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Abstract— We present a set of five axioms for fairness measures
in resource allocation. A family of fairness measures satisfying
the axioms is constructed. Well-known notions such asα-fairness,
Jain’s index, and entropy are shown to be special cases. Properties
of fairness measures satisfying the axioms are proven, including
Schur-concavity. Among the engineering implications is a gen-
eralized Jain’s index that tunes the resolution of the fairness
measure, a new understanding ofα-fair utility functions, and an
interpretation of “larger α is more fair”. We also construct an
alternative set of four axioms to capture efficiency objectives and
feasibility constraints.

I. QUANTIFYING FAIRNESS

Given a vectorx ∈ R
n
+, wherexi is the resource allocated

to useri, how fair is it?
One approach to quantify the degree of fairness associated

with x is through a fairness measure, which is a functionf
that mapsx into a real number. Various fairness measures have
been proposed throughout the years, e.g., in [1], [2], [3], [4],
[5], [6]. These range from simple ones, e.g., the ratio between
the smallest and the largest entries ofx, to more sophisticated
functions, e.g., Jain’s index and the entropy function. Some of
these fairness measures mapx to normalized ranges between
0 and 1, where 0 denotes the minimum fairness, 1 denotes the
maximum fairness, often corresponding to anx where allxi

are the same, and a larger value indicate more fairness. For
example, min-max ratio [1] is given by the maximum ratio
of any two user’s resource allocation, while Jain’s index [3]
computes a normalized square mean. How are these fairness
measure are related? Is one measures “better” than any other?
What other measures of fairness may be useful?

An alternative approach that has gained attention in the
networking research community since [7], [8] is the opti-
mization theoretic approach ofα-fairness and the associated
utility maximization. Given a set of feasible allocations,a
maximizer of theα-fair utility function satisfies the definition
of α-fairness. Two well-known examples are as follows: a
maximizer of the log utility function (α = 1) is proportionally
fair, and a maximizer of theα-fair utility function withα → ∞
is max-min fair. More recently,α-fair utility functions have
also been connected to divergence measures [9], and in [10],
[11], the parameterα was viewed as a fairness measure in the
sense that a fairer allocation is one that is the maximizer ofan
α-fair utility function with largerα — although the exact role
of α in trading-off fairness and throughput can sometimes be
surprising [12]. While it is often held thatα → ∞ is more
fair than α = 1, which is in turn more fair thanα = 0, it

remains unclear what it means to say thatα = 3 is more fair
thanα = 2.

Clearly, these two approaches for quantifying fairness are
different. On the one hand,α-fair utility functions are con-
tinuous and strictly increasing in each entry ofx, thus its
maximization results in Pareto optimal resource allocations.
On the other hand, scale-invariant fairness measures (onesthat
mapx to the same value as a normalizedx) are unaffected
by the magnitude ofx, and an allocation that does not use
all the resources can be as fair as one that does. Can the two
approaches be unified?

To address the above questions, we develop an axiomatic
approach to measure fairness. We discover that a set of
five axioms, each of which simple and intuitive, can lead
to a useful family of fairness measures. The axioms are:
the Axiom of Continuity, of Homogeneity, of Asymptotic
Saturation, of Irrelevance of Partition, and of Monotonicity.
Starting with these five axioms, we cangeneratea family of
fairness measures from a generator functiong: any increasing
and continuous function that leads to a well-defined “mean”
function (i.e., from any Kolmogorov-Nagumo function [16]).
For example, using power functions with exponentβ as the
generator function, we derive a unique family of fairness
measuresfβ that includes all of the following as special cases,
depending on the choice ofβ: Jain’s index, maximum or
minimum ratio, entropy, andα-fair utility, and reveals new
fairness measures corresponding to other ranges ofβ.

In particular, forβ ≤ 1, well-known fairness measures (e.g.,
Jain’s index and entropy) are special cases of our construction,
and we generalize Jain’s index to provide a flexible tradeoff
between “resolution” and “strictness” of the fairness measure.
For β ≥ 0, α-fair utility functions can be factorized as the
product of two components: our fairness measure withβ = α
and a function of the total throughput that captures the scale,
or efficiency, of x. Such a factorization also quantifies a
tradeoff between fairness and efficiency in achieving Pareto
dominance with the maximum possibleα, and facilitates a
clearer understanding of what it means to say that a largerα
is “more fair” for generalα ∈ [0,∞).

The axiomatic construction of fairness measures also illu-
minates their engineering implications. Any fairness measure
satisfying the five axioms can be proven to have many useful
properties, including Schur-concavity [14]. Consequently, any
operation balancing resources between two user always results
in a higher fairness value, extending previous results using
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majorization to characterize fairness [4], [13].

The development of an axiomatic theory of fairness takes
another turn towards the end of the paper. By removing the
Axiom of Homogeneity, we propose an alternative set of
four axioms, which allows efficiency of resource allocation
be jointly captured in the fairness measure. We show how
this alternative system connects with constrained optimization
based resource allocation, where magnitude matters due to
the feasibility constraint and an objective function that favors
efficiency.

The rest of this paper is organized as follows: The five
axioms for fairness measures are introduced and discussed in
Section II. Schur-concavity and other properties are proven for
any fairness measure satisfying the five axioms in Section III.
We construct a unique family of fairness measures in Sec-
tion IV and discuss its relation to previous work. Generalized
Jain’s index is revealed from this family of fairness measures
in Section V. Section VI provides a new understanding of
α-fairness by establishing a connection of our fairness measure
to the α-fair utility functions. In Section VII we propose a
second set of axioms that directly incorporates a notion of
efficiency. Concluding remarks are made in Section VIII. Due
to space limitations all proofs can be found in the online full
version [21], together with a discussion contrasting this paper
with the well-known axiomatic theories of Nash bargaining
solution and Shapley value in economics. Main notation is
shown in Table I.

Variable Meaning

x Resource allocation vector of lengthn

x↑ Sorted vector with smallest element being first

w(x) Sum of all elements ofx

f(·), fβ(·) Fairness measure (of parameterβ)

g(·) Generator function

si Positive weights for weighted mean

1n Vector of all ones of lengthn

x � y Vector x majorizes vectory

β Parameter for power functiong(y) = yβ

Uα(·) α-fair utility with parameterα

H(·) Shannon entropy function

J(·) Jain’s index

Φλ(·) Our utility for fairness and efficiency

TABLE I

TABLE OF MAIN NOTATION .

II. A XIOMS

Let x be a resource allocation vector withn non-negative
elements. A fairness measuref(x) is a mapping fromx to
a real number, i.e.,f : Rn

+ → R, for all integern ≥ 1. We

first introduce the following set of axioms aboutf , whose
explanations and implications are given next.

1) Axiom of Continuity.Fairness measuref(x) is continu-
ous onRn

+ for all integern ≥ 1.

2) Axiom of Homogeneity.Fairness measuref(x) is a
homogeneous function of degree 0:

f(x) = f(t · x), ∀ t > 0. (1)

Without loss of generality, for a single user, we take
|f(x1)| = 1 for all x1 > 0, i.e., fairness is a constant
for n = 1.

3) Axiom of Asymptotic Saturation.Fairness measuref(x)
of equal resource allocations eventually becomes inde-
pendent of the number of users:

lim
n→∞

f(1n+1)

f(1n)
= 1. (2)

4) Axiom of Irrelevance of Partition.If we partition the
elements ofx into two partsx =

[
x1,x2

]
, the fairness

index f(x1,x2) can be computed recursively (with
respect to a generator functiong(y)) and is independent
of the partition, i.e.,

f(x1,x2) = f
(
w(x1), w(x2)

)
·g−1

(
2∑

i=1

si · g
(
f(xi)

)

)

,

(3)
where w(x1) and w(x2) denote the sum of resource
vectorsx1 andx2 respectively, andg(y) is a continuous
and strictly monotonic function that can generate the
following functionh:

h = g−1

(
2∑

i=1

si · g
(
f(xi)

)

)

, (4)

with positive weights satisfying
∑

i si = 1 such thath
qualifies as ameanfunction [15] of {f(xi), ∀i}.

5) Axiom of Monotonicity.For n = 2 users, fairness
measuref(θ, 1 − θ) is monotonically increasing as
the absolute difference between the two elements (i.e.
|1− 2θ|) shrinks to zero.

Axioms 1–2 are very intuitive. The Axiom of Continuity
says that a slight change in resource allocation shows up
as a slight change in the fairness measure. The Axiom of
Homogeneity says that the fairness measure is independent of
the unit of measurement or absolute magnitude of the resource
allocation.

Due to the Axiom of of Homogeneity, for an optimization
formulation of resource allocation, the fairness measuref(x)
alone cannot be used as the objective function if efficiency
(which depends on magnitude

∑

i xi) is to be captured. In
Section VI, we will connect this fairness measure with an
efficiency measure inα-fair utility function. In Section VII,
we will remove the Axiom of of Homogeneity and propose an
alternative set of axioms, which make measuref(x) dependent
on both magnitude and distribution ofx, thus capturing
fairness and efficiency at the same time.
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Axiom 3 is a technical condition used to ensure unique-

ness of the fairness measure and invariance under change of
variable by fixing a scaling. For example, supposef(x) is a
fairness measure satisfying all axioms (with respect to a mean
functiong(y)) except Axiom 3. It is easy to see that by making
a logarithmic change of variables, fairness measurelog f(x)
also satisfies all axioms, respect to a mean functioneg(y), other
than Axiom 3.

Initial:
n

X

i=1

xi

ւ ց

Level 1:
k

X

i=1

xi

n
X

i=k+1

xi

ւ ց ւ ց

Level 2: x1, . . . , xk xk+1, . . . , xn

TABLE II

ILLUSTRATION OF THE HIERARCHICAL COMPUTATION OF FAIRNESS.

So far, none of Axioms 1–3 concerns theconstructionof
fairness measure as the number of users varies. A hierarchical
construction of fairness is defined in in Axiom 4, which
allows us to derive fairness measuref : R

n
+ → R of n

users recursively from lower dimensions,f : Rk
+ → R and

f : R
n−k
+ → R for integer 0 < k < n. The recursive

computation is illustrated by a two-level representation in
Table II. Letx1 = [x1, . . . , xk] andx2 = [xk+1, . . . , xn]. The
computation is performed as follows. At level 1, since the
total resource is divided into two chunks,w(x1) andw(x1),
fairness across the chunks obtained in this level is measured
by f

(
w(x1), w(x2)

)
. At level 2, the two chunks of resources

are further allocated tok andn− k users, achieving fairness
f(x1) andf(x2), respectively. To compute overall fairness of
the resource allocationx = [x1, x2, . . . , xn], we combine the
fairness obtained in the two levels using a multiplication in
equation (3).

As we consider a continuous and strictly increasing gen-
erator functiong(y), the function (4) is a mean value [15]
for {f(xi), ∀i}, which represents the average fairness of
individual parts ofx. The set of generator functions giving rise
to the same fairness measures may not unique, e.g., logarithm
and power functions. The simplest case is wheng is identity
and si = 1/n for all i. A natural choice of the weightsi in
(3) is to choose the value proportional to the sum resource
of vectorxi. More generally, we will consider the following
weights

si =
wρ(xi)

∑

j w
ρ(xj)

, ∀i (5)

whereρ ≥ 0 is an arbitrary exponent. Whenρ = 0, weights
in (5) are equal and lead to an un-weighted mean in Axiom 4.
As shown in Section 4, the parameterρ can be chosen such
that the hierarchical computation is independent of partition

as stated in Axiom 4. As a special case of Axiom 4, if
we denote the resource allocation at level 1 by a vector
z = [w(x1), w(x2)] and if the resource allocation at level
2 are equalx1 = x2 = y, it is straight forward to verify that
Axiom 4 implies

f(y ⊗ z) = f(y) · f(z), (6)

where ⊗ is the direct product of two vectors. As we will
show in Section VII, an extension of equation (6) gives an
alternative way of stating Axiom 4 and leads to a set of more
general axioms on fairness.

Axiom 5 is the only axiom that actually involves avalue
statement on fairness: when there are just two users, more
equalized is more fair. This axiom specifies an increasing
direction of fairness and ensures uniqueness off(x). Consider
the allocation of a unit resource to two users asx = [θ, 1−θ].
It is intuitive that fairness strictly improves asθ → 1

2 , since the
difference between the two resource shares tends to be smaller.
This intuition also holds for all existing fairness measures, e.g.,
various, spread, deviation, max-min ratio, Jain’s index,α-fair
utility, and entropy.

By definition, axioms are true, as long as they are consistent
and non-redundant. However, not all sets of axioms are useful:
unifying known notions, discovering new measures and prop-
erties, and providing important insights. We start showingthe
use of the above five axioms with the following existence (the
axioms are consistent) and uniqueness results. All proofs can
be found at [21].

Theorem 1:(Existence.) There exists a fairness measure
f(x) satisfying Axioms 1–5. Furthermore, the fairness
achieved by equal-resource allocations1n is independent of
the choice ofg(y), i.e.,

f(1n) = nr · f(1), (7)

wherer is a constant exponent.

Theorem 2:(Uniqueness.) Given a generator functiong, the
resultingf(x) satisfying Axioms 1–5 is unique.

III. PROPERTIES OFFAIRNESSMEASURES

We first prove an intuitive corollary from the five axioms
that will be useful for the rest of the presentation.

Corollary 1: (Symmetry.)A fairness measure satisfying Ax-
ioms 1–5 is symmetric overx:

f(x1, x2, . . . , xn) = f(xi1 , xi2 , . . . , xin), (8)

where i1, . . . , in is an arbitrary permutation of indices
1, . . . , n.

The symmetry property shows that the fairness measure
f(x) satisfying Axioms 1–5 is irrelevant of labeling of users.

We now make a direct connection of our axiomatic theory
to a line of work on measuring statistical dispersion by
vector majorization, including the popular Gini Coefficient
[20]. Majorization [14] is a partial order over vectors to study
whether the elements of vectorx are less spread out than the
elements of vectory. We say thatx is majorized byy, and
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we write x � y, if

∑n
i=1 xi =

∑n
i=1 yi (always satisfied due

to Axiom 2) and

d∑

i=1

x↑
i ≤

d∑

i=1

y↑i , for d = 1, . . . , n, (9)

wherex↑
i and y↑i are theith elements ofx↑ and y↑, sorted

in ascending order. According to this definition, among the
vectors with the same sum of elements, one with the equal
elements is the most majorizing vector.

Intuitively, x � y can be interpreted asy being a fairer
allocation thanx. It is a classical result [14] thatx is majorized
by y, if and only if, from x we can producey by a finite
sequence of Robin Hood operations.1

Majorization alone cannot be used to define a fairness
measure since it is a partial order and fails to compare vectors
in certain cases. Still, if resource allocationx is majorized
by y, it is desirable to have a fairness measuref such that
f(x) ≤ f(y). A function satisfying this property is known
as Schur-concave. In statistics and economics, many measures
of statistical dispersion are known to be Schur-concave, e.g.
Gini Coefficient and Robin Hood Ratio [20], and we show our
fairness measure also is Schur-concave:

Theorem 3:(Schur-concavity.) A fairness measure satisfy-
ing Axioms 1–5 is Schur-concave:

f(x) ≤ f(y), if x � y. (10)

Next we present several properties of fairness measures
satisfying the axioms, whose proofs rely on Schur-concavity.

Corollary 2: (Equal-resource allocation is fairest.)A fair-
ness measuref(x) satisfying Axioms 1–5 is maximized by
equal-resource allocations, i.e.,

f(1n) = max
x∈Rn

f(x). (11)

Corollary 3: (Collecting a fixed-tax is unfair.)If a fixed
amountc > 0 of the resource is subtracted from each user
(i.e. xi − c for all i), the resulting fairness measure decreases

f(x− c · 1n) ≤ f(x), ∀c > 0, (12)

wherec > 0 must be small enough such that all elements of
x− c · 1n are positive.

Corollary 4: (Inactive user achieves no fairness.)When a
fairness measuref(x) satisfying Axioms 1–5 is generated by
by ρ > 0 in 5, Removing users with zero resources does not
change fairness:

f(x,0n) = f(x), ∀n ≥ 1. (13)

1In a Robin Hood operation, we replace two elementsxi and xj < xi

with xi − ǫ and xj + ǫ, respectively, for someǫ ∈ (0, xi − xj). In other
words, we take from the rich (xi), and give to the poor (xj ).

IV. A FAMILY OF FAIRNESSMEASURES

A. Constructing Fairness Measures

For any functiong(y) satisfying the condition in Axiom 4,
we can generate fromg(y) a uniquef(x). Such anf(x) is a
well-defined fairness measure if it also satisfies Axioms 1–5.
We then refer to the correspondingg(y) as a generator of the
fairness measure.

Definition 1: Functiong(y) is a generator if there exists a
f(x) satisfying Axioms 1–5 with respect tog(y).

We note, however, that different generator functions may
generate the same fairness measure. Although it is difficult
to find the entire set of generatorsg(y), we have found that
many forms ofg(y) functions (e.g., logarithm, polynomial,
exponential, and their combinations) result in fairness mea-
sures equivalent to those generated by the family of power
functions. It remains to be determined if all fairness measures
satisfying Axioms 1–5 can be generated by power functions.

In this section, we consider power functions,g(y) = |y|β,
parameterized byβ and derive the resulting family of fairness
measures, which indeed satisfy all the axioms. The absolute
value ensures thatg(y) is non-increasing overR+ for β ≥ 0,
and overR− for β < 0. From here on, we replace Equation
(3) in Axiom 4 by

f(x1,x2) = f
(
w(x1), w(x2)

)
·
(

2∑

i=1

si · fβ(xi)

) 1
β

,

where the weightssi are given by (5).

Theorem 4:(Fairness measures generated by power func-
tions) For power mean (g(y) = |y|β with parameterβ),
Axioms 1–5 define a unique family of fairness measures as
follows

f(x) =





n∑

i=1

(

xi
∑

j xj

)1−βr




1
β

, for βr ≤ 1 (14)

f(x) = −





n∑

i=1

(

xi
∑

j xj

)1−βr




1
β

, for βr ≥ 1, (15)

where r = 1−ρ
β

is a constant exponent, which determines
the growth rate of maximum fairness as population sizen
increases, i.e.

f(1n) = nr · f(1). (16)

For different parameterβ, the fairness measures derived
above are equivalent up to a constant exponentr:

fβ,r(x) = [fβr,1]
r (x), (17)

if we denotefβ,r as the fairness measure with parametersβ
andr. According to Theorem 1,r determines the growth rate
of maximum fairness as population sizen increases. Without
loss of generality, we chooser = 1 such that the maximum
average fairness per user is a constantf(1n)

n
= f(1). From

a user’s perspective, her perception of maximum fairness is
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independent of the population size of the system. From now
on, we will use a unified representation of the constructed
fairness measurers:

fβ(x) = sign(1− β) ·





n∑

i=1

(

xi
∑

j xj

)1−β




1
β

, (18)

where sign(·) is the sign function.
We summarize the special cases in Table III, whereβ

sweeps from−∞ to∞ andH(·) denotes the entropy function.
For some values ofβ, the corresponding mean functionh
has a standard name, and for some, known approaches to
measure fairness are recovered, while forβ ∈ (0,−1) and
β ∈ (−1,−∞), new fairness measures are discovered. For a
fixed resource allocation vectorx = [1, 2, 5], we plot fairness
f(x) for different values ofβ in Figure 1.

Value of β Our Fairness Measure Known Names

β → ∞ −maxi
n

P

i xi

xi

o

Max ratio

β ∈ (1,∞) −
h

(1− β)Uα=β

“

x

w(x)

”i

1
β

α-fair utility

β ∈ (0, 1)
h

(1 − β)Uα=β

“

x

w(x)

”i

1
β

α-fair utility

β → 0 e
H

“

x

w(x)

”

Entropy

β ∈ (0,−1)

»

Pn
i=1

“

xi
w(x)

”1−βr
–

1
β

No name

β = −1
(
P

i xi)
2

P

i xi
2 = n · J(x) Jain’s index

β ∈ (−1,−∞)

»

Pn
i=1

“

xi
w(x)

”1−βr
–

1
β

No name

β → −∞ mini
n

P

i xi

xi

o

Min ratio

TABLE III

PREVIOUS RESULTS ARE RECOVERED AS SPECIAL CASES OF OUR

AXIOMATIC CONSTRUCTION. FORβ ∈ (0,−1) AND β ∈ (−1,−∞), NEW

FAIRNESS MEASURES OFGENERALIZED JAIN ’ S INDEX ARE REVEALED.

B. Engineering Implications

The fairness measuresfβ in (18) corresponding to the gen-
erator functiong(y) = |y|β satisfies a number of properties,
which give interesting engineering implications to our fairness
measure.

Corollary 5: (Number of inactive users.)The fairness mea-
sures in (18) also count the number of inactive users in the
system. Whenfβ < 0, f(x) → −∞ if any user is assigned
zero resource. Whenf > 0,

Number of users with zero resource≤ n− f(x),(19)

Maximum resource to a user≥
∑

i xi

f(x)
. (20)

Corollary 6: (Threshold level of resource.)If we increase
resource allocation to useri by a small amountǫ, while not

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

β

F
ai

rn
es

s 
f(

x)

β >0
Utility

β <0
Index

Fig. 1. Plot of fairnessfβ(x) for different values ofβ: β > 0 recovers the
utility-based approach, andβ < 0 recovers the index-based approach.

changing other users’ allocation, the fairness measures in(18)

increases if and only ifxi < x̄ =

(
P

j xj
P

j x
1−β
j

) 1
β

and0 < ǫ <

x̄− xi.

Corollary 7: (Lower bound under box-constraints.)If a
resource allocationx = [x1, x2, . . . , xn] satisfies box-
constraints, i.e.,xmin ≤ xi ≤ xmax for all i, the fairness
measures in (18) is lower bounded by a constant that only
depends onβ, xmin, xmax:

f(x) ≥ sign(1− β) ·
(
µΓ1−β + 1− µ

) 1
β

(µΓ + 1− µ)
1
β
−1

, (21)

whereΓ = xmax

xmin
andµ = Γ−Γ1−β−β(Γ−1)

β(Γ−1)(Γ1−β−1)
. The bound is tight

when aµ fraction of users havexi = xmax and the remaining
1− µ fraction of users havexi = xmin.

These results provide intuition on how the family of fairness
measures may be interpreted and applied. Through Corol-
lary 5, by specifying a level of fairness, we can limit the
number of starved users in a system. Corollary 6 implies that
x̄ serves as a threshold for identifying “poor” and “rich” users,
since assigning an additionalǫ amount of resource to useri
improves fairness ifxi < x̄, and reduces fairness ifxi > x̄.
Additionally, this provides intuition into threshold methods for
allocating resources serially.

V. A PPLICATION 1: GENERALIZING JAIN ’ S INDEX

Whenβ = −1 (i.e., harmonic mean is used in Axiom 4), we
get a scalar multiple of the widely used Jain’s indexJ(x) =
1
n
f(x).
Upon inspection of (18) and the specific cases noted in

Table III, we note that any(0,−∞) ∪ β ∈ (0, 1) the range
of fairness measurefβ(x) lies between1 andn. Equivalently,
we can say that the fairnessper userresides in the interval
[
1
n
, 1
]
. When the limit asβ → 0 is considered, the resulting

fairness measure can also be shown to have this property.
Becausefβ(x) for β < 1 has this characteristic, we refer
to this subclass of our family of fairness measures as the
generalization of Jain’s index.
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Definition 2: Jβ(x) = 1

n
fβ(x) is a generalized Jain’s index

parameterized byβ ≤ 1.

The common properties of our fairness index proven in
Section III and IV carry over to this generalized Jain’s index.
For β = −1, J−1(x) reduces to the original Jain’s index.

0 0.1 0.2 0.3 0.4 0.5
1

1.5
2

β=+0.5

f

0 0.1 0.2 0.3 0.4 0.5
1

1.5
2

β=−1.0

f

0 0.1 0.2 0.3 0.4 0.5
1

1.5
2

β=−2.5

f

0 0.1 0.2 0.3 0.4 0.5
1

1.5
2

β=−4.0

f

Fig. 2. Plot of the fairness measurefβ(θ, 1−θ) againstθ, for resource allo-
cationx = [θ,1− θ] and different choices ofβ = {−4.0,−2.5,−1.0, 0.5}.
It can be observed thatfβ(θ, 1− θ) is monotonic asβ → 1. Further, smaller
values of|1−β| results in a steeper incline over smallθ, i.e., the low-fairness
region.

Theorem 5:(Monotonicity with respect toβ.) The fairness
measures in (18) is negative and decreasing forβ ∈ (1,∞),
and positive and increasing forβ ∈ (−∞, 1):

∂fβ(x)

∂β
≤ 0 for β ∈ (1,∞), (22)

∂fβ(x)

∂β
≥ 0 for β ∈ (−∞, 1). (23)

The monotonicity of fairness measuresfβ(x) on β ∈
(−∞, 1) gives an engineering interpretation ofβ. Figure 2
plots fairnessfβ(θ, 1−θ) for resource allocationx = [θ, 1−θ]
and different choices ofβ = {−4.0,−2.5,−1.0, 0.5}. The ver-
tical bars in the figure represent the level sets of functionf , for
valuesfβ(θi, 1−θi) =

i
10 (fmax − fmin) , i = 1, 2, . . . , 9. For

fixed resource allocations, sincef increases asβ approaches
1, the level sets off are pushed toward the region with
small θ (i.e., the low-fairness region), resulting in a steeper
incline in the region. In the extreme case ofβ = 1, all
level set boundaries align with the y-axis in the plot. The
fairness measuref point-wise converges to step functions
fβ(θ, 1 − θ) = 2. Therefore, parameterβ characterizes the
shape of the fairness measures: a smaller value of|1−β| (i.e.,
β closer to 1) causes the level sets to be condensed in the
low-fairness region.

Since the fairness measure must still evaluate to a number
between 1 andn here, the monotonicty and resulting shift in
granularity of the fairness measure associated with varying β
suggests differences in evaluating unfairness. At one extreme,
β → 1 any solution where no user receives an allocation of
zero is fairest. On the other hand, asβ → −∞ the relationship
betweenfβ(x) and θ becomes linear, suggesting a stricter

concept of fairness — for the same allocation, asβ → −∞
more fairness is lost. Therefore, the parameterβ can tune the
generalization of Jain’s indexf for different tradeoffs between
the resolution and the strictness of fairness measure.

VI. A PPLICATION 2: UNDERSTANDINGα-FAIRNESS

Due to Axiom 2, the Axiom of Homogeneity, our fairness
measures only express desirability over the(n−1)-dimension
subspace orthogonal to the1n vector. Hence, they do not
capture any notion of efficiency of an allocation.

We focus in this section on the widely appliedα-fair utility
function:

∑

i

Uα(xi), where Uα(x) =

{
x1−α

1−α
α ≥ 0, α 6= 1

log(x) α = 1
.

(24)
We first show that theα-fairness network utility function can
be factored into two components: one corresponding to the
family of fairness measures we constructed and one corre-
sponding to efficiency. We then demonstrate that, for a fixedα,
the factorization can be viewed as a single point on the optimal
tradeoff curve between fairness and efficiency. Furthermore,
this particular point is one where maximum emphasis is
placed on fairness while maintaining Pareto optimality of the
allocation. This allows us to quantitatively interpret thebelief
of “larger α is more fair” across allα ≥ 0.

A. Factorization ofα-fair Utility Function

Re-arranging the terms of the equation in Table III, we have

Uα=β(x) =
1

1− β
|fβ(x)|β

(
∑

i

xi

)1−β

= |fβ(x)|β · Uβ

(
∑

i

xi

)

, (25)

whereUβ (
∑

i xi) is the one-dimensional version of theα-fair
utility function with α = β. For β → 1, it is easy to show
that our fairness measurefβ(x), multiplied by a function of
throughput

∑

i xi, equalsα-fair utility function with α = 1.
Similarly, for β → ∞, it equalsα-fair utility function as
α → ∞. Therefore, Equation (25) also holds for proportional
fairness atα = 1 and max-min fairness atα → ∞.

Equation (25) demonstrates that theα-fair utility functions
can be factorized as the product of two components: a fairness
measure,|fβ(x)|β, and an efficiency measure,Uβ (

∑

i xi).
The fairness measure|fβ(x)|β only depends on the normalized
distribution,x/(

∑

i xi), of resources (due to Axiom 2), while
the efficiency measure is a function of the sum resource

∑

i xi.
The factorization ofα-fair utility functions is illustrated in

Table IV and decouples the two components to tackle issues
such as fairness-efficiency tradeoff and feasibility ofx under
a given constraint set.For example, it helps to explain the
counter-intuitive throughput behavior in [12]: an allocation
vector that maximizes theα-fair utility with a largerα may not
be less efficient, because theα-fair utility incorporates both
fairness and efficiency at the same time.
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Allocation: x

ւ ց

Factorize: x/
P

i xi

P

i xi

↓ ↓

Measure: fβ
`

x/
P

i xi

´

Uβ

`

P

i xi

´

ց ւ

Combine: Uα=β(x)

TABLE IV

ILLUSTRATION OF THE FACTORIZATION OF THEα-FAIR UTILITY

FUNCTIONS INTO A FAIRNESS COMPONENT OF THE NORMALIZED

RESOURCE DISTRIBUTION AND A EFFICIENCY COMPONENT OF THE SUM

RESOURCE.

B. Pareto Optimality in Fairness-Efficiency Tradeoffs

Although Corollary 2 states equal allocation is fairest, an
α-fair allocation may not have an equal distribution. This is
because the additional efficiency component in (25) can skew
the optimizer (i.e., the resource allocation resulting fromα-fair
utility maximization) away from an equal distribution. For
this to happen there must exist an allocation that is feasible
(within the constraint set of realizable allocations) witha
large enough gain in efficiency over all equal distribution
allocations. Hence, the magnitude of this skewing depends on
the fairness parameter (α = β), the constraint set ofx, and
the relative importance of fairness and efficiency.

Guided by the product form of (25), we consider a scalar-
ization of the maximization of the two objectives: fairnessand
efficiency:

Φλ(x) = λℓ (fβ (x)) + ℓ

(
∑

i

xi

)

, (26)

whereβ ∈ (0, 1) ∪ (1,∞) is fixed, λ ∈ [0,∞) absorbs the
exponentβ in the fairness component of (25) and is a weight
specifying the relative emphasis placed on the fairness, and

ℓ(y) = sign(y) log(|y|). (27)

The use of the log function later recovers the product in the
factorization of (25) from the sum in the scalarized (26).

An allocation vectorx is said to be Pareto dominated byy if
xi ≤ yi for all i andxi < yi for at least somei. An allocation
is called Pareto optimal if it is not Pareto dominated by any
other feasible allocation. If the relative emphasis on efficiency
is sufficiently high, Pareto optimality of the solution can be
maintained. To preserve Pareto optimality, we require thatif
y Pareto dominatesx, thenΦλ(y) > Φλ(x).

Theorem 6: Preserving Pareto optimality.The necessary
and sufficient condition onλ such thatΦλ(y) > Φλ(x) if
y Pareto dominatesx is

λ ≤
∣
∣
∣
∣

β

1− β

∣
∣
∣
∣
. (28)

Consider the set of maximizers of (26) forλ in the range
in Theorem 6:

P =

{

x : x = argmax
x∈R

Φλ(x), ∀λ ≤
∣
∣
∣
∣

β

1− β

∣
∣
∣
∣

}

. (29)

When weightλ = 0, the corresponding points inP is most
efficient. When weightλ =

∣
∣
∣

β
1−β

∣
∣
∣, it can be shown that the

factorization in (25) is equivalent to (26). Therefore,α-fairness
corresponds to the solution of an optimization that places the
maximum emphasis on the fairness measure parameterized by
β = α while preserving Pareto optimality. Allocations inP
corresponding to other values ofλ achieve a tradeoff between
fairness and efficiency, while Pareto optimality is preserved.

x2

x1

A

B

Fair

1

2

4

(a)

2 2.5 3 3.5 4

−10
1

∑

i xi

f
β
(x

)

A

λ =
∣

∣

∣

β

1−β

∣

∣

∣

B

β = 3

(b)

Fig. 3. (a) Feasible region (i.e., the constraint set of the utility maximization
problem) where overemphasis of fairness violates Pareto dominance, and (b)
its fairness-efficiency tradeoff forβ = 3. Region A corresponds to Pareto
optimal solutions. Region B is when the condition of Theorem6 is violated,
and solutions are more fair, but no longer Pareto optimal.

Figure 3(b) illustrates an optimal fairness-efficiency tradeoff

curve

{
[
fβ(x),Σixi

]
, ∀x = argmaxx∈R Φλ(x), ∀λ

}

corre-

sponding to the constraint set shown in Figure 3(a). The set of
optimizersP in (29), which is obtained by maximizing Pareto
optimal utilities (26), is shown by curveA in Figure 3(b).

C. Why Largerα is More Fair

In the previous subsection we demonstrated the factorization
(25) is an extreme point on the tradeoff curve between fairness
and efficiency for fixedβ = α. What happens whenα becomes
bigger?

We denote by▽x the gradient operator with respect to the
vector x. For a differentiable function, we use the standard
inner product (〈x,y〉 =

∑

i xiyi) between the gradient of
the function and a normalized vector to denote the directional
derivative of the function.

Theorem 7: (Monotonicity of fairness-efficiency reward ra-
tio.) Let allocationx be given. Defineη = 1

n
1n − x

P

xi
as

the vector pointing from the allocation to the nearest fairness
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maximizing solution. Then the fairness-efficiency reward ratio:

〈

▽xUα=β(x),
η

‖η‖

〉

〈

▽xUα=β(x),
1n

‖1n‖

〉 , (30)

is non-decreasing withα, i.e. higherα gives a greater relative
reward for fairer solutions.

The the choice of directionη is a direct result of Axiom 2
and Corollary 2, which together imply thatη is the direction
that most increases fairness and is orthogonal to increasesin
efficiency.

An increase in either fairness or efficiency is a “desirable”
outcome. The choice ofα dictates exactly how desirable
one objective is relative to the other (for a fixed allocation).
Theorem 7 states that, with a largerα, there is a larger
component of the utility function gradient in the directionof
fairer solutions, relative to the component in the direction of
more efficiency. Notice, however, that comparison must be
in terms of the ratio between these two gradient components
rather than the magnitude of the gradient, and both fairness
and efficiency may increase simultaneously.

This result provides a justification for the belief that larger
α is “more fair”, not just forα ∈ {0, 1,∞}, but for anyα ∈
[0,∞). Figure 4 depicts how this ratio increases withα = β
for some examples allocations.
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, 1
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100
, 51

100
]

Fig. 4. Monotonic behavior of the ratio (30) as a function ofα. Three fixed
allocations are considered, and solutions that are alreadymore fair have a
lower ratio.

VII. A LTERNATIVE AXIOMS

Given a set of useful axioms, it is important to ask if
other useful axiomatic systems are possible. By removing or
modifying some of the five axioms here, for example, Axiom 2
that decouples the concern on efficiency from fairness, what
kind of fairness measures will result? Can an alternative set
of axioms lead to the construction of fairness measures that
do not automatically decouple from the notions of efficiency
and feasibility of resource allocation?

In this section, we propose a set of alternative axioms, which
includes Axioms 1–5 as a special case. LetF : Rn

+ → R be
a general fairness measure satisfying four axioms as follows.

1′) Axiom of Continuity.Fairness measureF (x) is contin-
uous onRn

+ for all integern ≥ 1.

2′) Axiom of Asymptotic Saturation.Fairness measuref(x)
of equal resource allocations eventually becomes inde-
pendent of the number of users:

lim
n→∞

F (1n+1)

F (1n)
= 1. (31)

3′) Axiom of Irrelevance of Splitting.For an allocation
vector x = [x1, x2], we split each elementxi into
multiple elements by a direct productxiy

i, whereyi

is a non-negative vector. If the splitting vectors have
equal weightsw(y1) = w(y2), the fairness of the new
allocation vector[x1y

1, x2y
2] is given by

F (x1y
1, x2y

2) = F (x) · g−1

(
2∑

i=1

si · g
(
F (yi)

)

)

,

(32)
where

∑

i si = 1 are positive weights andg(y) is a
continuous and strictly increasing function.

4′) Axiom of Monotonicity.For n = 2 users, fairness
measureF (x1, x2) increases as ratiox1/x2 goes to 1,
when sum resourcex1 + x2 is fixed.

Axioms 1′ and 2′ remain the same as Axioms 1 and 3
before. Axiom 4′ is equivalent to Axiom 5 with the additional
qualification that the sum-resource does not change. This
qualification was previously unnecessary due to Axiom 2 —
f(x) does not vary with the amount of total resources —
however, is now required in the new set of axioms. Axiom 3′

is used to recursively construct fairness measureF (x) from
lower dimensions and is similar to the Axiom 4. The vector
[x1y

1, x2y
2] can be viewed as a generalized direct product of

vectorx with two different vectorsy1 andy2, which split the
resource of each element ofx to multiple users. Ify1 = y2,
this splitting reduces to a direct product.

Since the Axiom of Homogeneity is removed, fairness
measureF (x) depends on the absolute magnitude of resource
vector x. Using Axiom 3′, we can prove thatF (x) is a
homogeneous function of real degree. Furthermore, the two
sets of axioms are equivalent, if the order of homogeneity
is zero. This means that the new axiomatic system is more
general than the original one.

Theorem 8:(Existence and Uniqueness.) For each genera-
tor g(y), there exists a unique fairness measureF (x) satisfying
Axioms 1′– 4′. We have,

F (x) = f(x) ·
(
∑

i

xi

) 1
λ

(33)

where 1
λ

∈ R is the degree of homogeneity andf(x) is a
fairness measure satisfying Axioms 1–5 with respect to the
same generatorg(y).
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While it is easy to verify that some properties, like that of

symmetry, in Section III also hold for fairness measureF (x),
some properties of fairness measures satisfying Axioms 1–5
are lost in the generalization. For instance, we can no longer
say that equal allocations are best.

When power generatorsg(y) = |y|β are considered, from
Axioms 1′– 4′ we can derive fairness measureFβ,λ(x), which
is parameterized by bothλ andβ,

Fβ,λ(x) = fβ(x) ·
(
∑

i

xi

) 1
λ

. (34)

This unifies our results in Sections IV-VI: Generalized Jain’s
index is a special case ofFβ,λ(x) for 1/λ = 0 and β < 1;
fairness measurefβ(x) is a subclass ofFβ,λ(x) for λ = 0;
and α-utility is obtained for1/λ = β/(1 − β) and β > 0
by comparing (34) and (26). The degree of homogeneity1/λ
determines howFβ,λ(x) scales as throughput increases. The
decomposition of fairness and efficiency in Section VI is now
an immediate consequence from Axioms 1′– 4′.

There is a useful connection with the characterization of
α-fair utility function in the last section. The absolute value
|λ| is equivalent to the parameter used for defining the utility
function (26) in Section VI.B. From Theorem 6, we can
conclude that fairness measureFβ,λ(x) is Pareto optimal if
and only if

1

|λ| ≥
∣
∣
∣
∣

β

1− β

∣
∣
∣
∣
. (35)

For everyβ, there is a minimum degree of homogeneity such
that Pareto optimality can be achieved. When inequality (35)
is not satisfied,Fβ,λ(x) loses Pareto optimality and produces
less throughput-efficient solutions if it is used as an objective
function in utility optimization. Fairness measures with small
degree of homogeneity1/λ are more suitable for computing
index values of fairness.

The degree of homogeneity of a fairness measure satisfying
Axioms 1′– 4′ parameterizes a tradeoff between the concept
of fairness and efficiency. Moreover, when power functions
are used as generating functions, the degree of homogeneity
is equivalent to1

λ
in (26). Therefore, the intuition behind our

result on a maximum|λ| (minimum degree of homogeneity)
to ensure Pareto optimality can be extended to the general
optimization-theoretic approach to fairness, i.e. for a fairness
measureF generated from anyg, there is a minimum degree of
homogeneity1

λ
to produce a Pareto optimal solution. Just like

our first set of axioms generalized Jain’s index and revealed
new fairness measures with desirable properties, the second
set of axioms offers a rich family of objective functions.

To summarize, in removing Axiom 2 and adapting the set
of axioms accordingly, we have shown that Axioms 1′– 4′

include Axioms 1–5 as special cases. The resulting measures
are now affected by notions of both efficiency and fairness,
with the balance between the two governed by the degree of
homogeneity1

λ
.

VIII. R ELATED AXIOMATIC THEORIES

Axiomatic theories often form a stable foundation for wide
applications. Famous examples include that of the first order
logic and that of Nash equilibrium. In network economics, two
prominent axiomatic theories have been used to study network
resource allocation. The Nash bargaining solution [18] —
of which proportional fairness is a generalization and which
models the bartering of persons with an initial allotment of
goods — is based on a system of four axioms. In cooperative
game theory in the Shapley value solution concept [19]. Given
the setup of a coalitional game, four axioms2 uniquely define
the Shapley value as the solution concept.

In both of these constructions, effiency was a fundamental
axiom in defining the solution. In fact, both these approaches
to cooperative allocation hold Pareto optimality as an axiom
and thus are more akin to the optimization theoretic approach
to fairness.

The first family of fairness measures,f , is confined to
homogeneous functions of degree zero, and the resulting
measures are an integral part of theα-fairness utility function.
One might suspect that it is possible to extend our axiomatic
structure to the optimization theoretic fairness approachby re-
laxing the Axiom of Homogeneity to homogeneous functions
of arbitrary degree. This is indeed the case as developed by
the previous section.

IX. CONCLUDING REMARKS

An axiomatic approach to the fundamental concept of
fairness illuminates many issues in network resource allocation
research. This paper is far from the end of axiomatictheories
of fairness. One way to re-examine axioms is to refute their
corollaries in the context of network resource allocation.
Perhaps allxi being the same should not be a maximizer of
fairness measure, and a fairness measure need not be Schur-
concave. Instead, making somexi bigger should be called
more fair if the resultingx is bigger in all coordinates, i.e.,
those contributing to the overall efficiency should “fairly”
receive more resources. Perhaps the fairness measure should
be a function dependent on the feasible region of allocations.
These possibilities mean that alternative sets of axioms of
fairness, ones with a value statement different from that in
Axiom 5 or Axiom 4′ in this paper, deserve further exploration.

We have also assumed that resource is infinitesimally divis-
ible and has no ’time value’, that the way resource allocation
is decided (e.g., by a central controller or autonomously) is
irrelevant, and that the actual allocation can be transparently
verified. None of these assumptions is true. Removing them
will further enrich axiomatic theories of fairness in resource
allocation.
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APPENDIX

A. Proof of Theorems 1 and 2

We first show that fairness achieved by equal-resource
allocations1n is independent of the choice ofg(y). Without
loss of generality, we assume thatf(1) = 1.

Lemma 1:To satisfy Axioms 1–5, fairness achieved by
equal-resource allocations1n is given by

f(1n) = nr · f(1), ∀ n ≥ 1, (36)

wherer is a constant exponent.

Proof: Applying Axiom 4 to resource allocation vector
1mn with integersm,n ≥ 1, we have

f(1mn) = f(1m, . . . ,1m
︸ ︷︷ ︸

n segments

)

= f(m, . . . ,m
︸ ︷︷ ︸

n numbers

) · g−1

(
n∑

i=1

si · g (f(1m))

)

= f(1n) · g−1 (g (f(1m)))

= f(1n) · f(1m) (37)

where the second step follows from the Axiom 2 by letting
t = 1/m and the fact that

∑

i si = 1. Equation (37) shows that
log f(1mn) is an additive number-theoretical function [17],
i.e.,

log f(1mn) = log f(1n) + log f(1m) (38)

Further, from Axiom 3, we derive

lim
n→∞

[log f(1n+1)− log f(1n)] = 0 (39)

Using the result in [17], equation (38) and (39) implies that
log f(1n) must be a logarithmic function. We have

log f(1n) = r logn, (40)

wherer is a real constant. This is exactly (36) after taking an
exponential on both sides.

Now, we use (36) to derive an expression for the fairness
measure deductively, starting fromn = 2 users. Letx1 and
x2 be two rational numbers, such thatx1 = a1

b1
andx2 = a2

b2
for some positive integersa1, b1, a2, b2. Using Axiom 4 and
Lemma 1, we have

(a1b2 + a2b1)
r

= f(1a1b2+a2b1)

= f(1a1b2 ,1a2b1)

= f(a1b2, a2b1) · g−1 (s1g (f(1a1b2)) + s2g (f(1a2b1)))

= f(a1b2, a2b1) · g−1 (s1g (a
r
1b

r
2) + s2g (a

r
2b

r
1)) (41)

Applying Axiom 2 to (41) witht = b1b2, we have

f(x1, x2) = f

(
a1
b1

,
a2
b2

)

= f(a1b2, a2b1)

=
(a1b2 + a2b1)

r

g−1 (s1g (ar1b
r
2) + s2g (ar2b

r
1))

(42)

For a given functiong(y), equation (42) defines fairness
measuref(x1, x2) for two users for rational vector[x1, x2].
When vector[x1, x2] is real, by Axiom 1, fairness measure
f(x1, x2) is uniquely determined by a sequence of rational
allocation vectors, whose limit is[x1, x2]. Therefore, equation
(42) uniquely defines fairness measuref(x1, x2) for arbitrary
real numbersx1, x2.

Suppose that we have an expression for the fairness
measure f(x1, . . . , xk) with k ≥ 2 users. To derive

http://www.princeton.edu/~tlan/fairness.pdf
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f(x1, . . . , xk, xk+1) for k+1 users, we use Axiom 4 to obtain
the following:

f(x1, . . . , xk, xk+1)

= f(

k∑

i=1

xi, xk+1) · g−1 (s1g (f(x1, . . . , xk)) + s2g (f(xk+1)))

= f(

k∑

i=1

xi, xk+1) · g−1 (s1g (f(x1, . . . , xk)) + s2g (1)) (43)

By induction, equations (42) and (43) together defines fairness
measure for all integern ≥ 1, when the mean functiong(y) is
given. If the resulting fairness measure satisfies Axioms 1–5,
it must be unique according to equations (42) and (43). This
proves the uniqueness in Theorem 2.

To prove the existence in Theorem 1, we show that there
exists a mean functiong(y), such that the resulting fairness
index in (42) and (43) satisfies Axioms 1–5. We chooseg(y) =
log(y) and proportional weights (i.e.ρ = 1) in (5). From (42),
we derive

f(x1, x2) =
(a1b2 + a2b1)

r

g−1 (s1g (ar1b
r
2) + s2g (ar2b

r
1))

=
(a1b2 + a2b1)

r

(a1b2)rs1(a2b1)rs2

=
(x1 + x2)

r

x
rx1

x1+x2
1 x

rx2
x1+x2
2

. (44)

Let uk =
∑k

i=1 xi be the sum of the firstk elements in vector
[x1, . . . , xk, xk+1]. Then, using (43) inductively, we obtain

f(x1, . . . , xk, xk+1)

= f(
k∑

i=1

xi, xk+1) · g−1 (s1g (f(x1, . . . , xk)) + s2g (1))

= f(

k∑

i=1

xi, xk+1) · f s1(x1, . . . , xk)

=
(uk + xk+1)

r

(uk)
ruk

uk+xk+1 x

rxk+1
uk+xk+1

k+1

·




(uk)

r

∏k
i=1 x

rxi
uk

i





uk
uk+xk+1

=
(uk + xk+1)

r

x

xk+1
uk+xk+1

k+1 ·∏k
i=1 x

rxi
uk+xk+1

i

(45)

By rearranging the terms in (45), we obtain a fairness measure
generated by logarithmic functiong(y) = log(y) and propor-
tional weights:

f(x1, . . . , xk, xk+1) =

(
k+1∑

i=1

xi

)r

·
k+1∏

i=1

x
−rxi
uk+1

i , (46)

whereuk+1 =
∑k+1

i=1 xi is the sum of all elements.
We need to prove that the fairness measure in (46) satisfies

Axioms 1–5. It is easy to see that Axioms 1–3 are satisfied by
the fairness measure in (46). To verify Axiom 4, we consider
partitioning a resource allocation vectorx of n users into two

segments:x1 = [x1, . . . , xk] and x1 = [xk+1, . . . , xn] for
arbitrary 0 < k < n. Let un−k = un − uk. From (46), we
conclude that

f(x1, . . . , xn)

=

(
n∑

i=1

xi

)r

·
n∏

i=1

x
−rxi
un

i ,

=
(uk + un−k)

r

u
r

uk
un

k u
r

un−uk
un

n−k

·




ur
k

∏k
i=1 x

xi
uk

i





uk
un

·




ur
n−k

∏n
i=k+1 x

xi
un−k

i





un−k
un

= f(uk, un−k) · e
uk
un

log f(x1)+
un−k
un

log f(x2)

= f(

k∑

i=1

xi,

n∑

i=k+1

xi) · g−1

(
2∑

i=1

si · g
(
f(xi)

)

)

, (47)

where weightss1 = uk

un
and s2 =

un−k

un
are proportional to

the sum resource in each segment. This shows that the fairness
measure in (46) is irrelevant to partition.

To verify Axiom 5, we consider an allocation vectorx =
[θ, 1− θ] and compute its fairness measure as follows

f(θ, 1− θ) =
1

θrθ(1− θ)r(1−θ)
. (48)

Taking a logarithm on both sides, we have

log f(θ, 1− θ) = r

[

θ log
1

θ
+ (1− θ) log

1

1− θ

]

. (49)

Since the right hand side of (49) is the entropy function, we
conclude thatf(θ, 1− θ) is monotonically increasing forθ ∈
[0, 12 ] and monotonically decreasing forθ ∈ [ 12 , 1]. Therefore,
the fairness measure in (46) satisfies Axioms 1–5.

B. Proof of Corollary 1

For n = 2 users, symmetry follows directly from equation
(42) in Appendix A, i.e.,

f(x1, x2) = f(x2, x1), ∀x1, x2 ≥ 0. (50)

Assume symmetry holds forn users. Let x =
[x1, . . . , xn, xn+1] be a resource allocation vector and
i1, . . . , in, in+1 be an arbitrary permutation of the indices
1, . . . , n, n + 1. When in+1 > 1, applying Axiom 4, we can
use equation (51) to show that

f(xi1 , . . . , xin , xin+1) = f(x1, . . . , xn, xn+1). (52)

When in+1 = 1, using the same technique, we have

f(xi1 , . . . , xin , xin+1) = f(xi1 , . . . , xin+1 , xin)

= f(x1, . . . , xn, xn+1). (53)

Then symmetry also holds forn+ 1 users.
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f(xi1 , . . . , xin , xin+1) = f





n∑

j=1

xij , xin+1



 · g−1
(
s1 · g (f(xi1 , . . . , xin)) + s2g

(
f(xin+1)

))

= f





n∑

j=1

xij , xin+1



 · g−1
(
s1 · g

(
f(x1, . . . , xin+1−1, xin+1+1, . . . , xn+1)

)
+ s2g

(
f(xin+1)

))

= f(x1, . . . , xin+1−1, xin+1+1, . . . , xn+1, xin+1)

= f





in+1−1
∑

j=1

xj ,

n+1∑

j=in+1

xj



 · g−1
(
s1 · g

(
f(x1, . . . , xin+1−1)

)
+ s2g

(
f(xin+1+1, . . . , xn+1, xin+1)

))

= f





in+1−1
∑

j=1

xj ,
n+1∑

j=in+1

xj



 · g−1
(
s1 · g

(
f(x1, . . . , xin+1−1)

)
+ s2g

(
f(xin+1 , xin+1+1, . . . , xn+1)

))

= f(x1, . . . , xin+1−1, xin+1 , xin+1+1, . . . , xn+1) (51)

C. Proof of Theorem 3

Because vectorx is majorized by vectory, if and only
if, from x we can producey by a finite sequence of Robin
Hood operations [14], where we replace two elementsxi and
xj < xi with xi − ǫ and xj + ǫ, respectively, for someǫ ∈
(0, xi − xj), it is necessary and sufficient to show that such
an Robin Hood operation always improves a fairness measure
defined by Axioms 1–5.

Toward this end, we consider partitioning a resource allo-
cation vectorx of n users into two segments:x1 = [xi, xj ]
and x2 = [x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn]. Let
y = [y1,x2] wherey1 = [xi−ǫ, xj+ǫ] be the vector obtained
from x1 by the Robin Hood operation. Using Axiom 4, we
have

f (x)

f (y)

=
f(x1,x2)

f(y1,x2)

=

f



xi + xj ,
∑

k 6=i,j

xk



 · g−1
(
s1g

(
f(x1)

)
+ s2g

(
f(x2)

))

f



xi + xj ,
∑

k 6=i,j

xk



 · g−1 (s1g (f(y1)) + s2g (f(x2)))

=
g−1

(
s1g (f(xi, xj)) + s2g

(
f(x2)

))

g−1 (s1g (f(xi − ǫ, xj + ǫ)) + s2g (f(x2)))
≤ 1,

where the last step follows form the monotonicity ofg and the
monotonicity of fairness measure with two-users in Axiom 5,
i.e.,

f(xi, xj) ≤ f(xi − ǫ, xj + ǫ). (54)

Therefore, ifx is majorized byy, then we havef(x) ≤ f(y).
The fairness measure is Schur-concave.

D. Proof of Corollary 2

The proof for Corollary 2 is straightforward, because among
the vectors with the same sum of elements, one with the equal
elements is the most majorizing vector. Let

∑n
i=1 xi = n

(which is always satisfied due to Axiom 2). The sum of thed
smallest elements satisfies

∑d
i=1 x

↑
i = n

∑d
i=1 x

↑
i

∑n
i=1 x

↑
i

≤ n
d

n
≤ d. (55)

Then, x � 1n implies f(x) ≤ f(1n), for any resource
allocation vectorx.

E. Proof of Corollary 3

Due to Schur-concavity in Theorem 3, it is sufficient to
prove that collecting fixed-tax leads to a more majorizing
allocation vector. From Axiom 2, we consider a vectory =
t (x− c · 1n), which achieves the same fairness asx− c · 1n,
i.e.,

f(x− c · 1n) = f(t (x− c · 1n)) (56)

wheret =
P

i xi
P

xi−nc
, such that

n∑

i=1

xi =

n∑

i=1

t(xi − c) =

n∑

i=1

yi. (57)
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Then, for any integer1 ≤ d ≤ n we have

∑d
i=1 y

↑
i =

d∑

i=1

t(x↑
i − c)

=

∑d
i=1 x

↑
i − dc

∑n
i=1 xi − nc

n∑

i=1

xi

≤
∑d

i=1 x
↑
i − nc

Pd
i=1 x

↑

i
P

n
i=1 xi

∑n
i=1 xi − nc

n∑

i=1

xi

=

d∑

i=1

x↑
i .

where the third step following from the following inequality
∑d

i=1 x
↑
i

∑n
i=1 xi

≤ d

n
. (58)

We havex � y, which impliesf(x) ≥ f(y) = f(x− c · 1).
F. Proof of Corollary 4

Let x be an arbitrary resource allocation vector andt > 0
be a positive number. From Axiom 1, we have

f(x,0n)

= lim
t→∞

f(x,
1

t
1n)

= lim
t→∞

f(
∑

i

xi,
n

t
) · g−1

(

(
∑

i xi)
ρ
g (f(x))

(
∑

i xi)
ρ
+
(
n
t

)ρ +

(
n
t

)ρ
g (f(1n))

(
∑

i xi)
ρ
+
(
n
t

)ρ

)

= lim
t→∞

f(
∑

i

xi,
n

t
) · g−1 (g (f(xn)))

= f(x),

where the third step follows from Axiom 4.

G. Proof of Theorem 4

Without loss of generality, we assume thatf(1) = 1. First,
we plug into equations (42) and (43) power meang(y) = yβ

with weights generated by arbitraryρ. Equation (42) gives the
fairness measure for two users:

f(x1, x2) =
(a1b2 + a2b1)

r

g−1 (s1g (ar1b
r
2) + s2g (ar2b

r
1))

=
(a1b2 + a2b1)

r

(s1(a1b2)βr + s2(a2b1)βr)
1
β

=
(a1b2 + a2b1)

r ((a1b2)
ρ + (a2b1)

ρ)
1
β

((a1b2)ρ+βr + (a2b1)ρ+βr)
1
β

=
(x1 + x2)

r (xρ
1 + xρ

2)
1
β

(

xρ+βr
1 + xρ+βr

2

) 1
β

. (59)

To derive the fairness measure for three users, we consider two
different partitions of the resource allocation vector[x1, x2, x3]
as [x1, x2], [x3] and [x1], [x2, x3]. Using (43), we obtain two
equivalent form of the fairness measure in (60) and (61).

As in Axiom 4, the fairness measure is irrelevant to parti-
tion. Hence, equations (60) and (61) should be equivalent for

all x1, x2, x3 ≥ 0. Comparing the terms in (60) and (61), we
must haver = 0 or ρ + βr = 1. When r = 0, it is easy to
see thatf(x1, x2, x3) = 1 is constant. This case is trivial. We
conclude that the fairness measure must have the following
form

f(x1, x2, x3) =

(
∑3

i=1 x
1−βr
i

) 1
β

(
∑3

i=1 xi

) 1
β
−r

, (62)

wherer = 1−ρ
β

is a proper exponent. Letuk =
∑k

i=1 xi be
the sum of the firstk elements in vector[x1, . . . , xk, xk+1].
Then, using (43) inductively, we obtain

f(x1, . . . , xk, xk+1)

= f(
k∑

i=1

xi, xk+1) · g−1 (s1g (f(x1, . . . , xk)) + s2g (1))

=

(

u1−βr
k + x1−βr

k+1

) 1
β

(uk + xk+1)
1
β
−r

·






uρ
k

Pk
i=1 x

1−βr
i

u
1−βr

k

+ xρ
k+1

uρ
k + xρ

k+1






1
β

=

(

u1−βr
k + x1−βr

k+1

) 1
β

(uk + xk+1)
1
β
−r

·
[∑k

i=1 x
1−βr
i + x1−βr

k+1

u1−βr
k + x1−βr

k+1

] 1
β

=

(
∑k+1

i=1 x1−βr
i

) 1
β

(
∑k+1

i=1 xi

) 1
β
−r

, (63)

which is exactly equation (14) in Theorem 4.
We still need to prove that the fairness measure in (63)

satisfies Axioms 1–5. It is easy to see that Axioms 1–3 are
satisfied by the fairness measure in (63). To verify Axiom
4, we consider partitioning a resource allocation vectorx

of n users into two segments:x1 = [x1, . . . , xk] and x1 =
[xk+1, . . . , xn] for arbitrary0 < k < n. Let un−k = un − uk

From (63), we conclude

f(x1, . . . , xn)

=

(
∑n

i=1 x
1−βr
i

) 1
β

(
∑n

i=1 xi)
1
β
−r

=

(

u1−βr
k + u1−βr

n−k

) 1
β

(
∑n

i=1 xi)
1
β
−r

·
[∑n

i=1 x
1−βr
i

uρ
k + uρ

n−k

] 1
β

= f(uk, un−k) ·






uρ
k

Pk
i=1 x

1−βr
i

u
1−βr

k

+ uρ
n−k

Pn
i=k+1 x

1−βr
i

u
1−βr

n−k

uρ
k + uρ

n−k






1
β

= f(

k∑

i=1

xi,

n∑

i=k+1

xi) · g−1

(
2∑

i=1

si · g
(
f(xi)

)

)

, (64)

where weightss1 =
u
ρ

k

u
ρ

k
+u

ρ

n−k

ands2 =
u
ρ

n−k

u
ρ

k
+u

ρ

n−k

are propor-
tional to some power of the sum resource in each segment.
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f(x1, x2, x3) = f(x1 + x2, x3) · g−1 (s1g (f(x1, x2)) + s2g (1))

=
(x1 + x2 + x3)

r ((x1 + x2)
ρ + xρ

3)
1
β

(

(x1 + x2)ρ+βr + xρ+βr
3

) 1
β

·






(x1+x2)
ρ+βr(xρ

1+x
ρ
2)

x
ρ+βr
1 +x

ρ+βr
2

+ xρ
3

(x1 + x2)ρ + xρ
3






1
β

=
(x1 + x2 + x3)

r

(

(x1 + x2)ρ+βr + xρ+βr
3

) 1
β

·
[

(x1 + x2)
ρ+βr(xρ

1 + xρ
2)

xρ+βr
1 + xρ+βr

2

+ xρ
3

] 1
β

(60)

f(x1, x2, x3) = f(x1, x2 + x3) · g−1 (s1g (f(1)) + s2g (x2, x3))

=
(x1 + x2 + x3)

r (xρ
1 + (x2 + x3)

ρ)
1
β

(

xρ+βr
1 + (x2 + x3)ρ+βr

) 1
β

·






(x2+x3)
ρ+βr(xρ

2+x
ρ
3)

x
ρ+βr
2 +x

ρ+βr
3

+ xρ
1

(x2 + x3)ρ + xρ
1






1
β

=
(x1 + x2 + x3)

r

(

xρ+βr
1 + (x2 + x3)ρ+βr

) 1
β

·
[

(x2 + x3)
ρ+βr(xρ

2 + xρ
3)

xρ+βr
2 + xρ+βr

3

+ xρ
1

] 1
β

(61)

This proves that the fairness measure in (63) is irrelevant to
partition.

To verify Axiom 5, we consider an allocation vectorx =
[θ, 1− θ] and compute its fairness measure as follows

f(θ, 1− θ) =
[
θ1−βr + (1− θ)1−βr

] 1
β . (65)

It is easy to verify that when1−βr > 0, the fairness measure
f(θ, 1 − θ) is increasing forθ ∈ [0, 12 ] and decreasing for
θ ∈ [ 12 , 1]. Axiom 5 is satisfied given1− βr > 0.

Putting all conditions in the proof together, we conclude
that, whenρ = 1 − βr > 0, the fairness measure given by
(63) is positive and satisfies Axioms 1–5. Similarly, whenρ =
1 − βr < 0, the fairness measure given by (14) is negative.
The proof for this case is the same and not repeated here.

H. Proof of Corollary 5

Whenf < 0 is negative, it is easy to show thatf(x) → −∞
if xi → 0. When f > 0, suppose thatk users are inactive.
From equation (36) and Corollaries 1 and 3, we have

f(x) ≤ f(1n−k) = n− k. (66)

which givesk ≤ n−f(x). Further, since the number of active
usersn−k is upper bounded byf(x), the maximum resource
is lower bounded by

∑

i xi/f(x).

I. Proof of Corollary 6

Let k(x) =
∑n

i=1

(
xi

P

j xj

)1−β

be an auxiliary function,
such that

f(x) = sign(1− β) · k 1
β (x). (67)

Sincef(x) is differentiable, we have

∂f(x)

∂xi

=
1

β
k

1
β
−1(x) · |1− β|

(
∑

j xj)1−β

[

x−β
i −

∑

j x
1−β
j

∑

j xj

]

Becausek(x) > 0 is positive, ∂f(x)
∂xi

has a single root at

xi = x̄ =

( ∑

j xj
∑

j x
1−β
j

) 1
β

. (68)

It is straightforward to show that for anyβ 6= 1, we have

∂f(x)

∂xi

> 0, if xi > x̄ and
∂f(x)

∂xi

< 0, if xi < x̄

Therefore, whenxj ∀j 6= i are fixed,f(x) is maximized by
xi = x̄.

J. Proof of Corollary 7

To derive an lower bound onf(x) under the box constraints
xmin ≤ xi ≤ xmax ∀i, we first argue thatf(x) is minimized
only if users are assigned resourcexmin or xmax. Using the
box constraints and Corollary 6, we have

x̄ =

( ∑

j xj
∑

j x
1−β
j

) 1
β

=

(
∑

i

xi
∑

j xj

· x−β
i

)− 1
β

≥
(
∑

i

xi
∑

j xj

· x−β
min

)− 1
β

= xmin. (69)

Similarly, we can show

x̄ ≤ xmax. (70)

According to Axiom 4,f(x) is increasing onxi ∈ [xmin, x̄]
and decreasing onxi ∈ [x̄, xmax]. Hence,f(x) is minimized
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only if all xi take the boundary values in the box constraints,
i.e.,

xi = xmin or xi = xmax. (71)

Let Γ = xmax

xmin
andµ be fraction of users who receivexmax.

By relaxing the constraintµ ∈
{

i
n
, ∀i
}

to µ ∈ [0, 1], we derive
an lower bound onf(x) as follows

min
xi∈[xmin,xmax],∀i

f(x)

= min
µ∈{ i

n
,∀i}

sign(1− β) · n
[

µΓ1−β + (1− µ)

(µΓ + 1− µ)
1−β

] 1
β

≥ min
µ∈[0,1]

sign(1− β) · n
[

µΓ1−β + (1− µ)

(µΓ + 1− µ)
1−β

] 1
β

. (72)

To find the minimizer in the last optimization problem above,
we first recognize that at the two boundary pointsµ = 0
and µ = 1 (i.e. all users receive the same amount of
resource),f(x) = n achieves its maximum value. Therefore,
the minimum value is achieved by someµ ∈ (0, 1). If µ∗

is the minimizer of (72), it is necessary that the first order
derivative of the right hand side of (72) is zero, i.e.,

∂
[
µΓ1−β+(1−µ)

(µΓ+1−µ)1−β

]

∂µ
= 0. (73)

Soling the above equation, we obtain

(Γ− 1)(1− β)
[(
Γ1−β − 1

)
µ+ 1

]
=
(
Γ1−β − 1

)
[(Γ− 1)µ+ 1] .

Because this equation is a linear inµ, its rootµ∗ is the unique
minimizer of (72):

µ∗ =
Γ− Γ1−β − β(Γ− 1)

β(Γ− 1)(Γ1−β − 1)
. (74)

The lower bound in Corollary 7 follows by pluggingµ∗ into
(72).

K. Proof of Theorem 5

We first prove the monotonicity offβ(x) for β ∈ (−∞, 0).
Consider two different values0 > β1 ≥ β2. We define the

a functionφ(y) = y
β2
β1 for y ∈ R+. Sinceβ2/β1 ≥ 1, the

functionφ(y) is convex iny. Therefore, we have

fβ2(x) =





n∑

i=1

(

xi
∑

j xj

)1−β2




1
β2

=





n∑

i=1

xi
∑

j xj

· φ





(

xi
∑

j xj

)−β1








1
β2

≤



φ




∑

i=1n

xi
∑

j xj

(

xi
∑

j xj

)−β1








1
β2

=



φ





n∑

i=1

(

xi
∑

j xj

)1−β1








1
β2

=





n∑

i=1

(

xi
∑

j xj

)1−β1




1
β1

= fβ2(x), (75)

where the third step follows from Jensen’s inequality andβ2 <
0. This shows thatfβ(x) is increasing on(−∞, 0).

For β ∈ (0, 1), we consider1 > β1 ≥ β2 > 0. The function

φ(y) = y
β2
β1 becomes concave. We have

fβ2(x) =





n∑

i=1

(

xi
∑

j xj

)1−β2




1
β2

=





n∑

i=1

xi
∑

j xj

· φ





(

xi
∑

j xj

)−β1








1
β2

≤



φ




∑

i=1n

xi
∑

j xj

(

xi
∑

j xj

)−β1








1
β2

= fβ2(x). (76)

where the third step follows from Jensen’s inequality andβ2 >
0. Therefore,fβ(x) is increasing on(0, 1).

For β ∈ (1,∞), we considerβ1 ≥ β2 > 1. The function

φ(y) = y
β2
β1 is concave. We have

fβ2(x) −





n∑

i=1

(

xi
∑

j xj

)1−β2




1
β2

= −





n∑

i=1

xi
∑

j xj

· φ





(

xi
∑

j xj

)−β1








1
β2

≥ −



φ




∑

i=1n

xi
∑

j xj

(

xi
∑

j xj

)−β1








1
β2

= fβ2(x). (77)

where the third step follows from Jensen’s inequality andβ2 >
0. Therefore,fβ(x) is decreasing on(1,∞). This completes
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the proof of Theorem 5.

L. Proof of Theorem 6

We first assumeβ > 1 (which impliesfβ(·) < 0) and show

that the conditionλ ≤
∣
∣
∣

β
1−β

∣
∣
∣ is necessary and sufficient for

preserving Pareto optimality. The case whereβ < 1 can be
shown using a completely analogous proof.

To show that the conditionλ ≤
∣
∣
∣

β
1−β

∣
∣
∣ is sufficient, we

consider an allocationx and a vectorγ such thatγi ≥ 0 for all
i and

∑

i γi =
∑

i xi. Clearly,x′ = x+ δγ Pareto dominates
x for δ > 0. We now consider the difference between the
function (26) evaluated for these two allocations. First assume
β > 1, which impliesfβ(·) < 0, and

Φλ(x
′)− Φλ(x)

= λ (ℓ (fβ (x
′))− ℓ (fβ (x))) + ℓ

(
∑

i

x′
i

)

− ℓ

(
∑

i

xi

)

= − λ (log |fβ (x′)| − log |fβ (x)|) + log

(

(1 + δ)
∑

i

xi

)

− log

(
∑

i

xi

)

= − λ (log |fβ (x′)| − log |fβ (x)|) + log (1 + δ) . (78)

If x′ is also more fair thanx, then showing

−λ (log |fβ (x′)| − log |fβ (x′)|) > 0 (79)

is trivial, and the difference between the objective evaluated at
the two allocations is strictly positive. Therefore, we consider
the case wherex′ is less fair.

Continuing from (78) and applying the definition in (18)
yields

Φλ(x
′)− Φλ(x)

= − λ log










n∑

i=1

(

x′
i

∑

j x
′
j

)1−β




1
β




+ log (1 + δ)

+ λ log










n∑

i=1

(

xi
∑

j xj

)1−β




1
β






= − λ

β
log

(∑n
i=1 (x

′
i)

1−β

∑n
i=1 (xi)

1−β

)

+

(

1− λ
β − 1

β

)

log (1 + δ) .

(80)

Becausex′
i ≥ xi for all i, we know that forβ > 1,

(x′
i)

1−β ≤ (xi)
1−β , which implies

−λ

β
log

(∑n
i=1 (x

′
i)

1−β

∑n
i=1 (xi)

1−β

)

> 0. (81)

Consequently, for the entire difference to be positive, it is
sufficient that

1− λ
β − 1

β
≥ 0, (82)

or, equivalently,

λ ≤ β

β − 1
. (83)

Next, we prove that the conditionλ ≤
∣
∣
∣

β
1−β

∣
∣
∣ is necessary.

Supposeβ > 1 andλ >
∣
∣
∣

β
1−β

∣
∣
∣. We show that there exists two

vectorsx and x′, such thatΦλ(x
′) − Φλ(x) < 0, while x′

Pareto dominatesx.
Consider an allocationx of lengthn+1, such thatxi = 1 for

i = 1, . . . , n and xn+1 = n. Clearly,x is Pareto dominated
by another vectorx′, wherex′

i = xi for i = 1, . . . , n and
x′
n+1 = xi + δ (

∑

i xi), for some positiveδ > 0. From the
last step of (80), we have

Φλ(x
′)− Φλ(x)

= − λ

β
log

(∑n+1
i=1 (x′

i)
1−β

∑n+1
i=1 (xi)

1−β

)

+

(

1− λ
β − 1

β

)

log (1 + δ)

= − λ

β
log

(

n+ (n+ 2nδ)
1−β

n+ n1−β

)

+

(

1− λ
β − 1

β

)

log (1 + δ)

≤ − λ

β
log

(
n

n+ n1−β

)

+

(

1− λ
β − 1

β

)

log (1 + δ)

= − λ

β
log
(
1 + n−β

)
+

(

1− λ
β − 1

β

)

log (1 + δ)

It is straight forward to verify thatΦλ(x
′)−Φλ(x) < 0, if we

set

δ =
1

2

[
(
1 + n−β

) λ
λ(β−1)−β

]

> 0. (84)

As a result, the condition (28) of the theorem is sufficient
and necessary for ensuring Pareto optimality of the solution.

M. Proof of Theorem 7

From the definition ofα-fair utility, we compute the numer-
ator and denominator:

〈

▽xUα=β(x),
η

‖η‖

〉

=
∑

i

x−β
i

1
N

− xi
P

i xi
√

‖x‖2

(
P

i xi)2
− 1

N

=
1

√
‖x‖2N

(
P

i xi)2
− 1

· 1√
N

·
∑

i

x−β
i

(

1− xi
∑

j xj

N

)

,

(85)

and
〈

▽xUα=β(x),
1

‖1‖

〉

=
∑

i

x−β
i

1√
N

(86)

=
1√
N

∑

i

x−β
i . (87)
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Notice that both values are positive. The ratio between these
then is
〈

▽xUα=β(x),
η

‖η‖

〉

〈

▽xUα=β(x),
1

‖1‖

〉 =
1

√
‖x‖2N

(
P

i xi)2
− 1



1−
∑

i
xi

P

j xj
x−β
i

∑

i
1
N
x−β
i



 .

(88)

It is easily shown that the factor out fron is strictly positive.
The only component that varies withβ is the ratio between two
weighted averages of the same vector with different weights:

∑

i
xi

P

j xj
x−β
i

∑

i
1
N
x−β
i

. (89)

That average in the numerator places more weight (xi
P

j xj
>

1
N

) on elements that decrease more rapidly (or increase more
slowly for the casexi < 1) with β, implies that the overall
numerator decreases more rapidly (or increases more slowly)
than the denominator. Therefore, (89) is monotonically non-
increasing, and Theorem 7 is true.

N. Proof of Theorem 8

To prove Theorem 8, we need to show that ifF (x) satisfies
Axioms 1′-4′, its normalization

f(x) = F (x) ·
(
∑

i

xi

)− 1
λ

(90)

is a fairness measure satisfying Axioms 1-5.
The continuity off(x) follows directly from that ofF (x)

in Axioms 1′. Let z > 0 be a positive real number andy be
a vector of arbitrary length. To prove homogeneity, we make
use of Axioms 3′:

F (z · [y,y])
= F (z, z) · g−1 (s1 · g (F (y)) + s2 · g (F (y)))

= F (z, z) · F (y)

= F (1, 1) · g−1 (s1 · g (F (z)) + s2 · g (F (z))) · F (y)

= F (1, 1) · F (y) · F (z)

and similarly,

F (zy, zy)

= F (1, 1) · g−1 (s1 · g (F (zy)) + s2 · g (F (zy)))

= F (1, 1) · F (zy) (91)

Comparing the above two equations, we have

F (zy) = F (z) · F (y). (92)

When y is a scalar, using the result in [17], equation (92)
implies that logF (z) = 1

λ
log(z) must be a logarithmic

function with an exponent1
λ

. We have

F (zy) = z
1
λF (y), (93)

which is a homogenous function of order1
λ

. Therefore, its
normalizationf(x) in (90) is a homogenous function of order
zero and satisfies Axiom 2.

Using the homogeneity property and Axioms 2′, we obtain

limn→∞
f(1n+1)
f(1n)

= lim
n→∞

F (1n+1)

F (1n)
·
(

1 +
1

n

)− 1
λ

= lim
n→∞

F (1n+1)

F (1n)
= 1. (94)

This is exactly Axiom 3. From Axiom 4′m, Axiom 5 is straight
since

f(θ, 1− θ) = F (θ, 1− θ) · (θ + 1− θ)−
1
λ = F (θ, 1− θ).

Therefore, monotonicity holds forf(θ, 1 − θ) for θ ∈ [0, 1
2 ]

and θ ∈ [0, 12 ], respectively. To prove Axiom 4, we choose
x1 = w(y1) andx2 = w(y2) in Axiom 3′, which results in

f(y1,y2)

= F (y1,y2) ·
(
w(y1) + w(y2)

)− 1
λ

= F (x1, x2) · g−1

(
2∑

i=1

si · g
(
F (yi/xi)

)

)

· (x1 + x2)
− 1

λ

= F (x1, x2) · (x1 + x2)
− 1

λ · g−1

(
2∑

i=1

si · g
(
f(yi/xi)

)

)

= f (x1, x2) · g−1

(
2∑

i=1

si · g
(
f(yi)

)

)

= f
(
w(y1, w(y2

)
· g−1

(
2∑

i=1

si · g
(
f(yi)

)

)

(95)

where the second last step uses the fact thatf is a homogenous
function of order zero. This proves Axiom 4.

If F (x) satisfies Axioms 1′-4′, we have shown that its
normalizationf(x) is a fairness measure satisfying Axioms 1-
5. Therefore,F (x) is homogenous function of order1

λ
and is

given by

F (x) = f(x) ·
(
∑

i

xi

) 1
λ

. (96)

Existence and unique ofF (x) is straightforward from that of
f(x) in Theorems 1 and 2.
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