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Abstract— We present a set of five axioms for fairness measures remains unclear what it means to say that 3 is more fair
in resource allocation. A family of fairness measures satfging thana = 2.
the axioms is constructed. Well-known notions such as-fairness, Clearly, these two approaches for quantifying fairess are

Jain’s index, and entropy are shown to be special cases. Pregies . . o .
of fairness measures satisfying the axioms are proven, indaling different. On the one handy-fair utility functions are con-

Schur-concavity. Among the engineering implications is a gn- tinuous and strictly increasing in each entry xf thus its
eralized Jain's index that tunes the resolution of the fairress maximization results in Pareto optimal resource allocetio

measure, a new understanding ob-fair utility functions, and an  On the other hand, scale-invariant fairness measures {baes

interpretation of “larger « is more fair". We also construct an mapx to the same value as a normalize}l are unaffected

alternative set of four axioms to capture efficiency objecties and . .

feasibility constraints, by the magnitude ok, and an allocation that does not use
all the resources can be as fair as one that does. Can the two

I. QUANTIFYING FAIRNESS approaches be unified?
Given a vectorx € R”, wherez; is the resource allocated To address the above questions, we develop an axiomatic
to useri, how fair is it? approach to measure fairness. We discover that a set of

One approach to quantify the degree of fairness associafivé axioms, each of which simple and intuitive, can lead
with x is through a fairness measure, which is a functjfon to a useful family of fairness measures. The axioms are:
that mapsx into a real number. Various fairness measures hatlee Axiom of Continuity, of Homogeneity, of Asymptotic
been proposed throughout the years, e.g., in [1], [2], [8], [ Saturation, of Irrelevance of Partition, and of Monototyici
[5], [6]. These range from simple ones, e.g., the ratio betweStarting with these five axioms, we cageneratea family of
the smallest and the largest entriesxoto more sophisticated fairness measures from a generator functjoany increasing
functions, e.g., Jain’s index and the entropy function. 8ah and continuous function that leads to a well-defined “mean”
these fairness measures mapo normalized ranges betweerfunction (i.e., from any Kolmogorov-Nagumo function [16])

0 and 1, where 0 denotes the minimum fairness, 1 denotes Bue example, using power functions with exponénas the
maximum fairness, often corresponding toxamwhere allz; generator function, we derive a unique family of fairness
are the same, and a larger value indicate more fairness. R@asureg; that includes all of the following as special cases,
example, min-max ratio [1] is given by the maximum rati@lepending on the choice o¢f: Jain’s index, maximum or
of any two user’s resource allocation, while Jain’s indek [3minimum ratio, entropy, and-fair utility, and reveals new
computes a normalized square mean. How are these fairnegmess measures corresponding to other ranggs of
measure are related? Is one measures “better” than any?othein particular, forg < 1, well-known fairness measures (e.qg.,
What other measures of fairness may be useful? Jain’s index and entropy) are special cases of our conginjct

An alternative approach that has gained attention in tlaed we generalize Jain’s index to provide a flexible tradeoff
networking research community since [7], [8] is the optibetween “resolution” and “strictness” of the fairness nueas
mization theoretic approach af-fairness and the associated~or 5 > 0, «o-fair utility functions can be factorized as the
utility maximization. Given a set of feasible allocatiores, product of two components: our fairness measure With «
maximizer of thex-fair utility function satisfies the definition and a function of the total throughput that captures theescal
of a-fairness. Two well-known examples are as follows: ar efficiency, of x. Such a factorization also quantifies a
maximizer of the log utility functionq = 1) is proportionally tradeoff between fairness and efficiency in achieving Paret
fair, and a maximizer of the-fair utility function witha« — oo dominance with the maximum possibte and facilitates a
is max-min fair. More recentlya-fair utility functions have clearer understanding of what it means to say that a laiger
also been connected to divergence measures [9], and in [i8];more fair” for generakv € [0, c0).

[11], the parameted was viewed as a fairness measure in the The axiomatic construction of fairness measures also illu-
sense that a fairer allocation is one that is the maximizemnof minates their engineering implications. Any fairness roeas
a-fair utility function with largera. — although the exact role satisfying the five axioms can be proven to have many useful
of « in trading-off fairness and throughput can sometimes Ipgoperties, including Schur-concavity [14]. Consequgrahy
surprising [12]. While it is often held that — oo is more operation balancing resources between two user alwayksesu
fair than o = 1, which is in turn more fair thamx = 0, it in a higher fairness value, extending previous resultsgusin
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majorization to characterize fairness [4], [13].

L . . 2
first introduce the following set of axioms aboyit whose

The development of an axiomatic theory of fairness takesplanations and implications are given next.

another turn towards the end of the paper. By removing thel)
Axiom of Homogeneity, we propose an alternative set of
four axioms, which allows efficiency of resource allocation )
be jointly captured in the fairness measure. We show how
this alternative system connects with constrained opttion
based resource allocation, where magnitude matters due to
the feasibility constraint and an objective function theatdrs
efficiency.

The rest of this paper is organized as follows: The five
axioms for fairness measures are introduced and discussed i
Section Il. Schur-concavity and other properties are pidoe )
any fairness measure satisfying the five axioms in Section Il
We construct a unique family of fairness measures in Sec-
tion IV and discuss its relation to previous work. Genegiz
Jain’s index is revealed from this family of fairness measur
in Section V. Section VI provides a new understanding of
a-fairness by establishing a connection of our fairness oreas
to the o-fair utility functions. In Section VII we propose a
second set of axioms that directly incorporates a notion of
efficiency. Concluding remarks are made in Section VIII. Due
to space limitations all proofs can be found in the onliné ful
version [21], together with a discussion contrasting ttapgr
with the well-known axiomatic theories of Nash bargaining
solution and Shapley value in economics. Main notation is
shown in Table I.

4)

Axiom of ContinuityFairness measurg(x) is continu-
ous onR? for all integern > 1.

Axiom of HomogeneityFairness measurg(x) is a
homogeneous function of degree 0:

fx)=f(t-x), Yt>0. Q)

Without loss of generality, for a single user, we take
|f(z1)| =1 for all z; > 0, i.e., fairness is a constant
for n = 1.

Axiom of Asymptotic Saturatiofrairness measurg(x)
of equal resource allocations eventually becomes inde-
pendent of the number of users:

lim f(1n+l)
n— 00 f(ln)

Axiom of Irrelevance of Partitionlf we partition the
elements ofk into two partsx = [x',x?], the fairness
index f(x!',x?) can be computed recursively (with
respect to a generator functigiy)) and is independent
of the patrtition, i.e.,

2
fixhx?) = f(wx), wx?)) g7 (Z Si -g(f(xi))> ,
=1
®3)

where w(x!) and w(x?) denote the sum of resource
vectorsx! andx? respectively, ang(y) is a continuous
and strictly monotonic function that can generate the
following function h:

h=g" <22: Sig (f(Xi))> ;

i=1

=1 )

(4)

with positive weights satisfying _, s; = 1 such thath
qualifies as aneanfunction [15] of { f(x%), Vi}.

Axiom of Monotonicity.For n 2 users, fairness
measure f(6,1 — #) is monotonically increasing as
the absolute difference between the two elements (i.e.
|1 — 26]|) shrinks to zero.

Variable Meaning
x Resource allocation vector of length
xT Sorted vector with smallest element being first
w(x) Sum of all elements ok
fC), fa() Fairness measure (of paramet®r
g(+) Generator function
Si Positive weights for weighted mean 5)
1, Vector of all ones of lengtm
Xry Vector x majorizes vectory
B8 Parameter for power functiog(y) = y?
Ua(+) o-fair utility with parametero
H() Shannon entropy function
J() Jain’s index
Dr(4) Our utility for fairness and efficiency

TABLE |
TABLE OF MAIN NOTATION.

II. AXIOMS

Axioms 1-2 are very intuitive. The Axiom of Continuity
says that a slight change in resource allocation shows up
as a slight change in the fairness measure. The Axiom of
Homogeneity says that the fairness measure is indepentlent o
the unit of measurement or absolute magnitude of the resourc
allocation.

Due to the Axiom of of Homogeneity, for an optimization
formulation of resource allocation, the fairness meagi(se
alone cannot be used as the objective function if efficiency
(which depends on magnitude’, z;) is to be captured. In
Section VI, we will connect this fairness measure with an
efficiency measure im-fair utility function. In Section VII,
we will remove the Axiom of of Homogeneity and propose an

Let x be a resource allocation vector withnon-negative alternative set of axioms, which make measfife) dependent

elements. A fairness measuféx) is a mapping fromx to
a real number, i.e.f : R} — R, for all integern > 1. We

on both magnitude and distribution of, thus capturing
fairness and efficiency at the same time.



Axiom 3 is a technical condition used to ensure uniquas stated in Axiom 4. As a special case of Axiom ?21 if
ness of the fairness measure and invariance under changevef denote the resource allocation at level 1 by a vector
variable by fixing a scaling. For example, suppgde) is a z = [w(x!),w(x?)] and if the resource allocation at level
fairness measure satisfying all axioms (with respect to aime2 are equak! = x? =y, it is straight forward to verify that
functiong(y)) except Axiom 3. It is easy to see that by makind\xiom 4 implies
a logarithmic change of variables, fairness meagogef (x
alsogsatisfies all axi%ms, respect to a mean funcﬂ?éﬁ%%ct(hgr fly®z) = fy) f(2), 6)
than Axiom 3. where ® is the direct product of two vectors. As we will
show in Section VII, an extension of equatidd (6) gives an
alternative way of stating Axiom 4 and leads to a set of more

Initial- 3 e general axioms on fairness.
=1 Axiom 5 is the only axiom that actually involves\alue
' pe statement on fairness: when there are just two users, more
k " equalized is more fair. This axiom specifies an increasing
Level 1: le Z T . . . ) :
~ Bl direction of fairness and ensures uniquenesp(gf). Consider
v\ v N\ the allocation of a unit resource to two usersas [0, 1 —0)].
Level 20 @1,...,Tx  Tpyl,---,Tn It is intuitive that fairness strictly improves ds— % since the

difference between the two resource shares tends to bessmall
This intuition also holds for all existing fairness measyeg.,
various, spread, deviation, max-min ratio, Jain’s indexair
utility, and entropy.

So far, none of Axioms 1-3 concerns toenstructionof By definition, axioms are true, as long as they are consistent
fairness measure as the number of users varies. A hierafch@,d r?on-redundant.. Howeyer, noF all sets of axioms are bisefu
construction of fairness is defined in in Axiom 4, WhicHJnlfylng known notions, discovering new measures and prop-

. : . erties, and providing important insights. We start showt
allows us to delzn\;e fa||rness (;n easufe. R%R;ﬁ RROf Ta use of the apbove fivge ax?oms with tﬁe following existencl;"t:g (the
users recursively from lower dimensions,: Ry — R an

I Ri—k — R for integer0 < k < n. The recursive axioms are consistent) and uniqueness results. All praais c

computation is illustrated by a two-level representation jpe found at [21]'_ ) )
Tablell. Letx! = [z1, ..., 2] andx? = [zji1,...,zn]. The Theorem 1_:(EX|stgnce. There exists a fairness measure
computation is performed as follows. At level 1, since thé(x) satisfying Axioms 1-5. Furthermore, the fairness
total resource is divided into two chunks(x') and w(x'), achleve_d by equa!—resource allocatiahgs is independent of
faimess across the chunks obtained in this level is medsuf@e choice ofy(y), i.e.,
by f (w(x'), w(x?)). At level 2, the two chunks of resources F(L) = n" - f(1), @)
are further allocated té andn — k users, achieving fairness
f(x') and f(x?), respectively. To compute overall fairness owherer is a constant exponent.
the resource allocatior = [x1, %2, ...,z,], we combine the  Theorem 2:(Uniquenes3.Given a generator functiop the
fairness obtained in the two levels using a multiplication iresulting f(x) satisfying Axioms 1-5 is unique.
equation[(B).

As we consider a continuous and strictly increasing gen- Ill. PROPERTIES OFFAIRNESSMEASURES
erator functiong(y), the function [#) is a mean value [15] We first prove an intuitive corollary from the five axioms
for {f(x%),Vi}, which represents the average fairness ®pat will be useful for the rest of the presentation.
individual parts ofk. The set of generator functions giving rise  Corollary 1: (Symmetry.\ fairness measure satisfying Ax-
to the same fairness measures may not unique, e.g., lagariibms 1-5 is symmetric ovet:
and power functions. The simplest case is wheis identity
ands; = 1/n for all i. A natural choice of the weight; in [l wa, o) = (i, @iy, - 24, (8)
@) is to choose the value proportional to the sum resourggere i;,...,i, is an arbitrary permutation of indices
of vectorx®. More generally, we will consider the following1 = .
weights L

TABLE Il
ILLUSTRATION OF THE HIERARCHICAL COMPUTATION OF FAIRNESS

The symmetry property shows that the fairness measure
w (x*) _ f(x) satisfying Axioms 1-5 is irrelevant of labeling of users.
8 = mv A (5) We now make a direct connection of our axiomatic theory
J to a line of work on measuring statistical dispersion by
wherep > 0 is an arbitrary exponent. Whem= 0, weights vector majorization, including the popular Gini Coeffidien
in (8 are equal and lead to an un-weighted mean in Axiom [0]. Majorization [14] is a partial order over vectors tady
As shown in Section 4, the paramejercan be chosen suchwhether the elements of vectarare less spread out than the
that the hierarchical computation is independent of partit elements of vectoy. We say thatx is majorized byy, and



we writex <y, if >, z; = > 1, y; (always satisfied due IV. A FAMILY OF FAIRNESSMEASURES

to Axiom 2) and A. Constructing Fairness Measures
d d For any functiong(y) satisfying the condition in Axiom 4,
ij < Zyj7 ford=1,...,n, (9) we can generate from(y) a uniquef(x). Such anf(x) is a
i=1 i=1 well-defined fairness measure if it also satisfies Axioms.1-5

We then refer to the correspondipgy) as a generator of the
wherez] andy] are theith elements ofx" andy™, sorted fairess measure.

in ascending order. According to this definition, among the pefinition 1: Functiong(y) is a generator if there exists a
vectors with the same sum of elements, one with the equgk) satisfying Axioms 1-5 with respect tg(y).

eleme_n_ts is the most major|z_|ng vector. ) _ We note, however, that different generator functions may
Intuitively, x <y can be interpreted ag being a fairer generate the same fairess measure. Although it is difficult

allocation tharx. It is a classical result [14] thatis majorized 5 find the entire set of generatoggy), we have found that

by y, if and only if, from x we can producey by a finite  many forms ofg(y) functions (e.g., logarithm, polynomial,

sequence of Robin Hood operatichs. exponential, and their combinations) result in fairnessame
Majorization alone cannot be used to define a fairnesgres equivalent to those generated by the family of power

measure since it is a partial order and fails to compare v&ct@unctions. It remains to be determined if all fairness measu

in certain cases. Still, if resource allocatianis majorized satisfying Axioms 1-5 can be generated by power functions.

by y, it is desirable to have a fairness measyirsuch that  |n this section, we consider power functiongy) = |y|*,

f(x) < f(y)- A function satisfying this property is known parameterized by and derive the resulting family of fairness

as Schur-concave. In statistics and economics, many nmesasufieasures, which indeed satisfy all the axioms. The absolute

of statistical dispersion are known to be Schur-concax®, evalue ensures tha(y) is non-increasing oveR, for 5 > 0,

Gini Coefficient and Robin Hood Ratio [20], and we show ousind overR_ for 3 < 0. From here on, we replace Equation

fairness measure also is Schur-concave: @) in Axiom 4 by
Theorem 3:(Schur-concavity.A fairness measure satisfy- ) 1
ing Axioms 1-5 is Schur-concave: Fx'x2) = f (w(xh), w(x?)) - <Z 5 - fﬁ(xi)>
. i=1
fx) < fly), if x=y. (10)

where the weights; are given by[(b).

I\_lexF we presgnt several properties of faimess MeaASUreS e orem 4:(Fairness measures generated by power func-
satisfying the axioms, whose proofs rely on Schur-conyavntions) For power mean (y) — |y|° with parameters),

Corollary 2: (Equal-resource allocation is fairest} fair-  Axijoms 1-5 define a unique family of fairness measures as
ness measur¢(x) satisfying Axioms 1-5 is maximized by fg|lows

equal-resource allocations, i.e.,

n . 1-pr] B
f(1,) = max f(x). (11) f(x) = Z (lex> , for Br <1 (14)
i=1 37

x€eR”

Corollary 3: (Collecting a fixed-tax is unfair)f a fixed n =\
amountc > 0 of the resource is subtracted from each user f(x)=— |Y_ 5 Zx_ , for pr>1,  (15)
(i.e. z; — c for all 7), the resulting fairness measure decreases i=1 i

wherer = =2 is a constant exponent, which determines
the growth rate of maximum fairness as population size

increases, i.e.
wherec > 0 must be small enough such that all elements o

x —c¢- 1, are positive. f(1,)=n"-f(1). (16)
Corollary 4: (Inactive user achieves no fairesshen a For different. parametep, the fairness measures derived
fairness measurg(x) satisfying Axioms 1-5 is generated byabove are equivalent up to a constant expoment
e . ) R
by p >0 in B, R.emovmg users with zero resources does not Far(x) = [fara]” (%), (17)
change fairness:

f(X—C'ln)Sf(X)7 VC>0, (12)

if we denotefs, as the fairness measure with paramefers
f(x,0,) = f(x), Vn>1. (13) andr. According to Theorem I; determines the growth rate
of maximum fairness as population sizeincreases. Without
_ _ loss of generality, we choose= 1 such that the maximum
1In a Robin Hood operation, we replace two elementsand z; < x; fai . tﬂ ) N F
with z; — e and z; + ¢, respectively, for some € (0,z; — ;). In other average fairness per useris a anSt no fQ). rom .
words, we take from the richz(), and give to the pooraf;). a user’'s perspective, her perception of maximum fairness is



independent of the population size of the system. From now a
on, we will use a unified representation of the constructed

1

fairness measurers: 2 .

n 1-87 5 o :

. z; . :

fa(x) =sign(l — ) - Z L , (18) = .

T\ g -2 :

= 1

[+ 1

where sigff-) is the sign function. - [

We summarize the special cases in Tablé Ill, whére !
sweeps from-oco to co and H (-) denotes the entropy function. -6 60 : 60
For some values of3, the corresponding mean functign Index : Utility

has a standard name, and for some, known approaches t T 5 0 5 10
measure fairness are recovered, while fore (0,—1) and B

B € (—1,—00), new fairness measures are discovered. FOIFg. 1. Plot of faimessfs(x) for different values of3: 3 > 0 recovers the
fixed resource allocation vecter= [1,2, 5], we plot fairness Uutility-based approach, and < 0 recovers the index-based approach.
f(x) for different values of3 in Figure[1.

changing other users’ allocation, the fairness measur&3n
1

Value of 3 Our Fairness Measure Known Names increases if and onIy i, <7 = ( >, lJﬁ) ? and0 < € <
>
B — oo —maxi{¥} Max ratio T — T;. "
1 Corollary 7: (Lower bound under box-constraintdf) a
— — X B -faj ili . . g
B e (1,0) [(1 B)Va=p (w x))] a-fair utility resource allocationx = [z1,a,...,2,] satisfies box-
5 N constraints, i.e.zmin < z; < T for all 4, the fairness
B e (0,1 ) o P . S ) ~fair utilit ! min = ti = lmaz '
©.1 [( Wa=s (” "))] “ Y measures in[{18) is lower bounded by a constant that only
8—0 eH(w?x)) Entropy depends o1, Zmin; Tmaz:
1 1
n 2. \1-B7]B =5 11-—p)7
ey [z (@) No name Fx) > sign(1 — ) - D7
(21) (/Lr'i_l_ﬂ)ﬂ
B=-1 > 112 =n-J(x) Jain’s index
o} wherel = Zmer andy = LP 1)(;15(5 i The bound is tight
B € (~1,—c0) {Z?zl (Jg) } No name when ap fractlon of users have; = x,,,,, and the remaining
(T o 1 — p fraction of users have; = z,,:n.
fo —oo min; { =5 } Min ratio These results provide intuition on how the family of fairses

TABLE Il measures may be interpreted and applied. Through Corol-

PREVIOUS RESULTS ARE RECOVERED AS SPECIAL CAsEs oF our  larY 5, Dy specifying a level of faimess, we can limit the
AXIOMATIC CONSTRUCTION. FOR 3 € (0, —1) AND 8 € (—1, —oc), new ~ UMDber of starved users in a system. Corollary 6 implies that
FAIRNESS MEASURES OFGENERALIZED JAIN'SINDEX ARE REVEALED. z serves as a threshold for identifying “pOOI’” and “rich” user
since assigning an additionalamount of resource to user
improves fairness ift; < z, and reduces fairness if; > Z.
. . — Additionally, this provides intuition into threshold meitis for
B. Engineering Implications allocating resources serially.

The fairness measurgs in (18) corresponding to the gen- ’
erator functiong(y) = |y|? satisfies a number of properties, V- APPLICATION 1: GENERALIZING JAIN'S INDEX
which give interesting engineering implications to ourti@ss  Wheng = —1 (i.e., harmonic mean is used in Axiom 4), we

measure. get a scalar multiple of the widely used Jain’s ind&fx) =

Corollary 5: (Number of inactive usershhe fairness mea- f(x)-
sures in [(IB) also count the number of inactive users in theUpon inspection of[(18) and the specific cases noted in

system. Whenfs < 0, f(x) — —oo if any user is assigned Table Ill, we note that any0, —oc) U 3 € (0,1) the range
zero resource. Whefi > 0, of fairness measurés(x) lies betweerl andn. Equivalently,

we can say that the fairnegger userresides in the interval
Number of users with zero resoursen — f(x)(19)  [1 1]. When the limit as3 — 0 is considered, the resulting
DT (20) fairness measure can also be shown to have this property.
T of(x) Becausefs(x) for 5 < 1 has this characteristic, we refer
Corollary 6: (Threshold level of resourcel) we increase to this subclass of our family of fairness measures as the
resource allocation to usérby a small amount, while not generalization of Jain’s index.




Definition 2: Jg(x)
parameterized by < 1.

. i . . . X 6
%fﬁ(x) is a generalized Jain’s indexconcept of fairness — for the same allocation,/as> —oo

more fairness is lost. Therefore, the paramgétean tune the

The common properties of our fairness index proven g\eneralization of Jain’s indef(for different tradeoffs between
Section Il and IV carry over to this generalized Jain’s ixde the resolution and the strictness of fairness measure.

For g = —1, J_1(x) reduces to the original Jain’s index.

B=+0.5

2
T e

1
0 0.1 0.2

0.3 0.4 0.5
B=-1.0
2
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Fig. 2. Plot of the fairness measufg (6, 1 —6) against, for resource allo-
cationx = [0, 1 — 6] and different choices of = {—4.0,—2.5, —1.0,0.5}.
It can be observed thafz (9, 1 — 0) is monotonic ag3 — 1. Further, smaller
values of|1 — 3| results in a steeper incline over sm@lli.e., the low-fairness
region.

Theorem 5:(Monotonicity with respect t@.) The fairness
measures in[{18) is negative and decreasingsfa (1, ),
and positive and increasing fgr € (—oo, 1):

8{5;") <0 for B € (1, 00), (22)
016™) < ) for g (—o0, 1). (23)

op

The monotonicity of fairness measurgg(x) on g €
(—o0,1) gives an engineering interpretation gf Figure[2
plots fairnessfz(6, 1 —0) for resource allocatior = [#,1—0]
and different choices ¢f = {—4.0,—2.5,—-1.0,0.5}. The ver-
tical bars in the figure represent the level sets of funcfipior
valuesfs(0;,1—6;) = % (fmaz — fmin) i =1,2,...,9. For

VI. APPLICATION 2: UNDERSTANDING or-FAIRNESS

Due to Axiom 2, the Axiom of Homogeneity, our fairness
measures only express desirability over the- 1)-dimension
subspace orthogonal to thke, vector. Hence, they do not
capture any notion of efficiency of an allocation.

We focus in this section on the widely applieefair utility
function:

a>0, a#l
a=1 '

Ilfoc
ZUQ(:EZ-), where U, (z) =< =@
: log(x)
(24)

We first show that thew-fairness network utility function can
be factored into two components: one corresponding to the
family of fairness measures we constructed and one corre-
sponding to efficiency. We then demonstrate that, for a fixed
the factorization can be viewed as a single point on the agtim
tradeoff curve between fairness and efficiency. Furtheemor
this particular point is one where maximum emphasis is
placed on fairness while maintaining Pareto optimalityhad t
allocation. This allows us to quantitatively interpret thelief
of “larger « is more fair” across alla > 0.

A. Factorization ofa-fair Utility Function
Re-arranging the terms of the equation in Table Ill, we have

1 e
T eI’ (Zx>
50l - Us <Z> ,

whereUj (3, x;) is the one-dimensional version of thefair
utility function with o« = 5. For g8 — 1, it is easy to show
that our fairness measurg(x), multiplied by a function of
throughput) ", z;, equalsa-fair utility function with o = 1.

Ua=p(x)

(25)

fixed resource allocations, singeincreases ag approaches Similarly, for 3 — oo, it equalsa-fair utility function as
1, the level sets off are pushed toward the region witha — co. Therefore, Equatior (25) also holds for proportional
small § (i.e., the low-fairness region), resulting in a steepdairness atx = 1 and max-min fairness at — oc.

incline in the region. In the extreme case 6f = 1, all

Equation [2b) demonstrates that thefair utility functions

level set boundaries align with the y-axis in the plot. Thean be factorized as the product of two components: a farnes
fairness measurg¢ point-wise converges to step functiongneasure,| f5(x)|”, and an efficiency measurés (>, ®i).

fs(6,1 — ) = 2. Therefore, paramete$ characterizes the The fairness measufés(x)

shape of the fairness measures: a smaller valye-ef3| (i.e.,

|B only depends on the normalized
distribution,x/ (3", «;), of resources (due to Axiom 2), while

§ closer to 1) causes the level sets to be condensed in the efficiency measure is a function of the sum resodrge:;.

low-fairness region.

The factorization ofx-fair utility functions is illustrated in

Since the fairness measure must still evaluate to a numBeble[1M and decouples the two components to tackle issues
between 1 and: here, the monotonicty and resulting shift insuch as fairness-efficiency tradeoff and feasibilityxofinder
granularity of the fairness measure associated with vgrgin a given constraint set.For example, it helps to explain the

suggests differences in evaluating unfairness. At onemdy

counter-intuitive throughput behavior in [12]: an alldocat

8 — 1 any solution where no user receives an allocation @&ctor that maximizes the-fair utility with a largera may not

zero is fairest. On the other hand, &s» —oo the relationship

be less efficient, because thefair utility incorporates both

between f3(x) and § becomes linear, suggesting a strictefairness and efficiency at the same time.
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Allocation: x Consider the set of maximizers ¢f {26) farin the range

v \ in Theorem 6:
Factorize: x/ 3, @ 2T 153
1 1 ]}D_{x:x_argman)A(x), V)\ﬁ‘l—‘}- (29)
Measure: fg (x/> ;@) U (X, ) < -7
— N ., e When weight\ = 0, the corresponding points iR is most
ombine: a=8(x) efficient. When weight\ = %‘, it can be shown that the
TABLE IV

factorization in[(Zb) is equivalent to (R6). Therefonefairness
corresponds to the solution of an optimization that plabes t
maximum emphasis on the fairness measure parameterized by
8 = « while preserving Pareto optimality. Allocations ih
corresponding to other values &fachieve a tradeoff between
fairness and efficiency, while Pareto optimality is presetv

ILLUSTRATION OF THE FACTORIZATION OF THE-FAIR UTILITY
FUNCTIONS INTO A FAIRNESS COMPONENT OF THE NORMALIZED
RESOURCE DISTRIBUTION AND A EFFICIENCY COMPONENT OF THE SUM

RESOURCE

B. Pareto Optimality in Fairness-Efficiency Tradeoffs

Although Corollary[2 states equal allocation is fairest, an_
a-fair allocation may not have an equal distribution. This is
because the additional efficiency componenfid (25) can skew!|
the optimizer (i.e., the resource allocation resultingrfre-fair
utility maximization) away from an equal distribution. For -
this to happen there must exist an allocation that is feasibl =
(within the constraint set of realizable allocations) wih *7 w0
large enough gain in efficiency over all equal distribution 5
allocations. Hence, the magnitude of this skewing depends o
the fairness parametew (= (), the constraint set ok, and

the relative importance of fairness and efficiency. R ! PO
Guided by the product form of (25), we consider a scalar- @ ®)

ization of the maximization of the two objectives: fairnessl

efﬁciency: Fig. 3. [(@) Feasible region (i.e., the constraint set of tiligyumaximization
problem) where overemphasis of fairness violates Paretairdmce, an{l ()
its fairness-efficiency tradeoff fof = 3. Region A corresponds to Pareto

- optimal solutions. Region B is when the condition of Theor@ns violated,
£ 2) (X) - +4 (Z xl) ’ (26) and solutions are more fair, but no longer Pareto optimal.

where3 € (0,1) U (1,00) is fixed, A € [0,00) absorbs the

exponent3 in the fairness component df (25) and is a weight

specifying the relative emphasis placed on the fairness, ancurve [fﬂ (x), Eixi}, Vx = argmaxxer Pa(x), VA corre-
sponding to the constraint set shown in Figure|3(a). Thefset o

{y) = sign(y) log(|y]). (27) optimizersP in (29), which is obtained by maximizing Pareto

The use of the log function later recovers the product in tffPtimal utilities [26), is shown by curvel in Figure[3(b).
factorization of [2b) from the sum in the scalariz€d](26).
An allocation vectox is said to be Pareto dominated pyf Why Largera is More Fair
x; < y; forall i andz; < y; for at least some. An allocation
is called Pareto optimal if it is not Pareto dominated by any In the previous subsection we demonstrated the factasizati
other feasible allocation. If the relative emphasis on igfficy (28) is an extreme point on the tradeoff curve between fagne
is sufficiently high, Pareto optimality of the solution caa band efficiency for fixeds = . What happens whembecomes
maintained. To preserve Pareto optimality, we require thatbigger?
y Pareto dominates, then®,(y) > ®,(x). We denote by, the gradient operator with respect to the
Theorem 6: Preserving Pareto optimalitfhe necessary vector x. For a differentiable function, we use the standard
and sufficient condition om\ such that®,(y) > ®,(x) if inner product (x,y) = >, z;y;) between the gradient of

Figure 3(D) illustrates an optimal fairness-efficiencyleaff

y Pareto dominates is the function and a normalized vector to denote the direation
derivative of the function.
A< ‘i‘ ) (28) Theorem 7: (Monotonicity of fairness- efficiency reward ra-
1-p5 tio.) Let allocationx be given. Definen = —1 Ex

the vector pointing from the allocation to the nearest faim



maximizing solution. Then the fairness-efficiency rewantiar:

(walaa) 720
1,

<Van—B(X)a m>7

is non-decreasing with, i.e. highera gives a greater relative
reward for fairer solutions.

The the choice of directios is a direct result of Axiom 2
and Corollary 2, which together imply thatis the direction
that most increases fairness and is orthogonal to incréases
efficiency.

An increase in either fairness or efficiency is a “desirable”
outcome. The choice ofv dictates exactly how desirable
one objective is relative to the other (for a fixed alloca}ion

(30) 1)

2)

3)

. . . . 8 .
In this section, we propose a set of alternative axioms, lwvhic

includes Axioms 1-5 as a special case. Eet R} — R be

a general fairness measure satisfying four axioms as fellow

Axiom of ContinuityFairness measurg(x) is contin-
uous onR" for all integern > 1.

Axiom of Asymptotic Saturatiofrairness measurg(x)
of equal resource allocations eventually becomes inde-
pendent of the number of users:

F(,
lim 7( +1)

=1.
n—00 F(ln)

(31)
Axiom of Irrelevance of SplittingFor an allocation
vector x = [z1,xz2], we split each element; into
multiple elements by a direct produgty!, wherey!
is a non-negative vector. If the splitting vectors have

Theorem[V states that, with a larger there is a larger
component of the utility function gradient in the directioh
fairer solutions, relative to the component in the direttod

more efficiency. Notice, however, that comparison must be
in terms of the ratio between these two gradient components
rather than the magnitude of the gradient, and both fairness

and efficiency may increase simultaneously.

This result provides a justification for the belief that karg
« is “more fair”, not just fora € {0, 1, 00}, but for anya €
[0, 00). Figure[4 depicts how this ratio increases with= /3
for some examples allocations.

o o o
B o =)
T T T

.
.
I
I
)
\)
[}

Fairness-Efficiency Reward Ratio

o
N
:

A )
A )

Fig. 4. Monotonic behavior of the ratib {30) as a functionnofThree fixed
allocations are considered, and solutions that are alreadse fair have a
lower ratio.

VIl. ALTERNATIVE AXIOMS

equal weightsw(y!) = w(y?), the fairness of the new
allocation vectorz;y!, z2y?] is given by

Flaiyt woy?) = F(x)- g~ <Z si- 9 (F(yi))> :

=1

1 (32)
where ) . s; = 1 are positive weights ang(y) is a
continuous and strictly increasing function.

Axiom of Monotonicity.For n 2 users, fairness
measureF'(z1,x2) increases as ratio; /x2 goes to 1,
when sum resource; + - is fixed.

Axioms 1 and 2 remain the same as Axioms 1 and 3
before. Axiom 4 is equivalent to Axiom 5 with the additional
qualification that the sum-resource does not change. This
qualification was previously unnecessary due to Axiom 2 —
f(x) does not vary with the amount of total resources —
however, is now required in the new set of axioms. Axiom 3
is used to recursively construct fairness meastife) from
lower dimensions and is similar to the Axiom 4. The vector
[z1y1, 22y2] can be viewed as a generalized direct product of
vectorx with two different vectorgs* andy?, which split the
resource of each element &fto multiple users. Ify! = y?2,
this splitting reduces to a direct product.

Since the Axiom of Homogeneity is removed, fairness
measureF'(x) depends on the absolute magnitude of resource
vector x. Using Axiom 3, we can prove thatF'(x) is a
homogeneous function of real degree. Furthermore, the two
sets of axioms are equivalent, if the order of homogeneity
is zero. This means that the new axiomatic system is more
general than the original one.

Theorem 8:(Existence and Uniquenes$:or each genera-
tor g(y), there exists a unique fairness measti(g) satisfying

4)

Given a set of useful axioms, it is important to ask iAxioms 17— 4. We have,

other useful axiomatic systems are possible. By removing or
modifying some of the five axioms here, for example, Axiom 2

(33)

that decouples the concern on efficiency from fairness, what

F(x) = f(x)- <Z CCz)

kind of fairness measures will result? Can an alternatite se
of axioms lead to the construction of fairness measures thvinere% € R is the degree of homogeneity anfdx) is a

do not automatically decouple from the notions of efficienciairness measure satisfying Axioms 1-5 with respect to the
and feasibility of resource allocation? same generatay(y).
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While it is easy to verify that some properties, like that of VIIl. RELATED AXIOMATIC THEORIES

symmetry, in Section I1l also hold for fairess meast), Axiomatic theories often form a stable foundation for wide
some properties of faimess measures satisfying Axioms lzgyjications. Famous examples include that of the firstrorde
are lost in the genera_hzatlon. For instance, we can no Iongggic and that of Nash equilibrium. In network economicso tw
say that equal allocations are best. prominent axiomatic theories have been used to study nktwor
When power generatorgy) = |y|” are considered, from resource allocation. The Nash bargaining solution [18] —
Axioms I— 4" we can derive fairness measure »(x), which  of which proportional fairmess is a generalization and Wwhic
is parameterized by both and 3, models the bartering of persons with an initial allotment of
goods — is based on a system of four axioms. In cooperative
ame theory in the Shapley value solution concept [19]. Give
Fpa(x) = fa(x) - (Z xl) : (34) fqhe setup o%/a coalitiongl gyame, four axi@nmiqugly[de]fine
! the Shapley value as the solution concept.
This unifies our results in Sections IV-VI: Generalized J&in In both of these constructions, effiency was a fundamental
index is a special case dfg »(x) for 1/A =0 andg8 < 1; axiom in defining the solution. In fact, both these approache
fairness measurgs(x) is a subclass of; \(x) for A = 0; to cooperative allocation hold Pareto optimality as an @xio
and «-utility is obtained for1/X = 3/(1 — 3) and 8 > 0 and thus are more akin to the optimization theoretic apgroac
by comparing[(34) and (26). The degree of homogenkity to fairness.
determines howFs »(x) scales as throughput increases. The The first family of fairness measureg, is confined to
decomposition of fairness and efficiency in Section VI is nolwomogeneous functions of degree zero, and the resulting
an immediate consequence from Axioms$- #'. measures are an integral part of thdairness utility function.
There is a useful connection with the characterization €Ine might suspect that it is possible to extend our axiomatic
a-fair utility function in the last section. The absolute wal structure to the optimization theoretic fairness apprdache-
|| is equivalent to the parameter used for defining the utilitgxing the Axiom of Homogeneity to homogeneous functions
function [26) in Section VI.B. From Theorem 6, we ca®f arbitrary degree. This is indeed the case as developed by
conclude that fairness measufg ,(x) is Pareto optimal if the previous section.

>~

and only if IX. CONCLUDING REMARKS
1 > B (35) An axiomatic approach to the fundamental concept of
Al T |1-p8] fairness illuminates many issues in network resource ation

research. This paper is far from the end of axiom#i&ories

For every/3, there is a minimum degree of homogeneity Suck ajmess. One way to re-examine axioms is to refute their
that Pareto optimality can be achieved. When inequélity (3gyy|jaries in the context of network resource allocation.

is not satisfied /5, (x) loses Pareto optimality and producepernaps allz; being the same should not be a maximizer of
less throughput-efficient solutions if it is used as an dibjec yirness measure, and a fairness measure need not be Schur-
function in utility optimization. Fairness measures withal g cave Instead making some bigger should be called
degree of homogeneity/A are more suitable for computingysre fair if the resultingk is bigger in all coordinates, i.e.,

index values of fairmess. _ ~ those contributing to the overall efficiency should “fairly
The degree of homogeneity of a fairness measure satisfyi@eive more resources. Perhaps the fairness measura shoul
Axioms 1— 4 parameterizes a tradeoff between the concepé 3 function dependent on the feasible region of allocation
of faimess and efficiency. Moreover, when power functionfhese possibilities mean that alternative sets of axioms of
are used as generating functions, the degree of homogengifihess, ones with a value statement different from that in
is equivalent tos in (28). Therefore, the intuition behind ouraxiom 5 or Axiom 4 in this paper, deserve further exploration.
result on a maximum)| (minimum degree of homogeneity) \e have also assumed that resource is infinitesimally divis-
to ensure Pareto optimality can be extended to the genggb and has no 'time value’, that the way resource allocatio
optimization-theoretic approach to fgirnes;,_i.e. forian®ss s gecided (e.g., by a central controller or autonomously) i
measurd” generated from any, there is a minimum degree ofjrejevant, and that the actual allocation can be transplgre
homogeneity; to produce a Pareto optimal solution. Just likgerified. None of these assumptions is true. Removing them

our first set of axioms generalized Jain's index and reveal@g| further enrich axiomatic theories of fairness in resc
new fairness measures with desirable properties, the decgfgcation.

set of axioms offers a rich family of objective functions.

To summarize, in removing Axiom 2 and adapting the set REFERENCES
of axioms accordingly, we have shown that Axiom's- & [1] M.A. Marson and M. Gerla, “Fairness in Local Computing tierks,”
include Axioms 1-5 as special cases. The resulting measuresin Proceeding of IEEE ICC1982.
are now affected by notions of both efficiency and fairness,, . .

ith the balance between the two governed by the dearee. Ithough qsyally the axioms are pres_e_nted as a trlplg, trepl8h value
wit ! g y greeihe only efficient solution, and thus efficiency of a caalial strategy can
homogeneﬂy}. be considered an axiom
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APPENDIX

A. Proof of Theorems 1 and 2

. . _ 10
Proof: Applying Axiom 4 to resource allocation vector
1,,, with integersm,n > 1, we have

fQmn) =f(Lm, ... 1)
N———
n segments

n

flm,...,m)-g~" ;Si-g(f(lm))

n numbers

= f(]-n) 'g_l (g (f(lm)))
= f(ln) : f(lm)
where the second step follows from the Axiom 2 by letting
t = 1/m and the facttha}_, s; = 1. Equation[(37) shows that

log f(1,,,) is an additive number-theoretical function [17],
ie.,

(37)

10g f(lmn) = log f(ln) + 1Og f(lm) (38)
Further, from Axiom 3, we derive
Jim [log f(1n+1) —log f(14)] =0 (39)

Using the result in [17], equatiof (B8) arfd{39) implies that
log f(1,,) must be a logarithmic function. We have

log f(1,) = rlogn, (40)

wherer is a real constant. This is exactly {36) after taking an

exponential on both sides. ]
Now, we use[(36) to derive an expression for the fairness

measure deductively, starting from= 2 users. Letr; and

az

z9 be two rational numbers, such that = % andz; = 2
for some positive integerg,, b1, as, bo. Using Axiom 4 and
Lemma 1, we have

(a1ba + agb1)"

1a1b27 1a2b1)
alea a2b1) ' g_l (Slg (f(1a1b2)) + 529 (f(]‘a2b1)))
arb, azbi) - g " (s1g (a7by) + s29 (a5b}))  (41)

Applying Axiom 2 to [41) witht = b1b2, we have

f(xlv'rQ) = .f (Z_ia Z_z>
= f(albz,azbl)
(albz +a2b1)r
97" (s19 (afby) + s2g (a3dy))

(42)

We first show that fairness achieved by equal-resourBer a given functiong(y), equation [(4R) defines fairness

allocationsl,, is independent of the choice gfy). Without
loss of generality, we assume thatl) = 1.

measuref (x1, z2) for two users for rational vecto,, xs].
When vector[z, 23] is real, by Axiom 1, fairness measure

Lemma 1:To satisfy Axioms 1-5, fairness achieved byf(z1,72) is uniquely determined by a sequence of rational

equal-resource allocations, is given by

wherer is a constant exponent.

allocation vectors, whose limit i1, 22]. Therefore, equation
(42) uniquely defines fairness meastie, z2) for arbitrary
real numberse, zs.

Suppose that we have an expression for the fairness
measure f(xz1,...,2,) with k& > 2 users. To derive
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flxy, ..., zp, pe1) for k+1 users, we use Axiom 4 to obtainsegmentsx! = [z1,..., 2] andx! = [zgi1,...,2,] fOr
the following: arbitrary0 < k < n. Let u,_ = u, — ux. From [486), we

conclude that

f('rlv R Ik,$k+1)
k o {(.Il,...,l’n)
=fO wi ki) g (19 (f(@1, - w0)) + 529 (flarsn)) ) I
i=1 _ i un
k ~(a) T
—1 i=1 i=1
=fO _wi ki) g (519 (f(@1,. . 2k)) + 529 (1) (43) e tnok
=t ~ (uk +up—g)" uy Uy, _p,
By induction, equation$ (42) and (43) together defines ésisn TrE g P ' N e
measure for all integet > 1, when the mean functiog(y) is Up " Uy " [Timy = ||
given. If the resulting fairness measure satisfies Axionts, 1— = f(tp, n—s) . pus log F)+2=E Jog f(x?)
it must be unique according to equatiohs](42) dnd (43). This & n 5
proves the uniqueness in Theorem 2. =3 ai, z;) g ! si-g (f(x)) ], (47)
To prove the existence in Theorem 1, we show that there ; i:zk;rl ; ( )
exists a mean functiop(y), such that the resulting fairness
index in (42) and[(43) satisfies Axioms 1-5. We chog@g = where weightss; = 7= and s, = UZ;k are proportional to
log(y) and proportional weights (i.e.= 1) in (§). From [42), the sum resource in each segment. This shows that the fairnes
we derive measure in[{46) is irrelevant to partition.
(a1by 4 asby)” To verify Axiom 5, we consider an allocation vecter=
f(x1,20) = T (519 (@i05) + 529 (a5b7)) [#,1 — 6] and compute its fairness measure as follows
__(a1ba +agby)" 1
(ale)’”Sl (agbl)rs2 f(ea 1- 9) = 97_9(1 — e)r(l_g) . (48)
mtm) (44)
i mm Taking a logarithm on both sides, we have
Ty Lo

Letu, = Zle z; be the sum of the first elements in vector  log f(6,1 —6) =r 910g% +(1-6)log (49)

[1,..., %k, Tx+1]- Then, using[{43) inductively, we obtain 1-6

Since the right hand side df (49) is the entropy function, we
conclude thatf (6,1 — ) is monotonically increasing fof €

k
= f(z Tises1) - g (s1g (f(z1, ..., 21)) + s2g (1)) [0, 1] and monotonically decreasing fére [, 1]. Therefore,
=1 the fairness measure in_(46) satisfies Axioms 1-5.

f('rlv" '7Ik7xk+l)

k
- f<Z i Tpepr) - [ (0, ) B. Proof of Corollary 1
1=1
s et For n = 2 users, symmetry follows directly from equation
_ (ur + xkﬂf _ (Uk)r‘ @32) in Appendix A, i.e.,
(Uk) B ‘rkil o Hi:l Ti f(:cl,xg) = f(IQ,Il), Vxl,xg > 0. (50)
_ (Uk + xk+1)r ( )
T A Assume symmetry holds forn users. Let x =
kTThi1 kT TRt :
Trt1 ITizi = [z1,...,2n,2n+1] be a resource allocation vector and
By rearranging the terms ifL{45), we obtain a fairness meastr; - - - in: in+1 b€ an arbitrary permutation of the indices
generated by logarithmic functiof(y) = log(y) and propor- 1,...,n,n + 1. Wheni,; > 1, applying Axiom 4, we can
tional weights: use equation(31) to show that

k1 Toktl ey _
F(z1, . a, Tp) = (Zw> L, @e) T s Bis Binsa) = (@1 By Ena). - (52)
=1 =1 Wheni,,; = 1, using the same technique, we have
whereuy1 = Zfill x; is the sum of all elements.

We need to prove that the fairness measuré ih (46) satisfies f@iysoo @i, i) = f(@iys o Ting, Tiy)
Axioms 1-5. It is easy to see that Axioms 1-3 are satisfied by = f(z1,...,Tn,Tnt1). (53)
the fairness measure ih(46). To verify Axiom 4, we consider
partitioning a resource allocation vectorof n users into two Then symmetry also holds for + 1 users.
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f(xi1a"-axin7'rin+1) = f inj7xin+l 'gil (Sl g(f('rllvv'rln))+52.g (f('rln+1)))
j=1

n
:f inj7xin+l 'gil (Sl 'g(f(xl,...,Iin+171,5171'n+1+1,...,In+1)) + 529 (f(xln+1)))
j=1

= f(Il, e ,xin+1,1, Iin+1+1, e ,$n+1,$in+l)
int1—1 n+1
=f Z xj, Z xj gt (sl-g(f(xl,...7xin+l_1))+szg(f(xi7l+1+1,...,xn+1,xin+])))
Jj=1 J=lnt1
int1—1 n+1
=f Z zj, Z x; gt (51-g(f(a:l,...,xinﬂ,l))+529(f(:cin+1,a:in+l+1,...,In+1)))
Jj=1 J=ln41
= f(Il, e ,xin+1,1, Iin+1,Iin+1+1, e ,$n+1) (51)
C. Proof of Theorem 3 D. Proof of Corollary 2

Because vectok is majorized by vectoty, if and only

if, from x we can producey by a finite sequence of Robin - !
Hood operations [14], where we replace two elementand the vectors with the same sum of elements, one with the equal

z; < x; with ; — € andz; + ¢, respectively, for some ¢ €lements is the most majorizing vector. LBt z; = n
(0,2; — x;), it is necessary and sufficient to show that sucfVhich is always satisfied due to Axiom 2). The sum of the
an Robin Hood operation always improves a faimess measgpaallest elements satisfies

defined by Axioms 1-5.

The proof for Corollary 2 is straightforward, because among

Toward this end, we consider partitioning a resource allo- PR 2471 -
cation vectorx of n users into two segments! = [z;, z;] DT = ”W
and x? = [Il, ey L1, Tt 1y ey i1, Tjp 1y - - ,ZCn]. Let i=1 "
y = [y, x?] wherey! = [z; —¢, z;+¢] be the vector obtained < nﬁ
from x' by the Robin Hood operation. Using Axiom 4, we n
have <d. (55)
f(x) o
7y Then,x =< 1, implies f(x) < f(1,), for any resource
F(x,x2) allocation vectorx.
-y x?)

fl o+, Z xp | g7t (slg (f(xl)) + S2g (f(Xﬁ))Proof of Corollary 3
ki,

Due to Schur-concavity in Theorem 3, it is sufficient to
flaitz, Y o |97 (519 (F(¥")) + 520 (f(xPdve that collecting fixed-tax leads to a more majorizing

k#i,j allocation vector. From Axiom 2, we consider a vectore
g7 (519 (f (i, 3)) + s29 (f(x%))) t(x — c¢-1,), which achieves the same fairnessxas c¢- 1,,,
© g7 (519 (f(mi — 6,5 + €)) + 529 (F(x2))) €.,
<1,
where the last step follows form the monotonicitygoéind the fr—c-1a) = f(t(x—c-1n)) (56)
monotonicity of fairness measure with two-users in Axiom 5,

ie.,

wheret = ZZ”“ such that

x;—nc’

f(l‘i,l'j) < f(l‘l —€,x; + 6). (54)

Therefore, ifx is majorized byy, then we havef (x) < f(y). - T = t(z; — ¢) = - ;. 57
The fairness measure is Schur-concave. ; ; ( ) ;y &)
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Then, for any integet < d < n we have all z1,xs,z3 > 0. Comparing the terms ii (60) and {61), we
must haver = 0 or p + 8r = 1. Whenr = 0, it is easy to

d
Ztii:l yj _ Zt(ﬁ —¢) see thatf(x1, x2, x3) = 1 is constant. This case is trivial. We.
= conclude that the fairness measure must have the following
Sy —de g~ form
" T 1
S e ()
de xl — ncizfl * o far, 22, 23) = AN T (62)
< = nz =1 % Z X; (Zizl ZCi)
ZiZI Ty —nc i=1
d wherer = 1%’ is a proper exponent. Let;, = Zle z; be
= ij the sum of the first: elements in vectofz1, . .., z, Txi1).
i=1 Then, using[{43) inductively, we obtain
where the third step following from the following inequglit
P f(@1, o Tk, Thrn)
2T _d
Sim G8) (Y wnmiin) g (519 (@ sw0) + s2g (1)
We havex > y, which impliesf(x) > f(y) = f(x —¢- 1). B 1 v s 1
( 1— ﬁr_"_xlfﬁT)B uPZizl i T+x &
F. Proof of Corollary 4 " k+1 R e k+1
Let x be an arbitrary resource allocation vector and 0 (ug + :z:kﬂ)%’r up +
be a positive number. From Axiom 1, we have .-
1-8r 1-8r\ 7 r _Br _Br L
£x.0,) (T radd)” Tk e )
1 - i, ulPr 1—Ar
lthrn f(x, —1 (uk + Tp41)? L u o T T
—r 00 1
k+1 1 pr\ P
- n, (D) g (Fx) | (1) 9@ (o =)
= lim f Zx“ n P n 7t P nY? 1 ) (63)
fmee t (Ciza)”+ ()" (i) + (1) )T
n . i=1 Ti
= lim f qu " (9 (f(xn))) S . .
o0 t which is exactly equatiori(14) in Theorem 4.
= f(x), We still need to prove that the fairness measure[id (63)
h he third oll ¢ _ satisfies Axioms 1-5. It is easy to see that Axioms 1-3 are
where the third step follows from Axiom 4. satisfied by the fairness measure [1(63). To verify Axiom
G. Proof of Theorem 4 4, we consider partitioning a resource allocation vector
H 1 _ 1 _
Without loss of generality, we assume thdtl) = 1. First, of n users into two segmentsc’ =[xy, ..., 2] andx’ =

we plug into equationd (4#2) anf43) power medp) — v° [®kt1,-..,xy,] fOr arbitrary0 < k& < n. Let u,—x = uy — ug
with weights generated by arbitrapy Equation[4R) gives the Fom [63), we conclude

fairness measure for two users: Fx1,. .. 20)
(a1be + a2by)" 1
f(x1,m2) = - — ( n _1-Br )B
(P122) = g (o) + sag (a500) _(Zh
a1bs + azb; noNETT
- - i - (S
(s1(a1b2)P" 4 sa(azb1)PT) 1 ( LB gl )E s i 1
(albz + agbl)r ((albg)p + (agbl)”)B — - ;’:1 zp
N 3 )P Up + Uy,
((a1b2)PTPT + (aghy )PtBr)B i=1"i
1 k: 1 Br 2B B
1 — u 7un7 . n—
(xil)-‘r,@r + $§+'Br) B f( k k) uk T unfk
To derive the fairness measure for three users, we consider t
different partitions of the resource allocation vedtor, z, 23] Z T, Z ;) (Z 8 - ) . (64)
as [z1, z2], [v3] and [z1], [z2, z3]. Using [43), we obtain two =1 iehtl
equivalent form of the fairness measure[inl(60) dnd (61). ur
As in Axiom 4, the fairness measure is irrelevant to partiwhere weightss; = Tk ands; = a7 +u are propor-

tion. Hence, equation§ (60) arid [61) should be equivalent fional to some power of the sum resource in each segment.
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f(@1,m9,03) = flar +x2,23) - g~ " (519 (f(21,22)) + 529 (1))

(z1+22)P TP (2 +af) + 2P
I113+Br+m/23+ﬁ7‘ 3

(21 + )P + 25

i

@l

(w1 e a3)" (21 4 22)” + 28)

- 1
((xl )BT 4 ngrﬁr) 5

1
(1 + 22 + x3)" (z1 + ;Z:Q)PH”(Q:’I’ + ab) o o 60
T’ prBr oA T3 (60)

flz,m,23) = f(w1, 22 +33) - g~ " (s19 (f(1)) + 529 (22, 3))
1
1 (zatws) TP (@f+af) p|?
(1 + x2 + x3)" (2] + (22 + 3)7) 7 g T
a , 3 X9 + 23)P + zf
(277 + (@2 + ag)rtor)” el

1
(71 + 22 +23)" (w2 +x3)P P (ah +28) " 61
- T AT gt 0 (61)

(x’l’+ﬂr + (z2 + :c3)”+ﬂr) 2 3
This proves that the fairness measure[inl (63) is irrelevant Becausek(x) > 0 is posmve ) has a single root at

partition. .

To verify Axiom 5, we consider an allocation vecter= ZJ zj \”
[0,1 — 6] and compute its fairness measure as follows T == S L7 (68)

1 777
_ _ 1-pr _ p\1-pr1B . .
F0,1-0)= [9 +(1-9) } : (65) It is straightforward to show that for any # 1, we have

It is easy to verify that whem — 8r > 0, the fairness measure F(x) 07 (x)

f(8,1 — 0) is increasing ford € [0, %] and decreasing for v >0, if z; >7 and “r

0 € [3,1]. Axiom 5 is satisfied giverl — gr > 0. i i
Putting all conditions in the proof together, we conclud&herefore, whene; Vj # i are fixed, f(x) is maximized by

that, whenp = 1 — g8r > 0, the fairness measure given byr; = z.

(63) is positive and satisfies Axioms 1-5. Similarly, whea:

1 — Br < 0, the fairness measure given By J(14) is negativé: Proof of Corollary 7

The proof for this case is the same and not repeated here. To derive an lower bound ofi(x) under the box constraints
Tmin < i < Tmae Vi, we first argue thaf (x) is minimized
only if users are assigned resoutcg;, Of xq.. Using the
box constraints and Corollary 6, we have

<0,ifx; <Z

H. Proof of Corollary 5

Whenf < 0 is negative, it is easy to show thAfx) — —co
if z; — 0. When f > 0, suppose that users are inactive.

From equation[{36) and Corollaries 1 and 3, we have T 5
- et
fx) < f(lp—k)=n—k. (66) - ( ; leﬁ>
which givesk < n— f(x). Further, since the number of active _ -3
usersn — k is upper bounded by (x), the maximum resource = <Z T Ifﬂ>
is lower bounded by, z:/f (x). 2T
l. Proof of Corollary 6 , 5
Y 1-8 2 (Z - ’ xmfn)
Let k(x) = >, (Zng) be an auxiliary function, i
such that ’ = Tmin- (69)
f(x) =sign(l - p3) - k® (x). (67) Similarly, we can show
Since f(x) is differentiable, we have T < s (70)
1-8
Ofx) 114 [1-5 T et According to Axiom 4, f(x) is increasing onc; € [T, ]
ko7 (%) =75 | ) Lo pmen
Ox; B (Zj zj)1=F Zj Z; and decreasing on; € [T,z Hence,f(x) is minimized
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only if all z; take the boundary values in the box constraintfynction ¢(y) is convex iny. Therefore, we have

ie., _ 1
n 1-p27] B2
T
fﬁz (X) = Z ( - )
Ti = Tomin OT Ti = Tomax- (71) | i=1 Zj Zj
[ n —81\ 7%=
. €Ty €Ty
LetI' = Z=e= andy be fraction of users who receivg, ... = Z —Zj z; X ((Zj :c,-) ) }
By relaxmg the constraint € {£,Vi} to u € [0, 1], we derive L=t ' .
an lower bound ory(x) as follows I —B1\ 7 B2
&\
:Eie[:l?mril;bllilmaz] Vlf(X) B n 1-5; %
1 Li
. . pr =+ (1 —p)|” =19 Z(Zm)
= min sign(1-08)-n — 15 i=1 3
e t.vi} (U +1—p) - N

> S 1-7)-
;LIED[IOHI] ign(1—0)-n

1 n 1-p11] 51
(il +1— u)l_ﬂl N =\
= [, (%), (75)

To find the minimizer in the last optimization problem abovewhere the third step follows from Jensen’s inequality @nck
we first recognize that at the two boundary poipts= 0 0. This shows thaffz(x) is increasing on(—oo, 0).
and n = 1 (i.e. all users receive the same amount of Forj € (0,1), we considefl > 8; > 5> > 0. The function
resource)f(x) = n achieves its maximum value. Therefore¢(y) = yﬁ becomes concave. We have
the minimum value is achieved by somee (0,1). If u* ) L
is the minimizer of [[7R), it is necessary that the first order n . 1-p2] 72
derivative of the right hand side df (72) is zero, i.e., fp.(x) = Z (Z ZC‘)

Vit

1

i1

9 {uF]’BJr(lfu)} [ » _ AN R
o[ - e (s
o . i=1 225 % 25T

1

i —B B2
Soling the above equation, we obtain < s (Z T; ( T; ) )]

N

i=1n Zj x] Z] 'rj

C-DA-8) [P ) p+1] = TP = 1) [(T - p+1]. = fp.(x). (76)
where the third step follows from Jensen'’s inequality gad>
0. Therefore,f3(x) is increasing or(0, 1).

For S5 e (1,00), we consider3; > [ > 1. The function

o(y) = yﬁl is concave. We have

Because this equation is a linear;inits rooty* is the unique
minimizer of [72):

_Ti-8_ _ n 1-B27] B2
ur = FB(FF— 5 (Flﬂ_(ﬁl“_ 11)), (74) fa(x) — [Z (szx> ]
i=1 Jjd

The lower bound in Corollary 7 follows by plugging® into [ n i ; -5\ 1%
2 - ;Zﬂﬂ.gﬁ((Zﬂi) )]

[ —p1 /3_12
K. Proof of Theorem 5 z—|¢ (1_21; Z:jixj (ﬁ) )}

We first prove the monotonicity ofs(x) for 3 € (—o0,0). = fa. (). (77)

Consider two d|fferent value8 > 3, > (. We define the where the third step follows from Jensen’s inequality Aad>
a function¢(y) = y51 for y € R,. Sincefy/B81 > 1, the 0. Therefore,f3(x) is decreasing orfl, co). This completes
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the proof of Theorem 5. or, equivalently,

L. Proof of Theorem 6

We first assumeg > 1 (which implies f3(-) < 0) and show
that the condition\ < % is necessary and sufficient for
preserving Pareto optimality. The case whére< 1 can be
shown using a completely analogous proof.

To show that the conditioln < |;=5| is sufficient, we
consider an allocatior and a vectory such thaty; > 0 for all . .
iand>,y; = . 2;. Clearly,x’ = x + 6~ Pareto dominates Consider an allocatior of Iengthn+1,_such thaty; = _1for
x for & > 0. We now consider the difference between thg = 1:---:7 @ndan; = n. Clearly,x is Pareto dominated

function [26) evaluated for these two allocations. Firstase b}/ another v?sctmx whfere:z: = Ti f(:r ;5_ 10 . 1 atr;]d
£ > 1, which implies f5(-) < 0, and Tyt = i +0 (3 2i), for some positive) > rom the
last step of[(80), we have

A<

il. (83)

B_

Next, we prove that the conditioh < ‘ iS necessary.

2|
. We show that there exists two

Suppose’ > 1 and > ’ b () < o, while
AX y X

vectorsx and x’, such that(I)A( ) —
Pareto dominates.

D)\ (x') — Pa(x)
Z Z (I))\(X/) —(I))\(X)
=AMl (fs(x') =L (fs(x < x; ) -/ < xz> A ij—l (x;)l—,@ 3
: = -3 log (722131 ) [3> + (1 - )\T) log (1 + )
= — A(log|fs (x')] —log|fs (x)]) +log ((1+5)in> A (n + 2n5)* 3
i = E ( T ) (1—)\T)1og(1—|—5)
~log (Zx> < - %log (n ) (1—Aﬁ7)log(1+§)
==X x')| -1 b'q log (1+0). (78
= M lloglds ()1 ~hoslfs () +log (1 +9)- 78) TR (RCEL P
If x’ is also more fair thax, then showing B
—A(log|fs (x')| —log|fs (x')]) >0 (79) Itis straight forward to verify thab, (x') — @5 (x) < 0, if we

set
is trivial, and the difference between the objective eviddant

the two allocations is strictly positive. Therefore, we sioker
the case wherg’ is less fair.

Continuing from [(7B) and applying the definition in {18) As a result, the conditio(28) of the theorem is sufficient
yields and necessary for ensuring Pareto optimality of the salutio

(I))\(X/) -

1 B\ xF=F
5—5{(1—1-71 )@ >B]>o. (84)

‘I))\(X)
M. Proof of Theorem 7

From the definition of-fair utility, we compute the numer-
ator and denominator:

+log (14 9)

1 1 ZTq
n 1-81 8 -~ ~ “
i /\lOg |:Z ( €T; ) ] <Van—5(X)7 ﬁ> = in B i H2Zz
Z T n 3 x 1
i=1 3 > Ii) N
A S (;C’.)lfﬁ ( = ) = \/——
= —Zlog | ==t )4 (1—-AE——)log(1+4 \/
B ° <Z?—1 (Ii)liﬁ s & ):
(80) < )
Becausez, > x; for all i, we know that forg > 1, J
(/)= < (2;)*=7, which implies (85)
n ni-58 and
B Zizl (xz) <Van > Z :C e (86)
Consequently, for the entire difference to be positivesit i Hl” \/_
sufficient that -3
_ = — ., 87
1—/\%20, (82) \/NZ“’” (87)



Notice that both values are positive. The ratio betweenethes Using the homogeneity property and Axiom's &e obta{fn
then is

1
) . F(1, 1\ >
(VUazs (), 1) ! ¥, iy’ lim oo L5520 = lim 7}(1*)1) - <1+g)
— 1— JjJ . n
1 X2V S Lgh _ F(1,41)
Vonc: (X)7 —> L Ti)? -1 @ N*i = lim ———=
< AT (2 2e) nroo F(1,)
(88) =1. (94)

It is easily shown that the factor out fron is strictly posti Thisis exactly Axiom 3. From Axiom‘4n, Axiom 5 is straight
The only component that varies withis the ratio between two gjnce

weighted averages of the same vector with different weights )
5 f,1—-0)=F06,1-6)-(0+1—-06)">=F(6,1—9).
1176 (89) Therefore, monotonicity holds fof (6,1 — ¢) for 6 € [0, 3]
2N and @ € [0, ], respectively. To prove Axiom 4, we choose
2
That average in the numerator places more we%ﬁv—lé > 21 =w(y!) andxs = w(y?) in Axiom 3, which results in

N) on elements that decrease more rapidly (or increase more iyt v?)
slowly for the caser; < 1) with 5, implies that the overall

1
X

2 1 2\\
numerator decreases more rapidly (or increases more glowly = F(y ¥2) - (wly ) +w(y?))
than the denominator. Thereforg, (89) is monotonically-non L
increasing, and Theorel 7 is true. = F(z1,12) - Zsz F(y'/z;)) | - (w1 +32) >
N. Proof of Theorem 8 ) 2
To prove Theorem 8, we need to show thaFifx) satisfies = F(z1,22) - (11 4+ 22) > g7 <Z sig(f(y' /%)))
Axioms 1-4’, its normalization i=1

1 2 .
Fx) = F(x) - <Zx> (90) =fone2) g @ si-g (fly >)>

is a fairness measure satisfying Axioms 1-5. =f ( (y w(y (Z Si- ) (95)
The continuity of f(x) follows directly from that ofF'(x)

in Axioms 1. Let z > 0 be a positive real number andbe where the second last step uses the fact thiata homogenous

a vector of arbitrary length. To prove homogeneity, we mak@nction of order zero. This proves Axiom 4.

use of Axioms 3 If F(x) satisfies Axioms 44’, we have shown that its
F(z-[y,y]) normalizationf (x) _is a fairness measure_ satisfying Axioms 1-
. 5. Therefore F'(x) is homogenous function of ord%r and is
= F(2,2) g (519 (F(y)) + 529 (F(y))) given by
=F(1,1)- g7 (s1- g (F(2)) + s2- g (F(2))) - F(y) F(x) = f(x)- <Z xi) : (96)
=F(1,1)- F(y) - F(2) _ _ o
o Existence and unique df (x) is straightforward from that of
and similarly, f(x) in Theorems 1 and 2.
F(zy,zy)
=F(1,1)- g " (s1- g (F(2y)) + 52 - g (F(2y)))
=F(1,1) F(zy) (91)
Comparing the above two equations, we have
F(zy) = F(z) - F(y). (92)
When y is a scalar, using the result in [17], equatidn](92)
implies thatlog F(z) = 1log(z) must be a logarithmic

function with an exponen}. We have
F(zy) = 23 F(y), (93)

which is a homogenous function of ordér. Therefore, its
normalizationf (x) in (@0) is a homogenous function of order
zero and satisfies Axiom 2.
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