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Abstract—The scalability limitations of BGP have been a major
concern lately. An important aspect of this issue is the rate of
routing updates (churn) that BGP routers must process. This
paper presents an analysis of the evolution of churn in four
networks at the backbone of the Internet over a period of
seven years and eight months, using BGP update traces from
the RouteViews project. The churn rate varies widely over
time and between networks. Instead of descriptive ‘“black-box”
statistical analysis, we take an exploratory data analysis approach
attempting to understand the reasons behind major observed
characteristics of the churn time series. We find that duplicate
announcements is a major churn contributor, responsible for
most large spikes. Remaining spikes are mostly caused by routing
incidents that affect a large number of prefixes simultaneously.
More long-term intense periods of churn, on the other hand, are
caused by misconfigurations or other special events at or close
to the monitored AS. After filtering pathologies and effects that
are not related to the long-term evolution of churn, we analyze
the remaining ‘“baseline” churn and find that it is increasing at a
rate that is similar to the growth of the number of Autonomous
Systems.

I. INTRODUCTION

The deployment of the BGP routing protocol has sustained
tremendous growth over the last couple of decades and it
is arguably one of the main technological reasons behind
the Internet’s success. Lately, however, there are significant
concerns about the scalability of BGP interdomain routing.
These concerns focus either on the growing routing table
size (number of routable prefixes) or on BGP dynamics and
instability (also known as “churn”) [17]. Both factors are
important, especially for routers at the core of the Internet. The
growing size of the routing table requires increasingly larger
fast memory, but it does not necessarily slow down packet
forwarding as long as address lookups are performed using
TCAMs or constant-time longest-prefix matching algorithms
[26].

Churn, on the other hand, is a more serious concern because
processing BGP updates can be computationally intensive
(updating routing state, generating more updates, checking
import/export filters), and it can trigger a wide-scale instability.
If the current best route to a destination is modified, the global
RIB and the line card FIBs need to be updated.

To make things worse, routing updates are known to be very
bursty, with peak rates several orders of magnitude higher than
daily averages. When the rate of updates becomes too high,
the fear is that there will be (or there are already) periods
when routers will be unable to maintain a consistent routing
table.
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An earlier study by Huston and Armitage reported an
alarming growth in churn [10]. During 2005, the daily rate of
BGP updates observed by a router in AS1221 (Telstra) almost
doubled, while the number of prefixes grew by only 18%.
Based on these measurements, the authors projected future
churn levels and concluded that current router hardware will
need significant upgrades in order to cope with churn in a 3-
5 years horizon. It was this study that largely motivated our
work.

Specifically, in this paper we present a longitudinal study
of BGP churn spanning a longer time frame (more than seven
years) and more monitors (routers at four tier-1 ISPs) than
previous studies. Generally, the churn time series is very noisy,
dominated by frequent large spikes and “level shifts” that last
for several weeks or even months. There are periods in which
churn is slowly increasing, others in which it is decreasing,
and major differences between monitors. One option could
be to characterize the evolution of churn using “black-box”
statistical or time series analysis methods. That approach
would answer questions about the correlation structure and the
marginal distribution of the underlying time series, attempting
to fit the data in a standard time series model. That descriptive
method, however, would not be able to explain what causes
spikes, level shifts or trends in BGP churn. We prefer, instead,
to take Tukey’s exploratory data analysis approach that focuses
on the causes behind the observed phenomena and on the use
of data to formulate new hypotheses instead of only testing
existing hypotheses.

In more detail, we first analyze what causes some major
characteristics of the “raw” BGP update time series (spikes,
level shifts, etc). As a second step, after we remove pathologies
or effects that are not related to the long-term evolution of
churn, we apply statistical trend estimation on the remaining
“baseline” churn and compare the observed growth with the
growth of other routing table aspects, such as the number of
routable prefixes, the number of Autonomous Systems (AS),
and the number of AS routing paths. We find that duplicate
announcements is a major churn contributor, responsible for
most large spikes in the churn time series. Duplicate an-
nouncements are redundant and can be viewed as artifacts
of some BGP implementations. Most remaining spikes in the
churn time series are caused by routing incidents that affect a
large number of prefixes (large events) simultaneously. These
incidents show little correlation between different monitors
and thus affect only a limited part of the Internet. Other intense
periods of churn, which we will call level shifts, are caused
by misconfigurations or other special events at or close to
the monitored AS. Our observations explain why different
networks and monitors experience very different churn.

After removing updates attributed to duplicates, large
events, and level shifts, the remaining time series is much



smoother and shows more consistent growth across monitors.
This filtered version of churn has increased during the seven
years of our study period by about 100%, which is significantly
less than the growth rate of routable prefixes during the same
time period (about 168%). This implies that the number of
updates per prefix per day is decreasing over time, indicating
that, on the average, the stability of routing prefixes has
improved. Interestingly, we observe that the baseline churn
grows at a rate that is very similar to the growth in the number
of ASes in the Internet. The average number of updates
contributed by each AS per day has been almost constant at
around five updates.

We examine the daily peak churn rate, measured as the
busiest one-minute period in that day, and find that it would be
reduced by more than an order of magnitude if updates that are
redundant or caused by certain anomalies were filtered out. We
also observe that the use of BGP update rate-limiting timers
can play an important role in reducing certain pathological
sources of churn, but it is not able to protect a router from
large spikes and level shifts.

The rest of this paper is organized as follows. Sec. II gives
an overview of different underlying factors that create BGP
churn. Sec. III describes our dataset. Sec. IV shows the major
trends in BGP routing during our study period. Sec. V focuses
on the role of the rate-limiting timer and of duplicate updates
on the churn time series. Sec. VI looks at the role of large
routing events that affect many prefixes. Sec. VII investigates
major level shifts in the churn time series. Sec. VIII analyzes
the growth of the baseline churn that remains after we remove
pathologies, large spikes and level shifts. Sec. IX gives an
overview of related work, and Sec. X concludes this work.

II. CHURN GROWTH FACTORS

Several different factors can influence BGP churn. First, it
is expected that the rate of BGP updates a router receives
will increase with the number of routable destination prefixes.
Roughly speaking, each prefix corresponds to a destination
network. If these destination networks fail and recover inde-
pendently and with the same probability, we would expect a
linear relation between the size of the routing table and churn.

The observed churn will also depend on the routing activity
of individual prefixes at their origin AS. Over the past few
years, it has become increasingly common for stub ASes to
be multihomed to several providers [4]. Multihoming enables
load-balancing by selectively announcing different prefixes to
different providers. As this practice gradually becomes more
common, we expect that it contributes to increasing churn
when a network destination becomes unreachable.

Another source of churn is routing events taking place in
or between transit ASes. Such events include link failures
(physical failures, router reboots, etc), policy changes that
result in new preferred routes, or changes in the IGP or iBGP
configuration of a transit AS. Importantly, these operations
often affect a large number of prefixes at the same time. The
amount of churn observed at a router after such events will
also depend on the topology and routing policies.

Topological properties of the AS-level Internet graph also
affect the churn rate [6]. Increased multihoming increases the

churn generated when a destination prefix is announced or
withdrawn from the origin AS. On the other hand, increased
connectivity can reduce the impact of failures, if a local
alternative is available. Topological properties also influence
the number of updates generated during the path exploration
that takes place when BGP explores several paths after a
routing incident before converging to a stable state [19].

Additionally, there are BGP mechanisms and parameter
settings that can reduce the observed churn. Two important
mechanisms are the MinRouteAdvertiseInterval (MRAI) timer
and Route Flap Damping (RFD). Furthermore, the use of
route reflectors in iBGP can limit or increase churn [24]. The
interactions between different protocol implementations and
configurations, or their impact on BGP churn, is far from well
understood.

III. DATASET

Our analysis is based on BGP update traces collected by
the RouteViews project [1]. RouteViews collectors run BGP
sessions with several routers, referred to as monitors, in many
networks. A monitor sends a BGP update to the collector every
time there is a change in the preferred path from the monitor
to a destination prefix. In addition, RouteViews dumps every
two hours a snapshot of the routing table that contains the
best selected paths advertised from each monitor. We use those
snapshots to observe the growth of the routing table size over
the last few years.

We focus on update traces from monitors at large transit
networks in the core of the Internet. Specifically, we analyze
the churn time series from four monitors at AT&T, Sprint,
Level-3 and France Telecom (FT). The corresponding monitors
belong to the Default Free Zone (DFZ), meaning that they do
not have a default route to another provider, and so they know
a route to practically all destination networks in the Internet.

RouteViews provides historical update traces spanning more
than seven years for these four monitors. In some cases, the
IP address of the monitor changed during our study period.
We identified the corresponding IP addresses and concatenated
the update time series after confirming that they correspond
to the same actual monitor. Our time series cover the period
from January-01-2003 to August-31-2010, giving us more
than 7.5 years worth of routing updates from four backbone
monitors. However, the Sprint monitor was unavailable during
the last two years of our study period, while the FT monitor
was unavailable after February 2009. The AT&T monitor was
unavailable during 2.5 months in late 2003.

If the multi-hop BGP session between a monitor and the
collector is broken and re-established, the monitor will re-
announce all its known paths, giving large bursts of updates.
This is a local artifact of the RouteViews measurement infras-
tructure, and it does not represent genuine routing dynamics.
Hence, we use the method described in [29] to identify and
remove updates caused by “session resets”. After filtering, our
dataset consists of more than 1.8 billion updates. Note that the
updates received from a monitor is not a good estimate for
the total number of updates a backbone router must process.
A router typically has several active BGP sessions, and so the



Minimum | Median | Maximum
Kendall’s 7 0.70 0.80 0.93
Spearman’s p | 0.84 0.92 0.98

TABLE I: Measured cross-correlation across monitors in the
same AS (based on ten monitor pairs).

total load on the router is the sum of the churn from all BGP
sessions.

To confirm that the method of [29] is able to identify all
session resets and the subsequent routing table transfers, we
applied it on BGP updates collected from three multi-hop BGP
sessions. These sessions are established locally with a well-
connected stub AS (AS44654). We compared table transfers
detected by the previous method in a period of three months
against BGP session logs from the corresponding router. The
method was able to detect table transfers and their exact
starting time in 11 out of 12 cases (the 12th case was also
reported but with a 7-sec difference in the starting time).

Due to complex iBGP configurations using confederations
or route reflectors, different edge routers of the same AS do not
necessarily see the same set of paths to different destinations.
In order to understand the impact of such differences on
churn, we examined a set of ten pairs of monitors such that
each pair consists of routers in the same AS that peer with
the RouteViews Oregon-IX collector. Then, we measured the
hourly churn time series in four different months (Aug’03,
Mar’04, May’05, and Feb’07) for the ten monitor pairs.
We calculated the cross-correlation of hourly BGP updates
between the time series of each pair, using two non-parametric
measures: Kendall’s 7 and Spearman’s p [8]. Both measures
indicated a reasonably high cross-correlation between moni-
tors of the same AS. Table I shows the minimum, median, and
maximum cross-correlation across all ten pairs (a value of 1.0
denotes maximum correlation). Even though we cannot claim
that these observations are true in general, it is reasonable to
expect that two routers of the same AS produce similar (but
not identical) churn.

IV. THE “RAW” CHURN TIME SERIES

We start with three important aspects of growth in the BGP
routing system. The left panel in Fig. 1 shows the number
of routing table entries in the four monitors, sampled on a
monthly basis. The number of entries in the different monitors
is very similar, which is expected since these monitors are all
DFZ routers. The number of routable prefixes increased by
168% during our study period, from about 120K to 322K
entries (the increase can be modeled as quadratic, with a
coefficient of determination of 99.9%). The middle panel
shows the number of ASes, sampled on a monthly basis. This
metric has increased by 143% during our measurement period.
The right panel shows the number of distinct AS paths (routing
paths) in the observed BGP routing tables (after removing the
effects of AS path-prepending) again on a monthly basis. This
metric has increased by 163% during our measurement period.

One may expect that since the size of the routing table,
the number of ASes, and the number of routing paths have
more than doubled during the study period, BGP churn should
also show a similar consistent and significant increase. This is

not the case however. The left column in Fig. 2 shows the
“raw” BGP churn time series, measured as the number of
BGP updates received daily from each monitor. Some high-
level observations are necessary before we proceed with the
analysis.

The raw time series is dominated by frequent and large
spikes. At all monitors, there are days with dramatically higher
churn than usual. We have truncated the y-axis of these plots to
make the graphs more readable (on some days the number of
updates reached several millions). Large spikes are particularly
frequent at the Level-3 monitor. Such spikes cannot be ignored
as “statistical outliers”; instead, we need to understand what
causes them.

There are several “level shifts”. In addition to spikes, we
observe several periods of sustained increased activity that last
for weeks or months. For example, we see a period that lasted
about 6 months in mid-2006 at the Level-3 monitor. Again,
level shifts cannot be viewed just as incidents of statistical
non-stationarity; we need to understand what causes them.
There is little correlation between monitors of different
ASes. The spikes and level shifts at the four monitors do not
follow the same pattern. We measured the cross-correlation
between different monitors using Kendall’s 7 coefficient. The
estimated cross-correlation coefficient is between 0.17 and 0.3,
which illustrates a small correlation between the four monitors.
This indicates that churn is highly dependent on the location
and configuration of the corresponding router. So, we cannot
understand the evolution of BGP churn by just looking at a
single monitor.

Churn is highly bursty even at large time scales. As seen
at the left column of Fig. 2, churn is highly bursty even in
the relatively large time scale of a day. We also examined the
churn time series in shorter time scales (5 minutes and one
hour) and observed that in some cases the majority of the
daily churn is produced during short periods that last for few
minutes.

It can be misleading to infer long-term trends from the
raw churn time series. Because of the previous issues, it is
clear that the blind application of statistical trend estimation
methods can fail to detect a trend or it can produce misleading
results. The approach we take in this paper is to first analyze
what causes some major characteristics of the raw time series
(spikes, level shifts, etc) and then, after we remove patholog-
ical and effects that are not related to the long-term evolution
of churn, to apply statistical trend estimation on the remaining
“baseline” churn.

V. IMPACT OF RATE-LIMITING TIMERS AND OF DUPLICATE
UPDATES

We first analyze the deployment and impact of the rate-
limiting timer during our study period. We are interested to
assess the impact of rate-limiting on the observed churn, and to
understand any sudden changes in churn level when the timer
is toggled. Second, we examine the frequency of duplicate
BGP updates in the churn time series.



Fig. 1: Routing table size (left), number of ASes (middle), and number of observed AS paths (right) during our study period.
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A. Rate-limiting timer deployment and impact

To limit the rate of BGP updates, the BGP standard [21] rec-
ommends the use of a MinRouteAdvertisementInterval Timer
(MRALI timer) which specifies the minimum time interval
between sending two consecutive updates for a destination
prefix. The recommended value of this timer on eBGP sessions
is 30 seconds. The standard recommends jittering the MRAI
timer by multiplying its value with a random number between
0.75 and 1.

Some implementations (notably Cisco IOS and the Quagga
software router), implement per-session timers rather than
per-prefix timers in order to reduce overhead. Another com-
mon BGP implementation (Juniper’s JunOS) implements rate-
limiting using the out-delay parameter. Unlike the MRAI timer
implementation described above, this delay is added to each
update for each prefix individually. When a router changes
its best path to a destination prefix, it will not inform its
peer about the change unless the route has been present in
its routing table for the specified out-delay.

To determine whether a monitoring session is rate-limited,
we look at the time series of updates for that monitoring
session. If a monitor uses MRAI, we expect to see a pattern
where updates arrive in bursts every time the timer expires. In
other words, we should see very few inter-arrival periods in
the range [0-22] seconds, assuming a jittered default MRAI
timer value. On the other hand, if a monitor uses out-delay to
perform rate-limiting, we do not expect the same bursty pattern
of updates. Instead, we should see a pattern where updates
arrive in a steady flow, but where two updates for the same
prefix are always spaced by at least the out-delay timer value
(i.e. 30 seconds). So, to detect whether a rate-limiting timer
was deployed at the four monitors during the study period, we
used the following two-step approach.

1. For each monitor we select one day from each week of
the study period, which resulted in a sample of at least 288
days per monitor. We then calculated the distribution of update
inter-arrival times for each day in the sample.

2. We calculate the fraction of update inter-arrival times
across all prefixes that is less than 22.5 seconds. If that
fraction is significant, MRAI was probably not deployed on
the corresponding day. Furthermore, we calculate the fraction
of update inter-arrival times for individual prefixes that is less
than 30 seconds. If that fraction is significant, out-delay was
probably not deployed on the corresponding day. We find
that setting the threshold for the fraction of both inter-arrivals
anywhere between 0.15 and 0.2 (i.e. dismissing 15% to 20%
of the outliers) results in detecting the same periods.

Figure. 3 shows the fraction of update inter-arrival times
for individual prefixes and across all prefixes that is less than
30 and 22.5 seconds respectively, for the AT&T and Sprint
monitors. Note that in AT&T the fraction of update inter-
arrival times across all prefixes started at about 5% during
the first nine months of 2003, and then it increased steeply
to about 99% in the rest of the study period. The fraction
of update inter-arrival times for individual prefixes remained
relatively large during the study period. In Sprint, the fraction
of update inter-arrival times across all prefixes was about 10%
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Fig. 3: Identification of rate-limited periods (left: AT&T, right:
Sprint).

in the period between Jan’03 to Oct’04, and after Oct’04 it
increased to about 40%. The fraction of update inter-arrival
times for individual prefixes was about 30% between Jan’03
and Apr’05, then it decreased steeply to less than 10% in the
rest of our study period.

The above observations suggest that the MRAI timer at the
AT&T monitor was active initially, but it was then turned off.
In addition, the observations indicate that the MRAI timer
at the Sprint monitor was active between Jan’03 to Oct’04,
it was then turned off for six months, and then out-delay
was used from Apr’05 until the end of our study period.
Switching between MRAI and out-delay suggests that the
router hardware of the Sprint monitor was replaced. Using
a similar analysis we inferred the rate-limiting deployment
periods for the two other monitors.! In Figs. 2 and 8, we
use grey shaded areas in the time series to indicate periods in
which the MRAI timer was deployed, and a diagonally shaded
areas to indicate the same for the out-delay timer.

To investigate the impact of the rate-limiting timer (MRAI
or out-delay), we measured the median daily churn rate in a
three month period before and after each identified deployment
transition. For each transition, we calculated the ratio (median
churn without rate-limiting) over (median churn with rate-
limiting). We found that the churn level increases when the
rate-limiting timer is turned off, while it decreases when it
is turned on. For example in Level-3, churn increased by a
factor of 1.8 when the timer was turned off. A recent study
has illustrated that out-delay limits more churn than MRAI [5].

B. Duplicate updates

The conventional wisdom is that BGP implementations
generate a large number of duplicate updates, which imposes
an unnecessary processing load on routers. It has been pointed
out that one reason for the large number of redundant updates
is stateless BGP implementations that do not keep track of the
last update sent to a peer [12].

We identified all duplicate updates (announcements and
withdrawals) in our dataset. By “duplicate announcement”
we mean an announcement that is identical to the last seen
announcement for the same prefix, i.e., no change in either
the AS-path or in any of the transitive route attributes. These
announcements are redundant and can be viewed as a pathol-
ogy of the BGP implementation at the corresponding monitor.

!'To confirm the robustness of the aforementioned rate-limiting inference we
have investigated the deployment of rate-limiting with smaller timer values
(i.e. between 5 and 30 seconds). We did not detect rate-limiting configurations
that use non-standard timer values.



A recent measurement study [20] attributed BGP duplicate
updates to interactions between iBGP and eBGP.

To our great surprise, we measured that, across all four
monitors, duplicate announcements are responsible for about
40% of the churn during the study period! On the other hand,
duplicate withdrawals are close to zero (except Level-3, where
they account for about 1% of the updates). It is interesting that
almost half of the observed churn is not really necessary. This
number is higher than the 16% of the duplicate announcements
“AADupTypel” reported earlier in [14]; that study looked
at monitors located in ASes of different sizes during a 6-
month period in 2006. Our estimate is also higher than what
is reported in [20].

The number of duplicate updates per day is highly variable,
and shows no correlation across monitors. It is also difficult to
identify any consistent long-term trend in the number of dupli-
cates. These results indicate that the specific implementation
of BGP and local configuration details can greatly influence
the amount of redundant updates.

There is still much to be gained by deploying improved
BGP implementations that avoid sending redundant updates to
the global routing system. Such improvements would require,
however, per-neighbor state at BGP routers to keep track of
what was sent to each peer earlier, so that duplicate updates
can be detected before they are transmitted. There is a trade-off
between allowing the generation of duplicate updates (that will
be filtered at the receiving router) versus more heavy weight
processing at the sending router that would also eliminate
duplicate updates [23]. Arguably, these changes may not be
worth doing, given the lightweight handling of duplicates.

The second column in Fig. 2 shows the four time series after
filtering out duplicate updates®. Note that removing duplicate
updates has the additional benefit that most of the spikes are
also removed. This indicates that redundant updates are not
only responsible for a large fraction of churn, but they are
also responsible for generating large bursts of churn. There
is no measurement work that quantifies the actual processing
burden on routers caused by duplicates, hence the impact of
these bursts on routers’ CPUs is not clear at this point.

VI. LARGE EVENTS

After removing duplicates, we focus on “large routing
events”, or simply large events, loosely defined as events that
affect a large number of prefixes at about the same time.
The intuition is that incidents in the core of the Internet
have the potential to introduce instability to a large number
of prefixes simultaneously, causing major churn spikes. Such
incidents may be link failures in or between transit ASes, or
internal routing or policy changes in an AS. For instance, a
large number of prefixes may change their BGP next hop
following an adjustment of IGP link weights due to hot-
potato routing [25]. Large events may also be triggered by
changes in geographical community attributes that determine
the preferred exit POP when two ASes peer at more than one
location. Large events can potentially impose a high burden on
a router’s CPU, because they affect a large number of prefixes

2Raw and filtered datasets are available at http://vefur.simula.no/bgp-churn/.

simultaneously. It is important to characterize large events in
order to understand the extent and evolution of their impact.

When an underlying incident triggers a routing change,
it often results in several updates for each affected prefix.
We define a prefix event as a sequence of updates for a
given prefix that are likely generated by the same underlying
incident. The updates of a prefix event typically have short
inter-arrival times. Here, we adopt the definition given in [28]
for identifying prefix events:

Definition 1: Two consecutive updates for the same prefix

belong to the same prefix event if they are no more than 70
seconds apart. The maximum duration for a prefix event is set
to 10 minutes. Events with duration longer than 10 minutes
are considered to be flapping.
The previous thresholds were determined based on measuring
the convergence times for beacon prefixes [16]. The authors
in [28] showed that over 98% of the updates received after
a beacon prefix announcement/withdrawal had shorter inter-
arrival times than 70 seconds.

Some routing incidents affect several prefixes. We group
prefix events that occur at about the same time into events.

Definition 2: Starting with a prefix event p, the event that
follows p consists of all prefix events that start no later than
t seconds after the start of p.

The intuition is that when a routing incident affects multiple
prefixes, the first updates for these prefixes should arrive in
a burst. The “event grouping threshold” ¢ should therefore
be set to a low value, to minimize the risk of erroneously
grouping prefix events that are caused by different underlying
incidents into the same event. To find a suitable value for ¢,
we investigated how the event size (i.e. the number of prefix
events included in an event) varies for different values of ¢.
We looked at different time periods in all our four monitors,
and found that the 99-th percentile of event sizes shows small
variations when ¢ is between 1 and 20 seconds. We use t = 5
seconds in the rest of this paper.

Next, we define a large event as an event that affects many
prefixes. To choose an appropriate threshold for classifying an
event as a large event, we identified all events that took place
during the month of January in each year of our study period,
for all four monitors. Fig. 4 shows the distribution of the
number of affected prefixes per event - each curve represents
the events during the period of one month and for one monitor.
Our objective here is not to analyze the differences between
monitors or months, but to observe the “typical” distribution
of event sizes. We only show the tail of the distribution -
the full CDF shows that half of all events affect less than
10 prefixes, while more than 90% of events affect less than
40 prefixes. Based on this graph, we use a threshold of 2000
prefixes. Note that all CDFs flatten out after this threshold.
With this definition, at most 0.2% of all events are considered
to be large events.

Definition 3: A large event is an event that includes at least
2000 prefix events.

The number of large events over our study period varies
significantly across monitors (from 1554 for France-Telecom
to 15054 for AT&T). Note that 12265 of the large events
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at the AT&T monitor were observed during a period of two
days between June-29-2010 and July-01-2010. These events
resulted in over 156 million updates. A closer look indicated
that this high activity is caused by continuous flapping of
about 217K prefixes that were originated from 25000 different
ASes. The flapping involved 1937 different next hops. The
involvement of a large number of prefixes and the high
diversity in terms of next hops and origins show that the cause
of those events was probably local to the monitor AS. In the
rest of this section, we focus on the remaining 2789 large
events in the AT&T time series.

Next, we characterize large events with respect to their
type, and describe the evolution of their size, frequency, and
duration. We also investigate the correlation of large events
across monitors.

A. Types of large events

Given that the number of large events is significant, it is
difficult to examine them individually in order to pin-point
their root causes. Instead, we categorize large events into
different Path Transition Signatures (PTS) based on the most
dominant routing change (i.e. path instabilities, path changes,
or path withdrawals) in the underlying single prefix events that
constitute them. We classify a single-prefix event into different
types, depending on the best known path before the event and
the best known path after the event [13], [19]:

WA: Starts with no known path to the affected prefix, and
ends up with a path.

AW: Starts with a path and ends with no path.

AAC: Starts with a path P and ends with a different path
P

AAD: Starts with a path P and ends with the same path
P, but at least one different path P’ was seen during
the convergence process.

AAS: Starts with a path P and ends with the same path P,

and no other path was seen during the convergence
process.

If a large event was caused by a certain routing incident, the
majority of involved prefixes are likely to show the same PTS.
To verify this, we group the single-prefix events that constitute
a large event based on their PTS, and define the dominant PTS
as the PTS of the largest of these groups. Across all monitors,
we observe that the dominant PTS normally covers most of
the underlying prefix events: in 99% of large events, more than
50% of the prefix events have the same PTS.

Monitor | AT&T | Level-3 | FT Sprint
AW 21.1% | 1.8% 4.4% 1.6%
WA 21.7% | 1.6% 4.1% 1.6%
AAC 46.1% | 23.9% 66.9% | 6.4%
AAD 8.9 32.8% 15.6% | 1.5%
AAS 0.7% 36.6% 0.3% 70.1%
ND 1.2% 3.1% 8.8% 18.7%

TABLE II: Classification of large events at the four monitors.

9
M M AT&T | FT Level-3 | Sprint | Uncond-Prob
AT&T - 0.05 | 0.11 0.11 0.003
FT 0.05 - 0.09 0.09 0.003
Level-3 0.02 0.02 | - 0.03 0.018
Sprint 0.03 0.03 | 0.05 - 0.010

TABLE III: Conditional probability that a large event is seen
at monitor M given a large event at a monitor M’ in the same
10-min interval. The corresponding unconditional probability
is shown at the rightmost column.

To simplify our analysis, we proceed to classify large events
based on the dominant PTS of the corresponding prefix events.
We say that a large event is of type A if at least 70% of the
involved single prefix events are of type A. As seen in Tab. II,
most large events can be assigned to one of the event classes
using this definition. We observe that the dominant classes
differ from one monitor to another. AAC, AW, and WA are
dominant at AT&T. At Sprint, the majority of large events are
of AAS type. AAD, AAC, and AAS dominate at Level-3, while
AAC and AAD dominate at FT.

B. Temporal correlations of Large Events

In this subsection we investigate whether large events tend
to happen at the same time at different monitors, and whether
prefixes that are affected by a large event at monitor M also
tend to be active at other monitors at the same time.

Large events across monitors. To calculate how large events
are related across monitors, we divide each time series into
bins of 10 minutes. Then, we construct a new binary time
series such that a bin will be assigned a value of one if
we record at least one large event during the time covered
by that bin, and zero otherwise. Further, we estimate the
probability that a large event is seen at monitor M given
that a large event is seen at monitor M’ in the same 10-min
bin (i.e. the conditional probability P(M|M')). We calculate
this probability for all pairs of monitors at lags 1, 0, and -
1. Table IIT shows the conditional probability P(M|M’) and
the unconditional probability P(M) at lag O (the probabilities
at lag 1 and lag -1 are smaller than at lag 0). Each row
corresponds to a monitor M, while each column corresponds
to a monitor M’. We observe that the conditional probabilities
are markedly higher than the corresponding unconditional
probabilities in most monitors, showing that at least some
large events affect multiple monitors. Note, however, that the
absolute probabilities are quite low. In other words, it is not
very likely that we observe a large event at monitor M’ even
if there is a large event at monitor M. This indicates that most
large events affect only a limited part of the Internet.

The propagation of large events. We can now investigate
whether a large event at monitor M is visible (perhaps not as
large event) at monitor M’. To do so, we start by identifying



prefixes that are affected by a large event at monitor M.
For each such prefix we check if it was active within a
time window of width W in the update traces of monitor
M’. Then, we calculate the fraction of prefixes in a large
event that shows such temporal correlations. This analysis
is performed for all observed large events and between all
pairs of monitors. We experimented with several correlation
window sizes. Increasing the correlation window size from 5
to 10 minutes does not affect the results significantly; in the
following this threshold is set to 5 minutes.

The left panel in Fig. 5 illustrates the activity of prefixes
at AT&T during large events at the other three monitors. The
CCDF plots show the fraction of large events (on the y-axis)
where at least % of the prefixes affected by the large event
are active. We observe that for most large events at remote
monitors, only a small percentage of the affected prefixes are
active at AT&T at the same time; in 95% of the cases, less than
5% of affected prefixes are also active at AT&T. If we look
closer at those large events where many prefixes are active
also at remote monitors (the tail of the plot in Fig. 5), we
see that they are mostly of type AW or WA. This is intuitive,
since events that affect the reachability of prefixes will often
be propagated widely across the Internet. The corresponding
plots for other combinations of monitors show similar results.

To summarize, the time series of large events show little cor-
relation between different monitors. In addition, large events
that are observed at one monitor have mostly negligible impact
on other monitors. Therefore, the number and magnitude of
observed large events are highly dependent on the monitoring
point.

C. Evolution of Large Events

Next, we turn to exploring the evolution of large events and
their characteristics. More specifically, we investigate how the
size, intensity, duration, and frequency of large events have
changed over time. For each of these metrics, we use the
Mann-Kendall statistical test for trend detection to determine
if we can identify a trend at a 90% significance level.

The first observation is that for all these metrics, there are
significant variations, both over time and across monitors.
This is illustrated in the right panel in Fig. 5 showing the
number of large events per month at Level-3 and AT&T.
We observe that this number can vary by several orders of
magnitude from one month to the next. This highlights the
importance of using sufficiently long measurement periods
when looking for trends in the evolution of large events.

Keeping this in mind, we find few clear trends in the
evolution of large events. The exception is Level-3, where we
see a clear increase in the impact of large events, as shown
in the right panel in Fig. 5. Looking closer at the large events
in Level-3, we note that this increase can be attributed to
events of type AAS. In particular, after 2006 we see a large
number of large events where the updates contain changes in
a COMMUNITY attribute, related to the geographic exit point
in the Level-3 network. Hence, we believe that this increase

3We see a somewhat higher correlation at the Sprint monitor during large
events at France Telecom.
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Fig. 5: The impact of remote large events at AT&T (left),
Large events per month (right).

is caused by a local configuration change at Level-3, and does
not represent a general trend in the Internet.

Another interesting observation is that the occurrence of
large events in AT&T tends to be more temporally clustered
than in the other monitors. While we typically observe several
days in each month without any large events, the median inter-
arrival time for large events in AT&T is in the order of tens
of seconds. For the other monitors, the median inter-arrival
time is in the order of hours. The low inter-arrival times at
AT&T are probably caused by the fact that almost 50% of the
large events at AT&T are of types AW and WA as shown in
Tab. II. It is likely that a failure of a large number of routes
will shortly be restored if it is caused by a transient loss of
reachability.

Unlike duplicates discussed in the previous section, updates
caused by large events are necessary for correct routing, and
they cannot be viewed as artifacts of the protocol implemen-
tation. However, they are less important for the long-term
evolution of Internet-wide churn. The third column in Fig. 2
shows the churn, after removing updates due to large events.
Comparing this time series with the churn after removing
duplicates, we see that most remaining large spikes in the
duplicate-free churn are related to large events. Even though
the remaining time series, after excluding the impact of
duplicate updates and large events, are much smoother, they
still show several significant level shifts; they are the subject
of the next section.

VII. ANALYZING LEVEL SHIFTS

The time series (for the AT&T and Level-3 monitors in par-
ticular) are still dominated by level shifts where the magnitude
of churn changes substantially and abruptly. The presence of
these level shifts makes it difficult to reliably detect long-term
trends. Instead of trying to automatically identify a plausible
root cause for every level shift (a difficult and error-prone
task), we make an in-depth “manual” analysis of few major
level shifts. We focus our analysis on the AT&T and Level-3
monitors.

AT&T: The AT&T time series involves several clear
level shifts, in addition to a long period of increased activity
spanning 1.5 years from Jan’04 to Jun’05. Overall, we iden-
tified five distinct level shifts at that network. The first level
shift is the long period of increasing activity from December-
11-2003 to March-01-2005. The second level shift started
immediately after the first period and lasted for one month.
The third and fourth level shifts took place from February-15-
2006 to March-31-2006 and from July-31-2006 to September-
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Fig. 6: Churn contribution from the most active prefixes during
five level shifts at the AT&T monitor.

25-2006, respectively. Finally, the fifth level shift took place
from August-19-2009 to October-16-2009.

Fig. 6 shows the fraction of total churn contributed by each
prefix during our five activity periods, sorted by the activity
level of each prefix. We observe in the first four periods
that there is a very small set of prefixes that contributed the
majority of churn. In the fifth period on the other hand, a
relatively larger set of prefixes was responsible for the majority
of churn. For comparison, we also include a curve for the
churn in 2008, which does not contain any level-shifts. This
clearly shows the abnormality during the level shift periods.

During period-1, a small set of 148 prefixes (i.e 0.1% of
the total number of prefixes) contributed 49.8% of the total
churn. We investigated the activity patterns of these prefixes by
examining the inter-arrival times of their updates. The prefixes
can be classified into three groups based on their median
updates inter-arrival times.

The first group consists of prefixes with median update inter-
arrival time at 58 seconds. When investigating their update
patterns we find that these prefixes belong to AS21617 and are
reached through the path {7018,701,21617} where 7018 is the
monitor AS. During this period the previous group of prefixes
flapped up and down almost in every minute. It is reasonable
to believe that this long-lasting and high-frequency flapping
pattern is caused by a flapping link or misconfiguration.

The prefixes that fall into the second group have a median
update inter-arrival time of 65 seconds. We find that they are
originated by either the monitor AS (i.e. 7018) or its direct
customers. During this period this group of prefixes exhibited
a change which is either a withdrawal or a re-announcement
approximately every minute. Although the prefixes in the first
and second groups have nearly identical median inter-arrival
times, the second group stands out with a very regular activity
pattern. The 90-th percentile of the update inter-arrival times
is approximately equal to the median, which confirms a strict
periodicity in these updates. This implies that these updates
are caused by an anomaly that changes the path selection at
regular intervals, rather than a flaky link or some adaptive load
balancing method that would give a more irregular pattern.

The last group includes prefixes with a median update inter-
arrival time at 196 seconds. We find that these prefixes belong
to AS1938, and their AS path was switching between {7018
10888 24 11537 20965 2200 1938} and {7018 10888 11537
20965 2200 1938}. Tt is difficult to spot the root cause in this

case. However, in the FT and Level-3 datasets we observe
similar flapping patterns that involve switching some prefixes’
next hop from AS24 (NASA) to other ASes. Therefore, this
activity might be caused by some instability in or near AS24
that lasted for a long time.

Period-2 started immediately after the end of period-1, and
lasted for one month. There is a small set of 170 prefixes
that generated 71.7% of the total churn during this period.
The main cause of this level shift is a small set of prefixes
belonging to General Electric’'s AS (AS80). These prefixes
continuously flapped between the direct route {7018 80} and
a longer route with AS1239 (Sprint) as a next hop, i.e.{7018
1239 80}. Note that AS80 is a stub AS and does not announce
many prefixes. Still, the frequency of route changes is high
enough to create this radical increase in churn.

In Period-3 and Period-4, we find that the level shifts are
caused by leaking of private AS numbers into the global
routing system. Private AS numbers (ranging from 64512 to
65535) are used to divide large ASes into multiple smaller
domains connected by eBGP, or they can be assigned to stub
ASes that want to use BGP with their upstream provider but
do not want to be part of the global routing system. Private
AS numbers should be removed from routing updates that
are sent to the global BGP system. During these two level
shifts, updates containing private AS numbers are responsible
for 54.3% and 70.5% of total churn respectively.

Period-5 is different from the other four periods in two
respects. First, it involves a larger number of prefixes (2030).
Second, the daily churn is much higher during the shift
period, about 1.8 million updates per day. We observed that
a set of prefixes reached by AT&T through AS7132 (SBIS-
AT&T Internet service) and AS2685(AT&T Global Network
Services) flapped with a high frequency during the shift
period — approximately every 80 seconds. A discussion in the
NANOG mailing list pointed to this level shift and observed
the same flapping behavior [18].

Level-3: The data shows a clear level shift in the
Level-3 time series from March-01-2006 to August-31-2006.
Following a similar analysis as in AT&T, we find that the
increased activity can be attributed to a set of flapping prefixes,
which changed their AS-PATH continuously from {3356 3561
4134 X} to {3356 1239 4134 X} or vice versa, where X
represents the rest of the AS path. Here we see how AS3356
(Level-3) alternated between two different neighboring ASes,
AS3561 (Savvis) and AS1239 (Sprint) to reach AS4134
(China-Backbone). Note here that Savvis is owned by Level-3
and hence the route through Savvis is preferred. When this
route is lost, Level-3 selects the backup route through Sprint.
The frequency of this flapping for each prefix is between once
every 10 minutes and once every 20 minutes. However, China-
Backbone is a major transit provider, and Level-3 selects it
as the preferred path for more than 2000 destination prefixes.
Hence, a single change will trigger a large number of updates.

We also identified a second level shift in the Level-3 time
series, that took place from June-15-2010 to 31-July-2010.
We find that this level shift is caused by persistent flapping in
reaching prefixes originated by AS9808 (Guangdong Mobile
Communication) and its customers.



The previous analysis shows that level shifts are usually
caused by specific failures or misconfigurations in or at the
border of the monitored AS. The left column in Fig. 8 shows
the churn time series after filtering out all updates attributed
to the level shift events previously described.

VIII. THE GROWTH OF BASELINE CHURN

In this section, we analyze the growth of the churn time
series after removing duplicate updates, large events, and the
level shifts of the previous section. We refer to this time series
as the “baseline churn”. We also analyze the time series of
peak churn, measured from the busiest 1-minute period of each
day.

A. Baseline churn

Compared to the raw time series, the baseline churn is much
smoother and shows more correlation across monitors (see
Fig. 8). The Kendall’s 7 rank correlation coefficient between
the AT&T, Level-3, and Sprint baseline time series is around
0.5, which is almost double the highest value observed in
the raw time series (0.25). This increase suggests that our
approach has filtered out many of the effects that affect only a
limited part of the Internet. The cross-correlation between the
three North American monitors and FT is lower (around 0.4).
This is likely caused by differences in geographical presence.

Next, we use statistical methods to characterize the evolu-
tion of baseline churn. The application of linear regression on
the baseline time series results in a low Pearson’s correlation
coefficient (0.03 to 0.42, depending on the monitor), since even
the baseline churn contains some spikes and small level shifts.
Therefore, we rely on non-parametric statistics and in particu-
lar on the Mann-Kendall statistical test for trend detection. The
Mann-Kendall test reports that there is a statistically significant
increasing trend in the baseline time series in all four monitors
at a 90% significance level. Actually, both the non-parametric
and parametric (linear regression) tests give similar estimates
for the slope of the increasing trend. Table IV presents the
estimated slopes in additional updates per day.

The same Table also shows the estimated relative churn
increase during the study period. This figure is calculated
based on the estimated slope and the median daily churn
rate during the first 3 months as starting point. The two
estimation techniques are in reasonable agreement with each
other. Note that the estimated increase covers a period of six
years for FT and Sprint, while it spans seven years and eight
months for AT&T and Level-3. During the first six years the
daily churn grew by about 50% at AT&T and 69% at Level-
3, which indicates a faster growth than at FT and Level-
3. Interestingly, the estimated increase reported in Table IV
shows a faster growth at both AT&T and Level-3 during the
last 20 months (about 30%) than during the first six years. The
significant differences between monitors are not surprising,
since different monitors have different sets of customers and
peers and different internal configuration.

Next, we compare the growth in baseline churn to the
growth in different measures of the global routing system.
The left panel in Fig 7 shows the average daily number of

baseline updates per prefix at the AT&T monitor.* Similarly,
the middle panel shows the average daily number of updates
per AS, while the left panel shows the same per distinct AS-
PATH. These values are sampled once per month in the period
from Jan’04 to Sep’10. We calculate the average number of
daily (baseline) updates in each month and divide by the
corresponding comparison metric. In all plots we also show
the linear regression estimate. The Mann-Kendall statistical
test for trend detection identifies a decreasing trend in the
average number of updates per prefix and per distinct AS-
PATH, at a 90% significance level. However, no significant
trend is detected in the case of updates per AS. The average
number of updates contributed by each AS is almost constant
at around 5 updates.

In other words, the increase in the baseline churn is slower
compared to the growth of the routing table size and the
number of distinct AS-PATHs. This is in agreement with the
data presented in Fig. 1. During our study period, the number
of routable prefixes and distinct AS-PATHs increased by 168%
and 163% respectively, while the baseline churn has increased
by about 100%.

We also observe that baseline churn growth is similar to
the increase in the number of ASes; the middle panel in Fig. 7
illustrates no change in the average number of updates per AS
as the number of ASes increases. The data in Fig. 1 indicates
an increase in the number of ASes by 143%. However, after
Jan-2004 the number of ASes has increased by about 112%,
which is close to the growth of the baseline churn (100%).
This observation suggests that the growth in baseline churn is
mainly driven by the growth in the number of ASes, rather than
the number of prefixes. Most of the growth in the number of
ASes occurs at the periphery of the Internet, in the form of stub
ASes. The stable relationship between baseline churn and the
number of stub ASes suggests that the latter generate updates
at a stable rate, even though the average number of prefixes per
AS has increased. A deeper investigation of the relationship
between churn and other Internet-wide metrics requires further
research.

B. Daily peak activity

The churn rates presented so far are daily averages. The
peak churn rate in shorter time scales may be more important
in terms of the processing load imposed on routers. Here, we
examine the growth of the peak daily churn rate, measured as
the maximum [-minute churn on each day. We refer to this
time series as the “daily 1-minute peak churn”.

The plots in the second and third columns of Fig. 8 show
the daily 1-minute peak churn in the raw time series and in
the baseline time series, respectively. A first observation is that
the daily peak activity in the raw time series is much higher
than in the baseline time series: on average, there is an order
of magnitude difference between the two time series across all
monitors, and on some days the difference can reach up to
two orders of magnitude.

The Mann-Kendall test reports an increasing trend in the raw
and baseline daily peak churn across all four monitors. The

4Other monitors show similar trends.
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TABLE IV: Baseline churn growth: Mann-Kendall slope es-
timate in updates per day, and the estimated relative churn
increase during our study period. The parametric estimates
are also shown.

Monitor AT&T Level-3 | FT Sprint
M-K slope 33.82 28.65 7.79 14.38
Est. increase 101.2% | 103.7% | 20.0% | 29.4%
Lin. regr. slope | 40.06 31.55 6.50 16.42
Est. increase 1199% | 1142% | 15.5% | 33.3%

TABLE V: Daily 1-minute peak churn growth.

Monitor [ AT&T | Level-3 | FT [ Sprint
Raw peak churn
M-K slope 222 0.81 0.27 -
Est increase | 168.4% | 171.3% | 50.5% | -
Baseline peak churn
M-K slope 0.50 0.42 0.10 0.29
Est increase | 100.0% | 113.4% | 20.9% | 39.3%

exception is the raw time series at the Sprint monitor, where
no trend could be detected. Table V presents the slope and
the relative estimated increase at each monitor. In order to
compare all four monitors, we compute the M-K slope of the
raw and baseline peak churn during the first six years °. During
this period, the M-K slope of the AT&T baseline peak churn
(0.32) was about 1/3 of the M-K slope of the AT&T raw peak
churn (1.03). We observe a similar trend in the Level-3 monitor
with the M-K slope of the baseline peak churn (0.43), while
the M-K slope of the raw peak churn is 1.57. The modest
growth at the FT and Sprint monitors is probably due to the
use of rate-limiting timers. The noisy nature of the raw time
series makes it difficult to get accurate growth trends, and so
these numbers should be viewed only as rough estimates.

We observe that the estimated relative growth in the daily
I-minute peak churn rate is somewhat higher for the raw time
series than for the baseline. This indicates that the impact,
in terms of peak churn, of duplicates and effects that are not
related to the long-term evolution of churn increases with time.
For the baseline time series, the increase in the daily 1-minute
peak level is comparable to the increase in the total daily
churn.

Finally, we investigate to what extent the daily 1-minute
peak churn is influenced by the use of rate-limiting timers.
We compare the median daily 1-minute peak churn calculated
in a three-month window immediately before and after each
change in the rate-limiting configuration at the FT, Level-3,
and Sprint monitors. Fig. 9 shows the churn in the 3-month
period before and after the MRAI timer was turned on in late
2006 at the FT monitor, for the raw and baseline time series
(the horizontal lines in the plots show the median level of
churn).We find that the rate-limiting timer has no clear effect
on the daily 1-minute peak churn in the baseline time series.
However, in the raw time series, there is a clear increase in
the peak churn when the rate-limiting timer is off. The peak
churn increases by a factor 1.1 and 1.2 during the first and
second transitions at Sprint, 2.0 and 0.0 during the first and
second transitions at Level-3, and 3.7 and 2.8 during the first

SWe do not include the last 1.5 years because the Sprint and FT monitors
were unavailable.
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and second transitions at FT.

These findings show that the effect of the rate-limiting timer
is much stronger on the raw time series than on the baseline.
This implies that the rate-limiting timer is mostly effective at
filtering out some duplicate updates and effects that are not
related to the long-term evolution of churn.

IX. RELATED WORK

Interdomain routing dynamics and scalability have been
active topics of research during the last decade or so. In the
following we only review the most relevant related work.

Labovitz et al.[12] were the first to show that BGP suffers
from excessive churn caused by pathological protocol behavior
and he suggested practical ways to fix broken BGP imple-
mentations. In follow-up work [13], they found that better
router implementations had reduced churn by an order of
magnitude, but that duplicate announcements still contributed
much unnecessary churn. Our findings confirm that this is
still the case, and that this type of updates is responsible
for most large spikes. Mahajan et al. reported [15] that BGP
misconfigurations are pervasive and cause an increase in the
processing load of routers. A recent measurement study [14]
concluded that the state of BGP routing is now ‘“healthier”
than it was a decade ago.

The phenomenon of path exploration was first discussed
by Labovitz et al. [11]. A later study by Griffin and Premore
examined the effectiveness of the MRAI timer to limit path
exploration [7].

Network topology plays a role in the observed churn as
well. In a recent measurement study, it was shown that path
exploration is less severe in the core of the Internet than at its
periphery [19]. It has also been shown that events at the edge
of the network affect a larger number of ASes than those at
the core [30]. In a recent study [6], we investigated the role of
various topological factors, including multihoming, hierarchy
and peering links, as well as the role of the rate limiting timer
on BGP churn growth.

Another set of studies analyzed the contribution of different
ASes and prefixes to the observed churn. Broido et al. [2]
showed that a small fraction of ASes is responsible for most
of the churn seen in the Internet. Similarly, several other
papers [22], [27] reported that a small subset of prefixes are
responsible for a large percentage of churn. Recently, Cittadini
et al. [3] investigated the impact of prefix de-aggregation on
BGP dynamics and showed that the de-aggregated prefixes do
not generate a large number of updates in comparison to their
number. In addition, they concluded that the increase in BGP



dynamics is caused by growth at the periphery of the AS-level
topology.

An earlier study by Huston and Armitage [10] reported that
BGP churn increases at a much faster pace than the routing
table size. During 2005, the daily rate of update messages
almost doubled, while the size of the routing table grew by
only 18%. Our study, based on a much longer study period and
a larger number of monitors, gives a more optimistic view for
the churn growth rate. However, a recent study by Huston [9]
concluded that BGP churn increases at a much slower pace
than the routing table size, in agreement with the findings in
our work.

X. CONCLUSIONS

This study has investigated the evolution of churn at four
monitors located in the core of the Internet during a period of
up to seven years and eight months. The corresponding time
series are very bursty, with large spikes and level-shifts. We
have performed an in-depth analysis of the time series in order
to identify and explain the main sources of churn.

We have found that up to 40% of route announcements
are redundant and they are not needed for correct protocol
behavior. These duplicate announcements are also responsible
for most large spikes in the churn time series. The remaining
spikes are caused by large routing events that affect 2000 or
more prefixes simultaneously. The impact of large events is
mostly confined to a single monitor; we see little correlation
in large events between different monitors. There are no clear
trends in the size, intensity, duration or frequency of large
events during our study period. We have also identified the
underlying reasons for the most severe churn level-shifts.
These are normally caused by configuration mistakes or other
anomalies in or at the border of the monitored AS. Our
findings suggest that the most effective short-term solutions
for limiting churn are BGP implementation improvements that
filter out redundant updates, and methods that can detect (long-
lasting) configuration mistakes and other anomalies that result
in sustained high churn.

We have also shown that there is a long-term increasing
trend in the identified baseline churn, but at the same time,
the growth rate is relatively low. We find that the churn rate
increases more slowly than the number of prefixes in the
routing table. While the routing table grew by about 168%
during our study period, the baseline churn rate grew at most
by about 100%. We have also observed that the growth of the
baseline churn is close, in magnitude, to the growth in the
number of ASes.

There are several reasons why we only see a slow increase
in the baseline churn compared to the growth of the routing
table size. On one hand, configuration management systems
and operational experience are improving. Also, the observed
increasing connectivity in the Internet [4] can play a positive
role, since more failures can be handled locally if an alternate
route is known.

We have also investigated the daily 1-minute peak churn
rate, and found that this is an order of magnitude higher in
the raw time series compared to the baseline. These time series
are very noisy, but they appear to be slowly growing with time.

In future work, we want to further investigate the slow
growth of the baseline churn and its close relation to the
number of ASes.
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