges to a proper coloring in WhereC, is the set of colors available ta
O(logn) rounds with high probability, when using at least In this model, we present a randomized algorithm that
5A colors. converges to a proper coloring i@?(Alogn) rounds with
high probability using onlyA + 1 colors. Note that while the
Proof: If we let R be the number of rounds until the algotwo-state machine is more frugal with the number of colors,
rithm converges, then we interpr&tas the number of roundsthe convergence time has increased for dense graphs. The
until all n nodes become good. Therefore by Propositldns glgorithm uses\+1 colors in total, but as in the last algorithm,
and[2, for integerm > 0, individual nodes need not know the maximum degrke
P(R > [logyn] +m) < (1—¢c)™ Rather, it is sufficient for a nodeto select only from a subset
of sized, + 1 from the entire set of possible colors. One can
wherec > 0.1, and sob > <. Note thatlnb > 15, so for thus think of colors as the positive integers, such that sade
concreteness it follows th&(R > 111nn) = O(;). B andv have the integer$1,?2, ..., min{d,,d,} + 1} common

Note that the large constant is due both td the relativeigyj both of them. The a|gorithm proceeds as follows:
loose analysis and the valde= 5, which can be increased in

order to accelerate convergence time. Algorithm 2 (Conflict Detection with Memory)
1) Each nodey initializes in searchmode, and selects an
B. Lower Bound arbitrary colorc,, from its set ofd, + 1 available colors.

Despite the simplicity of Algorithni]1, it is in a sense the t 1.
only effective(1,0)-bit local coloring algorithm. Moreover, it  2) In roundt, given all color updates from the previous
turns out that increasing each node’s state size (but kgepin  round, nodes checks whether it has a conflict with any
the feedback fixed) does not lead to faster convergence. We neighbors.
prove a lower bound of2(log n/log A) rounds for all(1, 3)- 3) If v has no conflicts, it entepermanentmode and halts,
bit local coloring algorithms using@(A) colors, whereg is having chosen, as its permanent color.
any number of state bits. Recall that for coloring we defined 4) Otherwisep selects a new colar uniformly at random
the single bit of feedback to be whether or not a node has a from its set ofd,, + 1 available colors, remains gearch
conflict with any of its neighbors. mode, and returns to stépt «— t + 1. ¢, < c.



We remark that the algorithm ends once each node has entdredll nodes in the network). In this state, nodes fire for the
permanentmode, and thus has settled on a permanent colduration of their selected interval in every period of léngt
Moreover, if the algorithm does indeed halt, it does so atT@ keep the protocol as lightweight as possible, nodes store

proper vertex coloring. minimal information while in thesearchstate, instead relying
on randomization to avoid conflicts and select good intstval

Proposition 3 If node v has not halted before round then | contrast with vertex coloring where time proceeds in syn-

P(v halts in roundi) > ;-1 chronous rounds, in this setting time proceeds continyous!

While in the search state, nodes act during phases whose
length is bounded b¥’, whereas in th@ermanenstate nodes
cycle in phases of length exactly.

1 . . . . Consider a network on sensor nodes. For a nodelet d,,
This establishes that in the course of a round, in expectati . - .
1 . . enote its degree, ant], denote the maximum degree among
at least a5+ fraction of non-permanent nodes will become

permanent. We use this result to establish the convergenee t¥ and |t.s .1-hop nelg.hbo'rs, w.here a nelghborvafgfers to a
of the algorithm. node within communication distance of If nodew fires, then

all of its neighbors who aréisteningcan detect thasomeone
is transmitting, but cannot identify who it is. Practically
sensor node cafire by broadcasting a carrier wave, while a
node caristenby checking whether the RSSI value is above a
Proof: If we let R be the number of rounds until thenoise threshold. This approach is the predominant indiazto
algorithm converges, then we interprBt as the number of link and channel quality [5], [15]. Crucially, we assumettha
rounds until alln nodes have selected a permanent colarodes cannot both fire and listen simultaneously, since most
Therefore by Propositions] 2 amd 3, for an integer> 0, radio transceivers cannot do both actions at the same tiore. O
algorithm never requires nodes to synchronize to a gloloakcl
P(R > [logyn] +m) < (1—¢)" (assuming no clock drift). For clarity, the algorithm wileb
described from the perspective of a particular nodmeaning
all references to time (except for the common param@éer
are according to the frame of referenceuv internal clock.

Proof: In rounds, at mostd,, of nodev’s d, +1 available
colors will be selected by’s neighbors. So with probability

> ﬁ, the nodev will not have a conflict.

Theorem 3 Algorithm[2 converges to a proper coloring in
O(Alogn) rounds with high probability.

1 A+1 1
wherec > A and sob > =3=. We remark thatnb > 51,

so by settingn = Alnn we get that

P(R > 3AInn) = O(L).
Algorithm 3 (Desynchronization)
. . ™ nitalization:
Algorithm [2 also lends itself well to characterizing the node + informs each of its neighbors of its degreg,.

tradeoff between the number of colors used and the spegfl, receiving each neighbor's degree value, compute
of convergence. Suppose instead that for a fixed paramefer _
v

= max{d,| u is a neighbor of, oru = v} and compute
e > 0, we allow each node to select from(d, +1)(¢ + 1)]  the interval lengtth, — —ZL— . Initialize in thesearchstate,
possible colors (from an entire set pfA + 1)(e + 1)] total d select ti b ,2(dv+1)h .
colors). Then the following corollary, whose straightfaing and select time to begin search. Set— t.
proof we omit, characterizes the convergenceﬁime

Main Loop:
Corollary 4 Algorithm[2 converges to a proper coloring in 1) Select valuev € [0,T] uniformly at random. Sef,
O(%log n) rounds with high probability, when each node t+ a.
selects fron{(d, + 1)(e + 1)] possible colors, for any > 0. 2) Listen Wﬁetﬁer any neighbor fires at any point during the
interval(ty, to + by).
[1l. DESYNCHRONIZATION If so, sett — t,, + b, and return to step 1. Else, continue.

In this section we present a randomized desynchronization3) Listen whether any neighbor is firing at tinig + 7. If
algorithm for sensor networks with arbitrary topology. We SO, set < i, + T and return to step 1. Else, continue.
adapt the ideas of Sectiddl Il into a continuous analog for4) Enter thepermanentstate, and fire for the duration of the
vertex coloring, where rather than selecting between eliscr intervallt, + kT, to + kT + b,] for all integers > 1.
pre-determined time slots, sensor nodes choose intemngats f -
a continuous range of possible start times. As in Algorithm In stepl, the node selects at random a trial interval, whose

[@, nodes behave as two-state machines. Insewrch state, ItﬁngtT by tlﬁ Sp_?ﬁ'_f'etd_ tlo_ gtuaralntee Ehe cor:vergtentce_tlm% of
nodes attempt to identify a suitable interval during whioh t € aigorithm. This trial interval must pass two ests ineor
be accepted by the node: first, in stép no neighbor

fire. Once such an interval has been identified, nodes enter f' t i during the int I th in sta
the permanentstate, in which they behave as oscillators witffan fire at any time during the intérval, then, in step

frequencyw — L (we assume that the paramefers common after another pe_rio_d has passe_d, no neighbor can be firing
a o =7 P at the very beginning of the trial interval. Only then does

2The proof follows exactly that of Theorefl] 3, except that eemind a the no_de ac_cept the_ trial mtgrval _and enter the permanent
non-permanent node becomes permanent with probability at {€as state, in which the interval is claimed for all subsequent
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FIGURE 1. Nodev proposes a trial interval at timg,, which passes the

checks of stepg and3 to become permanent.

periods. The motivation behind stepis that two searching

neighbors whose trial intervals overlap may both pass t
first test in step2, but we do not want both to claim their
intervals permanently. Eschewing excess communicatiep, s
3 resolves the contention by ensuring that only the no
whose start time isearliest will pass the second test and
thus claim the interval permanently. Observe that neighbor

pick the exactsame start time with probability. We note

1
>
T dy+1

P(v enterspermanent state within time2T")

Proof: Consider a node beginning a loop in theearch
state, at (internal) timé. When nodev selects the parameter
a € [0, T for the start of its trial interval, we call acceptable
if the chosen trial interval (beginning &t) does not overlap
with any of v’s neighbors’ intervals. We remark that for any
neighboru of v, dy > dy, meaning that the interval length
b, < T/2(d, + 1). Moreover,v's own interval lengthb, <
T/2(d, + 1) since d, > d,. Thus, a neighbor, causes an
interval (or two disjoint intervals) fromo0, 7] of total length
rglé” +b,) <T/(d, + 1) to not be acceptable.

In the worst case, all,, of v's neighbors will have already
selected their permanent intervals, blocking off a subget o
0,7T] of measure< d,T/(d, + 1) from being acceptable
Hoices ofa. Therefore,

1
P(selectedr is acceptable>
( ptablp= 7——

that a more complicated chain of overlapping trial intesvalAs the check in step of the algorithm occurs by timé+ 27T
could all potentially pass the first test at the same time, b{@nd a node enters tipermanenstate if that check is passed),
step3 ensures that only non-overlapping trial intervals will béhe result holds. Note that this analysis holds even taking i

accepted.

Observe that each node maintains a single bit of state thia¢ checks of step® and 3.

determines whether it is isearch or permanentmode, in
addition to maintaining a legal output (ie. an interval),ieth

account any neighbors af that become permanent between

|
As a consequence of this result, sige< £, a node that

is in the searchstate (not just at the beginning of the loop)

is given by the start time and length of its trial or permanemnters the permanent state within ti§&/4 with probability

interval. Moreover, in each iteration of the Main Loop, a eod>

_1

1 This directly implies the following proposition:

receives at mose bits of feedback (the listening checks of - .
steps2 and3) on which it bases its actions. Therefore by oulProposition 6 Suppose at (global) timethat Y; of the nodes

definition in Sectiol I-B, we have @, 1)-bit local algorithm.

A. Convergence Properties

In this section we prove that Algorithid 3 converges aft

O(Alogn) periods of lengtHI” with high probability.

Proposition 4 If nodesu and v are neighbors that are both

n—=Y;

are permanent. TheR[Y; o7/4|Y?] > Y: + 71

Finally, we establish the number of periods (of length
required for the algorithm to converge.

eltheorem 5 The Desynchronization Algorithm converges in

O(Alogn) periods with high probability.

Proof: Defining a round as an interval of lengf’/4,

in the permanentstate, then their selected intervals do Nnofis theorem follows directly from Propositidd 6, as well as

overlap.

Proof: Suppose without loss of generality that node
entered the permanent state before nod@ccording to the

Propositionl 2 and Theorefd 3, where parameteasmd c are
as in Theorenf]3. [

B. Algorithm Speed-Up

global notion of time), and suppose for sake of contradictio Tpe interval lengtrb, = T/Z(Jv +1) was chosen just large

that their selected intervals overlapase 1: Node's interval
begins in the middle of nodeés interval. Then since. entered
the permanent state befarev would have heard firing at the
beginning of its trial interval (in step3 or 3), so it would not
have accepted this intervalase 2: Nodeu's interval begins
in the middle of node’s interval. Thenv would have heard
u firing in the middle of its trial interval during step of the

enough so as to ensure convergence in a reasonable amount
of time, and to give a continuous analog4o+ 1 coloring of
graphs. Here we consider how the convergence time may be
improved if nodes claim shorter interval lengths.

Consider a parameter > 0, common to all nodes, such
that a nodev selects its interval length according t§ =
T/2(d, + 1)(1 + ¢). Following the proof of Propositiofi] 5,

algorithm, so it would not have accepted this interval. B \yhen a node is selecting the parameterin the search loop,

Propositio % implies that it is sufficient to compute thedim

required for alln nodes to enter thpermanentstate.

Proposition 5 Suppose a node is at the beginning of the
search state loop, in sted. Then

P(selectedv is acceptablg> £
e+1

By the proof steps of Theorer] 3, this establishes the

following counterpart to Theoref 5:



Theorem 6 The Desynchronization Algorithm, where nodes Degree Distribution
select interval lengths according 8 = 7'/2(d,,+1)(1+¢) for d, 0|1|/2(3| 4| 5|6|7]|8]|9
¢ > 0, converges irO(% logn) periods with high probability. "No. of Nodes| 3 | 1 |6 | 8 | 13|12 | 7| 2| 1|1

C. Self-Maintenance Subroutine Max 1-hop Neighborhood Degree Distribution

In this section, we discuss a simple way to manage the dy 0[1|2(3|4|5|6|7|8|29
desynchronized solution in the context of link volatilitpda  No. of Nodes| 3| 0| 0| 0|9 |18|5|0| 9| 10
changes in network topology, a critical consideration when
modeling wireless sensor networks as wireless connecii@ns
volatile over time [2]. We implemented théring of a node by having it broadcast

Changes in network topology may create several problenmaise for the appropriate interval. For concreteness, \eeisp
If a new communication link is suddenly formed between twiied the transmission power to b&Bm and each link to have a
permanent nodes, an overlap between the two claimed itdengain of —54dBm. Listeningwas implemented by having nodes
may be created; even if the new link appears a hop away frameck whether the RSSI values were above a threshold eelativ
a permanent node but causes’s one-hop max degreé, to the noise floor. There was therefore no need to consider
to increase, there may no longer be enough bandwidth (issues of packet loss, as no message reception is requited. T
intervals of the period’) to accommodate the nodes still inmost important network effects we had to consider are ttsefal
search mode. If instead a link is destroyed, we want nodarm rate — the probability that a node hears a signal above
to take advantage of the newly available bandwidth to claithe threshold even though no neighbor is actually broanhast
larger intervals. — and the miss probability — the chance that no signal above

A natural solution is for nodes to store the degree valuesthie threshold is recorded even though a neighbor is indeed
all of their neighbors, requiring total storage ©fd, log cfv) broadcasting. A high false alarm rate would have the effect
at each nod® If a nodev detects that its degree has changedf scaling up the convergence time of the algorithm, since a
it reports its new degree to each of its neighbors. Each sutbde insearchmode that hears a signal above the threshold
neighboru in turn recomputes the valug,; if this value has during its trial interval must reset and start again, ireesjve
changed,u recomputes its new interval length, reverts to of whether the signal is due to a neighbor’s firing or a spike in
the searchstate (if it had already been in tipermanenstate), ambient noise. The higher the false alarm rate, the morestime
selects a timé to begin the search, and returns to stepf the node must reset. We measured this effect by simulating
Algorithm [3. Nodes outside’s neighborhood are unaffected.the algorithm over a range of thresholds, frer84dBm (many
Following the convergence results of Section TlI-A, anydbc false positives) to-72dBm (virtually no false positiveé)
network change causing nodes to restart take8(A logm) On the other hand, a large miss probability is problematic
rounds to repair with high probability. since it causes a node to fail to hear a neighbor firing during
the listening checks, which can lead the desynchronization
algorithm to converge to a state where neighbors’ intervals

To confirm the correctness of the desynchronization averlap. However, while signal strength drop-offs can and d
gorithm and examine its performance under the stress acur in practice, the desynchronization algorithm isexiely
network effects, we simulated the algorithm in the TOSSIVbbust to such signal strength fluctuations, since it willyon
environment. As TOSSIM runs the same code as sensor motegjster a false negative if the drop-off is steep (belowtbise
we show that the algorithm not only has strong theoretictireshold) and lasts for a node’s entire listening periad. |
bounds, but is also practically implementable. reasonable physical settings, this probability is neglegiand

can be further reduced by scaling up the period and interval
A. Setup lengths, so it is ignored for the purposes of this simulafign

We implemented the algorithm on a network topology de- Finally, we mention that the algorithm implemented in this
rived from the communication graph of a 54-node deploymesimulation is a slightly sped-up version of AlgoritHth 3 — in
of sensors in the Intel Berkeley Research Lab [16]. For tlsep2, after hearing a neighbor, instead of waiting for the end
purposes of this simulation, we included an edge between tebthe trial interval to reset, we have nodes immediatelyrret
nodes in our topology if and only if the aggregate connefstivi back to step 1. It is trivial to show that the convergenceltssu
data in [16] showed- 40% probability of successful transmis-of Section[1l still hold for this version.
sioniin bo_thd|rec_t|ons, resulting in a 54-node und_lrected grapg_ Results and Discussion
with a wide variety of node degreek, and maximum one-

hop neighborhood degreel. Note that three nodes remain Figure[2 shows the average simulation time, in periods,
disconnected due to weak connectivity data. that the desynchronization algorithm takes before all sode

in the sensor deployment reach the permanent state, with the

3While it requires less memory to store only the largest neighbad Sensors’ noise threshold varying betweef4dBm (frequent
degreed,, in a network with volatile links, only knowing the currenalue
d, is not sufficient to knowinduture values ofd,,. 4Noise was modeled in TOSSIM with tmeyer - | i ght noise trace [11].

IV. SIMULATION



ing the broadcasts of neighbors. Note that convergenceltyme
—_ _ this technique is significantly reduced when the noise tioles

Desynchronization Algorithm . . . . . .

18y — -~ Upgraded Desynchronization Algorithm| | is low. This technique can be generalized by requirinigigh

readings for anyt > 1, though it increases the number of bits

used in the algorithm'’s (c,d)-bit characterization.

Each simulation run produced a correct solution at conver-
gence, in that each node’s permanent interval did not gverla
with its neighbors’ intervals. The only exception occuriad
cases where an overlap of lengthlms between neighbors’
intervals could exist. This was caused by our implemematio
in TOSSIM of Ste of the algorithm: instead of having nodes
send a continuous broadcast signal, we had nodes send rapid-
i i fire packets for the duration of their chosen interval (TOSSI

20

16r

14

12r

Number of Periods

10
\

-84 —8‘2 —E;O —7‘8 -76 -74 =72 . o
Noise Threshold (in dBm) is better geared towards packet-level broadcast, a limitat
in simulating the underlying hardware). As a result, to dvoi

FIGURE 2. Average time, in periods, before all nodes reactpgrenanent false negatives, we extended the instantaneous listehieckc

state. Each data point an average over 200 simulation ruresp@tiod T was f Step 3 (WhiCh might have the misfortune of Iistenin'g

set to be5.04s, with interval lengths ranging from52ms (for nodes with

dy = 9), t0 504ms (for nodes withd, = 4). betweerpackets) to dms-long check. The tradeoff is that the

tail 1ms end of a node’s interval might overlap with the leading
@ [1297,1577] 1ms end of another node’s interval. However, this problem can
be mitigated by scaling up the period and interval lengths.

V. CONCLUSION

We show that even when placing severe limits on allowable
computation and communication on nodes in a network, a
global desynchronization or proper vertex coloring soluiti
can still be reached quickly. Our algorithms succeed inghes
problems because a globally feasible desynchronization ca
be confirmed by checking local feasibility at every node. We
expect that variants of our algorithms’ randomized appnoac
that minimizes feedback and state may find success in other
important network problems such as the design of efficient
communication protocols — where nodes within two hops of
one another should not have overlapping intervals — as well
as graph problems such as distributed Minimum Dominating
FIGURE 3. A local view of the 54-node communication networkegft Set or Maximum Independent Set where confirming local
convergence in a simulation run. Numbers inside the circlecate node feasibility at every node is sufficient.

ID, while edges between pairs of nodes indicate that the isaiwithin Acknowledgment: Arik Motskin, Primoz Skraba and Leonidas
communication distance. The numbels, y] denote the node’s claimed '
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phase) the start and end times respectivelym@h of the repeating interval. W911NF-07-2-0027-1 and NSF grants CNS-0626151, CCF-068480
All phases are according to a global clock, so a phasemefindicates the ; ;
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APPENDIXA
PrROOF oFPROPOSITIONT]

We prove this proposition by establishing a lower bound on

the probability that a good nodemainsgood from round to

round. The key is to show that this probability converges to

1 as the number of good nodes approacheds-ix a round
t. Suppose that good node currently colored:, hasA bad
neighbors.

P(nodewv remains good next round
= P(none ofv’s neighbors switch t@)

-G
()

kA
Y
Clearly, nodes that have fewer thak bad neighbors also
remain good with probability at leagt'. By choosingk high

1)

>

enough, we can make* as close to 1 as we wish, say

p* > 0.78 if £ > 5. We now lower bound the probability
that a nodeu that is currentlybad will become good next
round. Asu is bad, it will select a new color next round:

P(nodeu becomes good next roupd

> P(u switches to a color that is currently unclaimed, and

which no neighboring node will also claim next roynd

> <I€A]€;A) P(no neighbor ofu switches tou's color)
(k1N L
Z L P =q

)

By settingk > 5, we get thatg* > 0.6.

%:_emma 1If Xy <22, thenE[X;11|X¢] > X +0.1(n— Xy).

Proof: By Equationd L an@]2E[X,,|X;] > 0.78X; +
OG(TL — Xt) > (075Xt + 05(n — Xt)) + Ol(n — Xt) Since
< 22 we have thatX;, < 2(n — X;). Therefore,
E[X¢41|X:] > (0.75X; +0.25X;) + 0.1(n — X¢) = Xy +
0.1(n — X;). [

Next we will prove a similar result fo.’% > Xy > %"
Suppose that there are curren*iiy“%1 > X = nyiy good
nodes, forw > 2. Since each bad node can be a neighbor to
at mostA good nodes (in fact, to at most — 1), there are

at mostnﬁ bad neighbors, distributed amomg;*>+ good
nodes. Therefore, the average number of bad neighbors each
good node has is at mo%t. Since we wish to lower bound in
expectation the number of good nodes that will remain good
next round, we note that by the convexity of Equafidn 1 (with
respect to number of bad neighbors), in the worst case all
good nodes have the same number of bad neighbors as each

other. That is, in the worst case, each good node[Kasbad

F. Zhao and L. Guibas.Wireless Sensor Networks: An Informationn€ighbors:

P(good node remains good next roynd
= P(none ofv’s [A/w] bad neighbors switch to’s color)

- )"
®3)

kA
Nk
: [2] o
since we know that% > ~x+ whenA > w, as it is here.

A—1

Lemma 2 If n=3

> X, > 2, thenE[X,1]|X,] > X; +

Proof: SupposeX; = ny 77 where

Then by EquationE]2 arid 3,

(A—-1)>w> 2.

E[X¢y1]X:]

> (0.78);<1;§1> n+ (0.6) (
(1o 287)

w w+1

( w ) (2In.78) + 0.6

= n -+ n
w41

w+1

1

1)
o 0

+1

)

]
Finally, we prove a similar result for > X, > “&=1,
Lemma 3 1If n > X; > n22t, thenE[X 4 |X] > X; +
0.1(n — Xy).

Proof: We recall that a bad node can be a neighbor to
at mostA — 1 good nodes, and that in the worst case each



good node has an equal number of bad neighbors. TherefbeenmalZ. Therefore, using Chernoff bounds on Process
if X; >n25t, then in the worst caseA — 1)(n — X,) good (where allc-colored node’s probabilities of being connected
nodes have a single bad neighbor, while the remaining gotud anotherc-colored node are independent), and combining

nodes have no bad neighbors. with Lemmal#, we have that whein> 2, P(|V'| < 27) <
E[X, 41 X)] exp(—mé?/2a) = O(L) sincem = Q(logn) andd = 1— 4.
For k = 2, note that the probability of having astsized
> [(A=1)(n—X)] <1 _ 1) + monochromatic submatching is only higher than #oe= 3,
Ak so that we also havé(|V’| < ) = O(L) for some constant
[X: — (A=1)(n—X})] +0.6(n — X3) d>1. [ |
1 Proof of Theorem: Consider a se¥|, of n nodes. For
=(A=-1)(n—-Xy) <_Ak> + X +0.6(n — Xy) eachv € Vj, fix its color selection function. Suppose the
1 1 input graphGy = (Vy, Ep) is a random matching. Consider
=[X:+01(n—X¢)]+ (n— Xy) (Ak % + O.5> what happens in the first round: by Lemrih 5, there is a

monochromatic submatching, = (Vi, Ey) with E|V;| >

> Xy +0.1(n — Xy) (as long as: > 2) n/a, andP(|Vi| < n/da) = O(L) (sincen = Q(logn)), for
m some constand > 1 (which depends ot as in LemmdDb).
Lemmad [P anfll3 imply the desired proposition. Conditioning on this large deviation not occuring (ie. anig

|[V1] > n/da), we proceed to the next round and consider only
the nodes in subgrapfi;.

Notice that since each node € V; knows only that it

In this paper, we prove the theorem fé&r = 1 and give had a conflict in the previous round (not the identity of the
intuition as to why it extends to largek. node to whom it was matched), we can assume for the next

Consider two random processes on a setnofnodes, round that by the principle of deferred decisidr; is itself
7 of which are colored red for some fixed > 2, with a random matching on the node Sét. Therefore we can
the rest colored blue. In proceds m nodes are sampledrecursively apply the above argument to subgraph In
uniformly at random with replacement, with two successivelparticular, fori > 1, given a random matching on the node
sampled nodes defining an edge. In proc@ssm nodes setV;_; where|V;_i| > n/(da)""!, by Lemmalb, as long
are sampled uniformly at randomithout replacement, with as|V; | = Q(logn), after round: there is a monochromatic
two successively sampled nodes defining an edge. Note tbabmatchingG; = (V;, E;) with E|V;| > n/a(da)~t, and
process2 selects a matching on the node set uniformly &(|V;| < n/(da)’) = O(L). Conditioning on this large
random. Observe that in expectation these processes placedeviation not occuring (ie. assuming;| > n/(d«)?), proceed
same number of edges between two red nodesP,ét) and to the next round, treating subgraph as a random matching
P,(s) denote the probabilities that edges between two redon the noded/;.
nodes are selected by proces$esnd?2 respectively. Observe that as long as there is still a nonempty monochro-

matic submatching, the coloring algorithm has not yet con-

Lemma 4 For large enoughmn, we have that for ang < 7%, verged. We run the above procedure fprtotal rounds;
Py(s) < Pi(s). we can choosej = Q(logn) such that afterj rounds
0(conditioning after each round on the large deviation not

We omit the proof of this lemma for brevity. Returning t oFcurring), we havéV/,| > n/(da)’ = Q(logn). By the union

coloring algorithms, assume for the remainder of the pro A L
ound,P(large deviation never occurs in therounds)> 1 —
that each node selects frobA colors for a constant > 2. .
jO(1/n) =1—0O(logn/n).

Therefore, with high probability afte®(log n) rounds there
is still a monochromatic submatching (of si2¢log n)), so the
coloring algorithm has not yet converged.

APPENDIXB
PROOF OFTHEOREM[Z

Lemma 5 Consider a node seV such that|V| = m =
Q(logn). Suppose the input graply = (V,E) to these
nodes is a random matching, and each naedpicks a color
according to some color selection function. Then theretgxis
a monochromatic submatching = (V’, E’), whereG’ C G,
such thatE|V’| > m/a, for a constanta > 1. Moreover,
P(V'| < 37z) = O(3)-

ak? n

|

If A > 1, then we consider the input graph to be a set of
A random matchings\/1, M, ..., Ma on n nodes (allowing
parallel edges). After the first round, we consider the Istrge
monochromatic submatching involvingnly edges from the

Proof: By the pigeonhole principle, there is some cator first matching M/, leaving a subgraplé:; = (Vi, Eq) with
selected by at least/k nodes. Any such node is matched tdV1| > n/dAa with high probability. Thereafter, the argument
another node coloredwith probability > (2 —1) /m > 1/2k. reduces to that fo\ = 1, except that instead, in each round
Set o = 2k2 By |inearity of expectation there is a- the Cardinality of the monochromatic SmeatChing rEdUQES b
colored submatching’ = (V' E’), where G’ c @, with al/(kA)? factor, since each node can choose from a larger set
E|V'| > m/a. Observe thatV’| is the number of-colored ©Of kA colors. This results in a lower bound 9flog n/log A)
nodes matched to anothercolored node by Process of rounds to convergence with high probability.
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