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Abstract—We propose a generic routing table design principle
for scalable routing on networks with bounded geometric growth.
Given an inaccurate distance oracle that estimates the graph
distance of any two nodes with constant factor upper and lower
bounds, we augment it by storing the routing paths of pairs of
nodes, selected in a spatial distribution, and show that the routing
table enables 1 + ¢ stretch routing. In the wireless ad hoc and
sensor network scenario, the geographic locations of the nodes
serve as such an inaccurate distance oracle. Each node p selects
O(lognloglogn) other nodes from a distribution proportional
to 1/r> where r is the distance to p and the routing paths to
these nodes are stored on the nodes along these paths in the
network. The routing algorithm selects links conforming to a set
of sufficient conditions and guarantees with high probability 1+ ¢
stretch routing with routing table size O(y/nlognloglogn) on
average for each node. This scheme is favorable for its simplicity,
generality and blindness to any global state. It is a good example
that global routing properties emerge from purely distributed and
uncoordinated routing table design.

I. INTRODUCTION

Scalable routing is one of the most challenging problems in
distributed network design — considerations include compact
storage with aggressive address aggregation, efficient ways to
propagate and manage topology update, and most importantly,
ways for the distributed and uncoordinated decisions to enable
globally close to optimal routing properties.

Structures of large-scale wireless sensor networks are closely
related to the underlying geometric domain in which they are
embedded. Therefore various properties of the geographical
embedding of the nodes are exploited for routing in a sensor
network — mostly in an explicit manner, as the geographical
locations used in geographical routing families [1]-[3], or as in
many virtual coordinate system design [4], [5] that abstracts the
global geometric/topological properties of the embedding.

A. Our problem and solution overview

The problem we study in this paper is as follows: Given
an inaccurate distance oracle O, what routing paths should be
kept in the routing table, such that the average routing table
size is small, the path stretch is close to optimal (1+¢ for any
given € > 0), and both the preprocessing and the routing can
be achieved by the nodes making decisions on their own, blind
to any global state?

First we remark that if we are given an accurate distance
oracle that returns the hop count distance of any two nodes
in the network, then routing is trivial as greedy routing based
on this oracle will guarantee delivery along the shortest path
— a message can be delivered to the neighbor whose distance
(in the graph) to the destination is the smallest. Of course,
the construction, maintenance and compact representation of

an accurate distance oracle is not easy in a distributed setting.
As shown in [6], accurate distance oracle would require about
Q(n) storage per node. If we relax the condition and only
use approximate distances, we can hope to reduce the storage
requirement. An approximate distance oracle is also easier to
obtain. In many cases, some inaccurate distance estimation is
readily available.

For an example, in the sensor network setting, one can use
the Euclidean distance to approximate the hop count distance
of two nodes in the network. Of course it is not an accurate
distance oracle as the graph structure may not be aligned well
with the Euclidean coordinates, and that a message can get
stuck at a local minimum if the neighbor on the shortest path
to the destination estimates its distance to be larger than the
distance estimation between source and destination [1], [2].
Therefore we will have to augment the inaccurate distance
oracle with additional routing information to help packets get
out of the local minimum.

With any inaccurate distance oracle, we augment in the rout-
ing table some routing information between pairs of nodes that
are not immediate neighbors, called long links. In particular,
for some selected pairs u,v a path between u,v, P(u,v), is
recorded in the routing table of all nodes on this path. When
a node p wants to send a message to a node ¢, it uses its
immediate neighbors, together with the nodes with which p has
long links. Based on a set of sufficient conditions, we define a
forwarding region (see Fig. 1) from which p selects the next hop
in the path. If the selected node x is a neighbor through a long
link, then the routing information stored on the path P(p,z)
is used to deliver the message to x. Node x then repeats an
identical procedure to advance the message. Now the question
is, what long links should each node build and which node
should be selected in the routing stage, without knowing the
global state, such that the routing table size is small, the path
stretch is low, and delivery rate is high?

Our main theoretical results are the following. We first
describe the special case with Euclidean distance as an ap-
proximate distance oracle. When the sensors are deployed
in an Euclidean plane such that the Euclidean distance is
an approximate distance oracle to the graph distance metric
(), ie., 01lpgl < o(p,q) < dalpq|, with 6 < 09 as
two constants, and |pg| the Euclidean distance between p, q.
This is a reasonable assumption that makes no unit disk graph
requirement on the wireless radio communication model and
uses two relaxation constants §; and &2 incorporating both




local distance disturbances and possible holes that are fat!. It
also allows localization errors as accurate location discovery is
difficult. The routing tables are built by each node selecting its
long links randomly with a spatial distribution. The routing
algorithm using the augmented long links is able to deliver the
message along a path of stretch 1 4 €.

In fact, the theoretical results in this paper address a general
setting in which an inaccurate distance oracle is given for a
graph (more generally, a metric space) with bounded growth
rate. A graph has bounded growth rate p if the number of
nodes within r hops from any node p in the network is
bounded by c;r” and cor” from below and above respectively,
with two constants ¢; < c¢o. This model has been used
to capture any physical constraints that disallow too many
nodes ‘packed’ within certain distance and the graph has a
geometric growth pattern instead of an exponential growth
pattern (e.g., a balanced binary tree). This kind of geometric
growth has been observed in many different scenarios such as
VLSI design, the delay metric on the Internet overlay networks,
and in our setting, wireless sensor networks. When sensor nodes
are roughly uniformly deployed in a geometric region with
bounded density per unit area’ and when the network is not
too much fragmented by deployment holes, the graph growth
rate is typically 2. It is this packing property that allows us
to aggressively compress the routing table entries by a simple
routing table neighbor selection rule dominated by a spatial
distribution.

The long link p, q is selected by p with probability propor-
tional to 1/r*, for r = o(p, q) being the network distance be-
tween p, g. Selecting O(log n loglog n) such long links per node
produces average routing table size of O(n'/?logn loglogn)
per node, and we show that a 1 + ¢ stretch path is obtained
with high probability. Thus this principle of using spatial
distribution in routing table design is in fact quite general
and can be applied to many other potential applications in
which a decentralized search is desired with only some vague
proximity information. For example, in an ad hoc network
setting when location information is not available, one can
use other distance estimation to the network distance (e.g., by
landmark scheme [4], [7]). In the design of overlay networks on
the Internet, one can estimate the distance between two peers
by the round-trip delay estimation. For all these scenarios the
results in this paper show a way to achieve distributed routing
along approximate shortest paths with a modest sized routing
table on each node.

We also report simulation evaluations of this approach in a
sensor network setting, to complement the theoretical analysis.
For a connectivity network in which geographical greedy rout-
ing only achieves a delivery rate of 50% or so, with about 7 long
links per node, we are able to achieve a delivery rate of 99%
or higher. The routing table construction can be implemented

A hole is fat if any two nodes on the boundary of a hole has its hop count
distance to be at most a constant factor of the Euclidean distance.

2If the density in a region becomes too high, it is easily possible to cluster
neighboring nodes and operate on clusterheads so that density of clusterheads
is not high

in a completely distributed manner as in [8].

When location information is not available, we have a second
implementation by using landmark-based routing to show the
power of the spatial distribution in routing table design. In
particular, we select O(lognloglogn) landmarks that flood
the entire network and each node records the distances to all
landmarks (called the landmark distance vector). The approx-
imate distance oracle is implemented by the centered virtual
distance as proposed in [4] on the landmark distance vectors
of any two nodes. We select on the paths to the landmarks
long link neighbors to help improve the delivery rate. This
implementation will involve some preprocessing of flooding
the network from the landmarks but the routing paths of the
long links are implicitly implied by the landmark distances.
Thus the routing table size is improved to O(log2 nloglog? n),
compared with O(n'/?lognloglogn) when the routes have to
be explicitly stored on the nodes of the paths.

In summary, the augmentation of long links with spatial
distribution to get 1 4 ¢ stretch routing on an approximate
distance oracle is favorable for its simplicity, generality and
‘blindness’ to any global state. It is a good example that
global routing properties emerge from purely distributed and
uncoordinated routing table design.

B. Related work
In this subsection we will survey related work and establish
their connection to our results.

Spatial distribution in routing. The spatial distribution in
selecting the long links in our paper coincides with the small-
world model and decentralized search (essentially the greedy
routing) proposed by Kleinberg [9], [10] to model Stanley
Milgram’s famous experiment [11], [12]. Our results show that if
each node chooses O(logn) long links, our distributed routing
scheme (slightly different from the decentralized search [9],
[10]) with long links has O(logn) jumps, and also a total
travel distance at most 1 + ¢ of the distance between source
and destination on the grid.

The spatial distribution has been explored in a number of
other data delivery and information dissemination scenarios in
sensor networks, e.g., for adding long communication wires
to reduce power consumption [13], or, for gossip and locality-
sensitive information exchange [8], [14].

Small state routing in sensor networks. To deal with the
problem of local minimum in geographical forwarding, various
techniques have been proposed to solve the problem of ‘routing
around holes’. Earlier proposals assume unit disk graph model
on the communication network and propose to planarize the
network and apply face routing [1]-[3]. In virtual ring routing
(VRR) [15], proposed by Caesar et al., the nodes are ordered
by their node IDs (or any other identifiers) on a ring and the
paths for nearby nodes on the ring are stored in the routing
tables of the nodes on these paths.

The small state and small stretch (S4) routing by
Mao et al. [16] adopted the idea of compact routing schemes
by Thorup and Zwick [6], [17]. The basic idea is to select about
O(y/n) landmarks. These landmarks flood the network and



other nodes record the hop count distance to these landmarks.
In addition, a node p also maintains routing table entries to
the nodes that are closer to p than their closest landmarks. The
routing table size is about O(y/n) and a greedy routing scheme
is guaranteed to deliver the message to the destination with
maximum stretch of 3. By exploiting the geometric properties
of the sensor network deployment, we are able to get 1 4 ¢
stretch and reduce both the number of landmarks and the
routing table size to polylogarithmic in the network size.

Compact routing in general. From a theoretical aspect,
compact routing that minimizes the routing table size while
achieving low stretch routing has been studied extensively [18].
We do not have the space to survey this broad topic here,
instead, we refer the reader to the relevant papers in [17], [19]-
[24] and related references.

II. ROUTING WITH SPATIAL DISTRIBUTIONS

In this section we describe the idea of using spatial distribu-

tion to route with 1 + ¢ stretch in a suitable metric space M.
We assume that a node is able to get the approximate distance
d(p, q) from just the names of p, g. The implementation of this
distance oracle is beyond the scope of this short abstract. Due
to lack of space, we can only present the core intuitions and
theorems here. A full version containing all proofs is available
online [25].
Accurate distance oracle. To demonstrate the basic concept,
we first consider the case in which the oracle is in fact accurate,
that is, d = . The objective is to recursively build a route from
s to t with the help of the long links. Suppose s takes a long
link to node p, then we want o(s,p) + o(p,t) to be not very
large compared to o(s,t):

o(s,p) +o(p,t) <v-o(s, i), (1)

Where v > 1 is a parameter depending on €. Observe that
inequality (1) defines an ellipse in R? with s and ¢ at foci.
Now we impose an additional restriction that moving from s
to p implies a certain progress in direction of ¢. In particular,
p is closer to ¢ by a factor of at least 0 < g < 1:

o(p,t) < B-o(s1). 2

This describes a disk centered at ¢.

Next, we select v and § such that the selection procedure
enforced by inequalities (1) and (2) when applied recursively,
produces a path of stretch at most 1 + ¢:

R(s,t) < (14¢)-0(s,t), 3)

where R gives the length of the path created recursively.

A forwarding region F_(s,t) is a set of points p in M
from which s can select p satisfying the relations above. The
following lemma gives a precise relation:

Lemma 2.1. Values of v and ( satisfying v + €3 < 1 + ¢ con-
stitute the forwarding region, with the equality corresponding to
the region boundary.

It is easy to see that -y must lie in the interval [1, %£2] for a
given ¢. For each value of -y, we have a region H, .(s,t) C M

which is the intersection of the ellipse bounded region and
the disk. Thus, formally, the forwarding region is the union:
F.(s,t) = U,H, c(s,t). See Figure 1.

< |

Fig. 1. (i) Boundary of F; as intersection of ellipses and circles. (ii) Forwarding
regions for different values of € from 0.2 to 2. (iii) Forwarding regions for
different values of € from 0.2 to 2 for approximate oracle. Observe that in this
case the forwarding regions are smaller and source s is not in the forwarding
region. This is due to inaccurate distance estimates and necessitates the use of
long links - without which s cannot access the forwarding region.

Approximate distance oracle. For approximate distance ora-
cles, it would be sufficient to guarantee the following inequal-
ities (corresponding to relations (1)-(2) respectively):

52d(p, t) S ﬁ51d(s, t)

It can be verified that Lemma 2.1, with the same boundary
condition holds here as well. Figure 1 shows the forwarding
regions for the Euclidean case, with accurate and inaccurate
oracles. Note that the shape of the forwarding regions is
independent of the distance between the two nodes in question.

In a sensor graph setting, we use the (upper and lower)
bounded growth rate model. If we place at most a constant
number of sensor nodes inside any unit disk and the holes
in the sensor networks are not very fragmenting, the number
of nodes at k hops from a node p will be around O(%). In
general, we consider a graph such that number of nodes in
an r neighborhood |N,(p)| = O(r?). The forwarding region
in a graph setting with source p and destination ¢ is defined
similarly as the nodes that satisfy the inequalities (4).

The analysis above suggests a natural routing scheme. Each
node keeps the routing table entries for its immediate neighbors,
as well as the long link neighbors it has selected. To route from
s to t, a long link sp such that p € F.(s,t) has to exist. Our
routing table design below shows how to select long links such
that for any destination a neighbor in the forwarding region
exists with high probability.

A. Routing table construction

To build the routing table, we use a spatial distribution
(see [9]) of directed links. In particular, for nodes p and ¢
separated by a distance r, the probability of a directed link
pq being built by p is proportional to 1/r*.
Theorem 2.2. From each node it is sufficient to select
0] (%)O Inninlnn links, to guarantee a link in the for-
warding region for every possible destination with probability
1—1/10g®W n.
The theorem above describes a guarantee for a suitable link to
a forwarding region to exist. However, we still need to prove
the existence of a path of (1 + ¢) stretch for a given routing
request, that will take us to within a small constant distance
of the destination. This is done by showing the existence of a
short sequence of forwarding links.



Theorem 2.3. It is sufficient to select O (g) @ Innnlnn
long links per node to guarantee a path of stretch at most 1 + ¢

with probability at least 1 — STos -

And the routing table size is not too large.
Theorem 2.4. The average routing table size of the scheme is
bounded by O ((%)O(p) n'/Plnninln n)

In the case of sensor networks in a plane (p = 2), for a given
stretch &, this amounts to a table size of O (y/nlnnInlnn) per
node.

III. IMPLEMENTATION IN SENSOR NETWORKS

When geographical location is available and the Euclidean
distance is a good approximate distance oracle, we can im-
plement the selection of long links with a spatial geograph-
ical sampling as in [8]. The details are omitted here. Oth-
erwise, we can use a landmark-based scheme. We select
m = O(lognloglogn) landmarks ¢; uniformly randomly in
the sensor network. The landmarks then flood the network and
every other node p records a landmark-based distance vector,
the vector of minimum hop count distance to all m landmarks.
We used the centered distance measure proposed in [4] to
approximate the graph distance.

Landmark-based sampling. To build the long links for a
node p, we will use the landmarks to help with sampling. In
particular, we select first randomly k& out of the m landmarks.
For each landmark ¢;, we select from the distribution 1/(r In D)
(D is the network diameter) a distance £. If £ < o(p,¥;), we
take the node ¢ along the path from p to ¢; with distance ¢
from p as the long link partner. Otherwise we drop landmark
4;. Intuitively, we select along the path from p to ¢; a node
q with the spatial distribution restricted on this path. Since
the landmarks are randomly selected, the probability that a
landmark ¢; is at distance r from p is proportional to r. Now
the probability that for each landmark ¢; we can obtain a valid
long link is

Do g 2 1
Prob{§<0(p7fi)}:/o /1§1npd§D7C2d :l_m'

Thus in expectation we obtain k(1 — 5i5) long links for

each node. This means that choosing m = O(logn loglogn)
landmarks suffices to get enough long links for each node. At
last we remark that although different nodes use the same set
of landmarks to create their long links, the theoretical analysis
in the previous section still holds — as the only requirement is
that we have a sufficient number of independent long links for
each individual node.

Landmark-based routing tables. With the long links con-
structed by the landmarks, the routing table size can be further
reduced. In fact, a node p remembers in its routing table
the long link partners and their landmark-based addresses.
Different from the geographical case, the routes for the long
links are implicitly implied by the landmark distances. The
size of the routing table is therefore O(log2 nloglog® n), for
O(log n loglog n) landmarks/long link neighbors, and a storage
of O(lognloglogn) for storing the address of each long link
neighbor.

IV. SIMULATIONS
We compare our approach with two recently proposed rout-
ing protocols, S4 [16] and VRR [15], on three important criteria
- delivery rate, the size of routing table and routing stretch. In
summary, our approach achieves high delivery rate (above 99%)
and small stretch (about 1.03) with only a small number of long
links, and a small routing table with modest preprocessing.

it

Fig. 2. Network topologies used in simulations. (i) Topology 1.

Random
network: 1000 nodes, avg. degree 7.2; (ii) Topology 2. Network with one hole:
2400 nodes, avg. degree 9.5; (iii) Topology 3. Network with multiple holes:
2000 nodes, avg. degree 10.6.

Simulation setup. We focus on evaluating the performance
of all approaches at the routing layer. We adopt a lossy radio
model used in the standard simulator TOSSIM [26] to determine
direct communication links between nodes, and only consider
links with sufficient low loss rate. We run simulations on
three typical topologies as in Figure 2. Each simulation run is
repeated 10 times. In each round, we randomly selected 10000
pairs of source and destination. All results are averaged over
all pairs.

A. Geographic routing table

Delivery rate. To show the effect of long links on the delivery
rate, we vary the number of long links each node maintains
from O to 16. When the number of long links is set to O, the
routing protocol is essentially the geographical greedy routing
based on the location information within one-hop neighbor-
hood. Figure 3 (i) shows that greedy routing performs very
poorly without long links. The delivery rate is only around 50%,
65% and 44% in Topology 1, 2 and 3 respectively. When the
number of long links increases, the delivery rate reaches 99%
with 6,8,7 long links per node in three different topologies,
respectively. The results confirm that a small number of long
links can significantly improve the delivery rate in most of
typical network topologies. Since our scheme behaves similarly
in various topologies, in the rest of this subsection, unless
mentioned otherwise, we only present results on Topology 2
due to space limitation.

Routing table size. We compare the average routing table size
of our scheme with VRR and S4. Our scheme uses much
smaller routing table than VRR when maintaining the same
number of long links.

Size of routing table | Our scheme S4 VRR
Topology 1 26.08 68.83 | 41.52
Topology 2 39.02 105.85 | 62.48
Topology 3 37.28 90.62 | 63.82

TABLE 1. Average size of routing table.
Table I shows the routing table size of three schemes with a
set of fixed parameters. For comparisons, we use 50 landmarks
for S4 and each node maintains routes to 4 virtual neighbors



=
o
o

100 120 2.4 k) A A
& Geographical routing table 22 -B-Geographical routing table e -8-Geographical routing table
9ol & o 100f 2¢VRR : *VRR 3 80 )|
g |f g 2 =
< -
=~ 80 80 O
g 518 g *
> 70 3 60 2 a
g 2 h 16 g 40
2 g0 ° aq 3
8 -8-Topology 1 2 14 2
sl ~Topology2 | 0 12 g 20
-©-Topology 3 i : 2
40 0 f < 0
0 2 4 6 8 10 12 14 16 2 10 2 10 2 10

4 6 8
Number of long links Number of long links

4 6 8 4 6 8
Number of long links Number of long links

Fig. 3. (i) Delivery rate of geographical routing table with varying number of long links in different network topologies. (ii)-(iv) Performance of our scheme
and VRR in Topology 2. (ii) The average size of routing table. (iii) Average stretch. (iv) Communication cost in preprocessing stage.

in VRR. We select those parameters since they give the best
performance of S4 and VRR in terms of both routing table
size and stretch. For our scheme, we use 6, 8,7 long links in
three topologies respectively to get above 99% delivery rate. We
use the same set of parameters in other Tables. From Table I,
S4 requires the largest routing table (in the order of O(y/n)).
Our scheme has the smallest routing table size, but achieves
comparable delivery rate.

Average stretch | Our scheme | S4 | VRR
Topology 1 1.03 1.03 | 1.73
Topology 2 1.03 1.03 | 1.80
Topology 3 1.04 1.02 | 1.75

TABLE II. Average stretch.

Stretch. Figure 3(iii) shows the average stretch of our scheme
and VRR with varying number of long links. The stretch of our
scheme is always below 1.1 and decreases when the number of
long links increases. With 6 long links, the stretch is only about
1.03. Table II compares the average stretch of three schemes. It
shows that our scheme achieves similar stretch as S4 (but with
smaller routing table) and is better than VRR.

V. CONCLUSION
This paper outlines a theory to build useful routing links

in very general domains. The method is distributed and un-
coordinated, but guarantees global properties such as routing
with low stretch and compact routing tables. The use of spatial
distribution ensures that the routing works well at all scales and
distances.
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