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Abstract—We present Netscope, a tomographic technique
that infers the loss rates of network links from unicast end-
to-end measurements. Netscope uses a novel combination of
first- and second-order moments of end-to-end measurements
to identify and characterize the links that cannot be (accurately)
characterized through existing practical tomographic techniques.
Using both analytical and experimental tools, we show that
Netscope enables scalable, accurate link-loss inference: in a
simulation scenario involving 4000 links, 20% of them lossy,
Netscope correctly identifies 94% of the lossy links with a false
positive rate of 16%—a significant improvement over the existing
alternatives. Netscope is robust in the sense that it requires no
parameter tuning, moreover its advantage over the alternatives
widens when the number of lossy links increases. We also validate
Netscope’s performance on an “Internet tomographer” that we
deployed on an overlay of 400 PlanetLab nodes.

I. INTRODUCTION

Inferring the characteristics of individual network links from
end-to-end path measurements can be a powerful tool for
network troubleshooting: Network operators can use it to
identify faulty or congested links without having to monitor
every single link in their network. In a different context, an
overlay of Internet end-hosts can use such inference techniques
to identify where their packets are getting lost or delayed,
which enables them to evaluate the performance of their
providers, even draw a map of Internet congestion status.

Network tomography formulates the problem of inferring
link characteristics from end-to-end path measurements as a
system of linear equations of the form

Ȳ = R · X̄ (1)

where Ȳ is the vector of available measurements, X̄ is the
vector of unknowns to be estimated (e.g., the link delays or
the logarithm of the link loss rates), and R is the routing
matrix, which specifies the links included in each path [17].
The amount of information we can get from Eq. 1 depends on
the properties of the routing matrix: If R is full column rank,
we can solve Eq. 1 and obtain X̄. If R is rank deficient, then
there are many different X̄’s that satisfy Eq. 1—which means
that we need additional information to identify the real X̄.

Unfortunately, routing matrices are always 1 rank-
deficient [5], [12], which means that we need additional
information to solve Eq. 1. Researchers have suggested various
ways of getting this additional information: One approach is to
assume strong temporal correlation between the measurement
probes, achievable in a multicast environment [1], [4] or
with back-to-back probes that emulate multicast [3], [7], [8],
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[16]. Another approach is to turn Eq. 1 into an optimization
problem: of all the possible X̄’s that satisfy Eq. 1, pick the one
that meets certain practical constraint, for example, includes
the least number of congested links [9], [14], [15]. A third
approach (valid for link loss inference) is to first compute the
variances of link loss rates (which are easier to compute than
the loss rates themselves), then use this information to identify
links with negligible loss rate, thereby reducing the number of
unknowns in Eq. 1 [13].

In this paper, we present Netscope, a link-loss inference
technique that uses a new approach. Our focus is to be
practical: we want to build an actual “Internet tomographer,”
i.e., a system that runs on an overlay of Internet hosts and
infers the loss rates of the links between them. This leads
us away from the (real or emulated) multicast approach. We
do use elements from both the second and third approaches
outlined above, but combine them with a new algorithm in a
way that achieves significantly higher accuracy.

The gist of our approach is the following: Consider a
network of n links. Suppose we identify a subset of these links
that are unlikely to be lossy. We choose k of these links and
approximate their loss rates with zero, reducing the number
of unknowns in Eq. 1 by k. If k is sufficiently large, Eq. 1
becomes solvable, and we can use it to obtain the loss rates
of the remaining n − k links. On the other hand, if k is too
large, then we end up approximating the loss rates of too many
links with 0, and our inference becomes inaccurate (which, as
we will see, is precisely the flaw of the technique proposed
in [13]). We design an efficient algorithm that identifies the
minimum possible k (and optimal set of k links) such that
Eq. 1 becomes solvable; as we will show, in practice, our
algorithm leads to accurate link-loss inference.

We evaluate Netscope using a combination of analysis
and simulation, the latter over topologies collected through
PlanetLab. In a simulation scenario involving 4000 links,
20% of them lossy, Netscope correctly identifies 94% of the
lossy links (the best alternative achieves 85%) with a false
positive rate of 16% (the best alternative achieves 28%)—
a significant improvement over the latest link-loss inference
techniques [13], [15]. Moreover, our algorithm is at least
twice more accurate in terms of identifying the actual link
loss rates than the alternatives. Netscope is robust in the
sense that it requires no parameter tuning, and its advantage
over the alternatives widens when the number of lossy links
increases. We also validate Netscope’s performance using
PlanetLab experiments: we have built a “tomographer” that
runs on PlanetLab nodes and infers the loss rates of the links
located between them; we use some of the measured paths for
inference and others for validation, and show that the results



are consistent.
The rest of the paper is organized as follows: we

first establish our terminology and notation and state our
assumptions (§II); then we describe Netscope (§III) and
evaluate its performance (§IV), discuss related work (§V), and
conclude (§VI).

II. SETUP

A. Terminology

We consider a network that consists of end-hosts and
routers, connected over one-way communication links. An
end-host can act as a source, a destination, or both; each
source can send traffic to multiple destinations. We model this
network as a directed graph G = (N , E), where the set of
directed edges E represents the one-way communication links,
while the set of nodes N consists of the set of routers V , and
the set of end-hosts H. The set of end-hosts and the set of
routers cannot overlap H ∩ V = ∅. We define a “path” P
as a sequence of links starting from a source and ending at a
destination; we denote the set of all active paths in our network
by P . Our network graph includes only links that participate
in at least one active path.

Before applying Netscope on a network G with active
paths P , we perform the following transformation on G:
we identify all sets of links that participate in exactly the
same paths; since the characteristics of such links cannot be
distinguished from one another (from the point of view of an
end-to-end measurement tool), we “merge” each such set into
one “virtual link.”

Given a network G = (N , E) and a set of active paths P ,
we compute the routing matrix R of dimensions |P| × |E|
as follows: Ri,j = 1, if path Pi traverses link ej and
Ri,j = 0 otherwise. Hence, the i-th row of the routing matrix
R corresponds to path Pi. Analogously, the j-th column of
R corresponds to link ej . In the rest of the paper, we use the
term “link” to refer both to a link e ∈ E and the corresponding
column of R; hence, when we say that “a set of links are
linearly independent,” we mean that the columns of R which
correspond to these links are linearly independent. Finally, we
should note that all rows and all columns of R are nonzero—
i.e., we consider only active paths.

The rank of the routing matrix R is the number of
linearly independent columns of R (equivalently, the number
of linearly independent links in E). We say that R is “full
column rank” when all its columns (i.e., all links in E) are
linearly independent, i.e., Rank(R) = |E|. We say that R is
“rank deficient” when Rank(R) < |E|.

B. Assumptions

We make four assumptions. The first three are common in
network tomography—they are necessary in order to establish
linear relationships between link and path characteristics. The
last assumption is inherited from [13].

1. Routing Stability: Netscope works in rounds; within a
round, each source sends probes to multiple destinations. We
assume that the routing matrix R does not change throughout

G = (N , E) A network with a set of nodes N and unidirectional
links E

H,V The sets of end-hosts, and routers
v ∈ V A router
e ∈ E A network link
P The set of active paths

P ∈ P An active network path
R The routing matrix

Ri,j The element of R in the i-th row and j-th column,
i.e., corresponding to path Pi ∈ P and edge ej ∈ E

RE′
The matrix whose columns correspond to a subset of
links E ′ ⊆ E

TABLE I
DEFINED SYMBOLS

a round. In practice, when we detect that a path has changed,
we discard it from our measurements.
2. Link-Loss Independence: In each round, we send S unicast
probes along each path. Let φ̂ek be the random variable giving
the fraction of probes from all paths passing through link ek

that have not been lost at that link in the current round; we
define the “transmission rate of link ek” as φek = E[φ̂ek ] and
its “loss rate” as 1−φek . We assume that the random variables
φ̂ek are independent. This assumption has been justified in
earlier work [9], [14].
3. Loss Uniformity: For each path Pi, let φ̂i be the random
variable giving the fraction of the S probes that arrive correctly
at the destination in the current snapshot; we define the
“transmission rate of path Pi” as φi = E[φ̂i] and its “loss rate”
as 1 − φi. Let φ̂i,ek be the fraction of these probes that have
traversed link ek successfully; we assume that φ̂i,ek = φ̂ek

almost surely (a.s.) for all paths Pi that traverse ek, i.e., that
the fraction of packets lost at link ek is the same for all paths
Pi traversing the link. This assumption has also been justified
for a large enough S [13].

Let Yi = log φ̂i and Xk = log φ̂ek . We group these in
vectors: Ȳ = [Y1 Y2 . . . Y|P|]T and X̄ = [X1 X2 . . . X|E|]T ,
where T denotes transposition. Network tomography relies on
the assumptions stated above to establish linear relationships
between X̄ and Ȳ and derive Eq. 1.
4. Monotonicity of Link-Loss Variance: We assume that
the variance of Xk is a non-decreasing function of the
corresponding link loss rate 1− φek , i.e., the more congested
a link is, the higher the variance of its loss rate over
time. This assumption has been shown to hold based on
Internet measurements [18], [19], including recent PlanetLab
experiments with more than two million samples of path loss
rates [13].

C. Background

Consider a subset of links B ⊆ E , which contains exactly
|B| = Rank(R) links and all of them are linearly independent.
Such a subset is called a “basis” of E . If we partition E into
two sets, B and F = E \ B, and somehow obtain the loss
rates of the links in F , then we can plug these into Eq. 1 and
compute the loss rates of the links in B by solving

Ȳ − RFX̄F = RBX̄B (2)



where Ȳ is the vector of path loss rates, RF is a matrix whose
columns correspond to the links in F , X̄F is the vector of the
loss rates of the links in F , RB is a matrix whose columns
correspond to the links in B, and X̄B is the vector of the
(unknown) loss rates of the links in B. Unlike Eq. 1, Eq. 2
can be easily solved since RB is full column rank, i.e., it
consists of linearly independent columns. So, |B| = Rank(R)
is the maximum number of links whose loss rates we can
obtain directly from solving Eq. 2.

A key point for our work is that there exist multiple bases B
for E , and we can solve Eq. 2 for any of them. I.e., whichever
basis B we choose, if we can somehow obtain the loss rates of
the remaining links E \ B, then we can use Eq. 2 to compute
the loss rates of the links in B.

III. NETSCOPE

A. Overview

Netscope works in rounds: in each round, it collects a set
of unicast end-to-end loss measurements Ȳ from a network
G = (N , E) and outputs estimates for the loss rate of each link
in E . It consists of three steps: (i) It computes an approximate
ordering of the links in E by loss rate, as proposed in [13].
(ii) It partitions E into a basis B and another set F = E \ B,
such that B includes the lossiest links. This second step is
the main contribution of this paper. (iii) It approximates the
loss rates of the links in F with 0, plugs them in Eq. 2 and
computes the loss rates of the links in B. We call the links in F
“frozen” links, because we need to determine (“freeze”) their
loss rates rather than compute them directly from end-to-end
measurements.

The intuition is simple: Suppose we are told which are the
lossy links. If we can find a basis B that includes all of them,
we can obtain their loss rates by solving Eq. 2. If such a
basis does not exist, we can try at least to find the basis B
that includes the lossiest links; if the lossy links that are left
outside B are few and not very lossy, then we can approximate
their loss rates with 0 and obtain the loss rates of the links
in B by solving Eq. 2. This is precisely what Netscope does,
with the difference that it cannot know a-priori exactly which
are the lossy links; it can only obtain an approximate ordering
of the links by loss rate, as provided by [13].

We now describe each step in more detail.

B. Ordering Links by Loss Rate

We have said that, during each round, we collect a vector
of path-loss measurements Ȳ. It has been shown that, by
processing the Ȳ’s collected over multiple rounds, we can
compute the variance of the loss rates of all the links in E [13].
According to our 4th assumption (§II-B), the less lossy a
link, the lowest its loss variance; hence, if we obtain an
ordering of the links by loss variance, we also have an
(approximate) ordering of the links by loss rate. So, in each
round, we process the end-to-end measurements collected over
all previous rounds, identify the loss variances of all the links,
and obtain an ordering of the links, OE = 〈e1, e2, ...e|E|〉,
by decreasing loss variance—i.e., ei has higher variance

Algorithm 1 Netscope Algorithm (R, Ȳ)
1: Compute an approximate ordering, OE , of the links in E

by decreasing loss rate
2: Partition E into B and F such that |B∩ Ô| is maximized,

where Ô is any prefix of OE
3: Set X̄F to 0
4: Compute X̄B by minimizing ‖Ȳ − RBX̄B‖ + w‖X̄B‖
5: return X̄B

than ej>i. If our 4th assumption holds, then this is also an
approximate ordering of the links by loss rate.

C. Choosing The Optimal Basis

Once we have obtained OE , we partition E into a basis set B
and another set F , such that B meets the following constraint:
given any prefix Ô = 〈e1, e2, ...em≤|E|〉 of the ordering OE ,
then B maximizes |B ∩ Ô|; we call B the “optimal” basis.
Practically speaking, this constraint helps us build a basis that
includes the highest ranked (hence, lossiest) links.

To compute B, we need to (i) order the columns of the
routing matrix R according to the ordering OE and (ii) apply
to R Gaussian-Jordan elimination [10]. The latter computes a
basis of the given matrix by iterating over the columns of the
matrix: if the current column is linearly independent of the
columns already selected for the basis, it is also selected for
the basis; otherwise, it is evicted. As long as we iterate starting
from the lossiest link, we construct a basis that meets the above
constraint—i.e., from a practical point of view, includes the
lossiest links.

D. Inferring Loss Rates

Once we have chosen the optimal basis B, we approximate
the loss rates of all the remaining links with 0 and plug
these values into Eq. 2. In theory, given that RB is full rank,
we can directly compute the loss rates of the links in B.
Nevertheless, we have approximated the links in F by 0, which
may introduce noise in our measurements. As well, it turns out
that RB, although full rank, tends to be ill-conditioned—which
means that, if we just solve Eq. 2, we get inaccurate results.

Instead, we use “L1-norm minimization with non-negativity
constraints” [15], i.e., minimize ‖Ȳ − RBX̄B‖ + w‖X̄B‖,
where w is a configurable parameter, under the constraint
that X̄B has non-negative elements. This optimization chooses
an X̄B that may not exactly satisfy Eq. 2, but minimizes
the corresponding error (hence the first term of the objective
function) and favors solutions that involve fewer lossy links
(hence the second term). We use the default value w = 0.01
proposed in [15]—it also worked well for the scenarios we
tried (§IV-B).

In the beginning of the paper, we said that routing matrices
are rank-deficient, which means that we need additional
information (on top of end-to-end measurements) to infer the
characteristics of individual links; each different tomographic
technique essentially discovers different sources for obtaining
this additional information. Of course, every source of



5% 10% 15% 20% 25%
random 0.072 0.326 0.764 1.502 2.53

edge 0.042 0.308 0.696 1.522 2.75

TABLE II
Percentage of the expected number of linearly dependent links within a set

of chosen links. The links are chosen either at random — “random”, or
links located closer to the end-hosts are preferred — “edge”. The number

of chosen links varies from 5% to 25% of all network links.

additional information is also a potential source of error. In
our case, we use two such sources: One is the approximation
of the loss rates of the frozen links with 0. The other one is
the norm minimization, which allows us to solve the system
of Eq. 2. Each of these “tricks” introduces a certain amount
of error in our inference; in the next two sections we quantify
this error using a combination of analytical and experimental
tools.

IV. EVALUATION

A. Scalability Analysis

The main source of error in our inference is approximating
the loss rates of the frozen links (the links outside the optimal
basis) with 0: If all the lossy links happen to form a linearly
independent set, then Netscope complements this set with
enough non-lossy links to form a basis for E and (correctly)
sets the loss rates of the remaining links to 0. However, if
there happen to exist lossy links that are linear combinations
of other lossy links, then Netscope inevitably “freezes” these
links (leaves them outside the optimal basis) and (incorrectly)
sets their loss rates to 0. So, Netscope works best when all the
lossy links form a linearly independent set; its performance
decreases as the number of linearly dependent lossy links
(lossy links that are linear combinations of other lossy links)
increases.

The first relevant question, then, is: given a certain network,
what is the maximum number of linearly dependent lossy
links in it? Since these links are the main cause of error
in our inference, it is worth looking at how many they
can be and how their number changes with network size.
We already know half the answer: the maximum number of
linearly dependent lossy links is equal to the total number of
linearly dependent links in a network, which is always equal to
|E|−Rank(R). To understand how this quantity changes with
network size, we studied the scalability properties of Rank(R)
and formally derived a lower bound on it (the proof can be
found in [12], §3.4):

Rank(R) ≥ |E|− α|V| (3)

where |E| is the number of links and |V| the number of routers
in the network, and α depends on how paths meet and split
at each router (a closed form is provided in [12]). In all
the topologies we collected through PlanetLab, α was around
1.2. This bound tells us that there can be no more than α
(a couple, if our PlanetLab topologies are representative) of
linearly dependent links per router; these are the links that, if
lossy, introduce error in our inference.

On the other hand, it is unlikely that all these “problematic”
links will happen to be lossy. So, the next question is: given
a certain network, what is the expected number of linearly
dependent lossy links in it? The answer depends not only
on the particular topology, but also on the type of failures
observed in the network in question, hence, we cannot provide
a general answer.

Instead, we ask the following, simpler question: given a
particular topology and a particular algorithm for choosing
a subset of links in this topology, what is the expected
number of linearly dependent links in the chosen subset?
We answered this question for our PlanetLab topologies and
for two algorithms for choosing links: (i) “random,” where
all links have the same probability of being chosen, and (ii)
“edge,” which favors links located closer to the end-hosts (and
was inspired by the fact that congestion in the Internet happens
typically at the edge of the network). In other words, we
computed the fraction of linearly dependent lossy links, given
our PlanetLab topologies assuming that congestion occurs (i)
at random locations and (ii) toward the edge of the network.

Table II shows the results for a representative 4000-link
topology: if we choose a subset of 400 links from this
topology, on average 1.2 of these links are linearly dependent
on the others, both when all links have the same probability of
being chosen, and when links located closer to the end-hosts
are favored . In other words, if 10% of the links are lossy,
then only 0.3% of these lossy links are linearly dependent,
hence introduce error in our inference. Moreover, even when
the number of lossy links increases to 25% of the network
links, less than 3% of the lossy links are linearly dependent.

B. Simulation Results

Simulator: We first tested Netscope’s performance through
simulation. To this end, we designed a packet-level, event-
driven simulator that works as follows: The network is
represented as a graph, where vertices represent nodes and
edges represent links. An event corresponds to a packet
reaching a node; in response, we determine the outgoing
link of the packet and flip a coin to determine whether the
packet will be successfully transmitted; if yes, a new event
is scheduled that corresponds to the packet reaching the next
node. Like Netscope, the simulation works in rounds. In the
beginning of each round, each link is assigned a loss rate,
which determines the success rate of the coin associated with
the link.

On the positive side, our simulator captures the fact that
the actual loss rates of paths are, in practice, different from
the measured loss rates of paths. We capture this, because
we measure the loss rate of each path as the fraction of
packets successfully received along that path, which is what
a real measurement tool like our PlanetLab tomographer
(§IV-C) does—and which is precisely why we use a packet-
level simulator. On the negative side, we determine which
packets get lost through independent Bernoulli processes,
which means that we miss the potential inter-dependencies
between successive probes. To our defense, this is the standard
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Fig. 1. Performance as a function of the number of lossy links, when lossy links are randomly chosen.

way to evaluate tomographic techniques, and it is expected
to be accurate as long as probe inter-arrival times are large
enough that the fates of two successive probes are more or
less independent from one another.

Setup: We use real Internet topologies, collected in the
following manner: we got hold of as many PlanetLab nodes as
we could (400 was the maximum) and ran traceroute between
them to identify the set of routers on each path; we discarded
all paths with incomplete traceroute results. Even though we
repeated the above process several times to collect different
topologies, they all look similar in terms of in- and out-
degree of the nodes and, hence, yield similar results. Thus,
we show results that correspond to one topology of 4000 links
(the largest we were able to collect) and note that these are
consistent with the results we got from all topologies.

To assign loss rates to links, we use the same loss model
with [13] (also similar to the models used in [14], [15]), which
assigns loss rates between 0 and 0.002 to non-lossy links
and between 0.05 and 1 to lossy links. We chose this over
alternative milder models (which assign lower loss rates to the
lossy links), because we found that all tomographic techniques
we tried did worse with it—hence, we deemed it a better test.

For each test, we choose a topology and the total number
of lossy links. Moreover, we need to choose which particular
links will be lossy: we choose either randomly or based on
a “weight” parameter, which specifies how likely a link is to
be lossy as a function of its distance from the edge of the
network. The latter approach allows us to simulate scenarios
where congestion happens mostly close to the end-hosts, which

is often the case in the current Internet.

Alternative Solutions: We compare Netscope to three link-
loss inference techniques: “Norm” (L1-norm minimization
with non-negativity constraints) [15], “MultiNorm,” a modified
version of Norm described below, and “LIA” [13].

Norm is essentially Netscope’s third step without the other
two: it simply takes Eq. 1 and solves it using the norm-
minimization approach outlined in §III-D. Norm applies the
“L1-norm minimization with non-negativity constraints” on
all the links in the network, while Netscope applies the
minimization only on the links in the optimal basis. A direct
comparison between Norm and Netscope would be in some
sense unfair, because, unlike Netscope, Norm does not use
information from previous rounds; as a result, Norm more
often misclassifies a non-lossy link as lossy, hence, has a
higher false-positive rate. To make a fair comparison, we
introduce “MultiNorm,” a modified version of Norm, which
(just like Netscope and LIA) uses information from previous
rounds: instead of applying L1-norm minimization on all the
links in the network, it applies it only on links that were
lossy in more than T% of the previous rounds. Essentially,
MultiNorm tries to enforce a certain amount of “stability”
across different rounds, i.e., if L1-norm minimization happens
to misclassify a good link as lossy, MultiNorm corrects the
mistake, as long as it is infrequent. As expected, MultiNorm’s
performance depends on the threshold T . We found that
T = 75% gave good results in all our simulation scenarios,
hence we show results obtained with this threshold.

LIA shares the same first and third steps (§III) with
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Fig. 2. Performance as a function of the number of lossy links, when lossy links are located closer to the end-hosts.

Netscope. In the second step, it partitions E into two sets, B∗

and F∗, as follows: it goes over the links in E , starting from the
lowest-ranked link (according to the ordering obtained in the
first step), and greedily removes links until the remaining links
form a linearly independent set, or a pre-configured minimum
number of links is reached; at that point, all the remaining links
are assigned to B∗, while all the removed links are assigned
to F∗. Note that this is different from Netscope’s second step:
Netscope removes links optimally, so as to identify a basis
for E , i.e., a set of Rank(R) linearly independent links. In
contrast, LIA removes links greedily, until it identifies any set
of linearly independent links; in many cases, it never identifies
such a set and has to stop at an arbitrary point, when the next
link to be removed has a loss rate variance above a certain
threshold. Therefore, LIA is sensitive to the threshold that
specifies when a link has a high loss rate variance such that
its loss rate cannot be approximated by 0. As a result, the
set B∗ ends up being significantly smaller than Rank(R)—
which means that LIA freezes significantly more links than
necessary.

Netscope is essentially a combination of Norm and LIA plus
our optimal-basis selection algorithm (§III-C). Nevertheless,
Netscope is robust in the sense that it requires no parameter
tuning, unlike MultiNorm which uses a threshold to reduce
the number of non-lossy links misclassified as lossy, or LIA,
which needs a threshold to determine when a link has a high
loss rate variance and cannot be approximated by 0. Hence,
comparing Netscope’s performance to the one achieved by
each of these two techniques alone is essential in quantifying

the value of our contribution.

Metrics: We use four metrics: The detection rate specifies
the fraction of the lossy links that were correctly identified as
lossy. The false positive rate specifies the fraction of the links
identified as lossy that were actually not lossy. For a given
link, the absolute error is the absolute difference between the
link’s actual and inferred loss rate; e.g., absolute error 0.1
means that a link has X% loss and we incorrectly inferred it
has X ± 10% loss (so, 0.1 can be a significant error). For a
given link, the error factor is the actual loss rate of the link
divided by its inferred loss rate, or the other way around, such
that the outcome is always larger than 1 [3]. Note that, in our
graphs, we show the mean absolute error (and error factor) of
the lossy links only; otherwise, given that the number of lossy
links is relatively small (5% to 25%) the errors in inferring
the loss rates of the lossy links can be diluted.

Random Congestion: We look at the performance of the
four techniques for different numbers of lossy links. Fig. 1
shows the results when the lossy links are randomly selected.
We make the following observations:

When there are few lossy links, all techniques perform
well, with Netscope having a small advantage by all metrics;
as the number of lossy links increases, the gap between
Netscope’s performance and that of the other techniques
widens, especially regarding the false-positive rate and the
absolute error and error factor. For instance, when 20% of
the links are lossy, Netscope detects 94% of the lossy links
(MultiNorm, the best alternative, detects 85%) with a false-
positive rate of 16% (31% for MultiNorm) and a mean absolute
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Fig. 3. Cumulative distribution function of the absolute errors (the difference
between the actual and the inferred loss rates) and of the error factors for the
lossy links, when 15% of the network links are lossy.

error of 7.5% for the lossy links (14% for MultiNorm). Our
interpretation is the following: Of all the X̄’s that satisfy
Eq. 1, Norm chooses one that minimizes the error between the
measurements and the link loss rates, and has the fewest lossy
links. The larger the number of lossy links in the network,
the larger the number of different X̄’s that satisfy Eq. 1,
hence, the less likely it is for Norm to pick the right solution
without any additional information. MultiNorm achieves better
performance than Norm by using information from previous
rounds, however, it still suffers from the same flaw as Norm.
In contrast, Netscope uses the additional information derived
from the variance-based ordering of the links to discard
unlikely solutions.

LIA performs well when there are only few lossy links in
the network, but its performance degrades as the number of
lossy links increases. Among all four techniques, LIA does
the worst in terms of identifying the actual link loss rates.
This is because of the effect we described above: because
of its greedy nature, LIA ends up freezing significantly more
links than necessary; as the number of lossy links increases,
this unnecessary freezing has a worse impact on performance,
because frozen links are more likely to be lossy. These results
show that it is not enough to just use the additional information
provided by the variance-based ordering, it is also important
to use it the right way.
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Fig. 4. Cumulative distribution of the validation error for the PlanetLab
experiments.

Congestion at the Edge: Next, we look at the performance
of the four techniques when the lossy links are located closer
to the end-hosts. Fig. 2 shows the performance as the fraction
of lossy links in the network increases. We observe that the
gap between Netscope and Norm widens when the lossy links
are mostly at the network edge—when 10% of the links are
lossy, Norm has more than twice Netscope’s false-positive rate,
three times its mean absolute error, and five times its mean
error factor. This may be due to the fact that Norm favors
solutions that involve fewer lossy links; such solutions tend to
involve links that participate in many paths—hence, are not
at the edge of the network. MultiNorm performs better than
Norm, but its mean absolute error is still two times higher
than the one achieved by Netscope.

Fig. 3 shows the cumulative distribution function of the
absolute errors (the difference between the actual and the
inferred loss rates) and the error factors for the lossy links, for
the particular case where 15% of the links in the network are
lossy. With Netscope, 80% of the lossy links have an absolute
error of less than 0.06, which means that, if a link has X%
loss, we infer that it has a loss in the range X ± 6%, while
the best alternative, MultiNorm, infers that it has a loss in the
range X ± 16%, so it is 10% worse in identifying the actual
link loss rates. Similarly, for 80% of the lossy links Netscope
has an error factor of less than 10, while MultiNorm, the best
alternative, achieves an error factor of less than 150.

C. Experimental Validation

We built a tomographer that runs on PlanetLab nodes and
uses Netscope to infer the loss rates of the links between them.
Of course, there is no way to directly measure the accuracy
of our tomographer. Instead, we use the indirect validation
method proposed in [14]: the paths probed in each round are
divided into inference paths and validation paths, such that
each link is represented in both sets; the inference paths are
used to infer the loss rates of all the links; these inferred link
loss rates are then used to compute the path loss rates for
the validation paths. For a given validation path, we use the
term “validation error” to refer to the difference between the
computed (from inferred link loss rates) and measured path
loss rate.

Fig. 4 shows the validation error for different paths. We
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Fig. 5. Loss statistics. The numbers on the y-axes and the pie percentages are averages over 800 rounds.

observe that 70% of the paths have 0 validation error, while
94% have a validation error below 1%.

D. Loss Characteristics of Internet Links

We close with a summary of the statistics we collected over
7 days using our PlanetLab tomographer; the numbers concern
a total of about 4000 links: On average, about 83% of links, in
each round, had negligible loss rate, while only 4% had a loss
rate above 0.05 (Fig. 5(a)). More than half of the lossy links in
each round were edge links; these were also the links with the
highest loss rate (Fig. 5(b)). About 18% of paths had one lossy
link, while less than 5% had 2 or more lossy links (Fig. 5(c)).
Finally, about 62% of lossy links were one or two hops away
from the edge, while less than 5% were more than 5 hops
away (Fig. 5(d)). We state these without further discussion, as
an in-depth analysis of Internet loss characteristics is outside
the scope of this paper.

V. RELATED WORK

We looked at the problem of inferring link loss rates
from end-to-end path measurements using the linear system
specified by Eq. 1. Researchers have already proposed
different approaches to this problem: The first proposals
relied on multicast probes: they showed that the assumptions
we can make on the temporal correlation between such
probes allow us to solve Eq. 1 [1], [3], [4]. Later proposals
“emulated” multicast probes with “clusters” of back-to-back
unicast probes; these methods removed the need for multicast
deployment at the cost of somewhat lower accuracy and higher
administrative costs [7], [8], [16]. Other work showed how to
identify not the loss rates of links, but which are the lossy
links [9] or the loss rates of sequences of consecutive links—
in particular, those sequences whose loss rates can be readily
computed by solving Eq. 1 [20].

Our work relies on two more recent proposals, which
identify the loss rates of links without using multicast or
back-to-back probes. The first one turns Eq. 1 into an
optimization problem, in particular it chooses the X̄ that
minimizes ‖Ȳ−RX̄‖+w‖X̄‖. This was first proposed in [14]
and later evaluated against (and shown to be better than)
similar techniques that use different objective functions [15].
The second proposal first infers the variance of the loss rates
of links (rather than the loss rates themselves), then uses this
information to identify links that are unlikely to be lossy and
approximates their loss rates with 0 [13].

We use elements from both of these techniques: Netscope’s
first step consists of computing the variances of the loss rates
of links, exactly as proposed in [13]; on the other hand, that
proposal feeds this information into a heuristic, whereas we
feed it into an optimal algorithm, which results in significantly
higher performance (§IV-B). Netscope’s third step involves
solving Eq. 2 using precisely the L1-norm minimization with
non-negativity constraints proposed in [15]; however, we use
this technique after having reduced the routing matrix to a
full-rank matrix (using the information provided from the first
step), which results in higher performance (§IV-B).

We should also mention the Bayesian Inference technique
from [14], which iterates over different possible solutions
using Markov Chain Monte Carlo sampling, until one that
sufficiently matches the observed end-to-end measurements
is found. We are trying to use this technique, but we have
not managed yet to implement it such that the simulation
completes in a reasonable amount of time, given the
numbers of links that we consider. However, this technique
and Netscope are not mutually exclusive—if computational
complexity is not an issue, we expect that combining the two
techniques will yield better results than either one alone.

Our tomographer can benefit from techniques that smartly



choose which paths to measure: It has been shown that,
in practice, it is possible to approximately characterize all
paths by measuring only a small subset of heavily used
paths [6]. NetQuest uses Bayesian learning to choose paths to
measure so as to obtain the maximum amount of information
about the network [15]. VScope uses a “staged” approach:
it only measures a subset of paths at any given round so as
to meet resource constraints; whenever a congested path is
identified, it collects more measurements in order to diagnose
that particular path [21].

There also exist non-tomographic techniques for estimating
link loss rates, which exploit the responses generated by
routers to especially crafted probes [2], [11]. Compared to
tomography, these techniques have the advantage of fewer
fundamental assumptions and the disadvantage of needing to
probe individual routers (as opposed to probing end-to-end
paths only); moreover, they require that routers do indeed
generate the expected responses to the corresponding probes,
e.g., in the case of Tulip, ICMP messages with continuous
IP identifiers. We consider tomographic and router-based
techniques complementary rather than competing: the former
scale better, in the sense that they require probing paths
rather than routers; the latter can provide more accurate results
regarding links of particular interest at the cost of more probes
and time.

VI. CONCLUSION

We presented Netscope, a tomographic technique that
infers the loss rates of links from end-to-end measurements.
Netscope gains initial information about the network by
computing the variances of the link loss rates, as proposed
in [13]. Its novelty lies in the way it uses this information—
to identify and characterize the minimum set of links whose
loss rates cannot be accurately inferred through standard
practical tomography. We showed that combining Netscope
with norm minimization [15] significantly improves the latter’s
performance: In a simulation scenario involving a real Internet
topology consisting of 4000 links, 20% of them congested,
Netscope achieved a detection rate of 94% and a false positive
rate of 16%, whereas norm minimization alone achieved 84%
and 38%, respectively. Moreover, Netscope is robust in the
sense that it requires no parameter tuning, and its advantage
over the alternatives widens when the number of lossy links
increases.

We have used Netscope to build a “tomographer” that runs
on PlanetLab nodes and infers the loss rates of the links
between them; we are currently extending it to cover as large
as possible a fraction of the Internet. Our ultimate goal is to
turn it into an online tool, constantly analyzing the status of
Internet links.
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