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Abstract—We present a probabilistic polling scheme for esti-
mating the size of a group of nodes affected by the same event.
We analyze the bias of the proposed scheme and show how it can
be completely eliminated. Our scheme differs from previouswork
in several important ways. First, it is generic in the sense that
it is not dependent on the physical properties of the underlying
network. Second, it uses a “one-shot” estimation techniquethat
does not depend on the results of previous rounds. Finally, the
estimating nodes control the number of feedback messages, thus
allowing a good balance between the overhead imposed by the
scheme and its precision. We compared our scheme to previous
works and saw a notable performance improvement: our scheme
reduced the number of response messages by 80-90% while
obtaining the same precision.

Index Terms—feedback implosion, group size estimation

I. I NTRODUCTION

We propose a new probabilistic polling scheme for estimat-
ing the size of a group of nodes that experience some event.
We call this schemeNATO! (Not All aT Once!).When the
estimating node, also referred to as the “gateway,” announces
that the polling will begin, every group member chooses a
random number from the interval[0, 1] using a known distri-
bution. TheN smallest random numbers are then collected by
the gateway. Our new maximum likelihood algorithm uses the
Newton-Raphson method to estimate the number of affected
nodes using theseN smallest random numbers. We provide
tight upper and lower bounds for the bias of the proposed
algorithm and use these bounds in order to remove it.

While the proposed scheme is generic, we show how it
can be optimized for networks with a broadcast channel, such
as satellite networks, sensor networks, and broadband access
wireless networks. In such networks, the gateway collects
the response messages by means of an efficient distributed
protocol, based on the well-known Capetanakis algorithm [8].

Probabilistic polling for estimating the size of a group has
been studied in several papers [3], [4], [6], [10], [11], [12],
[13]. These papers are discussed in greater detail in Section II.
Our work differs from them in four important ways:

(A1) The proposed algorithm is generic in the sense that
its precision does not depend on the properties of
the underlying network. In other words, we decouple
these properties from the obtained precision.

(A2) The proposed algorithm uses a “one-shot” estimation
technique that does not depend on the results of
previous rounds. Therefore, it can detect events for

which the population size changes rapidly, such as a
denial of service attack.

(A3) In our scheme, the group estimation problem is
viewed as a genericcost vs. profitproblem. The cost
is the number of feedback messages received from
the group and the profit is the precision of the estima-
tion. The estimating node can determine how many
feedback messages it wants to receive if it knows
what error it can tolerate. Our work is probably
the first to show the number of feedback messages
needed to obtain a precise estimation within a certain
confidence interval.

(A4) The proposed algorithm can be implemented in a
network with a shared channel such that losses,
either due to collisions or to transmission errors, are
overcome. This is possible because the algorithm
does not depend on the times when the response
messages are sent.

But NATO! is an important contribution to the field of
probabilistic polling not only because it is unique in the four
aspects discussed above, but also because it performs very
well in comparison to previous algorithms. Comparing the
performance of probabilistic polling algorithms is difficult,
and sometimes not really “fair,” because different algorithms
make different assumptions and often seek to optimize dif-
ferent parameters, as discussed in Section II. Moreover, not
all previous works present their cost (number of feedback
messages) vs. accuracy results. But by comparing our results to
those that have been published, we see a major improvement.
For example, in [10] the authors indicate that 423 messages
are required to estimate the size of a group at 95% confidence
interval and and error smaller than 10%. In [11], it is shown
that the “NB scheme” needs 230 messages, one during each
round, for similar accuracy. In Section IV of this paper, we
show that less than 30 messages are required by our NATO!
scheme.

There are many applications for the proposed scheme, a few
of which we elaborate on here. It can be applied, for instance,
to detect denial of service jamming attacks in broadcast
wireless networks [18]. Using the proposed scheme, the base
station can periodically estimate the number of nodes that are
able to receive its broadcast messages without requiring each
of them to send an individual response. If the estimated group
is much smaller than the number of registered nodes, the base
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station can deduce that its broadcast channel is being jammed.
For this application, NATO! has to be executed in a contention
wireless channel. A possible implementation is presented in
Section V.

The scheme can also be used in reliable multicast [9]. In a
typical FEC-based reliable multicast, the sender creates from
each data blockK + n packets. To decode the data block,
a receiver must receive anyK of these packets. In a hybrid
FEC/ARQ-based scheme [1], [14], [16], receivers that have
not received at leastK packets correctly notify the sender,
by means of a NACK message, and the sender transmits
additional repair packets. The number of repair rounds is usu-
ally limited by real-time considerations. In reliable multicast,
NATO! can be invoked by the sender once every time out
in order to estimate the loss distribution for the considered
multicast group. That is, the sender will estimate the number of
nodes in this group that have lostp% of multicast packets since
the previous round, for several relevant values ofp. Using this
information, the sender can then determine the numbern of
proactive repair packets that have to be transmitted in addition
to theK packets required for the decoding of every data block.
This value ofn is used for the considered multicast group until
the next time NATO! is invoked.

Another application for NATO! is feedback implosion in
sensor networks. Consider sensor networks where the gateway
periodically asks the nodes to report about specific events,such
as temperature exceeding some threshold. Most papers that
address this problem adopt the concept of data aggregation,
where similar data messages sent by multiple sources are ag-
gregated by the network nodes. However, in single hop sensor
networks, where all the sensors have a wireless connection
to the gateway, the NATO! scheme allows the gateway to
determine the number of report messages it wants to receive
for every event.

The rest of this paper is organized as follows. In Section II
we present related work. In Section III we present the estima-
tion algorithm. In Section IV we analyze the precision of this
algorithm and find tight upper and lower bounds for the bias.
Using this analysis, we bring the bias of our estimator to 0. In
this section we also show the trade-off between the number of
response messages and the precision of the new algorithm. In
Section V, we first show that the loss of response messages
has a negative impact on the performance of the estimation
algorithm. Then, we show how losses can be overcome in
networks with a broadcast channel, such as broadband access
wireless networks. Finally, Section VI concludes the paper.

II. RELATED WORK

The authors of [5] are probably the first to consider the
problem of estimating the size of a group in a network using
polling protocols. They also defined several cost functionsfor
this problem. In [6], a multi-round scheme, also known as the
“BTW scheme,” is proposed in the context of multicast flow
control. For each roundn, the reply probabilitypn is defined
by the estimating node in the request for feedback that it sends.
If no reply is received, the estimating node increases the reply
probability for the next round until a response is received.The
population size is then estimated using this single response.

Nonnenmacher and Biersack were probably the first to
analyze timer-based schemes [12], [13]. They proposed the
“NB scheme,” which also uses multiple rounds. For each round
i, the estimating node sends a polling messageRFB(i) with the
distributionF (i)(z), z ∈ (0, T ). Each receiverj then draws a
time z

(i)
j from F (i)(z) and sends a response message after this

time if the round is not terminated by a new probing message
RFB(i + 1). The estimating node starts a new round after
receiving the first response message. The delay between the
estimating node and the receivers is assumed to be constant.

In [10], Friedman and Towsley view the group estimation
problem as estimating the parameterN of the binomial(N, p)
distribution. In each roundi, the estimating node multicasts
a polling request. A receiver sends a response message with
probability pi. After k rounds, the sender estimates the value
of n from the polling probabilitiesp1, p2, . . . , pk and from the
number of responsesr1, r2, . . . , rk in every round. This paper
also shows how to map the BTW scheme and the timer-based
NB scheme into its binomial estimation model. In addition, it
defines a maximum likelihood estimator for the NB scheme
that uses information from multiple rounds.

The work that most resembles our is probably [11] in that
it also uses a maximum likelihood algorithm that takes into
account several feedback messages. When the first feedback
message arrives at the gateway, it broadcasts the next RFB.
The next RFB starts a new polling round and stops the
receivers from sending additional responses to the previous
round. The number of feedback messages received by the
sender is therefore proportional to the length of the RTT.

Despite of the similarity to our work, [11] is different by all
aspects (A1)-(A4) discussed in Section I. In our scheme, the
number of feedback messages received by the gateway is deter-
mined by the gateway and not by the properties of the network.
We overcome feedback implosion by limiting the number of
response messages sent by the receivers, while [11] limits
the time during which these messages are sent. In broadband
access networks where the RTT is small and homogeneous, the
estimating node in [11] is likely to receive only one feedback
message for every RFB, in which case the precision is very
limited. In contrast, a gateway that runs NATO! terminates
the polling after it receives the required number of feedback
messages to obtain the necessary precision. Our scheme also
differs from [11] in that it requires only a single polling round,
and we explicitly show the trade-off between the number of
feedback messages and the precision of the algorithm. Finally,
our scheme can tolerate retransmissions of response messages
due to collisions or transmission errors.

In [3], [4], [2], an M/M/∞ model for receivers entering
and exiting the multicast group is discussed. To avoid feedback
implosion, not all the receivers send a message to the sender.
Rather, each one sends a message with a predefined probability
p. The sender usesp and other parameters to estimate the
number of receivers.

The authors of [7] consider a network with thousands of
nodes connected to the same wireless channel and a gateway
that needs to estimate their total number. However, the gateway
does not use a probabilistic polling algorithm. Rather, it
observes the regular traffic in the network and compares the
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identity of the sender of every message to the identities of the
senders in previous messages. The authors compare a Good-
Turing estimator to a maximum likelihood estimator and show
that both have similar performance. Since this paper does not
use specific messages, and does not limit the nodes to send at
most one message per node, many more messages are required
than in our NATO! scheme. While our scheme requires a
small constant number of messages (≈ 40) to estimate a large
population of 10,000 nodes with a good precision, the scheme
in [7] requiresO

√
r log r) messages, wherer is the group

size.

III. T HE ESTIMATION ALGORITHM OF NATO!

Let r be the number of affected nodes (i.e., estimated group
size). The gateway announces the beginning of an estimation
process by broadcasting a START message. After it receivesN
responses, it broadcasts a STOP message. When an affected
node receives a START messages, it executes the following
algorithm:

• Choose a random numbert in the range[0, 1] using a
known probability distribution functionF .

• Send a RPRT(t) message to the gateway after all the
nodes whose random numbers are smaller thant have
sent their RPRTs, provided that a STOP message has not
been received in the meantime.

How to guarantee that the nodes with the smallest random
numbers will be the first to send their RPRT messages is an
implementation detailthat is orthogonal to the NATO! scheme,
because different networks will have different implementa-
tions. Of course, it is possible to use a timer that is proportional
to the random number drawn by every node, as in the timer-
based polling schemes discussed in Section II. However, any
scheme must guarantee that no RPRT messages will be lost
because lost messages will seriously reduce the algorithm’s
precision. In Section V we present a possible implementation
for networks with a contention channel.

Let f be the probability density function ofF . Let
X1, . . . , XN be random variables denoting theN smallest
random numbers chosen by the affected nodes. Without loss of
generality, these random variables are assumed to be ordered
in non-decreasing order such thatX1 ≤ X2 ≤ . . . ≤ XN .
Finally, letx1, . . . , xN denote the exact values ofX1, . . . , XN

in a specific experiment.
We use the maximum likelihood method to estimater. Let

fX1,X2,...,XN |r(x1, x2, . . . , xN ) be the joint density function
of X1, X2, . . . , XN given that the number of affected nodes
is r. This function is the probability density of the firstN order
statistics of distributionF , for which it is known that [15]:

fX1,X2,...,Xr
(x1, x2, . . . , xr)dx1 . . . dxr =

= P (X1∈(x1, x1 + dx1), . . . , Xr∈(xr , xr + dxr)) =

= r!P (Y1∈(x1, x1 + dx1), . . . , Yr∈(xr , xr + dxr)) =

= r!(F (x1+dx1)−F (x1)) . . . (F (xr+dxr)−F (xr)) =

= r!f(x1) . . . f(xr) dx1 . . . dxr,

where Y1, . . . , Yr are independent random variables from
distributionF . Therefore,

fX1,X2,...,Xr
(x1, x2, . . . , xr) = r!f(x1) . . . f(xr).

In order to find the joint density of the firstN X ′
is, we

integrate overxN+1, . . . , xr:

fX1,X2,...,XN |r(x1, x2, . . . , xN )

=

∫
. . .

∫

xN <xN+1<...<xr

fX1,X2,...,Xr
(x1, x2, . . . , xr) dxN+1. . .dxr

=

∫
. . .

∫

xN <xN+1<...<xr

r!f(x1) . . . f(xr) dxN+1 . . . dxr

= r!

∫

xN

dxN+1 . . .

∫

xr−1

dxrf(x1) . . . f(xr)

= r!

∫

xN

dxN+1. . .

∫

xr−2

dxr−1

r−1∏

i=1

f(xi)·(1 − F (xr−1))

= r!

∫

xN

dxN+1. . .

∫

xr−3

dxr−2

r−2∏

i=1

f(xi)·
(1−F (xr−2))

2

2

= . . . =
r!

(r − N)!

N∏

i=1

f(xi) · (1 − F (xN ))r−N . (1)

Define the likelihood functionL(r) to be

L(r) = fX1,X2,...,XN |r(x1, x2, . . . , xN ).

We now seek for the value ofr that maximizesL(r). Such
anr yields the maximum likelihood for getting the considered
experiment’s outcome,x1, . . . , xN , and is therefore the most
probable number of affected nodes. We find the maximum
of L(r) by differentiation. SinceL(r) is a product of other
functions, it is hard to differentiate it directly. Sinceln is a
monotonically increasing function,L(r) gets its maximum for
the same value ofr as l(r), where

l(r) = lnL(r)

= ln
r!

(r − N)!
+ ln f(x1) + . . . + ln f(xN )

+(r − N) ln(1 − F (xN ))

= ln(r − N + 1) + . . . + ln r

+r ln(1 − F (xN )) + const. (2)

In this equation,const is a constant with respect tor.
We now differentiatel(r) with respect tor and get

l′(r) = 1
r

+ 1
r−1 + . . . + 1

r−N+1 + ln(1 − F (xN )).

Thus, in order to find the value ofr which maximizes the
likelihood functionL(r), we need to find real values ofr that
satisfy the following equation:

1

r
+

1

r − 1
+ . . . +

1

r − N + 1
+ ln(1 − F (xN )) = 0. (3)

Proposition 1: From theN possible real solutions of Eq.
3, the one that maximizesL(r) is the maximum one.

Proof: L(r) and l(r) get their maximum at the samer.
Thus it is enough to show thatl(r) gets its maximum at the
maximum solution of Eq. 3.

Since for everyr

l′′(r) = − 1

r2
− 1

(r − 1)2
− . . .− 1

(r − N + 1)2
< 0, (4)
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then any real root of Eq. 3 is a local maximum ofl(r). The
global maximum is one of the local maxima, so it remains to
find which of the local maxima gives the highest value ofl.

Substituting

ln(1 − F (xN )) = −
(

1

r
+

1

r − 1
+ . . . +

1

r − N + 1

)

from Eq. 3 into Eq. 2 yields:

l(r∗) = ln r∗ + . . . + ln(r∗ − N + 1)

−r∗
(

1

r∗
+

1

r∗ − 1
+ . . . +

1

r∗ − N + 1

)
+const

= ln r∗ + . . . + ln(r∗ − N + 1) − 1

−
(

1 +
1

r∗ − 1

)
− . . . −

(
1 +

N − 1

r∗ − N + 1

)
+ const.

This is a monotonically increasing function. Therefore, of
all the rootsr∗ of Eq. 3, the one whose value is maximum
will maximize bothl(r) andL(r).

A practical method for solving Eq. 3 is as follows. Since
the ln term is constant, the equation has the form1

r
+ 1

r−1 +

. . . + 1
r−N+1 + c = 0. This function has vertical asymptotes

at points r = 0, 1, . . . , N − 1. From Eq. 4 it follows that
the function decreases monotonically at every interval(i −
1, i), i = 1, . . . , N − 1 and thus it hasN − 1 roots at the
interval(0, N −1). The function also decreases monotonically
at the interval(N − 1,∞), and thus has its greatest root in
this interval. This is the root we are seeking. To find it, the
sender can employ the Newton-Raphson method. Given an
equationh(x) = 0 where h is a continuously differentiable
function and given a starting pointx0, near which the equation
root is located, the method iteratively finds an approximation
for the root with any desirable precision. On the(n + 1)-th
iteration,xn+1 = xn − h(xn)

h′(xn) , whereh′(x) is the derivative
of h(x). The idea is to find the tangent ofh at xn and to set
xn+1 to the point where the tangent crosses thex-axis, thereby
getting closer to the root. In our case,h is given in Eq. 3 and
x0 = N−1+ε, whereε is small positive number. This starting
point was chosen for two reasons. First, there must not be
asymptotes between the starting point and the root (therefore
x0 > N − 1). Second, there must not be asymptotes between
anyxn and the root, and since the function is monotonic at the
interval (N − 1,∞), it is implied thatx0 < root. The whole
process stops when|h(xn)| gets sufficiently close to 0. In the
simulation results shown later, we stopped when|h(xn)| <
0.001, which usually holds after 9-10 iterations. The valuexn

for the last (nth) iteration is taken to be the solution of Eq. 3,
namely, the estimated value ofr.

To conclude, the algorithm executed by the gateway for
estimating the number of affected nodesr is as follows.

Algorithm 1: The gateway algorithm.

• Broadcast/multicast a START message to all possible
affected nodes.

• When N RPRTs messages are received, broad-
cast/multicast a STOP message to all possible affected
nodes.

• Use the Newton-Raphson method, as described above, to
find the greatest real root of Eq. 3.

Theorem 1:The absolutely continuous distribution function
F does not affect the estimated value ofr as computed in Eq.
3.

Proof: According to Eq. 3, the only way the value ofr
might depend onF is through− ln(1−F (xN )). However, we
will show now that for everyi, the value of− ln(1 − F (xi))
does not depend onF , namely, that the distribution of the
random variableY = − ln(1−F (Xi)) does not depend onF
given r affected nodes.

Denote byfXi|r(x), for i = 1, . . . , N , the density function
of Xi given that the number of affected nodes isr. The
functionfXi|r(x) is actually the probability density of theith
order statistic of distributionF , namely:

fXi|r(x) =
d

dx
FXi|r(x) =

d

dx
P (Xi ≤ x|r affected nodes)

=
d

dx
P (at leasti of the r random numbers are< x)

=
d

dx

r∑

j=i

(
r

j

)
F (x)j(1 − F (x))r−j = . . .

= r

(
r − 1

i − 1

)
F (x)i−1(1 − F (x))r−if(x).

Then, we have

FXi|r(t) =

=

∫ t

0

r

(
r − 1

i − 1

)
F (x)i−1(1 − F (x))r−if(x) dx. (5)

Substitutingy = F (x), so thatdy = F ′(x)dx = f(x)dx,
yields

FXi|r(t) = r

(
r − 1

i − 1

)∫ F (t)

0

yi−1(1 − y)r−i dy

= r

(
r − 1

i − 1

)∫ F (t)

0

yi−1
r−i∑

k=0

(−1)k

(
r − i

k

)
yk dy

= r

(
r − 1

i − 1

) r−i∑

k=0

(−1)k

(
r − i

k

)∫ F (t)

0

yk+i−1 dy

= r

(
r − 1

i − 1

) r−i∑

k=0

(−1)k

(
r − i

k

)
F (t)k+i

k + i
.

Let FY |r(z) be the distribution function ofY given there
arer affected nodes. Hence,

FY |r(z) = P (− ln(1 − F (Xi)) ≤ z|r affected nodes)

= P (1 − F (Xi) ≥ e−z|r affected nodes)

= P (F (Xi) ≤ 1 − e−z|r affected nodes)

= P (Xi ≤ F−1(1 − e−z)|r affected nodes)

= FXi|r(F
−1(1 − e−z))

= r

(
r − 1

i − 1

) r−i∑

k=0

(−1)k

(
r − i

k

)
(1 − e−z)k+i

k + i
.

Thus, givenr affected nodes,Y does not depend onF .



5

IV. PRECISIONANALYSIS AND BIAS REMOVAL

In this section we analyze the accuracy of our algorithm.
We prove that the bias is approximately1

N−1 , and use this
result in order to remove it.

We have already shown that the distribution functionF
does not affect the resultr of the estimation. Therefore, in
the following analysis we consider a uniform distribution on
the interval[0, 1]. On that interval,f(x) = 1 andF (x) = x.

The gateway estimates the number of affected nodes by
finding the maximal value ofr that solves the following
equation:

1

r
+

1

r − 1
+ . . . +

1

r − (N − 1)
= − ln(1 − xN ). (6)

Let this solution ber = g(xN ). Let r̂1 be our estimator, i.e.,
a random variable denoting the estimated number of affected
nodes, and let its expected value beE(r̂1). Our goal is to
approximate the biasE( br1)−r

r
.

We have seen that

fXi|r(x) = r

(
r − 1

i − 1

)
F (x)i−1(1 − F (x))r−if(x). (7)

Sincef(x) = 1 andF (x) = x, then substitutingi = N into
Eq. 7, we get

fXN |r(x) = r

(
r − 1

N − 1

)
xN−1(1 − x)r−N .

Therefore,

E(r̂1) =

∫ 1

0

g(x)fXN |r(x) dx. (8)

We used an iterative method in order to solveg(x). In what
follows we seek for upper and lower bounds on this function.
From Eq. 6 follows that− ln(1 − xN ) ≥ N

r
and − ln(1 −

xN ) ≤ N
r−(N−1) . Therefore,

− N

ln(1 − xN )
≤ g(xN ) ≤ − N

ln(1 − xN )
+ (N − 1). (9)

To find a lower bound we substitute the left-hand part of
Eq. 9 into Eq. 8 and get

E(r̂1) ≥ −rN

(
r − 1

N − 1

)∫ 1

0

xN−1(1 − x)r−N

ln(1 − x)
dx

= −rN

(
r − 1

N − 1

)∫ 1

0

xr−N (1 − x)N−1

lnx
dx. (10)

Next, we note that

∫ 1

0

xn(1 − x)k

lnx
dx =

k∑

i=0

(−1)i

(
k

i

)
ln(n + i + 1), (11)

for n ≥ 0, k ≥ 1, and
∫ 1

0
xn

ln x
dx = −∞ for n ≥ 0, k = 0.

This means that forN = 1, E(r̂1) = ∞ and the bias is also
infinite. Thus, from now on we assume thatN ≥ 2. In the
following equations, a sum or a product whose lower limit is

greater than its upper limit is considered to be equal to 0 or
to 1 respectively. Substituting Eq. 11 into Eq. 10, yields:

E(r̂1) ≥ −rN

(
r − 1

N − 1

)
(12)

·
N−1∑

i=0

(−1)i

(
N − 1

i

)
ln(r − (N − 1) + i)

= − rN

(N − 1)!

N−2∏

i=0

(r − (N − 1) + i) (13)

·
N−1∑

i=0

(−1)i

(
N − 1

i

)
ln(r − (N − 1) + i).

We can expand the right item of this product as follows:
N−1∑

i=0

(−1)i

(
N − 1

i

)
ln(r − (N − 1) + i)

= ln(r − (N − 1))

+

N−2∑

i=1

(−1)i

[(
N − 2

i − 1

)
+

(
N − 2

i

)]

· ln(r − (N − 1) + i) + (−1)N−1 ln r

= ln(r − (N − 1))

+
N−3∑

i=0

(−1)i+1

(
N − 2

i

)
ln(r − (N − 1) + i+1)

+
N−2∑

i=1

(−1)i

(
N − 2

i

)
ln(r − (N − 1) + i)

+(−1)N−1 ln r. (14)

We now group in Eq. 14 thoseln terms that are adjacent but
differ in sign, and we get

ln(r − (N − 1))

−
N−3∑

i=0

(−1)i

(
N − 2

i

)
ln(r − (N − 1) + i + 1)

+

N−2∑

i=1

(−1)i

(
N − 2

i

)
ln(r − (N − 1) + i)

+(−1)N−1 ln r =

= ln
r − (N − 1)

r − (N − 1) + 1
+

+
N−3∑

i=1

(−1)i

(
N − 2

i

)
ln

r − (N − 1) + i

r − (N − 1) + i + 1
+

+(−1)N−2 ln
r − 1

r
=

= − ln

(
1 +

1

r − (N − 1)

)
−

−
N−3∑

i=1

(−1)i

(
N − 2

i

)
ln

(
1 +

1

r − (N − 1) + i

)
−

−(−1)N−2 ln

(
1 +

1

r − 1

)
=

= −
N−2∑

i=0

(−1)i

(
N − 2

i

)
ln

(
1 +

1

r − (N − 1) + i

)
.
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Substituting this into Eq. 13 yields

E(r̂1) ≥
rN

(N − 1)!

N−2∏

i=0

(r − (N − 1) + i) (15)

·
N−2∑

i=0

(−1)i

(
N − 2

i

)
ln

(
1 +

1

r − (N − 1) + i

)

=
rN

(N − 1)!

N−2∑

i=0

(−1)i

(
N − 2

i

)

·




N−2∏

j=0

j 6=i

(r − (N − 1) + j)





· ln
(

1 +
1

r − (N − 1) + i

)r−(N−1)+i

.

The sequence
{(

1 +
1

r − (N − 1) + i

)r−(N−1)+i
}N−2

i=0

is monotonically increasing and upper bounded bye. Denote

p = ln

(
1 +

1

r − (N − 1)

)r−(N−1)

.

Then,0 < p < 1, and for large enough values ofr−(N−1),
p is close to 1. We now get:

E(r̂1) ≥
p · r · N
(N − 1)!

(16)

·
N−2∑

i=0

(−1)i

(
N − 2

i

)



N−2∏

j=0

j 6=i

(r − (N − 1) + j)



 .

We continue with a series of propositions that will help us
to simplify the above expression.

Proposition 2: Let ck be the coefficient ofrk in the poly-
nomial

∏N−2
j=0

j 6=i

(r − (N − 1) + j), for 1 ≤ k ≤ N − 2. Then,

there exists a polynomialp(x) of degreeN − 2− k such that
ck = p(i).

Proof: For 1 ≤ k ≤ N − 2,

ck =
∑

A1

product of the factors−[(N − 1) − j] =

=
∑

A2

product of the factors−[(N − 1) − j] +

+[(N − 1) − i] ·
·
∑

A3

product of the factors−[(N − 1) − j] =

= ak + [(N − 1) − i]ck+1,

where:
• A1 is the set of all ways to chooseN − 2 − k j’s from

{0, . . . , N − 2}\{i}.
• A2 is the set of all ways to chooseN − 2 − k j’s from

{0, . . . , N − 2}.
• A3 is the set of all ways to chooseN − 3 − k j’s from

{0, . . . , N − 2}\{i}.

• ak is a constant with respect toi.
For k = N −2, cN−2 = 1. Therefore, the proposition holds

for cN−2 with the constant polynomialp(x) = 1.
By reverse induction, suppose that the proposition holds for

k+1. Then, there is a polynomialq(x) of degreeN−3−k such
that ck+1 = q(i). Definep(x) = ak + (N − 1)q(x) − xq(x).
Then,p(x) is a polynomial of degreeN − 2 − k, andp(i) =
ak + (N − 1)q(i) − iq(i) = ak + [(N − 1)− i]ck+1 = ck.

Proposition 3: For all n ≥ 0,
∑n

i=0

(
n
i

)
(−1)i = 0. For all

k ≥ 1 andn ≥ k+1,
∑n

i=k

(
n
i

)
(−1)ii(i−1) . . . (i−(k−1)) =

0.
Proof: The first claim follows immediately from the

binomial formula:
n∑

i=0

(
n

i

)
(−1)i =

n∑

i=0

(
n

i

)
(−1)i1n−i = (1 − 1)n = 0.

The second claim is proved by differentiating(x−1)n k times,
first as a composite function and then after expansion using
the binomial formula.

[(x − 1)n]
(k)

= n(n − 1) . . . (n − (k − 1))(x − 1)n−k

[(x − 1)n]
(k)

=

[
n∑

i=0

(
n

i

)
(−1)n−ixi

](k)

=

= (−1)n

n∑

i=k

(
n

i

)
(−1)i ·

·i(i − 1) . . . (i − (k − 1))xi−k.

By substitutingx = 1, the proof is completed.
Proposition 4: Every polynomial p(x) =

∑k
i=0 aix

i of
degree k can be written as a linear combination of the
polynomials in the setBk = {1, x, x(x − 1), x(x − 1)(x −
2), . . . , x(x − 1) . . . (x − (k − 1))}.

Proof: By induction onk. For k = 0, p(x) = a0 is
certainly a linear combination of the polynomials inB0 = {1}.
For a generalk ≥ 1,

p(x) = ak · x(x − 1) . . . (x − (k − 1))

+ [p(x) − ak · x(x − 1) . . . (x − (k − 1))] ,

where the polynomial in brackets is of degreek − 1. Thus,
by the induction hypothesis, it can be written as a linear
combination of the polynomials inBk−1.

Proposition 5: For every k ≥ 0 and n ≥ k + 1,∑n
i=0

(
n
i

)
(−1)ipk(i) = 0, where pk(x) is a polynomial of

degreek.
Proof: By Proposition 4 we can write

pk(i) = b+a0i+a1i(i−1)+. . .+ak−1i(i−1) . . . (i−(k−1)).

Then, by Proposition 3,
n∑

i=0

(
n

i

)
(−1)ipk(i)

= b
n∑

i=0

(
n

i

)
(−1)i + a0

n∑

i=1

(
n

i

)
(−1)ii + . . .

+ak−1

n∑

i=k

(
n

i

)
(−1)ii(i − 1) . . . (i − (k − 1))

= 0.



7

We will now use the above propositions to simplify the
expression forE(r̂1) from Eq. 16:

N−2∑

i=0

(−1)i

(
N − 2

i

)



N−2∏

j=0

j 6=i

(r − (N − 1) + j)





=

N−2∑

i=0

(−1)i

(
N − 2

i

)[N−2∑

k=0

ckrk

]

=

N−2∑

k=1

rk

[
N−2∑

i=0

(
N − 2

i

)
(−1)ick

]

+r0
N−2∑

i=0

(
N − 2

i

)
(−1)ic0.

By Proposition 2,ck can be written as a polynomial of
degreeN − 2 − k for the variablei. Thus, by Proposition 5,
the first term vanishes. Note thatc0 = (−1)N−2 (N−1)!

(N−1)−i
=

(−1)N (N−1)!
(N−1)−i

, and so the second term can be expanded as
follows:

r0
N−2∑

i=0

(
N − 2

i

)
(−1)ic0

= (−1)N

N−2∑

i=0

(
N − 2

i

)
(−1)i (N − 1)!

N − 1 − i

= (−1)N (N − 1)!

N−2∑

i=0

(
N − 2

i

)
(−1)N−i 1

i + 1

= (N − 1)!

N−2∑

i=0

(
N − 2

i

)
(−1)i 1

i + 1

= (N − 1)!

N−2∑

i=0

(−1)i (N − 2)!

(i + 1)!(N − 2 − i)!

= (N − 1)!
1

N − 1

N−2∑

i=0

(−1)i (N − 1)!

(i + 1)!(N − 2 − i)!

= (N − 2)!

N−2∑

i=0

(−1)i

(
N − 1

i + 1

)

= (N − 2)!

N−1∑

i=1

(−1)i−1

(
N − 1

i

)

= −(N − 2)!

N−1∑

i=1

(−1)i

(
N − 1

i

)

= −(N − 2)!

(
N−1∑

i=0

(−1)i

(
N − 1

i

)
− 1

)

= (N − 2)!,

where the last equality follows from Proposition 3.
Therefore, from Eq. 16, it follows that

E(r̂1) ≥ p · r · N
(N − 1)!

(N − 2)! = p · r N

N − 1

= p · r
(

1 +
1

N − 1

)
. (17)

This completes the lower bound analysis forE(r̂1).
To find an upper bound forE(r̂1), we employ similar

techniques. In the following equations, a number above a
relation symbol denotes the number of an equivalent equation
for the lower bound:

E(r̂1) =

∫ 1

0

g(x)fXN |r(x) dx

Eq.9

≤ −rN

(
r − 1

N − 1

)∫ 1

0

xN−1(1 − x)r−N

ln(1 − x)
dx

+(N − 1)

∫ 1

0

fXN |r(x) dx

= −rN

(
r − 1

N − 1

)∫ 1

0

xr−N (1 − x)N−1

lnx
dx

+(N − 1)

Eq.12
= −rN

(
r − 1

N − 1

)N−1∑

i=0

(−1)i

(
N − 1

i

)

· ln(r − (N − 1) + i) + (N − 1)

Eq.15
=

rN

(N − 1)!

N−2∑

i=0

(−1)i

(
N − 2

i

)

·




N−2∏

j=0

j 6=i

(r − (N − 1) + j)





· ln
(

1 +
1

r − (N − 1) + i

)r−(N−1)+i

+(N − 1).

Denoteq = ln
(
1 + 1

r−1

)r−1

. Then,0 < q < 1, and for large
enough values ofr − 1, q is close to 1. Then,

E(r̂1) ≤
q · r · N
(N − 1)!

N−2∑

i=0

(−1)i

(
N − 2

i

)

·




N−2∏

j=0

j 6=i

(r − (N − 1) + j)



+ (N − 1)

Eq.17
= q · r N

N − 1
+ (N − 1)

= q · r
(

1 +
1

N − 1

)
+ (N − 1). (18)

This completes the upper bound analysis. From Eq. 17 and
Eq. 18 we conclude that:

p · r
(

1 +
1

N − 1

)
≤ E(r̂1) ≤ q · r

(
1 +

1

N − 1

)

+(N − 1)

p

(
1 +

1

N − 1

)
≤ E( br1)

r
≤ q

(
1 +

1

N − 1

)

+
N − 1

r
p

N − 1
− (1 − p) ≤ E( br1)−r

r
≤ q

N − 1
− (1 − q)

+
N − 1

r
. (19)
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Fig. 1. The bias ofbr1 and br2 vs. N

Eq. 19 shows the upper and lower bounds on the bias as a
function of the number of RPRTsN and the real number of
affected nodesr.

Theorem 2:When1 ≪ N ≪ r, the bias is approximately
1

N−1 .
Proof: The proof follows from Eq. 19. When

1 ≪ N ≪ r, p and q are close to 1, and we have
E( br1)−r

r
≈ 1

N−1 .

Using the above analysis, we now present an enhanced
gateway algorithm that removes the bias.

Algorithm 2: An enhanced gateway algorithm that removes
the bias.

• Let r̂1 be the estimation of Algorithm 1.
• An unbiased estimation iŝr2 = r̂1 · N−1

N
.

To see thatr̂2 is an unbiased estimator ofr, note that
E( br2)−r

r
=

E( br1)·
N−1

N
−r

r
≈

N−1

N
·r(1+ 1

N−1
)−r

r
= N−1

N
+ 1

N
−

1 = 0.
Figure 1 shows Monte Carlo simulation results for the bias

of r̂1 and r̂2 as found by Algorithm 1 and Algorithm 2
respectively. The results are given as a function ofN for 1,000
and 10,000 affected nodes. For each value ofN , each affected
node drew a random number using a uniform distribution, and
the smallestN numbers were used by the gateway as input
to Algorithm 1 and Algorithm 2. Each such trial, with the
same value ofN , was repeated 1,000 times and the bias was
computed. The graphs clearly show thatr̂1 has a positive bias
whose value is significant for small values ofN . In contrast,
r̂2 has no bias, and is therefore very accurate, even whenN
is very small.

We conducted additional Monte Carlo simulations to prove
that Algorithm 2 is not only accurate, but also precise. To this
end, we implemented two distribution functions: the uniform
distribution and the truncated exponential distributionf(x) =

1
eλ−1

·λeλx, for x ∈ [0, 1]. In the simulation, the affected nodes
drew their random numbers from the above distributions and
the N smallest numbers were used by the gateway as input
to Algorithm 2. For each value ofN , Figure 2 shows the
percentage of trials, out of the 1,000 runs, for whichbr2

r
∈

(1 − ε, 1 + ε), whereε = 0.05, i.e., a confidence interval of

95%. The results are shown for a group of 1,000 affected nodes
(Figure 2(a)) and for a group of 10,000 affected nodes (Figure
2(b)). Similarly, Figure 3 shows the percentage of trials, out of
the 1,000 runs, for whichbr2

r
∈ (1− ε, 1+ ε), whereε = 0.03,

i.e., a confidence interval of97%.
We conclude from these graphs that 30-40 response mes-

sages are sufficient to guarantee a confidence level of 95% with
probability very close to 1. Similarly, to guarantee a confidence
interval of 98% with probability very closed to 1, about 70
response messages are sufficient. Another conclusion is that
it is better to use the truncated exponential distribution rather
than the uniform distribution, especially whenN is larger than
20. For smaller values ofN , the uniform distribution gives
better results.

V. COMBINING NATO! WITH A COLLISION RESOLUTION

SCHEME

Losses of RPRT messages have a significant impact on the
proposed estimation algorithm. In this section we first study
this impact and then show how to overcome potential losses,
either due to collisions in a shared channel or to transmission
errors. Suppose thatS of the firstN RPRT messages are lost.
Therefore, the RPRT considered by the gateway to be theN ’th
is actually theN + S’th. This influences Eq. 3, which the
gateway solves to findr. This equation now should read:

1

r
+

1

r − 1
+ . . . +

1

r − (N − 1)
= − ln(1− xN+S). (20)

Going through the analysis in Section IV and replacing
occurrences ofN with N + S when N indicates the index
of the N ’th RPRT message (as opposed to places where it
indicates the number of such messages), we get:

−p
S − 1

N + S − 1
− (1 − p) ≤ E(r̂1) − r

r
≤

−q
S − 1

N + S − 1
− (1 − q) +

N − 1

r
. (21)

In this equation,p = ln
(
1 + 1

r−(N+S−1)

)r−(N+S−1)

andq =

ln
(
1 + 1

r−1

)r−1

. This time, whenr ≫ N andN + S ≫ 1,
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the bias of Algorithm 1 isE( br1)−r

r
≈ − S−1

N+S−1 , and the bias

of Algorithm 2 is E( br1)−r

r
≈ − S

N+S−1 .

The above analysis clearly shows that the bias is as big
as the loss rate of the RPRT messages. This would make
NATO! impractical in environments where losses are possible
either due to transmission errors or to collisions in shared
channels. We now show how to efficiently implement NATO!
in such environments. We consider a wireless network, such
as 802.11 (in centralized mode), 802.16 or LTE, where the
functionality of the gateway is fulfilled by the base station.
The base station wants to use NATO! in order to estimate the
number of nodes that experience some event. These nodes use
the shared medium in order to send the RPRT messages to the
base station.

The main idea is to run NATO! in conjunction with a
distributed protocol for collision resolution [8], [17]. When
a receiver needs to send a RPRT message, it draws a random
number from the interval[0, 1] using a uniform distribution.
The base station needs to get only the RPRTs with theN
smallest numbers. This is done by means of POLL messages
broadcast by the base station on the downlink. Each such a
message specifies an interval(t1, t2]. Receivers whose drawn
number falls into this interval send their RPRTs in an uplink

time slot specifically allocated by the base station for thispur-
pose. Let thei’th POLL message be POLL(i). Let the interval
specified by this message be(ti1, t

i
2], whereti2− ti1 = ∆i. The

initial values aret11 = 0 and t12 = ∆1 = ∆, where∆ is a
constant of the algorithm. Hence, the interval announced by
POLL(1) is (0, ∆]. After the base station sends POLL(i), there
are three possible cases:

[C1] No RPRT is received for(ti1, t
i
2]. In this case the base

station sends the next POLL message, POLL(i +1),
with ti+1

1 = ti2 and ∆i+1 = 2∆i. In other words,
the interval is shifted by∆i units and its width is
doubled.

[C2] Exactly one RPRT is received, whose value ist. If
this is theN ’th RPRT to be received, the protocol
stops. If this is not theN ’th RPRT, the base station
sends a new POLL message, POLL(i + 1), in order
to obtain the next RPRT. For this POLL,ti+1

1 =
t and ∆i+1 = ∆i. In other words the interval for
POLL(i + 1) starts att and has the same length as
POLL(i). This is because this interval length is likely
to contain exactly one RPRT in the next POLL too.

[C3] A collision occurs due to the transmission of two or
more RPRTs. In such a case the base station makes
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Fig. 4. Number of POLLs required for getting the smallestN RPRTs

a binary search for the first colliding RPRT on the
interval (ti1, t

i
2]. If this RPRT is theN ’th one, the

algorithm stops. Otherwise, after this RPRT is found,
say with the valuet and by POLL(j), the algorithm
setstj+1

1 = t and∆i+1 = 1
2∆i. In other words the

interval for POLL(i + 1) starts att and has half of
the length of POLL(i). This is because this interval
length is likely to contain less RPRTs than POLL(i),
and with luck, exactly one RPRT.

The binary search on the interval(a, b] works as follows. The
sender sends a POLL, for whicht1 = a andt2 = mid, where
mid = 1

2 (a + b). Now there are several possible cases:
(a) If no RPRT is received, the binary search is recur-

sively executed on the interval(mid, b].
(b) If exactly one RPRT is received for the valuet, the

binary search stops and the algorithm searches for
the next RPRT in(t, t + 1

2∆i] as indicated above.
(c) If a collision of two or more RPRTs occurs, the

binary search is executed recursively on the interval
(a, mid].

Every RPRT message successfully received by the base
station has to be acknowledged. The acknowledgments can
be piggybacked by the base station in the POLL messages.
Still, it is possible that the base station might miss a relevant
RPRT. For example, suppose that during the interval(0, 0.5]
two RPRT messages are sent: the first with 0.2 is sent by
nodev1, and the second with 0.3 is sent by nodev2. Suppose
also that the base station gets the RPRT(0.3) and not the
RPRT(0.2) becausev2 is closer to the base station thanv1.
Then, the base station will announce a new interval, such as
(0.5, 1], during whichv1 will not be allowed to send its RPRT
message. To overcome this problem, we allow nodev1 to send
its RPRT message during the latter interval as well. This will
force the base station to get the RPRT ofv1 and to re-order
the received messages.

The fact that the gateway uses multiple polling rounds to
obtain theN smallest numbers does not imply that NATO!
is a multi-round algorithm. All the nodes draw their random
numbers only once, and the rounds are only needed in order
to ensure reliable delivery of these numbers when collisions

and errors are possible.
We now present simulation results for the performance of

the above protocol. The bandwidth and the time consumed
by this protocol are both functions of the number of POLL
messages, because each POLL requires one round trip and
one uplink slot. Hence, we measure the performance of this
scheme in terms of this number.

We simulate the scheme by havingr receivers, from which
the base station needs to receiveN RPRTs. To receive these
RPRTs, the base station sends POLL messages as dictated by
the scheme. This procedure is repeated 50 times for every
value ofN . Our graphs depict the average number of POLLs
during these 50 runs as a function ofN . In all the graphs the
x-axis isN and the y-axis is the number of POLLs.

Figure 4 depict several curves with different initial values
of ∆ when the reporting nodes choose their times using a
uniform distribution. These values are relevant only when the
algorithm starts running. We can see that whenN becomes
larger, the interval size is likely to adapt to the number of
contending users. Hence, all the curves have the same slope.

While ∆ = 1/r will result in fewer POLLs than other values
of ∆, we cannot select such a value sincer is unknown.
From Figure 4(a) we see that it is better to choose a value
smaller than1/r rather than a value bigger than1/r. Since
we are interested only in the firstN sequence numbers, a
good distribution should ensure that RPRTs are less frequent
at the beginning of the interval, perhaps at the expense of being
more frequent near its end. An example of such a distribution
is the truncated exponential distribution on the interval[0, 1):
f(x) = 1

eλ−1 · λeλx, whereλ > 0.
Figure 5 shows the number of POLL messages needed for

N RPRTs with truncated exponential distribution andλ = 1,
compared to the uniform distribution, forr = 1, 000 and
r = 10, 000 nodes. Four curves are shown in each figure.
Consider first the bottom two curves, which represent the case
where∆ = 1/r (in Figure 5(a) they almost fully overlap). The
upper one is for the uniform distribution while the lower is for
the exponential distribution. For this setting, the exponential
distribution performs similarly or only marginally betterthan
the uniform one, because∆ = 1/r is a good choice, as
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Fig. 5. Number of POLLs required for getting the smallestN RPRTs using a uniform and a truncated exponential distribution

explained above. On the other hand, selecting a bad value
for ∆, such as∆ = 0.1 (the top two curves in Figure
5(a) and 5(b)), shows a clear improvement of the exponential
distribution over the uniform one.

VI. CONCLUSIONS

We presented a new probabilistic polling scheme for es-
timating the size of a group of nodes affected by the same
event. The proposed scheme is generic in the sense that it does
not depend on the physical characteristics of the underlying
network. The algorithm is based on theN minimum sequence
numbers drawn by the nodes. It defines the likelihood function
for the received RPRTs and then uses the Newton-Raphson
method to find the number of receivers for which this function
is maximized. We analyzed the bias of our algorithm and
showed that it approximately equals1/(N − 1). We used this
important result to correct the algorithm and bring its biasto 0.
We showed that the algorithm performs very well in terms of
the number of response messages needed in order to guarantee
a confidence level of 95% or 97% with probability very close
to 1. Finally, we showed how the proposed algorithm can
be combined into a collision resolution scheme in order to
guarantee its reliability in unreliable networks.
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