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Abstract—We present a probabilistic polling scheme for esti- which the population size changes rapidly, such as a
mating the size of a group of nodes affected by the same event. denial of service attack.

We analyze the bias of the proposed scheme and show how it can (A3) In our scheme, the group estimation problem is

be completely eliminated. Our scheme differs from previousvork . d cost fitorobl Th t
in several important ways. First, it is generic in the sensehat viewed as a genericost vs. profiproblem. The cos

it is not dependent on the physical properties of the underling is the number of feedback messages received from
network. Second, it uses a “one-shot” estimation techniquéhat the group and the profit is the precision of the estima-
does not depend on the results of previous rounds. Finallyhe tion. The estimating node can determine how many
estimating nodes control the number of feedback messageius feedback messages it wants to receive if it knows

allowing a good balance between the overhead imposed by the

scheme and its precision. We compared our scheme to previous what error it can tolerate. Our work is probably

works and saw a notable performance improvement: our scheme the first to show the number of feedback messages
reduced the number of response messages by 80-90% while needed to obtain a precise estimation within a certain
obtaining the same precision. confidence interval.

Index Terms—feedback implosion, group size estimation (A4) The proposed algorithm can be implemented in a

network with a shared channel such that losses,
either due to collisions or to transmission errors, are
overcome. This is possible because the algorithm
We propose a new probabilistic polling scheme for estimat- does not depend on the times when the response
ing the size of a group of nodes that experience some event. messages are sent.
We call this scheméNATO! (Not All aT Once!)When the
estimating node, also referred to as the “gateway,” annesinc But NATO! is an important contribution to the field of
that the polling will begin, every group member chooses Rrobabilistic polling not only because it is unique in theifo
random number from the intervéd, 1] using a known distri- aspects discussed above, but also because it performs very
bution. TheN smallest random numbers are then collected byell in comparison to previous algorithms. Comparing the
the gateway. Our new maximum likelihood algorithm uses thgerformance of probabilistic polling algorithms is diffigu
Newton-Raphson method to estimate the number of affect@dd sometimes not really “fair,” because different aldoris
nodes using thes& smallest random numbers. We providenake different assumptions and often seek to optimize dif-
tight upper and lower bounds for the bias of the proposderent parameters, as discussed in Section |l. Moreovér, no
algorithm and use these bounds in order to remove it. all previous works present their cost (number of feedback
While the proposed scheme is generic, we show how ressages) vs. accuracy results. But by comparing our sdsult
can be optimized for networks with a broadcast channel, sudtpse that have been published, we see a major improvement.
as satellite networks, sensor networks, and broadbandscdeor example, in [10] the authors indicate that 423 messages
wireless networks. In such networks, the gateway collecse required to estimate the size of a group at 95% confidence
the response messages by means of an efficient distributgerval and and error smaller than 10%. In [11], it is shown
protocol, based on the well-known Capetanakis algorithin [8hat the “NB scheme” needs 230 messages, one during each
Probabilistic polling for estimating the size of a group hagund, for similar accuracy. In Section IV of this paper, we
been studied in several papers [3], [4], [6], [10], [11], J12 show that less than 30 messages are required by our NATO!
[13]. These papers are discussed in greater detail in $eldtio scheme.
Our work differs from them in four important ways: There are many applications for the proposed scheme, a few
(A1) The proposed algorithm is generic in the sense that which we elaborate on here. It can be applied, for instance
its precision does not depend on the properties t§ detect denial of service jamming attacks in broadcast
the underlying network. In other words, we decouplaireless networks [18]. Using the proposed scheme, the base
these properties from the obtained precision. station can periodically estimate the number of nodes tieat a
(A2) The proposed algorithm uses a “one-shot” estimatiable to receive its broadcast messages without requiriog ea
technique that does not depend on the results of them to send an individual response. If the estimatedgrou
previous rounds. Therefore, it can detect events fig much smaller than the number of registered nodes, the base
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station can deduce that its broadcast channel is being jaimme Nonnenmacher and Biersack were probably the first to
For this application, NATO! has to be executed in a contenti@nalyze timer-based schemes [12], [13]. They proposed the
wireless channel. A possible implementation is presemnted “NB scheme,” which also uses multiple rounds. For each round
Section V. i, the estimating node sends a polling mes$RBB(:) with the

The scheme can also be used in reliable multicast [9]. Indéstribution F(*)(z), z € (0, T). Each receiveyj then draws a
typical FEC-based reliable multicast, the sender creates f time 2" from F(?)(z) and sends a response message after this
each data blockk” + n packets. To decode the data blockiime if the round is not terminated by a new probing message
a receiver must receive ani of these packets. In a hybridRFB(i + 1). The estimating node starts a new round after
FEC/ARQ-based scheme [1], [14], [16], receivers that hayeceiving the first response message. The delay between the
not received at leask’ packets correctly notify the sender.estimating node and the receivers is assumed to be constant.
by means of a NACK message, and the sender transmitsn [10], Friedman and Towsley view the group estimation
additional repair packets. The number of repair rounds s usproblem as estimating the parametérf the binomial( N, p)
ally limited by real-time considerations. In reliable medtst, distribution. In each round, the estimating node multicasts
NATO! can be invoked by the sender once every time ouat polling request. A receiver sends a response message with
in order to estimate the loss distribution for the considergrobability p;. After k rounds, the sender estimates the value
multicast group. That is, the sender will estimate the nurobe of n from the polling probabilitieg, p, . . ., pr and from the
nodes in this group that have Igst of multicast packets since number of responses, s, . .., 7, in every round. This paper
the previous round, for several relevant valuep ofJsing this also shows how to map the BTW scheme and the timer-based
information, the sender can then determine the numbef NB scheme into its binomial estimation model. In additidn, i
proactive repair packets that have to be transmitted intiadi defines a maximum likelihood estimator for the NB scheme
to the K’ packets required for the decoding of every data blockhat uses information from multiple rounds.
This value ofrn is used for the considered multicast group until The work that most resembles our is probably [11] in that
the next time NATO! is invoked. it also uses a maximum likelihood algorithm that takes into

Another application for NATO! is feedback implosion inaccount several feedback messages. When the first feedback
sensor networks. Consider sensor networks where the gatewsessage arrives at the gateway, it broadcasts the next RFB.
periodically asks the nodes to report about specific event$) The next RFB starts a new polling round and stops the
as temperature exceeding some threshold. Most papers teakivers from sending additional responses to the previou
address this problem adopt the concept of data aggregatimund. The number of feedback messages received by the
where similar data messages sent by multiple sources are ggnder is therefore proportional to the length of the RTT.
gregated by the network nodes. However, in single hop sensoDespite of the similarity to our work, [11] is different bylal
networks, where all the sensors have a wireless connectimgpects (A1)-(A4) discussed in Section I. In our scheme, the
to the gateway, the NATO! scheme allows the gateway taumber of feedback messages received by the gateway is deter
determine the number of report messages it wants to receitned by the gateway and not by the properties of the network.
for every event. We overcome feedback implosion by limiting the number of

The rest of this paper is organized as follows. In Section fesponse messages sent by the receivers, while [11] limits
we present related work. In Section 11l we present the estimghe time during which these messages are sent. In broadband
tion algorithm. In Section IV we analyze the precision okthiaccess networks where the RTT is small and homogeneous, the
algorithm and find tight upper and lower bounds for the biagstimating node in [11] is likely to receive only one feedbac
Using this analysis, we bring the bias of our estimator tan0. inessage for every RFB, in which case the precision is very
this section we also show the trade-off between the numberliphited. In contrast, a gateway that runs NATO! terminates
response messages and the precision of the new algorithmthia polling after it receives the required number of feedtbac
Section V, we first show that the loss of response messageéssages to obtain the necessary precision. Our scheme also
has a negative impact on the performance of the estimatigiffers from [11] in that it requires only a single pollingund,
algorithm. Then, we show how losses can be overcome and we explicitly show the trade-off between the number of
networks with a broadcast channel, such as broadband acdesslback messages and the precision of the algorithm.I§inal
wireless networks. Finally, Section VI concludes the paper our scheme can tolerate retransmissions of response nesssag

due to collisions or transmission errors.
Il. RELATED WORK In [3], [4], [2], an M /M /oo model for receivers entering

The authors of [5] are probably the first to consider thand exiting the multicast group is discussed. To avoid faeklb
problem of estimating the size of a group in a network usingplosion, not all the receivers send a message to the sender
polling protocols. They also defined several cost functimns Rather, each one sends a message with a predefined prgbabilit
this problem. In [6], a multi-round scheme, also known as the The sender usegs and other parameters to estimate the
“BTW scheme,” is proposed in the context of multicast flommumber of receivers.
control. For each round, the reply probabilityp,, is defined  The authors of [7] consider a network with thousands of
by the estimating node in the request for feedback that dsennodes connected to the same wireless channel and a gateway
If no reply is received, the estimating node increases tphb/re that needs to estimate their total number. However, thengste
probability for the next round until a response is receivEte does not use a probabilistic polling algorithm. Rather, it
population size is then estimated using this single responsobserves the regular traffic in the network and compares the



identity of the sender of every message to the identitietief tin order to find the joint density of the firsv X/s, we

senders in previous messages. The authors compare a Gaatggrate ovetry 1, ..., T,

Turing estimator to a maximum likelihood estimator and show

that both have similar performance. Since this paper doés no

use specific messages, and does not limit the nodes to send atX:Xz..-- Xnlr (T 22, ZN)

most one message per node, many more messages are required :/ I Fx Xanx, (1,22, - 2y) dn 1. . day

than in our NATO! scheme. While our scheme requires a IN<TN41<...<Tr

small constant number of messages4() to estimate a large / /
xr

population of 10,000 nodes with a good precision, the scheme ~ — rif(z)... fler) denys . dz,

in [7] requires O+/rlogr) messages, where is the group w<awii <o

size. = 7"/ dIN+1 / dZCTf(Il)f(ZCT)
TN Tr—1
[1l. THE ESTIMATION ALGORITHM OF NATO!
Letr be the number of affected nodes (i.e., estimated group = T/deNH- / dy— 1Hf (i) (1 = F(zy-1))
size). The gateway announces the beginning of an estimation o e
process by broadcasting a START message. After it recéives B 4 d (1-F( xr 2))?
responses, it broadcasts a STOP message. When an affected /ININ“' /x f* 2I_If i)

node receives a START messages, it executes the following
algorithm: . _N
« Choose a random numberin the range[0,1] using a T 'Hf i) Flan)™ @)
known probability distribution functiorF'. )
. Send a RPRT| message to the gateway after all the Define the likelihood functiori.(r) to be
nodes whose random numbers are smaller thdmave L(r) =
sent their RPRTSs, provided that a STOP message has not
been received in the meantime. n We now seek for the value of that maximized.(r). Such
How to guarantee that the nodes with the smallest rand&hr yields the maximum likelihood for getting the considered
numbers will be the first to send their RPRT messages is @xperiment’s outcomey, ..., zy, and is therefore the most
implementation detathat is orthogonal to the NATO! schemeprobable number of affected nodes. We find the maximum
because different networks will have different implement®f L(r) by differentiation. SinceL(r) is a product of other
tions. Of course, it is possible to use a timer that is prapoé functions, it is hard to differentiate it directly. Sinde is a
to the random number drawn by every node, as in the timgponotonically increasing functior,(r) gets its maximum for
based polling schemes discussed in Section Il. However, dhg¢ same value of asi(r), where
scheme must guarantee that no RPRT messages will be lost
! i o I(r)=1InL(r)
because lost messages will seriously reduce the algosthm

le,Xg,...7XN‘T(x17x2? s aIN)-

r!

precision. In Section V we present a possible implementatio =h ——+n flx)+...+1Inf(zn)
for networks with a contention channel. (r —N)!
Let f be the probability density function oft. Let +(r—=N)In(1 - F(zn))
Xi,...,Xn be random variables denoting th€ smallest =ln(r—=N+1)+...+1nr
random numbers chosen by the affected nodes. Without loss of +rln(1 — F(zy)) + const. @)

generality, these random variables are assumed to be drdere
in non-decreasing order such that, < X, < ... < Xu. Inthis equationconstis a constant with respect to
Finally, letzy, ..., 2y denote the exact values &f;, ..., Xy We now differentiatel(r) with respect tor and get

in a specific experiment. l’(r):l+%+ " ]{] (1 - F(zy))
T SRR Sy o .

We use the maximum likelihood method to estimaté. et T
fxi XXy (€1, 2, .., xy) be the joint density function  Thus, in order to find the value of which maximizes the
of Xy, Xs,..., Xn given that the number of affected nodesikelihood functionL(r), we need to find real values ofthat

is 7. This function is the probability density of the firdt order  satisfy the following equation:
statistics of distribution’, for which it is known that [15]:

1 1 1
Ix0 Xo X, (X1, 22, .oy )dey . day, = r + r—1 et r—N+1 +n(l = Fzy)) =0 (3)
= P(X1€(z1, 21 +d21),. .., Xo€(20, 7 + day)) = Proposition 1: From the N possible real solutions of Eq.
=rlPW1€(xy, z1 +day), ..., Yo €(xp, xp + da,)) = 3, the one that maximizek(r) is the maximum one.
= P)(F(a1+dz) —F(21)) . .. (F(2,+da,)—F(z,)) = Proof: L(r) andi(r) get their maximum at the same

Thus it is enough to show thatr) gets its maximum at the
— !
=rif(@)... f(zr) doy ... dzy, maximum solution of Eq. 3.
where Yi,...,Y, are independent random variables from Since for everyr
distribution F'. Therefore, 1 1 1

fxiXarx, (@1, 22, 2e) = Uf(21) . f(2). M= - o T o NaE ®



then any real root of Eq. 3 is a local maximum i¢f). The Theorem 1:The absolutely continuous distribution function
global maximum is one of the local maxima, so it remains t6' does not affect the estimated valuerods computed in Eq.
find which of the local maxima gives the highest valug.of 3.

Substituting Proof: According to Eq. 3, the only way the value of
1 1 1 might depend orF is through— In(1 — F'(zx)). However, we
In(l - F(an)) = — (; tog et m) will show now that for everyi, the value of—In(1 — F(x;))
does not depend o', namely, that the distribution of the
from Eq. 3 into Eq. 2 yields: random variabld” = — In(1 — F(X;)) does not depend off
(") =Inr* + ...+ In(* — N+1) givenr affected nodes. . .
1 1 1 Denote byfx,.(z), fori=1,..., N, the density function
—r* (T_* + p— + ...+ m) +const of X; given that the number of affected nodesris The

function fx,,-(x) is actually the probability density of thith

=lnr" 4.+ (" -N+1) -1 order statistic of distributiorf’, namely:

(1—|— L ) (1—|— N )—i—const
- * T T . _ N1 : d d
-1 = N+1 fx,r(x) = —Fx,|,(z) = —— P(X; < z|r affected nodes
- . . . . ‘ de dx
This is a monotonically increasing function. Therefore, of d
all the rootsr* of Eq. 3, the one whose value is maximum = %P(at leasti of the r random numbers are x)
will maximize bothi(r) and L(r). | g
A practical method for solving Eqg. 3 is as follows. Since = Z (T) F(x)j(l — F(;C))T—J' = ..
the In term is constant, the equation has the fofm - + dx
oot ﬁ + ¢ = 0. This function has vertical asymptotes r—1 i o
at pointsr = 0,1,...,N — 1. From Eq. 4 it follows that T<i_1>F($) (1= F(z))""f(x).

the function decreases monotonically at every intertéa-

1,i),i = 1,...,N — 1 and thus it hasV — 1 roots at the =~ Then, we have
interval (0, N —1). The function also decreases monotonically

at the interval(N — 1,00), and thus has its greatest root in Fx,e(t) =

this interval. This is the root we are seeking. To find it, the r—1
sender can employ the Newton-Raphson method. Given an :/O T<i_1
equationh(x) = 0 whereh is a continuously differentiable

function and given a starting poimt, near which the equation ~ Substitutingy = F(z), so thatdy = F'(z)dx = f(x)dz,
root is located, the method iteratively finds an approxiorati yields

for the root with any desirable precision. On tle + 1)-th

)F(z)”(l P@) (@) de. (5)

i ; h(n) , S r—1 F(t) p
iteration, zn 1 = @, — 3725, whereh/(z) is the derivative Fx,.(t) = 7«( ) / Y1 —y) Tl dy
0
getting closer to the root. In our cagejs given in Eq. 3 and (
point was chosen for two reasons. First, there must not be <r — 1> iy <r — z> /F(t) Riel g
Y Y
0

any x,, and the root, and since the function is monotonic at the <
simulation results shown later, we stopped whéf,, )| < Let Fy|.(z) be the distribution function ot given there
namely, the estimated value of

Algorithm 1: The gateway algorithm. — P(F(X;) <1 — e *|r affected nodes

of h(zx). The idea is to find the tangent afat z,, and to set i—1
Tn+1 to the point where the tangent crosses:thexis, thereby r—1 L : L
Yy y"dy
o o o 3 LR (5
xo = N—1+¢, wheres is small positive number. This starting
asymptotes between the starting point and the root (thexefo i—1 k
xo > N — 1). Second, there must not be asymptotes between _
r—1 py r—i\ F(t)k?
interval (N — 1, 00), it is implied thatzy < root. The whole i—1 k k+i -
process stops wheh(z,,)| gets sufficiently close to 0. In the
0.001, which usually holds after 9-10 iterations. The valye arer affected nodes. Hence,
for the last (:th) iteration is taken to be the solution of Eq. 3,
To conclude, the algorithm executed by the gateway for Fy|.(z) = P(—In(1 — F'(X;)) < z|r affected nodes
estimating the number of affected nodes as follows. = P(1 - F(X;) > e *|r affected nodes
o Broadcast/multicast a START message to all possible — P(X; < F~Y(1 — ¢~%)|r affected nods
affected nodes.

« When N RPRTs messages are received, broad- :FXilr(Ffl(l—efz))
cast/multicast a STOP message to all possible affected r—1\ I L (1 =i\ (1= e 2)kti
nodes. —7"<2._1> Z(—l) < i >T
« Use the Newton-Raphson method, as described above, to
find the greatest real root of Eq. 3. m

Thus, givenr affected nodesy” does not depend oR. H



IV. PRECISIONANALYSIS AND BIAS REMOVAL greater than its upper limit is considered to be equal to O or

to 1 respectively. Substituting Eq. 11 into Eq. 10, yields:
In this section we analyze the accuracy of our algorithm. P y g =a q y

We prove that the bias is approximatef—, and use this E(R) > _TN(T - 1) (12)
result in order to remove it. N -1

We have already shown that the distribution functih N -1 )
does not affect the result of the estimation. Therefore, in " (=1) ( i )hl(r — (N =-1)+1)
the following analysis we consider a uniform distribution o =0 NI
the interval[0, 1]. On that interval,f(z) =1 and F(x) = «. B rN - .
The gateway estimates the number of affected nodes by N (N —1)! H) (r=(N=1)+3) (13)
finding the maximal value of- that solves the following N—1 117\7 .
equation: . (_1)1'( B ) In(r — (N — 1) +14).
(3
1 1 1 =0
P LR (V-1 =-In(l1-zy). (6) We can expand the right item of this product as follows:
= (N-1
Let this solution ber = g(xy). Let 77 be our estimator, i.e., (_1)1< , ) In(r — (N —1) +1)
a random variable denoting the estimated number of affected ;= ¢
nodes, and let its expected value Bgri). Our goal is to = In(r—(N-1))
approximate the bia@. N-2 T/N—2 N_2
We have seen that +Z(—1)’[(i_1)+( ; )}
i=1
-1 ) ) . -
i) = (7 F@ 0= @) ) nfr — (N = 1)+ 8) + ()" I
= In(r—(N-1))
Since f(z) = 1 and F(x) = z, then substituting = N into N-3 /N —29
Eqg. 7, we get + Z (—1)”1< ; > In(r — (N —1)+i+1)
1=0
_ r=1N\ N1 N N-2 _
"FXN'T(:C)_”<N—1):C (=)= + (—1)i(Ni 2) In(r — (N — 1) +1)
i=1
Therefore, +(_1)N71 Inr. (14)
1 . .
PO We now group in Eq. 14 thos: terms that are adjacent but
B(r) = / 9(2) fx e (@) dr ®) differ in sign, and we get

We used an iterative method in order to sokfe). In what In(r — (N —1))

follows we seek for upper and lower bounds on this function. N3 N =2 _
From Eq. 6 follows that-In(1 — zy) > & and —In(1 — -2 (=1 ( ; >1H(T -(N-1)+i+1)
< N . 1=0
xn) < P g Therefore, N N s
N + (—1)Z< . )ln(r—(N—l)—i—i)
—mﬁg(xN)S—m‘F(N_l)- 9) i=1 !
+(=D)N¥ tnr =
To find a lower bound we substitute the left-hand part of B r—(N-1)
Eg. 9 into Eq. 8 and get - nr—(N—1)+1+
r—1 LaN=1(1 — )N = -(N—2> r—(N—-1)+1i
AN S Sl + —1) . | -
E(m) = TN(N—l)/O In(1 — ) da ;( ) i nr—(N—l)—i—z—i—l
r—1 le’N(l—:zr)N’l N2, T—1
= —rN ———dz. (10 1)V ln—— =
g (N—1>/0 Inx z. (10 +(=1) T
1
Next, we note that = —In (1 + m) -
Lan(1— )k r [k = »(N—Q) ( 1 )
L dr =) (-1) ' - —1) n(l+ —r— -
/O ——du ;( 1) (i)ln(n+z+1), (11) ;( o) vy g
1
n N7 —
forn >0,k > 1, andfolﬁl—md:c:—oofornzo,kzo. —-(=1) 21n<1+r_1>—
This means that folV = 1, E(r1) = co and the bias is also N_o
infinite. Thus, from now on we assume that > 2. In the - _ (_1)i<N —2 In (1 + 1 > )
following equations, a sum or a product whose lower limit is = i r—(N-1)+i



Substituting this into Eq. 13 yields e ay IS @ constant with respect to

N N2 Fork = N —2, cy_o = 1. Therefore, the proposition holds
E(R) > 7’7' H (r— (N —1) +1) (15) for ex—_2 with the constant polynomial(z) = 1.
(N =1 i—0 By reverse induction, suppose that the proposition holds fo
N—2 N _9 1 k+1. Then, there is a polynomia(x) of degreeNV —3—k such
. (—1)1< _ ) In (1 +— R ) that cy+1 = ¢(i). Definep(z) = ar + (N — 1)gq(z) — zq(x).
i=0 ! " ! Then,p(z) is a polynomial of degre&/ — 2 — k, andp(i) =
rN N=-2 /N —2 a + (N — 1)(](1) — Zq(l) = ar + [(N — 1) — i]c-k+1 =cr. 1
= oo (—1)Z< ; > Proposition 3: For all n > 0, 37" () (—1)? = 0. For all
i=0 k>1landn > k+1,> 0, (7)(=1)"(i—1)...(i—(k—1)) =
N—2 0.

(r— (N —1)+7) Proof: The first claim follows immediately from the
=0 binomial formula:

J#i n n
. n i n iqn—i n
1 r=(N=1)+i > (Z_>(—1) => (i)(—l)l =(1-1)"=0.
r )—l—i . =0 i=0
The second claim is proved by differentiatifig—1)" k times,

The sequence ) ) . : .
q first as a composite function and then after expansion using

1 r—(N-1)+i) V2 the binomial formula.
1 N
< +r—(N—1)+i) . (z—1)"% = nn-1)...(n— (k—1))(xz—1)"*
. . . . a n (k)
is monotonically increasing and upper boundedebypenote " n i i
o N M E
1 B i=0
p n( +T—(N—1)) - (—l)nz<n>(—1)i
Then,0 < p < 1, and for large enough values of- (N —1), =\
p is close to 1. We now get: Qi —1)... (i — (k- 1)):&_’“.
E(rR) > LN' (16) By substitutingz = 1, the proof is completed. |
(V=1 Proposition 4: Every polynomial p(z) = Zfzo a;x’ of
N—2 N— 9\ | N2 degreek can be written as a linear combination of the
(_1)i( B ) H (r—(N—=1)+4)]. polynomials in the seBB;, = {1,z,z(x — 1), z(zx — 1)(z —
=0 t i=0 2),,I(I—1)(I—(l€—1))}
g7 Proof: By induction onk. For k = 0, p(z) = aq is
We continue with a series of propositions that will help ugertainly a linear combination of the polynomialsiég = {1}.
to simplify the above expression. For a generak > 1,
Proposition 2: Let ¢, be the coefficient of* in the poly- B
nomial [TV5%(r — (N —1) + ), for 1 <k < N — 2. Then, pl) = ap-afz—1)... (= (k-1)
JF _ +p(z) —ag-z(x—1)...(x = (k—1))],
there exists a polynomial(z) of degreeN — 2 — k such that
cr = p(i). where the polynomial in brackets is of degree- 1. Thus,
Proof: For1 < k< N — 2, by the induction hypothesis, it can be written as a linear
. combination of the polynomials iB;_1. [ |
cr = »_ product of the factors-[(N — 1) — j] = Proposition 5: For every k > 0 and n > k + 1,
Ax o (M (=1)'pr(i) = 0, wherepi(z) is a polynomial of
= Y _product of the factors-[(N — 1) — j] + degreek.
Ay Proof: By Proposition 4 we can write
HWNV —1) =] pii) = btagi+ari(i—1)+.. +ap_1i(i—1)...(i—(k—1)).
-; product of the factors-[(N — 1) — j] = Then, by Proposition 3,
= ap+[(N —1) = dlep, ~(n\, i o
> () D)
where: i=0
o A; is the set of all ways to choos¥ — 2 — k j's from b “~ (n i “~(n i
{0,...,N — 20\ {i}. ; i) )HLOZ; i)V
o A, is the set of all ways to choos¥ — 2 — k j's from n
n .
{0,...,N —2}. +ar1 Y ( ,)(_1)%(2' —1)...(i—(k=1))
o Ajs is the set of all ways to choos¥ — 3 — k j's from imp \!

{0,...,N — 2\ {i}. ~ 0.



This completes the lower bound analysis (7).

We will now use the above propositions to simplify the To find an upper bound fo# (1), we employ similar

expression forE'(r;) from Eq. 16:

techniques. In the following equations, a number above a
relation symbol denotes the number of an equivalent equatio
for the lower bound:

(N —2 _
-1 r—(N—1)+j N !
1:0( ) ( ¢ ) g( ( sl E(Tl)z/ 9(x) [x () dz
J#i 0
N-—2 N—2 Eq.9 r—1 /1 N1 —z) N
(N —2 < —rN —
= (—1)1< ; ) lz ckrk] - " (N - 1) 0 In(1 —x) .
1=0 k=0 1
N_Qrk [N—2 (N B 2)( e ] +(N —1) ; Fxnpr(z) da
=1 =0 2 _ N r—1 /1 ZCT_N(l _ 1’)N_1 iz
N=2 /s N-1) J, Inx
0 —2 i
+r ( , )(—1) co +(N —1)
= r—1\ = N-1
By Proposition 2,¢;, can be written as a polynomial of Ptz —rN( ) (—1)1'( )
degreeN — 2 — k for the variablei. Thus, by Proposition 5, N—1 i=0 v
the first term vanishes. Note thay = (—1)N*2(§VN_’1§L = In(r —(N—=1)+4)+ (N —-1)
(—1)N(§VJ\:§L, and so the second term can be expanded as .15 N A~ (N -2
follows: T (N-)! 2 (1 < i >
N-—-2 N —9 =0
r0 Z < )(—1)%0 N—2
i=0 H(r—(N—l)—l—j)
_ ( 1)N — N -2 (_1)1' (N_ 1)! ;:(;
N —~ i N—-1—i 1 r—(N—1)+i
- In (1 +
N-—-2
N -2 1 T—(N—1)+Z)
= (- -1)! —N
_ r—1
~ (v—1) sz N -2 (—1)i 1 Denoteg = In (1 + L . Then,0 < ¢ < 1, and for large
N ' pre i i+ 1 enough values of — 1, ¢ is close to 1. Then,
N-—-2
(N —2)! . qg-r-N : -2
= (N-1)! —1) ) <
( );( ST B(m) = 75z )|Z
= (N- 1)!# N_2( )z (N =1 N-2
- N-1 & (i + D)I(N —2—4)! (r=(N-=-1+37)| +{N-1)
N—2 =
(N -1 J#
- wo v (V) ot N
; i+1 L o7 + (N -1)
=0 _
N N -1

where the last equality follows from Proposition 3.
Therefore, from Eq. 16, it follows that

B) > SN -2)t=per

rr(e5m1)

N

N —
( N -1

(17)

_ (L+N%T>+(N—1) (18)

This completes the upper bound analysis. From Eq. 17 and
Eq. 18 we conclude that:

o(este) sane vofiest)
+(N
() s sty
r
- (1-p) <E0rc Nﬁl_a_@
ikt (19)
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Eqg. 19 shows the upper and lower bounds on the bias a9%%. The results are shown for a group of 1,000 affected nodes
function of the number of RPRT& and the real number of (Figure 2(a)) and for a group of 10,000 affected nodes (Figur

affected nodes. 2(b)). Similarly, Figure 3 shows the percentage of trials, af
Theorem 2:When1 < N < r, the bias is approximately the 1,000 runs, for which2 € (1 —¢,1+¢), wheres = 0.03,
NL i.e., a confidence interval f7%.

Proof: The proof follows from Eq. 19. When We conclude from these graphs that 30-40 response mes-
1 A<< N <« r, pandgq are close to 1, and we havesages are sufficient to guarantee a confidence level of 9586 wit
Blh)-r ﬁ probability very close to 1. Similarly, to guarantee a coefide
B interval of 98% with probability very closed to 1, about 70
Using the above analysis, we now present an enhangedponse messages are sufficient. Another conclusion is tha

3

gateway algorithm that removes the bias. it is better to use the truncated exponential distributiatiher
Algorithm 2: An enhanced gateway algorithm that removegan the uniform distribution, especially whénis larger than
the bias. 20. For smaller values ofN, the uniform distribution gives
o Let 7 be the estimation of Algorithm 1. better results.
o An unbiased estimation i§, = 77 - Njgl. |
To see thatrs is an unbiased estimator of note that V. COMBINING NATO! WiTH A COLLISION RESOLUTION
B(ip)-r _ B Mgtor  Sprr(dwitp)-r _ N-1 + L SCHEME
r - r ~ r - N N L i
1=0. Losses of RPRT messages have a significant impact on the

Figure 1 shows Monte Carlo simulation results for the bigsroposed estimation algorithm. In this section we first gtud
of 71 and 5 as found by Algorithm 1 and Algorithm 2 this impact and then show how to overcome potential losses,
respectively. The results are given as a functiotvofor 1,000 either due to collisions in a shared channel or to transworissi
and 10,000 affected nodes. For each valu&/pkach affected errors. Suppose that of the first N RPRT messages are lost.
node drew a random number using a uniform distribution, afitherefore, the RPRT considered by the gateway to béthie
the smallestN numbers were used by the gateway as inpig actually the N + S’th. This influences Eq. 3, which the
to Algorithm 1 and Algorithm 2. Each such trial, with thegateway solves to find. This equation now should read:
same value ofV, was repeated 1,000 times and the bias was 1 1
computed. The graphs clearly show tifathas a positive bias ~ — +— +... + g v S In(1 —zn+s). (20)
whose value is significant for small values &%. In contrast,
7> has no bias, and is therefore very accurate, even wtien Gomg through the analysis in Section IV and replacing
is very small. occurrences ofV with N + S when N indicates the index

We conducted additional Monte Carlo simulations to provd the N'th RPRT message (as opposed to places where it
that Algorithm 2 is not only accurate, but also precise. Tis thindicates the number of such messages), we get:

end, we implemented two distribution functions: the unifor S—1 E(R)—r
distribution and the truncated exponential distributiia) = Py IPs=——=
—~—-Ae*, for z € [0, 1]. In the simulation, the affected nodes S—1 _

drew their random numbers from the above distributions and _qm —(l-g+ - (21)
the N smallest numbers were used by the gateway as input o (N+S—-1)

to Algorithm 2. For each value ofV, Figure 2 shows the |n this equationp = In (1 + m) andg =

percentage of trials, out of the 1,000 runs, for Whlé’h € ( )r—l
1+ .=

(1—¢,1+¢), wheres = 0.05, i.e., a confidence interval of I - This time, whenr > N and N + 5 > 1,
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the bias of Algorithm 1 is ( ;) ~ —x+g—1» and the bias time slot specifically allocated by the base station for fhis-

E(f)=r s pose. Let the'th POLL message be POL(L). Let the interval

of Algorithm 2 is =—— ~ — g% . : o A ,
The above analysis clearly shows that the bias is as Iigecified by this message b, #5], wheret; —¢; = A". The

as the loss rate of the RPRT messages. This would mdRiial values aret] = 0 and ty = Al = A, whereA is a
NATO! impractical in environments where losses are possibfonstant of the algorithm. Hence, the interval announced by
either due to transmission errors or to collisions in sharddPLL(1) is (0, A]. After the base station sends PQ(L}, there
channels. We now show how to efficiently implement NATO®'® three possible cases:
in such environments. We consider a wireless network, suchjC1] No RPRT is received foft}, ¢5]. In this case the base
as 802.11 (in centralized mode), 802.16 or LTE, where the station sends the next POLL message, P@LL1),
functionality of the gateway is fulfilled by the base station with 771 = 4 and A“* = 2A’. In other words,
The base station wants to use NATO! in order to estimate the the interval is shifted byA? units and its width is
number of nodes that experience some event. These nodes use doubled.
the shared medium in order to send the RPRT messages to thg2] Exactly one RPRT is received, whose valuet.igf
base station. this is the N'th RPRT to be received, the protocol
The main idea is to run NATO! in conjunction with a stops. If this is not theV'th RPRT, the base station
distributed protocol for collision resolution [8], [17]. kén sends a new POLL message, POQLY 1), in order
a receiver needs to send a RPRT message, it draws a random to obtain the next RPRT. For this POLET =
number from the interval0, 1] using a uniform distribution. t and A“*! = Af. In other words the interval for
The base station needs to get only the RPRTs with Xhe POLL(: 4+ 1) starts att and has the same length as
smallest numbers. This is done by means of POLL messages POLL(i). This is because this interval length is likely
broadcast by the base station on the downlink. Each such a to contain exactly one RPRT in the next POLL too.
message specifies an interyal, t2]. Receivers whose drawn [C3] A collision occurs due to the transmission of two or
number falls into this interval send their RPRTs in an uplink more RPRTSs. In such a case the base station makes
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a binary search for the first colliding RPRT on thend errors are possible.

interval (¢1,t5]. If this RPRT is theN'th one, the ~ We now present simulation results for the performance of

algorithm stops. Otherwise, after this RPRT is foundhe above protocol. The bandwidth and the time consumed

say with the value and by POLL(;j), the algorithm by this protocol are both functions of the number of POLL

setst]"' =t and A"t = LA’. In other words the messages, because each POLL requires one round trip and

interval for POLL(i 4 1) starts att and has half of one uplink slot. Hence, we measure the performance of this

the length of POLL:). This is because this intervalscheme in terms of this number.

length is likely to contain less RPRTs than PQEL  We simulate the scheme by havingeceivers, from which

and with luck, exactly one RPRT. the base station needs to receiVeRPRTs. To receive these
The binary search on the interval, b] works as follows. The RPRTSs, the base station sends POLL messages as dictated by
sender sends a POLL, for whiech = a andty = mid, where the scheme. This procedure is repeated 50 times for every

mid = %(a +b). Now there are several possible cases: value of N. Our graphs depict the average number of POLLs
(@) If no RPRT is received, the binary search is recugluring these 50 runs as a function 8t In all the graphs the
sively executed on the intervéinid, b]. x-axis is N and the y-axis is the number of POLLs.

(b) If exactly one RPRT is received for the valtiethe Figure 4 depict several curves with different initial vadue
binary search stops and the algorithm searches fof A when the reporting nodes choose their times using a
the next RPRT in¢, ¢ + 3A’] as indicated above. uniform distribution. These values are relevant only whies t

(c) If a collision of two or more RPRTs occurs, thealgorithm starts running. We can see that whg€nbecomes
binary search is executed recursively on the intervidrger, the interval size is likely to adapt to the number of
(a, mid). m contending users. Hence, all the curves have the same slope.

Every RPRT message successfully received by the basdVhile A = 1/r will resultin fewer POLLs than other values
station has to be acknowledged. The acknowledgments &nA, we cannot select such a value sincds unknown.
be piggybacked by the base station in the POLL messagegm Figure 4(a) we see that it is better to choose a value
Still, it is possible that the base station might miss a v smaller thanl/r rather than a value bigger tharyr. Since
RPRT. For example, suppose that during the intefgal.5] we are interested only in the firs¥ sequence numbers, a
two RPRT messages are sent: the first with 0.2 is sent @9od distribution should ensure that RPRTs are less fraquen
nodewv;, and the second with 0.3 is sent by nade Suppose at the beginning of the interval, perhaps at the expenseinfbe
also that the base station gets the RRRI) and not the more frequent near its end. An example of such a distribution
RPRT(0.2) becausev, is closer to the base station thap. is the truncated exponential distribution on the interall ):
Then, the base station will announce a new interval, such As:) = ef_l - e, where)\ > 0.
(0.5, 1], during whichwv; will not be allowed to send its RPRT  Figure 5 shows the number of POLL messages needed for
message. To overcome this problem, we allow ned® send N RPRTs with truncated exponential distribution akne-= 1,
its RPRT message during the latter interval as well. Thi$ witompared to the uniform distribution, far = 1,000 and
force the base station to get the RPRTwgfand to re-order » = 10,000 nodes. Four curves are shown in each figure.
the received messages. Consider first the bottom two curves, which represent the cas
The fact that the gateway uses multiple polling rounds wwhereA = 1/r (in Figure 5(a) they almost fully overlap). The
obtain the N smallest numbers does not imply that NATOupper one is for the uniform distribution while the lower & f
is a multi-round algorithm. All the nodes draw their randonthe exponential distribution. For this setting, the expurs
numbers only once, and the rounds are only needed in ordéstribution performs similarly or only marginally betténan
to ensure reliable delivery of these numbers when collsiothe uniform one, becausA = 1/r is a good choice, as
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explained above. On the other hand, selecting a bad valy® F. de Belleville, L. Dairaine, C. Fraboul, and J.Y. Toarat. Group size

for A, such asA
5(a) and 5(b)), shows a clear improvement of the exponential

0.1 (the top two curves in Figure

distribution over the uniform one.

VI. CONCLUSIONS

event. The proposed scheme is generic in the sense thatsit
not depend on the physical characteristics of the undeylyin
network. The algorithm is based on tAh&é minimum sequence
numbers drawn by the nodes. It defines the likelihood functi
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[11]

[12]
We presented a new probabilistic polling scheme for es-

timating the size of a group of nodes affected by the sarfél

ﬂ J. Nonnenmacher, E. Biersack, and D. Towsley.

1]

for the received RPRTs and then uses the Newton-Raphsgo)

method to find the number of receivers for which this function

is maximized. We analyzed the bias of our algorithm aqgn

showed that it approximately equalg(N — 1). We used this

important result to correct the algorithm and bring its b@§.
We showed that the algorithm performs very well in terms

Jt?

estimation for hybrid satellite/terrestrial reliable ricést. InBroadband
Satellite Comunication Systems and the Challenges of MobiFIP
International Federation for Information Processing005.

T. Friedman and D. Towsley. Multicast session membhprshize
estimation. ININFOCOM, 1999.
C. Liu and J. Nonnenmacher.
INFOCOM (2) 2000.

J. Nonnenmacher and E. Biersack. Optimal multicastiifeek. In
INFOCOM, 1998.

J. Nonnenmacher and E. Biersack. Scalable feedbaclarfge groups.
IEEE/ACM Transactions on Networking(3), June 1999.

Paiityeld loss
recovery for reliable multicast transmissionEEE/ACM Transactions
on Networking 6(4):349-361, 1998.

S. C. Port. Theoretical probability for applicationd/iley-Iterscience,
1994.

D. Rubenstein, J. Kurose, and D. Towsley. A study of ptva
hybrid FEC/ARQ and scalable feedback techniques for reljaieal-
time multicast. Computer Communication24(5-6):563-574, 2001.
B. S. Tsybakov and V. A. Mikhailov. Slotted multiaccepacket
broadcasting feedback channBlroblemy Peredachi Informatsii4:32—
59, October - December 1978.

A. Wood and J. Stankovic. Denial of service in sensomoeks. IEEE
Computer 35(10):54-62, October 2002.

Broadcast audience estimat In

the number of response messages needed in order to guarantee
a confidence level of 95% or 97% with probability very close
to 1. Finally, we showed how the proposed algorithm can
be combined into a collision resolution scheme in order to
guarantee its reliability in unreliable networks.

(1]

(2]
(3]
(4
(5]
(6]
(7]

(8]

REFERENCES

B. Adamson, C. Bormann, M. Handley, and J. Macker. Negati
acknowledgment (NACK) - oriented reliable multicast (NORIMgro-
tocol. RFC-3940, November 2004.

S. Alouf. Parameter estimation and performance anslysi several
network applications, November 2002.

S. Alouf, E. Altman, C. Barakat, and P. Nain. Estimating@mbership
in a multicast session. IBIGMETRICS2003.

S. Alouf, E. Altman, and P. Nain. Optimal on-line estinoat of the size
of a dynamic multicast group. IINFOCOM, 2002.

M. Ammar and G. Rouskas. On the performance of protocols f
collecting responses over a multiple-access channel..1991

J. Bolot, T. Turletti, and I. Wakeman. Scalable feedbadtrol for
multicast video distribution in the internet. BIGCOMM 1994.

C. Budianu, S. Ben-David, and L. Tong. Estimation of thember of
operating sensors in large-scale sensor networks with Imalcess.
IEEE Transactions on Signal Processijrig#(5), 2006.

J. |. Capetanakis. Tree algorithms for packet broadchannels.|EEE
Transactions on Information Theqr25:505-515, September 1979.



