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Abstract—This paper presents Respondent-Driven Sampling
(RDS) as a promising technique to derive unbiased estimates
of node properties in unstructured overlay networks such as
Gnutella. Using RDS and a previously proposed technique,
namely Metropolized Random Walk (MRW) sampling, we exam-
ine the efficiency of estimating node properties in unstructured
overlays and identify some of the key factors that determine
the accuracy of sampling techniques. We evaluate the RDS and
MRW techniques using simulation over a wide range of static and
dynamic graphs as well as experiments over a widely deployed
Gnutella network. Our study sheds light on how the connectivity
structure among nodes and its dynamics affect the accuracy and
efficiency of the two sampling techniques. Both techniques exhibit
a rather similar performance over a wide range of scenarios.
However, RDS significantly outperforms MRW when the overlay
structure exhibits a combination of highly skewed node degrees
and highly skewed (local) clustering coefficients.

I. INTRODUCTION

During the past few years, unstructured Peer-to-Peer (P2P)

systems such as Gnutella and BitTorrent have become very

popular and have significantly contributed to the total traffic

over the Internet. This has motivated researchers to character-

ize the basic properties of these systems through measurement.

Such characterizations can be leveraged to address several

key issues about these systems including: (i) understanding

the properties and dynamics of these systems, and use these

findings to improve their performance and scalability, and (ii)

assessing the impact of these systems on the Internet.

To characterize unstructured P2P systems, one needs to

capture accurate “snapshots” of the connectivity structure. Ex-

amining individual snapshots reveals the connectivity structure

at a particular point of time whereas comparing consecutive

snapshots over time illustrates the evolution of the connectivity

structure. Such snapshots are typically captured by a crawler

that queries a set of known nodes to learn about their neigh-

bors and progressively discovers the connectivity structure.

Capturing accurate snapshots of the connectivity structure for

large-scale unstructured overlays is challenging because such

systems may significantly evolve during the time required

to capture a full snapshot. Therefore, captured snapshots are

likely to be distorted and this could significantly degrade

the accuracy of any results derived from such snapshots.

In our earlier work [16], we have shown that commonly

used sampling techniques in prior empirical studies on P2P

systems (e.g., [14]) can easily lead to significant bias towards
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short-lived or high degree peers due to the dynamics of peer

participation or the heterogeneity of peer degrees, respectively.

This paper presents Respondent-Driven Sampling (RDS) as

a promising technique for sampling unstructured P2P overlays.

This allows one to accurately estimate the distribution of a

desired peer property without capturing the entire overlay

structure. RDS is a variant of snowball sampling that has been

proposed and used in the social sciences to characterize hidden

population in a society [9], [13]. We apply the RDS technique

to unstructured P2P network and evaluate its performance over

a wide range of static and dynamic graphs as well as a widely

deployed P2P system. Throughout our evaluation, we compare

and contrast the performance of the RDS technique with

another sampling technique, namely Metropolized Random

Walk (MRW), that we developed in our earlier work [16].

Our main findings can be summarized as follows: First, RDS

outperforms MRW across all scenarios. In particular, RDS

exhibits a significantly better performance than MRW when

the overlay structure exhibits a combination of highly skewed

node degrees and highly skewed (local) clustering coefficients.

Second, our simulation and empirical evaluations reveal that

both the RDS and MRW techniques can accurately estimate

key peer properties over dynamic unstructured overlays. Third,

our empirical evaluations suggest that the efficiency of the

two sampling techniques in practice is lower than in our

simulations involving synthetic graphs. We attribute this to

our inability to capture accurate reference snapshots.

The rest of the paper is organized as follows: Section

II presents an overview of both the RDS and MRW tech-

niques, and sketches our evaluation methodology. We examine

both techniques over variety of static and dynamic graphs

in Section III and IV, respectively. Section V presents the

empirical evaluation of the two sampling techniques over

Gnutella network.

II. GRAPH SAMPLING TECHNIQUES

An unstructured overlay can be represented as an evolving

undirected graph G, with vertices V and edges E. The vertices

and edges of G represent the peers and pairwise connections

between them, respectively. An accurate snapshot of the full

graph (the overlay) is not available, however we can query any

known peer for a list of adjacent peers in order to progressively

discover portions of the overlay. Some fraction of discovered

peers are selected as samples and the distribution of the desired

peer property (number of neighbors, number of files, access

link bandwidth or session time) among the samples provides



an estimate for that property among all peers. The efficiency of

sampling can be quantified by the ratio of sampled peers to the

total number of peers queried. To provide an accurate estimate,

sampled peers should be selected uniformly at random. This is

challenging because the overlay topology and peer dynamics

introduce bias towards discovery and thus selection of peers

with large degrees and short session times, respectively [16].

Random walk is a promising technique for sampling. In

an ordinary random walk, the sampler begins at a node, x,

and chooses a new node, y, uniformly at random from x’s

neighbors. The walk transitions to the neighbor and then

chooses a new node from y’s neighbors. Formally, the ordinary

random walk has a transition function, P (x, y), defined as

follows:

P (x, y) =

{ 1
degree(x)

y is a neighbor of x,

0 otherwise

The stationary distribution, π(x), of the walk defines the

probability of being at any particular node x. For an ordinary

random walk, graph theory [10] proves π(x) ∝ degree(x).
That is, the fraction of time spent at a node is directly

proportional to the node’s degree. Thus, the ordinary random

walk is inherently biased towards nodes with higher degree.

A. Respondent Driven Sampling

Respondent Driven Sampling (RDS) is a development of

Snowball Sampling (SBS) [9], a group of related sampling

techniques proposed in the social sciences to sample hidden

populations. Salganik [13] defines a population as “hidden”

when there is no central directory of all population members,

such that samples may only be gathered through iterative

referrals from existing samples.

RDS is a variant of SBS [9], which forms asymptotically

unbiased estimators by appropriate re-weighting of estimators

to take account of topological biases [13]. The special case

where each respondent recruits only one individual maps

exactly onto the case of a random walk on a graph. This in

turn can be recast as a Monte Carlo Markov Chain (MCMC)

problem [5] The problem of estimating peer properties in

unstructured overlays is analogous to the sampling of hidden

population in the social sciences. We wish to estimate the

distribution of a node property X; specifically, consider any

partition {R1, . . . , Rm} of the range of possible values of X.

We partition the node set V accordingly into groups of nodes

{V1, . . . , Vm}, i.e., Vi = {v ∈ V : X(v) ∈ Ri}. A simple

example is when X is positive integer value and we group by

value: Vi = {v ∈ V : X(v) = i}.

The RDS approach is to estimate the proportion pi of nodes

that are in group i from observed node degree and group

memberships of nodes traversed in the random walk. Specif-

ically, consider the n-step walk that visits the set of nodes

T = {t1, t2, . . . , tn} where individual nodes may be visited

more than once. Let Ti = T ∩Vi denote the visited nodes that

lie in group i. For any node property X, the Hansen-Hurwitz

[7] estimator Ŝ(X) := n−1
∑

v∈T
X(v)
π(v) is an unbiased and

consistent estimator of the sum S(X) :=
∑

v∈V X(v) when T

is drawn from a stationary random walk, i.e., one that evolves

from an initial node that is randomly selected according to

the stationary distribution. Consider two special cases. When

X = IVi
is the indicator of a node being in group i, i.e.,

IVi
(v) = 1 if v ∈ Vi and 0 otherwise, then Ŝ(IVi

) estimates

the total number of nodes in Vi. When X = 1 then Ŝ(1)
estimates the total number of nodes |V | in the graph. Thus we

can estimate the proportion pi by

p̂i =
Ŝ(IVi

)

Ŝ(1)
=

∑

v∈Ti

1
degree(v)

∑

u∈T
1

degree(u)

where degree(v) is the degree of the node v. p̂i is consistent—

it converges to the true value pi—as the number n of visited

nodes grows. The RDS estimator can be recognized as an

importance sampling estimator weighted by the stationary

distribution π, applied to the MCMC of the random walk on

the vertex set V .

B. Metropolized Random Walk

Our earlier work [16] evaluates the use of Metropolized

Random Walks (MRW) for gathering unbiased samples from

unstructured P2P networks. The Metropolis–Hastings tech-

nique [4], [8], [11] provides a way to alter the next-hop

selection to produce any desired stationary distribution, π(x).
In [16], we choose the next-hop appropriately to produce the

uniform distribution, π(x) = 1
|V | , as follows:

Q(x, y) =

{

P (x, y)min
(

degree(x)
degree(y)

, 1
)

if x 6= y,

1 −
∑

z 6=x
Q(x, z) if x = y

Essentially, the walk tentatively selects a neighbor of x

uniformly at random (P (x, y)) and then accept the transi-

tion randomly with probability min
(

degree(x)
degree(y) , 1

)

. Otherwise

(1 −
∑

z 6=x Q(x, z)), the walk remains at the current node,

effectively taking a self-edge. Put simply, the bias toward

higher degree nodes is removed by reducing the probability

of transitioning to higher degree nodes at each step.

We note that RDS is complementary to the MRW approach

in the following way. In MRW, we seek to modify the random

walk in order to have an equal probability of visiting each

node and hence derive unbiased estimates. In RDS, the walk

is unmodified; however, we reweight the sampled values to

obtain an unbiased estimate of the group proportions pi.

C. Evaluation Methodology

To evaluate the RDS technique, first we simulate the sam-

pling techniques over a wide range of static and dynamic

graphs where the accurate distribution of the sampled property

(ground truth) is known. Simulation over synthetic graphs

not only offers an opportunity for accurate evaluation of the

sampling techniques, but also allows us to identify the separate

effects of graph properties and graph dynamics on the accuracy

and efficiency of these techniques. Second, we empirically

evaluate both techniques over Gnutella P2P overlay.

Performance Metric: To quantify the accuracy of a sampling

technique in each scenario, we compare the sampled and true
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Fig. 1. Efficiency of RDS and MRW techniques in estimating degree
distribution over different graph types

distributions of a desired peer property using the Kolmogorov-

Smirnov (KS) statistic, D. If we plot the estimated and true

CDFs of a desired property, D is the maximum vertical

distance between the plots of the two functions with a range

of [0, 1]. For example, a value of D ≤ 0.01 corresponds to no

more than a one percentage point difference between CDFs

and is excellent for most measurement purposes. Due to the

limited space, we only present a subset of our results that

illustrate our main findings in Sections III and IV. Complete

results are available in the related technical report [12].

III. EVALUATION OVER STATIC GRAPHS

In this section, we examine how the connectivity structure

of a graph affects the accuracy and efficiency of the RDS

and MRW sampling techniques using the following candidate

graph types: (i) Erdös-Rényi Random graphs (ER) [3], (ii)

Small-world graphs (SW) [18], (iii) Barabási-Albert graphs

(BA) [1]: Scale-free graphs of the preferential attachment-

type, (iv) Hierarchical Scale-Free graphs (HSF) [2]: A class

of (deterministic) graphs generated by an iterative algorithm

to produce heterogeneous node degree and heterogeneous

node clustering coefficients. More specifically, node degree

distribution follows power-law while clustering coefficients at

individual nodes is inversely proportional to node degree, inde-

pendent of graph size. (v) Gnutella graphs (GA): A snapshots

of the Gnutella ultrapeer topology, captured on 05/15/2008

using cruiser [16].

Figure 1(a) shows the KS error for the degree distribution

from samples collected by the RDS and MRW techniques as

a function of the number of samples over the different graph

types. To make the results comparable, the number of vertices

(|V | = 390,625) and edges (|E| = 1,769,110) are similar across

the different graph types. Figure 1(a) illustrates the following

two important points. First, the accuracy of the RDS technique

rapidly improves with the number of samples. The rate of

improvement in accuracy across all graph types (i.e., slope

of the line) is similar. The overall accuracy of the MRW

technique follows a trend similar to RDS for all graphs (except

the HSF graph) but on average slightly (≈ 2 ·10−3) lower than

the RDS technique. Given this similarity, the results for MRW

are not shown in Figure 1(a) except for the HSF graph. For the

HSF graph, MRW sampling not only exhibits a significantly

lower accuracy compared to the other graph types, but the

rate of improvement in accuracy with the sample size (i.e.,

slope) is much worse. Second, for a given number of samples,

while both techniques exhibit a lower accuracy for the HSF

graph, the impact on the MRW technique is significantly more

pronounced, i.e., the rate of improvement in accuracy with the

sample size (i.e., slope) for the MRW technique is much worse

than RDS.

Focusing on the HSF graph, the reported differences in

the accuracy of RDS and MRW and their observed lower

performance can be attributed to the following phenomenon. In

HSF graphs, at each level of their hierarchical structure, there

are groups of well inter-connected low degree nodes which

form pronounced clusters. The only way for a random walker

to leave these clusters is via a much higher degree node that

resides outside these clusters, i.e., the walker has to traverse

an edge from a low degree node within such a cluster to a

much higher degree node outside this cluster. As described in

Section II, for the MRW technique, the probability of moving

along such an edge is proportional to the ratio of the (low)

degree of the node within the cluster to the (very high) degree

of the node outside this cluster which is very small. Therefore,

when an MRW walker ends up in one of these clusters, it

keeps collecting samples from low degree nodes within these

clusters for a disproportionally long time. This in turn degrades

the accuracy of sampling especially among high degree nodes.

The impact of clusters on the RDS technique is significantly

lower because the probability of selecting the next node in

RDS does not depend on node degree.

Figure 1(b) shows the accuracy of the MRW sampling

technique over the same HSF graph when 0%, 1%, 5%,

and 50% of its edges are randomly shuffled (i.e., rewired)

while preserving the degree of individual nodes. Increasing

the percentage of randomly shuffled edges gradually removes

the explicit hierarchical structure of HSF graphs and enforces a

more homogeneous clustering behavior across the graph struc-

ture as compared to the original HSF graph. For comparison,

we also present the results for the RDS technique over the

graphs when 0% and 50% of edges are shuffled. The figure

demonstrates that even a small percentage of shuffled edges

dramatically improves the accuracy of the MRW technique.

These results suggest that the main reason for the degraded

performance of the two sampling techniques over HSF graphs

is a combination of highly skewed node degrees and highly

skewed node clustering coefficients.

IV. EVALUATION OVER DYNAMIC GRAPHS

In this section, we use our session-level simulator [15],

called psim, to examine the behavior of the RDS technique

over dynamic graphs. psim simulates peer arrivals, departures,

pairwise latencies, per discovery and neighbor connections.

The latencies between peers are randomly selected from the

King data set [6]. Peers use the following popular boot-

strapping mechanisms for peer discovery [16]: Oracle, FIFO,

HeartBeat and History. Individual peers try to maintain the

number of their connections (i.e., their degree) between a

given minimum (MinDeg) and maximum (MaxDeg) degree.

When the number of connections for a peer drops below
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MinDeg, it uses the discovery mechanism to establish addi-

tional connections and reach MinDeg. A peer neither accepts

nor initiates any new connections once its degree reaches

MaxDeg. To query a peer for a list of neighbors, the sampling

node must establish a TCP connection, submit its query, and

receive a response. psim simulates churn by controlling the

distributions of peer inter-arrival intervals and peer session

lengths. New peers arrive according to a Poisson process,

where the mean peer arrival rate combined with the session

length distribution yield a desired mean population size in

steady state. We use the following models for session length

distribution that we derived in our earlier empirical study of

churn [15] in P2P networks: Weibull, Pareto and Exponential.

We run each simulation for a warm-up period until it reaches

steady state with 100,000 concurrent peers before gathering

samples.

Impact of Parallel Sampling: A desired number of samples

from a dynamic overlay can be collected by a number of

parallel (RDS or MRW) walkers that start from the same

nodes. Increasing the number of parallel samplers has two

conflicting effects and thus introduces an interesting tradeoff.

Increasing the number of parallel walkers, reduces the required

walk length to collect a desired number of samples. This

in turn decreases the time to collect the samples and thus

reduces the error that occurs due to the evolution (i.e., churn)

in the overlay. However, increasing the number of samplers

leads to redundant sampling of nodes around the starting

point and degrades sampling accuracy. Figure 2 demonstrates

this tradeoff and depicts the accuracy of the RDS and MRW

techniques as a function of walk length for different number

of parallel samplers.

Clearly, the accuracy of the RDS and MRW techniques in

estimating a peer property is not affected by overlay dynamics

if the desired peer property does not interact with the walk.

Therefore, to evaluate these techniques over dynamic graphs,

we only consider the following peer properties that may

interact with the walk: (i) Node Degree (DEG): The degree

of an individual node in the graph determines the probability

that a node is visited. (ii) Session length or Uptime (UT):

The dynamics of peer participation drives the evolution of the

graph with time and affect the probability of visit for individual

peers. (iii) Query latency (RTT): In a dynamic overlay, each

step requires querying a peer. Since the query latency for

individual peers depends on their relative round-trip time, this

could lead to a bias correlated with the query latency.
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Fig. 3. Sampling error for two peer properties as a function of median
session length for different churn models. Bootstrapping=FIFO, MinDeg=30,

sampled by 1066 parallel samplers, each taking 49 hops

A. Effect of Churn

Figure 3(a) depicts the accuracy of the RDS technique in

estimating the distribution of node degree as a function of

median session length (i.e., churn rate) for different churn

models. The results for sampling session length is very similar

to Figure 3(a) and thus is not shown. Figure 3(a) shows that

the median session length is the primary factor that affects

the accuracy of sampling techniques. To explain this behavior,

we note that the median session length is a rough measure

of the level of overlay dynamics. When the churn rate is

high (i.e., median session length is less than 5 minutes), the

overlay significantly evolves during the sampling period which

in turn leads to larger error. Earlier empirical studies suggest

that the median session length in actual P2P systems is rarely

below 10 minutes for which the sampling error is below 0.01.

Figure 3(b) presents the accuracy of the RDS technique in

estimating the distribution of query latency. Since the query

latency between pairs of nodes are selected from the fixed

King data set, its distribution among samples is less sensitive

to the dynamics of peer participation.

B. Effect of Target Node Degree

Figure 4(a) presents the accuracy of the RDS sampling

technique in estimating the distribution of node degree as a

function of minimum node degree (MinDeg). This figure

reveals that when MinDeg is larger than a threshold of about

five, the accuracy does not change with the the minimum

node degree (except for the History bootstrapping mechanism).

Figure 4(b) shows that the accuracy of the RDS technique in

estimating query latency follows a similar pattern. The rapid

degradation of accuracy for lower node degrees is mainly due

to the fragmentation of the overlay which makes some parts

of the graph inaccessible to the random walkers. In real P2P

systems, such a fragmentation does not occur since the peer

degree is often larger than five.

To explain the abnormal behavior of the History bootstrap-

ping mechanism in Figure 4, we note that in this mechanism

each peer relies on the list of its neighbors in previous

sessions. This leads to a number of isolated peers since all

their neighbors from previous sessions have departed. While

the number of isolated peers is not large at any given time,

and they eventually get connected to the overlay by contacting

bootstrapping node, their extended isolation time have an
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impact on the reachability of these nodes and thus on the

accuracy of sampling techniques.

V. EVALUATION OVER GNUTELLA

To empirically evaluate our sampling techniques, we use

them to estimate properties of ultrapeers in the Gnutella

network. We incorporate both sampling techniques into our

sampling tool called ion-sampler [16]. We concurrently start

1000 RDS and 1000 MRW samplers, where each sampler takes

a 500-step walk to sample the degree of Gnutella ultrapeers. At

the same time, we use cruiser [17] to collect complete back-

to-back snapshots of the top-level Gnutella overlay roughly

every seven minutes.

Figure 5(a) presents the distribution of node degree from

collected samples by the RDS and MRW techniques as well

as full snapshots collected by the crawler. Figure 5(a) shows

that all three distributions of node degree are almost indis-

tinguishable, i.e., both sampling techniques exhibit similar

performance. To further investigate the variability of observed

accuracy for the sampling techniques, we repeat each sam-

pling experiment with different walk length for six times.

Figure 5(b) presents the average KS error and associated error

bars as a function of walk length for both sampling techniques.

Figure 5(b) indicates that increasing the walk length beyond

about 30 hops quickly decreases the KS error because of the

larger number of collected samples. However, the rate (i.e.,

slope) of improvement in accuracy is diminishing beyond a

certain walk length. Collecting more samples through longer

walks does not improve the fidelity of samples due to major

changes in the system during the sampling period.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented RDS as a powerful technique

for sampling unstructured P2P networks. While RDS has been

developed in the social sciences for sampling static graphs, we

adopted this technique to the networking domain and explored

its applicability in the context of dynamic connectivity struc-

tures. Through simulations involving a variety of synthetically

generated static and dynamic graphs and experiments over the

Gnutella network, we examined the performance of the RDS

technique and compared its performance with another graph

sampling technique, MRW. Our study demonstrates how the

connectivity structure among nodes and its dynamics affect

the accuracy of both sampling techniques. We showed that

RDS generally performs as good or better than MRW. In
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Fig. 5. Results of sampling experiment over Gnutella

particular, RDS achieves a significantly better performance

than MRW when the overlay structure exhibits a combination

of highly skewed node degrees and highly skewed node

clustering coefficients.

We are currently investigating the performance of RDS

when sampling the connectivity of the undirected friendship

graph in large Online Social Networks (OSN) such as MyS-

pace and LiveJournal. We are also examining in more detail

the advantages of parallel sampling. Finally, we plan to extend

our sampling technique to “directed” graphs that are common

in OSNs.
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