
Predictive Blacklisting
as an Implicit Recommendation System

Fabio Soldo, Anh Le, Athina Markopoulou
University of California, Irvine
{fsoldo, anh.le, athina}@uci.edu

Abstract— A widely used defense practice against malicious
traffic on the Internet is through blacklists: lists of prolific attack
sources are compiled and shared. The goal of blacklists is to
predict and block future attack sources. Existing blacklisting
techniques have focused on the most prolific attack sources and,
more recently, on collaborative blacklisting. In this paper, we
formulate the problem of forecasting attack sources (also referred
to as “predictive blacklisting”) based on shared attack logs as an
implicit recommendation system. We compare the performance
of existing approaches against the upper bound for prediction,
and we demonstrate that there is much room for improvement.
Inspired by the recent Netflix competition, we propose a multi-
level prediction model that is adjusted and tuned specifically
for the attack forecasting problem. Our model captures and
combines various factors, namely: attacker-victim history (using
time-series) and attackers and/or victims interactions (using
neighborhood models). We evaluate our combined method on
one month of logs from Dshield.org and demonstrate that it
improves significantly the state-of-the-art.

I. INTRODUCTION

A widely used defense practice against malicious traffic on
the Internet today is through blacklists: lists of the most prolific
attack sources are compiled, shared, and eventually blocked.
Examples of computer and network blacklists include IP and
DNS blacklists to help block unwanted web content, SPAM
producers, and phishing sites. Sites such as DShield.org
[1], process firewall and intrusion detection system (IDS)
logs contributed by hundreds victim networks worldwide, and
compile and publish blacklists of the most prolific attack
sources reported in these logs.

Blacklists essentially attempt to forecast future malicious
sources based on past logs. It is desirable that they are
predictive, i.e., include many of the malicious sources that
will appear in the future and as few false positives as possible.
It is also desirable that the blacklist size is short, especially
when the blacklist is used online for checking every flow on
the fly. Predicting future malicious activity accurately and in
a compact way is a difficult problem. Given the wide use
of blacklists on one hand, and the inherent complexity of
the problem on the other hand, it is surprising how little has
actually been done so far to systematically treat this problem.

The two most common techniques are GWOL and LWOL,
according to the terminology of [2]. LWOL stands for “Local
Worst Offender List”: security devices deployed on a specific
site keep logs of malicious activity, and a blacklist of the most
prolific attack sources, in terms of target IPs, is compiled.
This local approach, however, fails to predict attack sources

that have never previously attacked this site; in this sense,
a local blacklist protects the network reactively rather than
proactively. Meanwhile, GWOL stands for “Global Worst
Offender List” and refers to blacklists that include top attack
sources that generate the highest number of attacks globally, as
reported at universally reputable repositories, such as [1], [3].
A problem with this approach is that the most prolific attack
sources globally might be irrelevant to some victim networks
that do not provide the corresponding vulnerable services.

Recently, Zhang et al. [2] proposed a collaborative blacklist-
ing technique called “highly predictive blacklisting”(or HPB).
They studied flow logs from Dshield.org, defined the
victim-to-victim similarity graph, and applied an algorithm
resembling the Google’s PageRank algorithm to identify the
most relevant attackers for each victim. The HPB approach
improved over LWOL and GWOL and is, to the best of
our knowledge, the first methodological development in this
problem area in a long time.

Our work builds on and improves over [2]. Throughout the
paper we use the terms attack forecasting and predictive black-
listing (in the terminology of [2]) interchangeably. We formu-
late the problem using a different methodological framework
inspired by the emerging area of recommendation systems (RS)
[4]–[7]. Based on shared security logs, we study malicious be-
havior at the IP level, i.e., considering the (attacker IP source,
victim IP destination, time) tuple. We predict future malicious
activity based on the past and we construct predictive blacklists
specifically for each victim. We exploit both temporal (attack
trends) and spatial (similarity of attackers and victims) features
of malicious behavior. One family of temporal techniques
predicts future attacks using the time series of the number of
reported attacks. Another family of spatial techniques explores
neighborhoods of victims as well as of joint attackers-victims.
We analyze 1-month of Dshield.org data and evaluate
different candidate techniques. We optimize each technique in-
dependently and then combine them together. We show that the
combined method significantly improves the performance, i.e.,
increases the predictiveness, or “hit count”, of the blacklists
over baseline approaches. Specifically, it improves up to 70%
the hit count of the HPB scheme with an average improvement
over 57%. Last but not least, the formulation of the problem
as an implicit recommendation system opens the possibility to
apply powerful methodologies from machine learning to this
problem.

The rest of this paper is organized as follows. Section II

ar
X

iv
:0

90
8.

20
07

v1
 [

cs
.N

I]
 1

4
A

ug
 2

00
9

2
discusses related work. Section III gives a brief overview of
some key features of the Dshield.org dataset. Section IV
formulates the attack prediction problem in the recommen-
dation systems framework; it also motivates this study by
showing the gap between state-of-the-art approaches and the
upper bound (achieved by an offline algorithm.) Section V
presents the specific temporal and spatial methods we use
for prediction. Section VI evaluates the individual methods
and their combination over the Dshield.org dataset; the
combined method significantly outperforms the current state-
of-the-art approach. Section VII concludes and discusses open
issues and future work.

II. OUR WORK IN PERSPECTIVE

The two traditional approaches to generate blacklists,
LWOL and GWOL, according to the terminology of [2], have
already been outlined in the introduction. They both select the
most prolific attackers based on past activity recorded in logs
of a single victim site (in the case of LWOL) or of multiple
victim sites (in the case of the GWOL.) Both approaches
have pros and cons. The local approach is essentially reactive
but can be implemented by the operator of any network
independently. The global approach uses more information that
may or may not be relevant to particular victims, and requires
sharing of logs among multiple victims, in a distributed way
or through central repositories. There are also variations of
these approaches, depending on whether a “prolific” attacker
is defined based on the number of attacks launched (number
of logs) or on the number of unique victims attacked.

Beyond the traditional approaches, the state-of-the-art
method today is the “highly predictive blacklisting” (HPB),
recently proposed by Zhang et al. [2]. The main idea was that
a victim should predict future attackers based not only on his
own logs but also on logs of a few other “similar” victims.
Similarity between two victims was defined as the number of
their common attackers, based on empirical observations made
earlier by Katti et al. [8]. A graph that captures the similarity of
victims was considered, and an algorithm resembling Google’s
PageRank was run on this graph to determine the relevance
of attackers for a victim. In essence, predictive blacklisting
was posed as a link-analysis problem, and the focus was on
relevance propagation on the victim-victim graph.

Compared to HPB [2], our work solves the same problem
(predictive blacklisting based on shared logs), but we have
several important differences in methodology and intuition.
We makes the following contributions: (1) We formulate the
problem as an implicit recommendation system (RS) [4] rather
than as a link-analysis problem; this opens the possibility to
apply a new set of powerful techniques from machine learning.
Within the RS framework, we combine a number of specific
techniques that capture and predict different behaviors present
in our Dshield.org dataset. Recall that our data are of
the form (attacker IP address, victim IP address, time). (2)
One set of techniques are spatial, i.e., use the notion of
similarity of victims and/or attackers. HPB is a spatial case,
where similarity is considered only among victims and is

defined as the number of common attackers. (2a) We use a
different notion of victim-victim similarity which focuses on
simultaneous attacks from common sources (attacks performed
by the same source at about the same time induce stronger
similarity among victims.) (2b) Furthermore, we also define
another notion of neighborhood that takes into account blocks
of attackers and victims jointly, using a co-clustering algorithm
called cross-association (CA) [9]. (3) Another set of techniques
use time series to exploit temporal trends for prediction; to the
best of our knowledge, this axis has not been exploited before
for predictive blacklisting. This includes LWOL as a special
case, where the past consists of a single time period.

Our proposal could be implemented at the shared logs
repository, i.e., it could be used, as an improvement of HPB,
which is currently provided as a service by Dshield.org;
alternatively sharing and prediction could be implemented in
a distributed way among collaborating participants. However,
the goal of this paper is the design and evaluation of the
prediction algorithm and not the development of a prototype.

Our work falls within the category of behavioral analysis,
in the sense that inferences are made based on flow logs as
opposed to packet payload. However, we are interested in
prediction and not in traffic classification [10] or distinguishing
legitimate from malicious traffic [11], [12], i.e., we work with
flow logs that have already been classified as malicious by
IDS and we focus on prediction.

Our evaluation is based on the Dshield.org dataset,
which, despite its imperfections (e.g., noise), has become a
common reference used by many researchers in this area,
including the state-of-the-art HPB [2] and other studies of
malicious behavior on the Internet [8], [13], [14].

Finally, our problem formulation is inspired by recommen-
dation systems (RS) [4], which currently find applications
on e-commerce web sites, such as NetFlix [5] and Amazon
[6], as well as on other areas such as Google News [7]. The
problem of attack prediction is best modeled as an implicit
recommendation system, where “ratings” are inferred (not
given explicitly) by observing malicious activity, and recom-
mendations are provided to victims about what addresses to
block in the future. Another complication is that malicious
activities (“ratings”) vary over time, which is currently an
active research area in the RS community.

III. THE DSHIELD DATASET: OVERVIEW AND KEY
CHARACTERISTICS

In this study, we used logs from Dshield.org1 to un-
derstand the patterns existing in real data and to evaluate
our prediction methods in practice. In this section, we briefly
describe the dataset and mention some key properties that
influenced the design of our prediction methods. We note,

1The authors are grateful to P.Barford and M.Blodgett from University of
Wisconsin, Madison, for providing the dataset.

3

(a) A sample of malicious activity

5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

time between consecutive attacks (day)

C
D

F

Subnet

/24

IP

(b) Temporal behavior: inter-arrival time of the
same source appearing in the logs

10
0

10
1

10
2

10
3

0

100

200

300

400

Common Attackers

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
N

e
ig

h
b
o
rs

(c) Common attackers among different victims

Fig. 1. Some insights from the Dshield dataset that motivated some of our design choices.

however, that data analysis is not the focus of this paper.2

The dataset. Dshield [1] is a repository of firewall and
intrusion detection logs collected at hundreds of different net-
works all over Internet. The participating networks contribute
their logs, which are then converted into a common format
that includes the following fields: time stamp, contributor ID,
source IP address, destination IP address, source port number,
destination port number, and protocol number. In this paper,
we work with the first three fields. One challenge when dealing
with large-scale security log sharing systems is the amount of
noise and errors in the data. For this reason, we pre-processed
our data set to reduce noise and erroneous log entries, such
as those belonging to invalid, non-routable, or unassigned IP
addresses. Data from Dshield have been studied and used by
several researchers over the years, such as [2], [8], [13], [14],
[16] to name a few examples, and the main findings (e.g.
clustering of malicious sources and short-lived IP addresses in
the logs) were consistent over time and with our own analysis
[15].

We analyzed 6 months of Dshield logs, from May to Oct.
2008 [15]. In this paper, we present results for 1-month only
(October 2008); the results were quite similar for the other
months. The pre-processed 1-month dataset consists of about
430M log entries, from ∼ 600 contributing networks, with
more than 800K unique malicious IP sources every day.

Observations. Fig. 1 showcases some observations from
the data that motivated design choices in our prediction. First,
Fig. 1(a) offers a visualization of part of the data: it shows the
number of logs generated by a portion of the IP space over
time. One can visually observe that there are several different
activities taking place. Some sources attack consistently and
by an order of magnitude higher than other sources (heavy
hitters); some attack with moderate-high intensity but only for
a few days (spikes); some attack continuously in a certain
period and do not appear again; finally, most other sources

2The thorough characterization of this dataset would be a measurements
paper on its own, e.g., see tech. report [15] for details. Furthermore, the
properties of Dshield data have been studied by several researchers over the
years, e.g., see [8], [13], [14], and agree with our analysis as well. Dshield
data are used in this paper mainly to evaluate the methods developed here.

appear to be stealthy and generate limited activity. The wide
variety of dynamics in the same dataset poses a fundamental
challenge for any prediction mechanism. Methods, such as
GWOL, focusing on heavy hitters will generally fail to detect
stealthy activity. Methods focusing on continuous activity
will not predict sudden spikes in activity. This motivated us
to develop and combine several complementary prediction
techniques that capture different behaviors.

Secondly, in Fig. 1(b), we show some information about
the temporal behavior. In particular, we consider attack sources
that appear at least twice in the logs and study the inter-arrival
time between logs for the same attack source. We plot the
cumulative distribution function (CDF) of inter-arrival time
at three different levels of granularity: IP address, /24 prefix,
and source subnet. We observe that for /24 prefixes, 90% of
attacks from the same source happen within a time window of
5 days while the remaining 10% are widely spread over the
entire month. Similar trends are true for the other levels. This
implies that attacks have a short memory: if an attacker attacks
more than once, then with high probability it will attack again
soon. This motivated the EWMA time series approach we use
for temporal prediction.

Another important aspect influencing the design of our
prediction methods is the correlation among attacks seen by
different victim networks. Let us call two victim networks
“neighbors” if they share at least a certain number of common
attackers. Fig. 1(c) shows the average number of neighbor
networks as a function of this number of common attacking
IPs for a given day. Most victims share only a few attackers
because there are a few source IPs (heavy hitters) that con-
stantly attack most victim networks. However, if we consider
a strict definition of neighbors, i.e., sharing a large number of
attackers, each victim has a smaller number of neighbor, which
is likely to capture a more meaningful type of interaction. This
motivated us to consider small neighborhoods (∼ 25 nodes)
in our spatial prediction methods.

IV. PROBLEM FORMULATION AND FRAMEWORK

Our goal is to predict future malicious IP traffic based on
past logs contributed by multiple victims. Predicting malicious

4
IP traffic is an intrinsically difficult problem due to the variety
of exploits and attacks taking place at the same time and the
limited information available about them.

A. Recommendation Systems vs. Attack Prediction

In this paper, we frame the problem of attack prediction
as an implicit recommendation system problem, as depicted
in Fig. 2. Recommendation systems (RS) aim at inferring
unknown user rating about items from known (past) ratings.
An example is the Netflix recommendation system, Netflix
Cinematech, which aims at predicting unknown user ratings
about movies from known ratings, in order to provide movie
recommendations to its customers. Other examples of real
deployment of RS include the Amazon recommendations [6],
Google news personalization [7], TiVo, GroupLens, to mention
a few. What makes the prediction possible is that ratings are
not given randomly but according to a complex and user-
specific rating model, which is not known in advance. The
rating matrix is a result of several superimposed processes,
some of which are intuitive, while others need to be unveiled
and confirmed through an accurate analysis of the dataset.
For instance, a user can give on average a higher score to
drama movies than to comedy, or vice versa, according to his
preference; or he can rate differently on weekdays than on
weekends, which might reflect his state of mind [17].

We also aim at predicting future attacks leveraging observed
past activities. Given a set of attackers and a set of victims,
a number r is associated with every (attack source, victim
destination, time) triplet according to the logs: r can indicate,
for example, the number of time an attacker has been reported
to attack a victim over a time period. More generally, we
interpret r as the rating or preference: higher r indicates that
an attacker intensifies its effort to attack a specific victim,
thus implying a higher preference. There are some important
differences from a traditional RS. First, the intensity of an
attack may vary over time, thus leading to a time-varying
rating matrix. This poses a significant challenge to the direct
application of traditional RS techniques that deal which static
matrices. Secondly, the rating in this case is implicit, as it is
inferred by activity reported in the logs, as opposed to ratings
in RS explicitly provided by the users themselves.

In the rest of this section, we first formalize the analogy
between recommendation systems and attack prediction. Then,
we define upper bounds for prediction and quantify the gap
that exists today between the state-of-the-art prediction and
what is actually achievable. In subsequent sections, we propose
specific methods that bridge this gap.

B. The Recommendation System Problem

1) Notation: Let V be the set of users (customers) and A
be the set of items. In practical applications, these two sets are
usually very large, including up to hundreds of thousands of
elements. A user is allowed to rate items to indicate how much
she likes specific items. Let R be the set of possible ratings,
R = {1, 2, ..., N}, where N is typically a small integer. Let

Fig. 2. Analogy between Recommendation Systems (left) and Attack
Prediction (right). The former infers unknown user ratings about items from
known ones. The latter deals with time varying ratings.

ru,i be the rating assigned by user u to item i and R be the
entire |V|-by-|A| rating matrix.

2) Problem Formulation: A recommendation system (RS)
aims at inferring unknown ratings from known ones, as shown
in Fig. 2-left. Ultimately, the goal of RS is to find for
every user u, the item, iu, that has the highest rating [4]:
iu = arg maxi′∈I rui′ ,∀u ∈ V . What makes the RS problem
difficult is that the values ru,i’s are unknown. We only know
a limited subset of ratings because a user generally does not
rate all available items but only a subset of them, typically
orders of magnitude smaller than the number available items.

Let Ku be the set of items for which the rating ru,i’s are
known, and K̄u be its complement. The RS problem can be
formalized as follows:

find iu = arg max
i′∈K̄u

rui′ ∀u ∈ V . (1)

The recommended item, iu, for user u, maximizes Eq. (1)
and may be different for every user. The solution of Eq. (1)
is usually obtained by first estimating the matrix R on the
subset K̄u, and then, for every user, selecting the item for
which the estimated rating is the highest. In general, if we
want to recommend N ≥ 1 items we need to select the top-N
items for which the estimated ratings are the highest.

C. The Attack Prediction Problem

1) Notation: We denote with V the set of victim networks
and with A the set of attackers (i.e., source IP prefixes where
attacks are launched from.) Let t indicate the time an attack
was performed according to its log. Unless otherwise specified,
t will indicate the day the attack was reported. T denotes
the time window under consideration, so t = 1, 2, ..., T .
Moreover, we partition T in two windows of consecutive days:
a training window, Ttrain, and a testing window Ttest, to
separate training data, used to tune the prediction algorithm,
t ∈ Ttrain, from testing data, used to validate the predictions,
t ∈ Ttest.

Similar to the RS problem, we define a 3-dimensional rating
matrix R so that per every tuple (a, v, t), ra,v(t) represents the
number of attacks reported on day t from a ∈ A to v ∈ V .
We denote with B the binary matrix that indicates whether

5
or not an attack occurred: ba,v(t) = 1 iff ra,v(t) > 0, and
ba,v(t) = 0 otherwise. Finally, we indicate with Av(T), the
set of attackers that were reported by victim v during the time
period T :

Av(T) = {a ∈ A : ∃t ∈ T s.t. ba,v(t) = 1}

and with A(T) the total set of attack sources reported in T :

A(T) = ∪v∈VAv(T)

2) Problem Formulation: For every victim, v, we are inter-
ested in determining which attackers are more likely to attack
v in the future given past observation of malicious activity.
In practice, this translates into providing a blacklist (BL) of
sources that are likely to attack in the future. Given a fixed
blacklist size, N , let B̃L be any set of N different attackers.
The problem of attack prediction can be formalized as follows:

find BL(v) = arg max
B̃L⊂A

∑
t∈Ttest

∑
a∈B̃L

ba,v(t) (2)

The output of the attack prediction problem is a set of
blacklists, BL(v) = {av

1, a
v
2, ..., a

v
N} ⊂ A customized for

every victim, v, such that each blacklist, BL(v), contains the
top N attackers that are more likely to attack v in the time
window Ttest. The difficulty of this problem is that for every
t ∈ Ttest, we need an entire |A|-by-|V| matrix to be estimated
before the max operation can be performed, as illustrated in
Fig. 2-right. In this sense, this problem is a generalization of
the recommendation problem, Eq. (1), where R is now defined
on 3-dimensional space, V×A×T , rather than a 2-dimensional
space. While the RS problem traditionally estimates missing
elements in a matrix, the attack prediction problem estimates
matrixes in a tensor.

Finally, we observe that per every blacklist BL, and testing
period, Ttest, the total number of false positive (FP) can be
defined as:

FPBL(Ttest) =
∑

t∈Ttest

(
N −

∑
a∈B̃L

ba,v(t)
)

Thus, for fixed blacklist length N , solving Problem (2) is
equivalent to finding the blacklist that minimizes the number
of false positive.

D. Upper Bounds and State-of-the-Art

Given a blacklist of length N , a metric of its predictiveness
is the hit count, as defined in [2]: the number of attackers in
the blacklist that are correctly predicted, i.e., malicious activity
from these sources appears in the logs in the next time slot.
A blacklist with higher hit count is more “predictive.”

A future attacker can be predicted if it already appeared at
least once in the logs of some victim networks. Clearly, we
cannot accurately predict attackers that have never been re-
ported before. Consequently, we can define two upper bounds
on the hit count, a global and a local upper bound, depending
on the sets of logs we use to make our prediction.

Definition 1 (Global Upper Bound): Using notations de-
fined above, for every victim v, we define the global upper

0 5 10 15 20 25
1

2

3

4

5

6

7

8

x 10
4

days

T
o

t
H

it
 C

o
u

n
t

GUB

LUB

HPB

GWOL

Fig. 3. Comparing different prediction strategies (in terms of total hit-count)
on 1-month of Dshield.org logs. Observe that the state-of-the art HPB
improves over baseline, GWOL, but there is still a large performance gap
until the upper bounds, LUB and GUB.

bound on the hit count of v, GUB(v), as the number of
attackers that are both in the training window of any victim
and in the testing window of v:

GUB(v) = A(Ttrain) ∩ Av(Ttest) . (3)
This represents the maximum number of attackers of v that
are predictable in Ttest, given observations obtained in Ttrain.
This upper bound corresponds to the case that the past logs of
all victims are available to make prediction, as it is the case
when using central repositories, such as Dshield.org, or
when each victim shares information with all other victims.

Definition 2 (Local Upper Bound): For every victim v,
we define the local upper bound on the hit count of v,
LUB(v), as the number of attackers that are both in the
training window and in the testing window of v:

LUB(v) = Av(Ttrain) ∩ Av(Ttest) . (4)
LUB(v) represents the upper bound on the hit count when
each victim, v, only has access to its local security logs,
but not to the logs of other victims. This is a very typical
case in practice today. Because Av(Ttrain) ⊆ A(Ttrain), the
following inequality holds trivially: LUB(v) ≤ GUB(v). At
the end of this section, we will quantify this gap on a real
dataset of malicious sources.

State-of-the-art. The next natural question is how far
are state-of-the-art methods today from these upper bounds?
Existing approaches for creating predictive blacklists include
the traditional LWOL and GWOL, as well as the recently
proposed state-of-the-art HPB [2]. These methods have been
described in detail in the previous section II.

Room for improvement. In Fig. 3, we compare the total
hit count (for all victims in the system) of different prediction
strategies on 1-month of Dshield.org logs. For a fair
comparison, we require all methods to use the same blacklist
length N . To be consistent with [2], we set N = 1, 000 and
consider that every source in the predictive blacklist is an IP
prefix /24. We make two main observations.

6
First, the state-of-the-art HPB strategy brings benefit over

the GWOL strategy. In our dataset, we observed an average
improvement in the hit count of about 36% over GWOL, which
confirms prior results on older data [2]. However, the gap
between HPB and both LUB and GUB is still significant! This
shows that there is a large room for improvement in attack
prediction, which remains unexplored. This gap motivated us
to further investigate this problem in this paper.

The second observation is the large gap between LUB and
GUB. This quantifies the improvement in attack prediction
when different victim networks share their logs on observed
malicious traffic. Collaboration between different networks
becomes a crucial factor when dealing with attack prediction
because more shared information can potentially reveal corre-
lation between attacks that cannot be discovered otherwise.

V. MODEL OVERVIEW

Motivated by the observations made in Sections III and IV,
we develop a multi-level prediction framework to capture the
different behaviors and structures observed in the data.

A. Time Series for Attack Prediction

A fundamental difference between forecasting attacks and
typical recommendation systems is the way the temporal
dynamics affect the ratings. In recommendation systems, rating
are given at different times, but once given they cannot change.
The goal is then to use the known ratings as ground truth and
estimate the missing ratings based on them. In contrast, in the
attack prediction problem, “ratings” vary rapidly over time as
they represent the number of attacks (logs) reported in different
days. As a consequence, in order to be able to forecast attacks,
we must account not only for the time an attack was reported
but also for its evolution over time.

Every rating ra,v(t) is essentially a signal over time. We
use a time series approach to model the temporal dynamics
associated with every pair (a, v). As observed in the data (Fig.
1(b)), multiple attacks from the same source happen within a
small time interval from each other, i.e., for the large majority
of attacking IP prefixes, the future activity strongly depends
on the recent past. Motivated by this observation, we use
an Exponential Weighted Moving Average (EWMA) model,
which predicts future values based on past values weighted
with exponentially decreasing weights toward older values.

We indicate with r̃TS
a,v(t+1) the predicted value of ra,v(t+

1) given the past observations, ra,v(t′), at time t′ ≤ t. We
estimate r̃TS

a,v(t+ 1) as

r̃TS
a,v(t+ 1) =

t∑
t′=1

α(1− α)t−t′ra,v(t′) , (5)

where α ∈ (0, 1) is the smoothing coefficient, and t′ = 1, ..., t
indicates the training window, where 1 corresponds to the
oldest day considered, and t is the most recent one.

We note that Eq. (5) include as a special case the LWOL
when the training window has only one day, t = 1. In this
case, the EWMA model gives the highest weight to attackers

that were most prolific in the last day, as in the LWOL
strategy. However, the general EWMA model has higher
flexibility that can model temporal trends. Weights assigned
to past observations are exponentially scaled so that older
observations have smaller weights. This allows to account for
spikes in the number of reports, which are frequently observed
in our analysis of malicious traffic activities.

We also observed that an improved prediction accuracy
can be obtained when applying the same EWMA model to
the binary version of R, B. This is because attackers that
performed a large number of attacks in the recent past are not
the most likely to also attack in the future. An attacker can
stop its activities at any time. Moreover, the number of reports
might also be very sensitive to the specific configuration of
the victim NIDS. The group of attackers that is more likely
to keep on attacking is the one that was continuously reported
as malicious for a large number of days independently from
the number of reports. Therefore, an improved forecast can be
obtained based on B:

rTS
a,v(t+ 1) =

t∑
t′=1

α(1− α)t−t′ba,v(t′) , (6)

where rTS
a,v(t + 1) indicates the forecast for ba,v(t + 1) and

can be interpreted as a measure of how likely an attacker is to
attack again given its past history. In the rest of this paper, we
will use the improved forecast based on B when we mention
the Time Series (TS) method.

B. Neighborhood Model
The strategies described above can model simple temporal

dynamics accurately and with low complexity. However, a
prediction solely based on time will fail to capture spatial
correlations between different attackers and different victims
in the IP space. E.g., a persistent attacker that switches its
target every day may easily evade this level of prediction. In
this section, we show how to capture such “spatial” patterns
and use them for prediction. We define two types of neighbor-
hoods: one that captures the similarity of victims (kNN) and
another that captures joint attacker-victim similarity (CA).

1) Victim Neighborhood (kNN): One of the most popular
approaches in recommendation systems is the use of neigh-
borhood models. Neighborhood models build on the idea that
predictions can be made by trusting similar peers. For instance,
in a movie recommendation system, a neighborhood model
based on user similarity will predict that user John Smith likes
Harry Potter, only if users that have shown similar taste to John
Smith and have already seen Harry Potter, liked it.

In this context, the definition of similarity plays a funda-
mental role. There are several different similarity measures
proposed in the literature. The most commonly used is the
Pearson correlation, which generalizes the notion of cosine
distance of vectors with non-zero mean. Formally, given
two n-dimensional vectors, x, y, with mean values, mx, my ,
respectively, the Pearson correlation of x and y is defined as

sxy =
∑n

i=1(xi −mx)(yi −my)√∑n
i=1(xi −mx)2

√∑n
i=1(yi −my)2

. (7)

7
We observe that for zero mean vectors, this reduces to sxy =

x·y
||x||2||y||2

= cos(x, y).
In this work, we developed a variation of the Pearson

similarity to account for the time the attacks were performed.
This is also motivated by [8], which observed that victim
networks, that persistently share common attackers, are often
attacked at about the same time. For every pair of victims,
u, v we define their similarity, suv , as

suv =
∑

t1≤t2∈Ttrain

e−|t2−t1|
∑

a∈A ba,u(t1) · ba,v(t2)
||bu(t1)||2 ||bv(t2)||2

, (8)

where ||bu(t1)||2 =
√∑

a∈A b
2
a,u(t1). Notice that if u and v

report attacks at the same time, suv reduces to a sum of cosine
similarities. When u and v report attacks by the same attacker
at different times, the smoothing factor, e−|t2−t1|, accounts for
the time interval between the two attacks.

We tried several similarity measures, and we found that the
one in Eq. (8) worked best. Attacker activities might vary
broadly over time. Eq. (8) models the intuition that victims,
that share attacks from the same source in the same time
slot, are more similar to each other than victims sharing
common attackers but during very different time since they are
more likely affected by the same type of attack. Thus, giving
higher importance to attacks occurring in the same time slot
captures a stronger correlation among victims than just using
the number of common attackers.

We adapt a k-nearest neighbors (kNN) model to the attack
prediction problem. The idea of traditional kNN model is to
model missing ratings as a weighted average of known rating
given to the same item by similar users:

rkNN
a,v (t) =

∑
u∈Nk(v;a) suvra,u(t)∑

u∈Nk(v;a) suv
, ∀t ∈ Ttest (9)

where, rkNN
a,v (t) is the prediction provided by the kNN model,

and Nk(v; a) represents the neighborhood of top k similar
victims to v according to the similarity measure, s, for which
ra,u(t) is known.

In order to compute rkNN
a,v (t), we need two main ingre-

dients: a similarity measure between victims, s, and a set
of known rating for the attacker a, ra,u(t). What prevents
us from a direct application of Eq. (9) is that none of the
ratings, ra,u(t), is known in the testing window. Thus, the
neighborhood Nk(v; a) is empty. To overcome this difficulty,
we leverage the forecast provided by the time series approach
in Eq. (6):

rkNN
a,v (t) =

∑
u∈Nk(v;a) suvr

TS
a,u(t)∑

u∈Nk(v;a) suv
, ∀t ∈ Ttest , (10)

which is a generalization of the kNN model.
2) Joint Attacker-Victim Neighborhood (CA): In addition

to the victim neighborhood explored by the kNN model, we
also studied the joint neighborhood of attackers and victims.
Our intuition is that not only victim similarity but also the
similarity among the attackers should be considered when

Fig. 4. Result of applying the CA algorithm on 1-day Dshield logs. A
rectangular block indicates a group of similar sources and victims identified
by the CA.

constructing the blacklists. For example, consider botnets,
which are the main source of malicious activity on the Internet
today: machines in a botnet typically attack the same set of
victims. However, the timing of the attacks might differ due to
different phases of the attacks [18], [19]: typically a scanning
phase is carried out by a few machines before the attacking
phase, which might be carried out by more machines, e.g.,
in an instance of distributed denial-of- service (DDoS) attack.
Therefore, knowing the similarity among the machines of a
botnet, even if only a few of them are detected by a victim’s
IDS, enables the victim to preemptively put the other “similar”
machines of the botnet into his blacklist.

To find similarity among both victims and attackers simul-
taneously, we apply the cross-associations (CA) algorithm [9]
– a fully automatic clustering algorithm that finds row and
column groups of sparse binary matrices. In this way, we
find groups of both similar victims (contributors) and attackers
(/24 subnets.) Fig. 4 depicts the result of applying the CA on
a contributor-subnet matrix of 1-day log data. (The original
binary matrix describing the attacker-victim activity is omitted
due to lack of space. For more information about the use of
the CA algorithm for analyzing Dshield logs, we refer the
reader to our technical report [20].) On average, the CA finds
over 100 groups per day.

For each group (depicted as a rectangular block in Fig. 4),
we calculate its density as the ratio between the occupied area
and the total area of the rectangle. Then, we use the density
of a group to quantify the strength of correlation among the
attackers and victims within the group. Intuitively, a dense
group corresponds to an attacker-victim bipartite graph that
resembles a complete bipartite graph, thus indicating strong
correlation. Finally, we use this density for forecast: the denser
a group is, the more likely its attackers will attack its victims.

More formally, r̃CA
a,v (t+1) = ρa,v(t), where ρa,v(t) ∈ [0, 1]

is the density of the group that contains the pair (a, v) at
time t. We can further improve this CA-based prediction by
capturing the persistence of the attacker and victim correlation
over time. In particular, we apply the EWMA model on the
time series of the density to predict the rating. The intuition

8
is that if an attacker shows up in a neighborhood of a victim
persistently, he is more likely to attack again the victim than
other attackers. Formally,

rCA
a,v (t+ 1) =

t∑
t′=1

α(1− α)t−t′ρa,v(t′) . (11)

Our empirical study shows that the EWMA-CA prediction can
improve the hit count by 25% over the simple CA prediction.

C. Combine Predictors

The combination of different predictors (either obtained
from different methods, or with the same method trained
on different subset of the data) is generally referred to as
ensemble learning. The idea of ensemble learning is rooted in
the traditional wisdom that “in a multitude of counselors there
is safety” [21]. Although the gain of ensemble learning is not
fully understood yet, it is generally acknowledged that such an
approach is particularly suited in scenarios where a complex
system is better explained by the combination of different
phenomena, which results in different structures in the data,
rather than by a single phenomenon, e.g., see Ch. 13 and 18
of [22]. The diverse dynamics observed in the analysis of
malicious traffic motivated us to combine diverse algorithms,
such as the time series approach to model temporal trends,
the kNN to model victims similarity, and the CA clustering
algorithm to model persistent groups of attackers-victims.

There are different methods to combine predictors. A typical
approach is to consider the average of individual predictors.
What we found more effective is to (i) use the time series
prediction as a base predictor and (ii) weight the neighborhood
models with weights proportional to their accuracy. More
specifically, for kNN we define

wkNN
a,v =

∑
u∈N(v;a) suv∑

u∈N(v;a) suv + λ1

where λ1 is a parameter that needs to be estimated. The
intuition is that we want to rely more on kNN when v has a
strong neighborhood of similar victims. When

∑
u∈N(v;a) suv

is small, i.e., only a neighborhood of poorly similar victims
is available, we prefer instead to rely on other predictors.
Similarly, we define a weight for the CA algorithm,

wCA
a,v =

∑
t∈Ttrain

ρa,v(t)∑
t∈Ttrain

ρa,v(t) + λ2

so that, wCA
a,v ' 1 for a pair (a, v) that belongs to dense

clusters; wCA
a,v ' 0 when the density is low.

In summary, our rule for combining all methods together
and giving a single rating/prediction is the following:

b̂a,v(t) = rTS
a,v(t) + wkNN

a,v rkNN
a,v (t) + wCA

a,v r
CA
a,v (t) (12)

where b̂a,v(t) is the estimated value of ba,v(t), ∀t ∈ Ttest.

VI. PERFORMANCE EVALUATION

A. Setup
Data set. We evaluate the performance of our prediction

algorithm using 1-month of real logs on malicious IP sources
provided by Dshield.org, as described in detail in Section III.

Metrics. We use two different metrics to evaluate the pre-
dictiveness of the blacklisting methods: the total hit count and
the prediction rate. The hit count was defined in Section IV-
D and represents the number of attackers in the blacklist that
are correctly predicted; it is bounded by the blacklist length
itself. When the algorithm provides individual victims with
their customized blacklist, the total hit count is defined as the
sum of the hitcounts over all contributors. The prediction rate
is the ratio between the hit count and the global upper bound
for each contributor separately. Thus, for each contributor,
the prediction rate is a number in [0, 1], which represents the
fraction of attackers correctly predicted out of the global upper
bound of the contributor, which is the maximum number of
attackers that can be predicted based on past logs. A prediction
rate 1 indicates perfect prediction.

Parameters. We call the time period (in the recent past)
over which logs are analyzed in order to produce the blacklist
the training window. We call the time period (in the near
future) for which the forecast is valid the testing window.
Unless otherwise specified, we use a 5-day training window
and 1-day testing window. We motivate these choices in
Section VI-C. Parameters α, λ1 and λ2 are estimated using
leave-one-out cross validation on the training set. Finally, for
a fair comparison with prior work [2], each predictive blacklist
specifies /24 IP prefixes, which is also often the case in
practice [1]. However, we note that the methodology described
here applies to any granularity of IP address/prefix considered.

Complexity. The complexity of the combined prediction
depends on the complexity of the individual methods. Comput-
ing the TS prediction requires O(Ttrain) operations for each
rating rTS

a,v . Thus, its overall complexity is O(Ttrain|A||V|).
The complexity of the kNN model is the computation of
the similarity matrix O(Ttrain|V||V|) plus the complexity of
computing Eq.(9) for every pair (a, v), that is O(k|A||V|) =
O(|A||V|) since k is a constant. Finally, the CA clustering is
a heuristic algorithm with a complexity empirically observed
to be bounded by O(|A||V|) [9]. In practice, |V| is orders
of magnitude smaller than |A|, thus the overall asymptotical
complexity is bounded by O(Ttrain|A||V|), that is, it increases
linearly with the size of the data set, R. In our experiments,
we could compute predictive blacklists for all contributors in
∼20 minutes with a 2.8 GHz processor and 32 GBs of RAM.

B. Performance Evaluation and Comparison of Methods
We group prediction schemes in two categories depending

on whether they use local or global information. In the local
category, there are the time series (TS) and LWOL, since
they both use only local logs available at each network. In
the global category belong the neighborhood models, such as
kNN and EWMA-CA, as well as GWOL, since they use logs
collected at shared among multiple networks.

9

0 5 10 15 20 25
1.8

2

2.2

2.4

2.6
x 10

4

days

to
t
H

it
 C

o
u
n
t

TS

LWOL

(a) Local approaches: TS and LWOL

0 5 10 15 20 25

1

1.5

2

2.5

3

x 10
4

days

to
t

H
it
 C

o
u

n
t

KNNonTS

KNNonTrain

CA

HPB

GWOL

(b) Global (neighborhood) approaches : KNN (“on
TS”,“on Train”), EWMA-CA, GWOL

0 5 10 15 20 25

1

1.5

2

2.5

3

x 10
4

day

T
o
t
H

it
 C

o
u
n
t

TS+ewmaCA+kNN

HPB

GWOL

(c) Proposed combined method (TS+KNN+CA) vs.
state-of-the-art (HPB) and baseline (GWOL)

Fig. 5. Evaluating the performance (total hit count) of different individual methods, our proposed combined method (TS+KNN+CA) and baselines methods.

In Fig. 5(a) we plot and compare the total hit count of local
schemes, namely TS and LWOL. Their performance oscillates
based on the specific (training and testing) data available on
different days. However, we can see that the TS approach
consistently outperforms LWOL over all days. This is expected
since the TS includes LWOL as a special case when the
training window is equal to a single time slot.

In Fig. 5(b), we compare the hit count of global schemes
that use information from different networks, namely GWOL,
HPB, EWMA-CA, and kNN. We implemented the relevance
propagation used in HPB with parameter 0.5. As noted in [2],
the average improvement of HPB over GWOL is ∼36%. The
EWMA-CA algorithm has on average the same performance
as HPB. However, (i) its performance is more consistent across
time than HPB and (ii) the two methods capture different
concepts of neighborhood (victim neighborhood in HPB vs.
joint victim-attacker neighborhood in EWMA-CA). Thus, they
potentially capture different set of attackers, which explains
the difference in performance. Finally, we plot both prediction
models for kNN: “kNN on Train” in Eq. (9) (where kNN is
run on top of the last day’s logs), “kNN on TS” in Eq. (10)
(where kNN is run on top of the TS predictions). We set k =
25. kNN schemes outperforms other neighborhood schemes,
mainly thanks to the notion of similarity that accounts for
simultaneous attacks. Computing kNN on top of the TS
prediction results in further improvement.

In Fig.5(c), we show the total hit count achieved by our
proposed combined scheme of Eq. (12), which blends together
TS , kNN (on TS) and (EWMA) CA and we compare it to the
state-of-the-art method (HPB). This figure shows essentially
the main result of this paper. Our scheme outperforms HPB
significantly (up to 70% over the hit count of HPB with an
average improvement over 57%) and consistently (in every day
of October 2008). We also show the more traditional baseline
GWOL that performs even worse than HPB.

We also investigated the reasons behind this improvement
in more detail. First, we looked at the set (not only the
number) of attackers predicted by each individual method.
Each method provides every contributor with a customized
blacklist that successfully predicts some attackers. Besides

0 500 1000 1500 2000 2500
0

1

2

3

4
x 10

4

BL length

to
t

H
it
 C

o
u

n
t

Fig. 6. Hit count as function of the blacklist length

predicting a common set of attackers, the three different
methods successfully predict disjoint sets of attacks of sig-
nificant size. E.g., TS and EWMA-CA successfully predict a
common set of 9.9 K attackers; however, EWMA-CA alone
captures an additional 6.1 K attackers that the TS alone cannot.
This motivates the combination of these three prediction
schemes so that they can complement each other and explains
the hit count improvement when combining them. Second,
adding new schemes in the combination improves the hit
count but has diminishing returns, as it is also the case in
traditional recommendation systems [5], [22]. In particular,
adding EWMA-CA to TS results in a 12% average hit count
improvement; adding kNN to the combination TS + EWMA-
CA results in only 6% average improvement. This suggests
that incorporating additional neighborhood schemes into the
equation would likely give modest improvement.

In Fig. 6 we analyze the performance of our algorithm
as a function of the blacklist length. As we expect both the
hit count and the prediction rate increases with the blacklist
length. The larger relative increase occurs with a blacklist of
length 3–500. In fact, a blacklist of length 500 has on average
a prediction rate of about 50%. While a blacklist 5 times
longer, corresponding to 2500 entries, has a prediction rate of
about 59%. This suggests that the best length for our predictive
blacklist is about 500 entries.

10

0 2 4 6 8 10
2.2

2.3

2.4

2.5

2.6

2.7

2.8
x 10

4

Training Windows Length

to
t
H

it
 C

o
u
n
t

(a) Hit count vs. training window length

0 2 4 6 8 10
0

5

10

15
x 10

4

Test Window Length

to
t
H

it
 C

o
u
n
t

(b) Hit count vs. test window length

0 2 4 6 8 10

0.35

0.4

0.45

0.5

0.55

Test Windows Length

p
re

d
 R

a
ti
o

(c) Prediction rate vs. test window length

Fig. 7. Tuning the training and testing window of our proposed combined
method based on our data. Every point on these plots represents the average
total hit count over 7 consecutive days. At the end, we chose a training window
of 5 days and a test window of 1 day.

C. Training and Testing Windows

Throughout the paper we used training and testing windows
of 5 and 1 days respectively. Fig. 7 shows the performance of
our prediction scheme as a function of the length of these
windows and justifies these choices.

We observe that when the training window is too short, the
benefit of the time series model is limited by the few available
observations.When the training window is too long, it intro-
duces correlation between remote past and recent activities,
which was not the case in our data analysis (e.g., Fig. 1(b)).
Fig.7(a) clearly shows this trade-off. The performance of our
prediction algorithm first increases with the training windows
then it decreases when the windows is more than 6-day long.
In fact, the curve empirically shows that our scheme achieves
the optimal performance when trains on 5-6-day data.

In Fig. 7(b), we plot the hit count as a function of the length
of the testing window. Here, we make two main observations:
(1) by increasing the testing window from 1 to 10, the hit count
is more than doubled; and (2) this improvement, although
quite significant at first, is much smaller than the hit count
we would have by running the prediction from scratch every
day (dashed line). We also looked at the ratio of the hit count
over the upper bound for prediction (omitted for lack of space)
and we found that this relative performance metric decreases
with the testing window. This indicates that a short testing
window is preferable, or in other words, prediction should be
trained/refreshed often.

D. Robustness against Pollution of the Training Data

Large-scale repositories that collect firewall and IDS logs
from different networks (contributors), such as Dshield, are
naturally prone to include a certain number of false alerts,
as the repository has no control over the contributed logs.
False alerts may be either due to errors in the configuration
of the IDS of a contributor (pollution) or due to a malicious
contributor trying to mislead our prediction (poisoning). It
turns out that using a combination of diverse prediction
methods increases the robustness against both problems.

Pollution. To quantify how random false positives affect the
prediction accuracy of our combined method, we artificially
generated fake reports, which are distributed over all contribut-
ing networks proportionally to the number of real reports they
submitted. We vary the amount of total fake reports generated
(noise) from 1% to 15%. Fig.8 shows the results. We observe
that the hit count decreases slower than the pollution rate,
e.g., by less than 4% when the pollution rate is 15%. This can
be explained as follows. False alerts generated at different net-
works are unlikely to affect neighborhood models because they
usually correspond to different sources reported by different
contributing networks, which does not introduce correlation
between victims. in order to introduce such correlation, fake
reports should have not only the same source but also a similar
time stamp to affect the kNN model presented. Finally, if a
source is falsely reported over several days by the same victim,
this can affect only the blacklist customized for that specific
victim, since the time series prediction is specifically computed
for each victim network.

Poisoning. Evading our combined prediction is difficult for
an attacker and comes at the cost of limiting the attack impact.
Indeed, an attacker must avoid both the time series prediction
and the two neighborhood-based methods. To mislead the time
series, an attacker can limit traffic towards the target network.
In fact, even activities that have low intensity but are persistent
over time will be revealed by the time series model. Instead,
an attacker might attack different networks for a short time,
a behavior that will be captured by the neighborhood-based
models, which focus precisely on this type of behaviors.

VII. SUMMARY AND FUTURE WORK

In this paper, we studied the problem of predicting future
malicious activity (through “predictive blacklists”) given past

11

5 10 15
2.5

2.55

2.6

2.65

2.7

2.75

2.8
x 10

4

percentage Noise

to
t
H

it
 C

o
u
n
t

Fig. 8. Robustness of the combined method in the presence of pollution of
the training data. The total hit count decreases much slower than the random
noise (% of the total number of reports).

observations (available through a shared repository of logs
from different victims/contributors). We framed the problem
as an implicit recommendation system, which paves the way to
the application of powerful machine learning methods. Within
this framework, we also proposed a specific prediction method,
which is a linear blend of three different algorithms: a time
series model to account for the temporal dynamics and two
neighborhood-based models. The first neighborhood model, is
an adaptation of kNN model for attack prediction and focuses
on capturing similarity between victims being attacked by the
same sources, preferably at the same time. The second is a
co-clustering algorithm that automatically discovers a group
of attackers that attack a group of victims at the same time.

We analyzed a real dataset of 1-month logs from
Dshield.rg, consisting of of 100s of millions network se-
curity logs contributed by 100s of different networks. We eval-
uated our proposed algorithms over this dataset and showed
significant improvement over the state-of-the-art attack pre-
diction methods. Our combined method improves significantly
not only the prediction accuracy but also the robustness against
pollution/poisoning of the dataset.

Despite our performance improvement and methodological
development over the state-of-the-art, we believe that this work
only scratches the surface of the complicated attack prediction
problem. Our analysis shows that even larger improvements
can be obtained (i.e., there is still a gap between our method
and the upper bound). There are several directions for future
work: (a) incorporate the effect of other fields/dimensions of
the dataset (such as destination port ID) into our prediction
model; (b) add new algorithms in our combination that capture
different effects (e.g., latent factor models could capture global
behavior); (c) build a prototype.

REFERENCES

[1] Dshield dataset, http://www.dshield.org/.
[2] J. Zhang, P. Porras, and J. Ullrich, “Highly predictive blacklisting,” in

Proc. of USENIX Security ’08 (Best Paper award), San Jose, CA, USA,
Jul. 2008, pp. 107–122.

[3] SANS Internet Storm Center, http://isc.sans.org/top10.html.
[4] G. Adomavicius and A. Tuzhilin, “Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible
extensions,” IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 6, pp. 734–749, 2005.

[5] Netflix Prize, http://www.netflixprize.com/.

[6] G. Linden, B. Smith, and J. York, “Amazon recommendations: Item-to-
item collaborative filtering,” IEEE Internet Computing, Feb 2003.

[7] “Google news,” http://news.google.com/.
[8] S. Katti, B. Krishnamurthy, and D. Katabi, “Collaborating against

common enemies,” in Proc. of ACM IMC ’05, Oct. 2005.
[9] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos, “Fully

automatic cross-associations,” in Proc. of ACM KDD ’04, Seattle, WA,
USA, Aug. 2004, pp. 79–88.

[10] T. Karagiannis, D. Papagiannaki, and M. Faloutsos, “Blinc: Multilevel
traffic classification in the dark,” in ACM SIGCOMM, Aug 2005.

[11] A. Ramachandran, N. Feamster, and S. Vempala, “Filtering spam with
behavioral blacklisting,” in ACM CCS, Alexandria, VA, Oct 2007.

[12] S. Hao, N. Feamster, A. Gray, N. Syed, and S. Krasser, “Detecting
spammers with snare: Spatio-temporal network-level automated reputa-
tion engine,” in 18th USENIX Security, Montreal, Aug 2009.

[13] P. B. Z. Chen, C. Ji, “Spatial-temporal characteristics of internet mali-
cious sources,” in IEEE INFOCOM Mini-Conference, Apr 2008.

[14] P.Barford, R.Nowak, R. Willett, and V. Yegneswaran, “Toward a model
for sources of internet background radiation,” in PAM, Mar 2006.

[15] F. Soldo, “Technical report: Predicting future attacks,” http://www.ece.
uci.edu/∼athina/PAPERS/dshield-analysis-tr.pdf.

[16] F. Soldo, A. Markopoulou, and K. Argyraki, “Optimal filtering of source
address prefixes: Models and algorithms,” in INFOCOM ’09. Rio de
Janeiro, Brazil: IEEE, Apr. 2009.

[17] Y. Koren, “Collaborative filtering with temporal dynamics,” in Proc. of
ACM KDD ’09. Paris, France: ACM, 2009.

[18] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted
approach to understanding the botnet phenomenon,” in Proc. of ACM
IMC ’06, Rio de Janeriro, Brazil, Oct. 2006, pp. 41–52.

[19] E. Cooke, F. Jahanian, and D. McPherson, “The zombie roundup:
Understanding, detecting, and disrupting botnets,” in Proc. of USENIX
SRUTI ’05, Cambridge, MA, USA, Jul. 2005, pp. 6–6.

[20] A. Le, “Technical report: Analyzing dshield logs using fully automatic
cross-associations,” http://www.ics.uci.edu/∼anhml/publications.html.

[21] J. Elder, “Fusing the results of diverse algorithms,” in Proceeding of the
3rd International Conference on Multi-strategy Learning, 1996.

[22] R. Nisbet, J. Elder, and G. Miner, Handbook of statistical learning and
data mining applications. Elsevier, 2009.

http://www.dshield.org/
http://isc.sans.org/top10.html
http://www.netflixprize.com/
http://news.google.com/
http://www.ece.uci.edu/~athina/PAPERS/dshield-analysis-tr.pdf
http://www.ece.uci.edu/~athina/PAPERS/dshield-analysis-tr.pdf
http://www.ics.uci.edu/~anhml/publications.html

	introduction
	Our Work in Perspective
	The Dshield Dataset: Overview and Key Characteristics
	Problem Formulation and Framework
	Recommendation Systems vs. Attack Prediction
	The Recommendation System Problem
	Notation
	Problem Formulation

	The Attack Prediction Problem
	Notation
	Problem Formulation

	Upper Bounds and State-of-the-Art

	Model Overview
	Time Series for Attack Prediction
	Neighborhood Model
	Victim Neighborhood (kNN)
	Joint Attacker-Victim Neighborhood (CA)

	 Combine Predictors

	Performance Evaluation
	Setup
	Performance Evaluation and Comparison of Methods
	Training and Testing Windows
	Robustness against Pollution of the Training Data

	Summary and Future Work
	References

