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Abstract—We propose an active probing method, called Dif-
ferential Probing or DiffProbe, to detect whether an accessISP
is deploying forwarding mechanisms such as priority scheduling,
variations of WFQ, or WRED to discriminate against some of
its customer flows. DiffProbe aims to detect if the ISP is doing
one or both of delay discrimination and loss discrimination. The
basic idea in DiffProbe is to compare the delays and packet losses
experienced by two flows: an Application flow A and a Probing
flow P. The paper describes the statistical methods that DiffProbe
uses, a novel method for distinguishing between Strict Priority
and WFQ-variant packet scheduling, simulation and emulation
experiments, and a few real-world tests at major access ISPs.

I. I NTRODUCTION

There is significant interest recently about the so-called
“Network Neutrality” debate [9]. Users are concerned that
their access ISPs will soon start degrading the network per-
formance that is offered to certain applications, such as peer-
to-peer file sharing, or “over-the-top” services (such as Skype,
Vonage or Joost) that may be competing with similar services
offered by the ISP. There is already evidence that some ISPs
are discriminating against BitTorrent traffic by rate limiting or
blocking such flows [8].

In this paper, we propose an active probing method, referred
to as Differential Probing or DiffProbe, that can be used
to detect delay and/or loss discrimination of given traffic
flows. Such discrimination can be easily performed by ISPs
today, given that most routers allow real-time classification of
traffic and provide packet scheduling and buffer management
mechanisms that can be used for service discrimination (such
as Strict Priority (SP) scheduling, Weighted Fair Queueing
(WFQ), or Weighted RED packet dropping). We also show
how to distinguish between SP and WFQ scheduling variants.

The detection problem that we focus on can also be viewed
as an instance of a new class ofnetwork tomography[7]
problems. Instead of estimating internal link delays or losses
or the topology of the network, in this class of tomography
problems the objective is to identify the type of forwarding
modules that a packet flow goes through. In this paper, we
consider two packet scheduling forwarding modules (SP and
WFQ) as well as discriminatory packet dropping schemes
such as WRED. Our objective is to design and evaluate the
probing and statistical methods for the detection of these
forwarding modules. A large-scale measurement study using
these methods is the subject of our ongoing work, and it will
be described in a follow-up paper.

The paper is organized as follows. Section II presents our
model for ISP service discrimination. Section III gives the
basic idea of DiffProbe and describes the probing pattern.

Sections IV and V focus on the delay and loss discrimination
detection problems. We have implemented and tested our tool
on several ISPs, as described in Section VI. Section VII eval-
uates the detection accuracy with simulation and controlled
emulation experiments. Section VIII presents related work,
while Section IX concludes.

II. BASIC MODEL AND DEFINITIONS

Our basic model is illustrated in Figure 1. A number of users
are connected to an ISPI through access links. The user traffic
goes through a classifierM , which marks flows as High (H)
priority or Low (L) priority. We assume that the classification
is done at the granularity of IP flows, even though our method
is agnostic to the exact classification scheme (whether it is
payload-based, port-based, a behavioral method like BLINC
[10], etc).

If the ISP discriminates against low priority traffic, the
classified traffic then goes through adiscriminatory ISP for-
warding modulethat applies different packet scheduling and
buffer management policies to the two classes of traffic.
Most routers today implement at least two discriminatory
schedulers: Strict Priority (SP), and variants of WeightedFair
Queueing (referred to as WFQ in the rest of this paper). SP
services a packet from theL queue only if theH queue is
empty when the link becomes available. A WFQ scheduler
guarantees a minimum bandwidth share to each class1. Even
though many other scheduling algorithms have been proposed
in the literature, SP and WFQ variants are the main schedulers
that are available in routers today.

In terms of buffer management and loss discrimination
mechanisms, most routers today support Weighted RED
(WRED) [2], allowing incomingL packets to be dropped with
a higher probability than incomingH packets. Another form of
loss discrimination can be performed using the Drop-Longest-
Queue policy, which removes a potentially backlogged packet
from the longest queue when there is no buffer for an incoming
packet.

On the other hand, if the ISP does not perform discrimi-
nation, we expect that the scheduling discipline will be First-
Come First-Served (FCFS), there will be a single queue for
all traffic, and the buffer management policy will be Drop-
Tail (DT) (i.e., drop an arriving packet if there is no space
to store it). Note that in some cases, an ISP may conduct
loss discrimination but not delay discrimination (e.g., touse

1The many variants of WFQ differ in how accurate this allocation is across
flows in small timescales, an issue that is not important in our context [19].
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Fig. 1: Model of access ISP discrimination.

FCFS scheduling and WRED on a single queue), or delay
discrimination but not loss discrimination (e.g., to use SP
scheduling and DT buffer management with both queues
sharing the same pool of packet buffers). Our high-level
objective is to enable a user of ISPI to detect whetherI
performs any type of service discrimination on her traffic using
an active probing methodology.

Note that it is possible that an ISP deploys discriminatory
mechanisms, but without really affecting the user traffic.
All previously mentioned forwarding mechanisms (SP, WFQ,
WRED, etc) are identical to FCFS-DT when there are no
backlogged packets at the discriminatory link, which is often
the case under low load conditions. Obviously, we are not
interested in such low load conditions becausethere is no
effective discriminationin such cases. Besides, the ISP would
not have the incentive to deploy discriminatory mechanismsif
they would remain idle. Instead, we aim to detect discrimina-
tion when it actually affects user traffic. This would typically
happen during time periods, potentially short, of high loadat
the discriminatory link. This does not mean that we assume
that the ISP network is heavily loaded. The more relevant
question is whether a user observes any service discrimination
even when she receives (or sends) traffic at the maximum
possible rate that her access link allows. If not, for all practical
purposes the ISP does not deploy service discrimination on her
traffic.

III. D IFFERENTIAL PROBING

The basic idea in Differential Probing is to generate two
flows: anApplication (A) flow that may be classified by the ISP
as low priority, and aProbing (P ) flow that should be classified
as normal traffic and thus will not be discriminated against.
The user first sends (and then receives) these two flows through
the network simultaneously, and then compares their delay
and loss statistical characteristics. Discrimination is detected
when the two flows have experienced statistically significant
queueing delays and/or loss rate.2 In this paper, we assume that
A andP flows are generated between the same end-points. In
future work, we plan to extend the proposed architecture to

2When we refer to “delays” in this paper we mean the end-to-enddelays
of a flow, after subtracting the minimum observed measurement from the
raw end-to-end delay measurements. The presence of a clock offset does not
influence these measurements because we focus on relative delays and not
absolute delays.

cover cases where the A and P flows traverse different paths
but share a discriminatory link.

The A flow can be generated by an actual application or
it can be an application packet trace that the user replays. It
represents traffic that the user is suspecting the ISP may be
discriminating (e.g., BitTorrent or Skype traffic). TheP traffic
is a synthetic flow that is created by DiffProbe under two
constraints. First, it should be sufficiently different than theA
flow so that it does not get classified in the same way. Second,
it should be sufficiently similar withA so that it observes the
same network performance, statistically speaking, in terms of
delays or packet losses if there were no discrimination. For
example, if the ISP classifies traffic based on port numbers,
the P flow can be identical with theA flow but it should use
different ports. If the classification is based on packet payload
information (e.g., specific HTTP strings), theP flow can have
randomized payloads. If the classification is behavioral-based,
focusing on specific flow features such as packet sizes, packet
interarrivals, port numbers, etc, theP flow can be created in
principle as a sufficiently randomized version of theA flow
(e.g., with distorted packet sizes, average rate, rate fluctuations,
etc). Wright et al. [20] show that it is possible to defeat
statistical traffic classification by changing flow characteristics.
In practice, our DiffProbe implementation generatesP flows
from Skype and VonageA flows using a combination of port,
payload, packet size and rate randomization. We expect that
this combined randomization would be sufficient for most
traffic classifiers today.3

To ensure that the two flows see similar network perfor-
mance when the ISP does not perform discrimination, we
rely on the following two techniques. First, we consider only
thoseP packets that have been sent very close in time with a
correspondingA packet. Thus, even if theP flow can include
many more packets than theA flow, with different sizes and
interarrivals, we rely onpaired statisticsand consider(A, P )
packet pairs that have “sampled” the ISP discriminatory link
at about the same time. Second, aP packet that is sent shortly
after anA packet has the same size as the latter. This ensures
that the network transmission delays of the(A, P ) packet pairs
that we consider are equal.

A. Probing pattern

Differential Probing works by sending theA and P flows
through the ISP network simultaneously, and then comparing
their delay variations and packet losses. Specifically, DiffProbe
creates the following probing pattern that consists of two
phases, a Balanced Load Period (BLP ) followed by a Load
Increase Period (LIP ). In the following, we denote byλA(t)
the nominal rate of theA flow and byλP (t) the nominal rate
of theP flow, at timet. The flows are of variable bitrate, and
so these rates vary with time.

• BLP : we send both flows at their nominal rates.
• LIP : we scale up the rateλP (t) (by scaling down the

packet interarrivals) of theP flow by a factorg(t) > 1.

3Most commercial classifiers are based on port numbers and payload
information. Behavioral classification is viewed as not sufficiently accurate.



The reason we generate aLIP period is explained next.
Our objective is to maximize the chances that there is some
queueing in the (potentially discriminatory) ISP network.As
previously discussed, without having some queueing in the
ISP’s network it is not important whether a delay and/or loss
discrimination mechanism is deployed. Given that the user’s
access link is probably of lower capacity than the ISP’s links,
the highest rate that the user can generate is that of her access
link. We cannot modify the rate of theA flow, however, as that
may affect its classification by the ISP. Consequently, during a
LIP period, we artificially increase the rate of theP flow to
the point that, together with theA flow, the two flows almost
saturate the user’s access link. Specifically, we dynamically
adjust theP flow rate so that:λA(t)+g(t)λP (t) ≈ Ca (1 − ǫ),
whereCa is the user’s access link capacity (in the upstream or
downstream direction, depending on the direction of probing),
andǫ > 0. Thus, our goal is tonot introduce queueing at the
user’s access link, and focus instead on the delays/losses that
take place at the ISP’s network. In practice, we useǫ = 0.1
and calculateg(t) with a sliding window estimate ofλA(t).
To avoid probing intrusiveness, we increaseǫ if we observe
significant losses in theP flow. The LIP duration is chosen
so that we have a sufficiently large sample of(A, P ) packet
pairs to detect loss discrimination (see Section V). The reason
behind theBLP period is described next.

Unidentifiability: The BLP is used to identify cases in
which we cannot detect whether the ISP deploys service
discrimination mechanisms. We compare the higher delays of
P packets during theLIP period with the average delays
of P packets during theBLP period. If the former are not
significantly larger, the stimulus that we generated duringthe
LIP period was not sufficiently high to trigger a significant
increase in the queueing delays of theP flow. We view these
cases asunidentifiable, given that even if the ISP deploys some
discriminating mechanisms, those mechanisms would have no
significant effect on the user’s traffic.

Specifically, we compare the 90th percentile ofP flow delay
distribution during theLIP period (D0.9(P )) with median
delay of the same flow during theBLP period (DBLP

0.5 (P )):

D0.9(P ) > (1 + δ)DBLP
0.5 (P ) (1)

where δ > 0. We chooseδ = 0.1 based on empirical
observations. We say that delay discrimination is unidentifiable
if the above condition isnot true. We account for any clock
skew that may exist between theBLP andLIP periods. The
BLP duration is chosen reasonably large (at least10s) to
ensure a sufficiently large number of samples.

IV. D ELAY DISCRIMINATION DETECTION

Under FCFS scheduling, the two flows will be serviced
by the same queue. So, at least in statistical terms, theA
and P flows would observe similar delay distributions. On
the other hand, a Strict Priority scheduler will provide lower
delays to theP flow packets as long as there is some backlog
in the discriminatory link. The WFQ scheduler can be used
to provide delay discrimination only if the bandwidth share

that is provided to the high priority class is larger than the
bandwidth share provided to the low priority class, relative to
the traffic load of the two classes. Specifically, suppose that
the WFQ weightsφH andφL are assigned to high priority and
low priority traffic, respectively (withφH + φL = 1). Let λi

be the offered load in classi. To achieve delay discrimination
in favor of the high priority, the ISP should make sure that

αH > αL (2)

where

αi =
φi

λi
, i ∈ {H, L}

Note that if αH ≫ αL, a WFQ scheduler would exhibit
a behavior similar to SP, i.e., it would service low priority
packets only when there are no backlogged high priority
packets.

We detect delay discrimination as follows. Recall that the
A flow is classified as low priority, whileP is classified as
high priority. We observe the empirical distribution of delays
of theA andP flow packets during theLIP period; call them
D(A) andD(P ), respectively. We detect delay discrimination
(SP or WFQ) when:

D(A) ≫ D(P ) (3)

On the other hand, we detect no delay discrimination, i.e.,
FCFS scheduling, when:

D(A) ≈ D(P ) (4)

Test for Equality of Delay Distributions: We first
perform the test of equality of distributions (4) as follows.
Our test is based on the non-parametricKullback-Leibler (KL)
divergence, and it is motivated by the test presented in [17].
The KL-test does not assume any priors about the input delay
distributions. We have not used the well-known Kolmogorov-
Smirnov (KS) test, since that test can be inaccurate when the
underlying distributions exhibitdiscontinuities. The delays of
Internet paths usually include a large number of samples close
to the sum of the propagation and transmission delays, causing
significant discontinuities.

The empirical distributionsD(A) andD(P ) are constructed
from the measured delay timeseries{tAi , dA

i } and {tPj , dP
j }

of A and P flows respectively. TimestampstA and tP are
taken at the sender. We first pre-process the two timeseries
to form apaired sampleD as follows. For each delay sample
(tAi , dA

i ), we find the nearest sample(tPj , dP
j ) in time, such that

|tAi −tPj | ≤ τ for a thresholdτ defined as the transmission time
of an MTU-sized packet in the bottleneck link. If there exists
no such sample(tPj , dP

j ), we discard(tAi , dA
i ). Otherwise, we

add the delay tuple(dA
i , dP

j ) to D and continue with the next
sample(tAi+1, d

A
i+1). After pairing,D will consist of sample

pairs that formD(A) andD(P ). We also discard fromD delay
values close to the propagation delay, that is those values that
are less thanτ time units above the propagation delay. We then
subtract the propagation delay (computed as the minimum of
all delay samples for that flow) from each delay sample in



D. Thus, our statistical analysis focuses on queueing delays,
not absolute end-to-end delays. Note that clock skew does not
affect this test because the difference in one-way delays ofa
paired sample, even with delay discrimination, would be small
compared to the timescales in which clock skew is significant
(many seconds).

The next step is to construct a non-parametric hypothesis
test for the null hypothesis thatD(A) andD(P ) come from
the same underlying distribution. For two discrete probability
distributionsX and Y , the KL-divergence ofY from X is
defined as:

D (X‖Y ) =
∑

i

X(i) log2

X(i)

Y (i)

The KL-test onD(A) andD(P ) proceeds as follows:
1) Estimate the probability mass functionsXA and XP

from the samplesD(A) andD(P ) defined on the same
set of bins. The bin widthw = 2n−1/3I is determined
using the inter-quartile rangeI of the joint sample
D(A)∪D(P ), wheren is the length of the joint sample.
We merge those bins with their neighbors if the number
of measurements from both samples is less than1%.

2) Calculate the KL-divergenceD
(

XA‖XP
)

.
3) Bootstrapping:randomly partition without replacement

D(A) into two samplesS1
i andS̄1

i . Estimate their proba-
bility mass functionsX1

i andX̄1
i using the binning pro-

cedure in (1). Calculate the KL-divergenceD
(

X1
i ‖X̄

1
i

)

.
Repeat this a number of times (we use 200) to estimate
the distribution ofD

(

X1
i ‖X̄

1
i

)

; call it D
(

X1
i ‖X̄

1
i

)

.
4) Reject the null hypothesis ifD

(

XA‖XP
)

is large com-
pared to the distributionD

(

X1
i ‖X̄

1
i

)

. More precisely,
define the p-value as:

p = Prob
[

D
(

XA‖XP
)

≤ D
(

X1
i ‖X̄

1
i

)]

and reject the null hypothesis with this p-value if
p < 0.05.

Inequality of Delay Distributions: We detect delay dis-
crimination using a test that checks whether one of the two
distributions is consistently larger than the other (equation 3).
Specifically, our test of inequality is as follows. We first require
that the KL-test rejects the null hypothesis thatD(A) ≈ D(P );
otherwise we say that the distributions are equal and we
detect FCFS. Then, we consider severalp-percentilesDp(A)
andDp(P ) of the distributionsD(A) andD(P ) using their
empirical Cumulative Distribution Function (CDF) estimates.
We say thatD(A) ≫ D(P ) if:

Dp(A) > Dp(P ) for all p ∈ [0.5, 0.95] (5)

We choose the above range forp since the lower percentiles
may not be affected by queueing delays, and they can be close
to zero for both flows. The percentilesp are determined from
the empirical CDF ofD(A), and for each suchp we use
nearest-neighbor interpolation to findDp(P ). We also give
the user a measure of thedelay differencebetween the two
flows asD0.75(A) −D0.75(P ).

Note that there could be a case where the ISP prioritizes
the A flow over theP flow. We run our inequality test by
swappingA and P as inputs to detect if theP delays are
higher than theA delays.

A. Distinguishing WFQ from SP

After we have detected a discriminatory scheduler that treats
A as low priority andP as high priority, we examine whether
that scheduler is SP or a WFQ variant. The intuition behind
this method follows. Consider a two-class discriminating link
that services high priority and low priority packets. A packet
experiences propagation, transmission, and potentially queue-
ing delays at that link. We distinguish between the queueing
delay due to a packet that is currently being transmitted
from queueing delays due to other backlogged packets; the
former is referred to as thenon-preemption delayand it
can affect all packets irrespective of their priority. The basic
idea of the proposed method is that an arrivingP packet
at an SP schedulermay experience non-preemption delay
if another packet is currently being transmitted, but it will
never experience queueing delays due to backlogged low
priority packets. In the WFQ scheduler, on the other hand, an
arrivingP packet may also experience queueing delays due to
backlogged low priority packets. At the same time however,
we need to consider thatP packets may experience queueing
delays at both schedulers when they are backlogged behind
other high priority packets. So, if we had a way to identify
thoseP packets that were not backlogged behind other high
priority packets, we expect that their queueing delays would be
bounded by the non-preemption delay at the link, while those
delays may be much higher in the case of a WFQ scheduler.

In practice, we have no way to know whichP packets are
backlogged behind high priority packets from other sources.
We can identify, however, bursts ofP packets sent by Diff-
Probe. From such bursts, we only consider the firstP packet
because that packet is more likely tonotbe backlogged behind
other high priority packets.

Further, we limit our sample to thoseP packets that were
receivedshortly afterA packets. The reason is that thoseP
packets are more likely to arrive at the link during a busy
period. Otherwise, if aP packet arrives at an idle scheduler,
it will experience zero queueing delay independent of what
the scheduler is. Such packets would not help us detect the
scheduler’s type.

After we have identified the subset ofP packets as pre-
viously described, we examine the variability of their delay
distribution. The basic idea is that, with SP scheduling, the
selectedP packets will have very small delay variability. In the
discriminatory link, their queueing delays will be practically
zero (at most the non-preemption delay, which is the MTU
divided by the capacity of that link). In practice, of course, we
need to use a larger threshold because of possible queueing
delays at other links. The selection of that threshold is not
critical, however, because the corresponding delay variability
with a WFQ scheduler will be significantly higher. Figure 2
shows the distribution of one-way delays of the selectedP
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packets for simulated SP and WFQ schedulers. Notice that,
with SP, the delay variability of the selectedP packets is
practically zero; on the other hand, WFQ leads to significant
delay variability. In DiffProbe, we measure the delay variation
of the selectedP packets as the 95th-5th percentile difference.
Denote thepth percentile delay of the selectedP packets as
Ďp(P ). We declare that the scheduler is SP if:

Ď0.95(P ) − Ď0.05(P ) < κ

The thresholdκ is estimated as the MTU packet size divided
by the capacity of the access link (given that we do not know
the capacity of the discriminatory link). In Section VII we
show that the accuracy of this detection method does not
depend critically on the value ofκ.

V. L OSSDISCRIMINATION DETECTION

Discriminatory buffer managers drop packets, already back-
logged or arriving, considering the class of those packets.This
is different than DropTail or RED, which do not consider
the class of the packets they drop. Consider the WRED
discriminatory buffer manager in the case of two traffic classes
H and L. In practice the ISP would configure the queue
thresholds in order to differentiate between traffic classes [1],
such that:

q̂min(H) ≫ q̂min(L)

Hence, after the average queue length has exceeded the lower
threshold for the low priority class,̄q > q̂min(L), packets
of that class will be dropped with a higher probability than
packets of the high priority class. In the case of the Drop-
Longest-Queue policy, backlogged packets from the longest
queue are dropped when needed. Thus, if the low priority
class has a longer queue, due to a lower service priority or
rate, it will also tend to see a higher loss rate.

We detectloss discriminationduring theLIP period as
follows. We estimate the loss rates ofA and P flows (as
fraction of packets lost) during theLIP period; denote them
as ℓ(A) and ℓ(P ) respectively. We declare that there is loss

discrimination when the following condition is satisfied:

ℓ(A) ≫ ℓ(P ) (6)

Conversely, for a non-discriminatory buffer manager, we
would have:

ℓ(A) ≈ ℓ(P ) (7)

We describe the specific statistical tests to perform loss rate
comparisons next.

Equality of Sampled Loss Rates:We first pre-process the
sender-side sequence number timeseries to create apaired
sample of A and P packets sent almost simultaneously,
as done in the pairing procedure for the delay timeseries
described in Section IV. Consider the measured loss ratesℓA

andℓP in the paired samples of theA andP flow, respectively.
Let us denote the number of samples sent by the two flows as
sA andsP respectively.

We use a two-tailed version of the well-knowntwo-
proportion z-test for equal population proportions of two
independent samples [15]. Our null hypothesis is that theA
andP flows sample the same loss process, while the alternate
hypothesis is that the two flows sample a different loss process
(we do not assume that the P flow will necessarily see a lower
loss rate in the alternate hypothesis, as it may be that the ISP
is discriminating in favor of theA flow). The two-proportion
test uses thez-score statistic:

z =
ℓA − ℓP

√

l (1 − l)
[

1
sA

+ 1
sP

]

, l =
ℓAsA + ℓP sP

sA + sP

The z-score has an asymptotic standard Normal (N (0, 1))
distribution when null hypothesis is true. Thep-value is
computed as:

p = Prob [|z| < N (0, 1)]

The test rejects null hypothesis with thisp-value if p < 0.05.
A rule of thumb for Normal approximation ofz statistic

in the two-proportion test is thatsA and sP both include at
least 10 dropped packets. We diagnose loss discrimination as
unidentifiableif this is not the case. To help with the identifi-
ability objective, we make theLIP duration sufficiently large
(always maintainingλA(t)+ g(t)λP (t) ≈ Ca (1 − ǫ)), so that
we can observe a sufficiently large number of packet losses in
this period.

We determine theLIP duration as follows. We observe the
loss rate of theA flow during theBLP ; call it ℓBLP

A . Suppose
that the rate ofA packets sent duringBLP is λBLP

A (packets
per unit time). The minimumLIP duration is then chosen so
that the expected number ofA losses is at least 10. TheLIP
duration∆LIP is thus:

∆LIP ≥
10

ℓBLP
A λBLP

A

For example, using a G.711 (voice)A flow that sends about
33 packets per second, and with a 1% loss rate during the
BLP period, we would determine that theLIP should be at
least 30s long.



VI. I MPLEMENTATION AND TEST RUNS

We have implementedDiffProbe in a completely automated
tool. The current version is about 7,500 lines of C code and it
has been tested on Linux platforms so far. In this section we
describe the tool, and we also show some test runs at large
access ISPs.

DiffProbe consists of two endpoints, the client (CLI), and
the server (SRV). CLI is run by a user connected to the target
ISP. DiffProbe operates in two phases. In the first phase,CLI
sends timestamped probing streams toSRV . For each probing
structure,SRV collects one-way delay timeseries ofA andP
flows. In the second phase, the roles ofCLI and SRV are
reversed.

Capacity Estimation: Before probing, we make a rough
estimate of the upstream and downstream capacities at the
end-to-end path using packet trains of back-to-back packets
over UDP. We use this estimate to decide theLIP probing
rate. More precisely, we sendK packet trains of lengthL
packets, each of sizeS. At the receiver, and for each train, we
measure the dispersion∆ and estimate the path capacity as:
Ca = (L−1)S

∆ . Finally, we take the median of theK trains.
Ca is an estimate of the capacity of thenarrow link between
CLI andSRV . For residential ISPs, this link is most likely the
home access link in both upstream and downstream directions.
In the current implementation, we setK = 10, L = 50, and
S = 1450B, and send the trains over a port which is not likely
to be classified low-priority by an ISP.

Probing: Each probing session consists of theBLP and
LIP probing periods. After we probe the upstream direction,
we repeat that sequence in the downstream direction. Each
probing packet of theA flow is replayed according to a pre-
recorded application flow trace. We maintain the same port
number(s), transport protocol, packet sizes, inter-packet gaps
and payload as in the trace file while replaying theA flow. We
overwrite the last four bytes of the payload with the sender
timestamp for one-way delay measurement.

We create theP flow using the last sentA packet size.
The payload is randomized (excluding the sender timestamp)
and we use port numbers that are not likely to be classified
as low priority. The user can choose between two UDP Skype
voice (taken from [6]) and two UDP Vonage voice traces (each
10min. long) to test for discrimination. In our implementation,
we use a single probing session. Unless otherwise mentioned,
the tool uses the following parameters:LIP andBLP dura-
tions 30s,LIP probing rate is estimated withǫ = 0.1.

A. Test runs

We have run DiffProbe at some large residential ISPs4.
Note that it is not possible to know the ground truth in
such experiments. We can, however, say that there is no
discrimination between theA and P flows if no significant
delay differences have beenperceivedby the user, or if the
KL-test reports a highp-value. All experiments were done in

4We repeat that our focus in this paper is on the detection methods - not
on a large-scale study.

ISP Upstream Downstream

ISP-1 (US) 0.01-0.04 0.0-1.0
ISP-2 (Switzerland) 1.0 0.28-1.0

ISP-3 (US) 0.54-1.0 1.0
ISP-4 (US) 0.87-1.0 0.17-1.0

ISP-5 (Belgium) 1.0 -
ISP-6 (Norway) 0.25-0.98 -

ISP-7 (US) 0.82 0.98

TABLE I: Access ISP test runs:p-values across Skype and
Vonage tests. Some runs on ISP-1 showed routing differences
between the two flows, which explains the lowp-values.

April and July of 2009. TheLIP duration in these experiments
is 10s while theBLP duration is 5s.

Table I shows access ISP locations and thep-values from
our KL-test for delay discrimination. We test for discrimi-
nation against the four Skype and Vonage traces once for
each ISP. The table shows that we do not detect payload
and/or port based discrimination in these ISPs (all tests were
identified as “detectable”)5. An exception is the case for ISP-
1: 1 out of 4 downstream trials and all upstream trials showed
discrimination. Upon visual inspection, we noticed that the
two flows follow different paths in the ISP-1 network, while
one of the paths introduces higher queueing delays than the
other. We plan to include an automated way to detect such
routing differences between theA andP flows in the future.

VII. S IMULATION /EMULATION EVALUATION

In this section we first evaluate the accuracy of Differential
Probing using simulations, and then show some realistic
emulation experiments.

We evaluate the accuracy of the discrimination detection
methods using NS2 simulations. The simulation topology is as
follows. The discriminating link capacity is 100Mbps. TheA
andP flows are generated from a server and they are sent to a
residential client. All servers and residential users haveaccess
links of 1Gbps and 10Mbps, respectively. The capacity of the
discriminatory link is 100Mbps. We simulate 200 residential
clients generating closed-loop (“interactive”) TCP sessions
by downloading Pareto-sized heavy-tailed content from 200
randomly chosen servers. These well-provisioned servers are
connected to the discriminating link through links of different
propagation delays. We provision all link buffers according to
the bandwidth-delay product. The setup for reverse-direction
cross traffic is similar. We perform at least 96 trials for each
utilization point of the discriminating link, so that we have
an error margin of 2% at 95% confidence assuming a prior
proportion of 0.9. A utilization ofU% encompasses all trials
in the interval(U − 5, U + 5]%.

Unless otherwise mentioned, we use the following parame-
ters. Cross-traffic is classified at the access links on the basis of
the generating source as low or high priority with probability
0.5. We use a Skype iSAC packet trace as theA flow. We
use ǫ = 0.1 to adjust theLIP rate; theLIP and BLP

5We were not able to collect data for two downstream cases due to NAT
issues.
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Fig. 3: Fraction of detectable trials: delay discrimination.

durations are 30s long. We consider three weight ratios of
WFQ, 1:1.5, 1:3 and 1:10. We will see that the first weight
ratio is small and performs similar to FCFS-DT, while the
third case performs similar to SP; the second ratio is realistic,
given that half of cross-traffic utilization comes from high
priority flows. We start with an evaluation of delay and loss
discrimination detection accuracy.

A. Delay Discrimination

In this subsection, we evaluate detection accuracy of FCFS,
SP, and WFQ schedulers.

Detectability: A detection threshold factor (the ratio
D0.9(P )/DBLP

0.5 (P ) in eq. (1) of 1.3 is sufficient to get
detection accuracy higher than 90%. Using this threshold, we
show the fraction of detectable trials at each utilization range
in Figure 3. Note that at low utilization (≤ 40%) we are not
able to detect the majority of trials. This also implies thatthere
is no user-perceived delay discriminationat low utilization in
the discriminating link, because it is then unlikely that the user
traffic will observe any queueing at the discriminating link. We
also found that without this detectability condition, we only get
90%+ detection accuracy when the utilization exceeds 50%.

Detection accuracy:Figure 4 shows discrimination and no-
discrimination detection accuracy with utilization for FCFS,
SP, and WFQ (weight ratio 1:3). We get high detection
accuracy at all utilizations of the discriminating link. Note
that false positives would correspond to inaccurate detection
of FCFS - but we see that there are no such cases.

WFQ weight ratio: The effect of the WFQ weight ratio
on delay discrimination detection accuracy is shown in Figure
5. The weight ratio 1:10 performs similar to SP and leads to
high detection accuracy, while the ratio 1:1.5 performs close to
FCFS (no significant delay discrimination) and hence it leads
to low detection accuracy.

WFQ and SP: Figure 6 shows the accuracy of distinguish-
ing the SP and WFQ schedulers for a thresholdκ = 0.7ms. We
see that low utilization leads to low accuracy; this is expected,
since, although the difference in the delay distributions of
A and P flows is large enough to show the presence of
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Fig. 4: Delay discrimination detection accuracy.
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Fig. 5: Effect of WFQ weight ratio on delay discrimination
detection accuracy.

discrimination, WFQ and SP serviceP packets quite similarly.
A large WFQ weight ratio (1:10) makes this scheduler similar
to SP, and so the detection accuracy is lower than for lower
weight ratios. We also found that for more reasonable weight
ratios (e.g. 1:3), the detection of SP and WFQ can be done
accurately with a wide selection ofκ values.

B. Loss Discrimination

In this subsection, we evaluate detection accuracy of Drop-
Tail, WRED, and drop from longest queue (Drop-Longest-
Queue) buffer managers. We use the DT buffer manager in
FCFS and SP, while for our WFQ implementation, we use
a discriminatory buffer manager that drops packets from the
longest queue. Note that we get false positives when the
accuracy is less than 100% in the case of DropTail (none in
FCFS-DT and less than 2% in SP-DT).

DT and Drop-Longest-Queue:Table II shows the accuracy
of DropTail and Drop-Longest-Queue buffer managers for
detectable trials. We see a high detection accuracy for both
discriminatory and non-discriminatory buffer managers. The
table shows Drop-Longest-Queue detection for three different
WFQ weight ratios. A WFQ ratio of 1:1.5 is close to DropTail
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Buffer mgr. DropTail Drop from longest (WFQ)

Accuracy
FCFS SP
100% 98.57%

1:1.5 1:3 1:10
33.75% 98.75% 100%

TABLE II: Loss discrimination detection accuracy.

in terms of loss discrimination, and yields low accuracy.
WRED accuracy: We choose the following WRED param-

eters forL andH traffic: q̂max(H) = q̂max(L) = 500 (buffer
size of discriminating link in packets; avg. packet size is
1000B); q̂min(L) = q̂max(L)/2; q̂min(H) = q̂min(L) [1 + f ];
pH = 0.15; pL = 0.20. We vary the parameterf , which
quantifies the difference between theH andL classes. Figure
7 shows the effect off on the detection accuracy. At low
values off (≤ 0.3), the detection accuracy is low since the
loss discrimination between the two priorities is not significant.

C. Discrimination Emulations

In this subsection, we evaluate the tool in a realistic
emulation setup. Our emulated discrimination scenario is as
follows. Our testbed is connected to a residential cable ISP
in Atlanta, GA (US). The DiffProbe client runs inside the
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Fig. 7: WRED: effect off on detection accuracy.

residence, and the server is hosted in the Georgia Tech campus.
We emulate the discriminating link on a multihomed Linux
router that connects to the cable modem, and serves the client
machine connected through a Fast Ethernet interface. Note
that the narrow link in this case is between the cable modem
and CMTS, which at the time of experiments was a 10Mbps
upstream and 17Mbps downstream DOCSIS link. Cross traffic
is generated using two Pareto sources (mean gap 100ms and
shape 1.5), with a packet size of 600B, over ICMP. Our
DiffProbe tests on this ISP (without emulated discrimination)
show that the ISP does not discriminate against theA flow.
We show results for at least 10 trials for each experiment.

FCFS: We start with the no-discrimination case. We pair
A andP samples when they are in 1ms send-time proximity.
DiffProbe does not reject the null hypothesis of equalA andP
distributions, withp-values in[0.86, 0.92]. Note that we reject
the null hypothesis ifp < 0.05.

SP and WRR: We use the the Linux Advanced Routing
and Traffic Control framework [3] to implement scheduling
and buffer management on a 2.6.22 kernel. We classify traffic
using protocol, port numbers and destination IP address. The
classifier is built out oftc filter rules. One of the cross traffic
sources and theP flow are classified as high priority, while
the other source and theA flow are classified as low priority.

We implement SP using LARTC’sprio scheduler. We also
limit the service rate to 1Mbps using a token bucket of small
depth. The queue size for each class was 50KB. DiffProbe
rejects the null hypothesis of equal distributions withp = 0
for all trials.

We also implement Weighted Round Robin (WRR) schedul-
ing using LARTC’s CBQ scheduler with a weight ratio of
1:3 (link capacity of 1Mbps). The queue size for each class
was 50KB. Note that although WRR is implemented in most
network devices, it does not account for packet sizes during
scheduling and hence it is not as fair in weighted rate alloca-
tion as WFQ or DRR. DiffProbe rejects the null hypothesis of
equal distributions withp = 0 for all trials.

Loss discrimination: The SP and WRR implementations
use separate physical queues for each priority, and incoming
packets are dropped using the Drop-Longest-Queue policy.
For illustration, we consider one WRR 1:3 trial, in which the
estimated loss rates were1.68% for theA flow and0.15% for
theP flow. DiffProbe rejects the null hypothesis of equal loss
rates withp = 0.

VIII. R ELATED WORK

There has been some recent interest in active and passive
methods for detecting traffic discrimination. Perhaps the clos-
est in spirit to our work is Zhang et al.’s NetPolice [21],
an active probing methodology that replays application traces
with limited TTL values to solicit TTL-expired messages from
intermediate routers. They compare loss rates with an HTTP
flow as a baseline, and show discrimination in backbone ISPs.
We are concerned about the validity of this conclusion mostly
for two reasons. First, two simultaneous flows (say HTTP and
BitTorrent) can observe very different loss rates if they donot



“sample” a lossy queue with packets of the same size and at
about the same time. We dealt with this issue using paired
statistics, considering packets of the same size that were also
sent at about the same time. Second, NetPolice relies on router-
generated ICMP responses; the generation of such packets
is subject to rate-limiting and vendor-specific lower-priority
processing. We believe that further work is needed to validate
the conclusions in [21].

Bin Tariq et al. propose a passive detection methodology,
NANO [18], which uses throughput observations from many
end-hosts to detect discrimination. They use causal inference
in the client data, and information about confounding variables
to group clients according to performance. BTTest [8] focuses
on detecting BitTorrent traffic blocking by ISPs using forged
TCP RST packets. It emulates BitTorrent flows, and correlates
client and server traces to detect RST messages. The authors
show that ISPs mostly block BitTorrent in the upstream
direction and classify based on payloads. Siganos et al. [16]
use the BitTorrent protocol to measure download throughput
across ISPs, and show that the measurements are correlated
with performance reports from Akamai.

Lu et al. propose POPI [13] to detect priority based for-
warding. They use high-rate active probing to induce losses,
and observe loss rates to analyze forwarding. Kuzmanovic et
al. [12] use passive monitoring at a single-hop path to observe
service rates at different timescales and infer the parameters of
a WFQ scheduler. Biczók et al. [5] propose a method to detect
discrimination with prior information about the classifiertype.
They send a single flow and observe performance difference
between the sender and receiver sides. Mahajan et al. use
ICMP probes and associate performance with geography to
measure differences in backbone ISPs in NetDiff [14].

Automated traffic classification often relies on machine
learning and statistical techniques. A recent comparison of
traffic classification methods is presented in [11]. Commercial
classification products include (but not limited to) Sandvine
PTS8210 and Cisco NBAR. Traffic Morphing [20] shows that
it is possible to avoid certain kinds of classifiers by altering
flow characteristics.

IX. D ISCUSSION AND CONCLUSIONS

We have presented Differential Probing, a general method
for the detection of delay and loss discrimination. This paper
focused on the accurate detection of two packet scheduling
mechanisms, SP and WFQ, as well as on the detection of
loss discrimination, in the case of two classes of service.
The simulation and emulation experiments showed that the
detection methods are accurate, as long as our probing traffic
can create some queueing at the discriminatory link and when
the delay and loss differentiation is non-negligible (in other
words, discrimination isperceivableby user traffic). DiffProbe
can also distinguish between SP and WFQ, as long as the
weight ratio in the latter is not so high that would make
WFQ behave similarly to SP. Our test runs at some major
access ISPs show that, at least so far, there is no delay and
loss discrimination against Skype and Vonage traffic at those

ISPs. A large-scale measurement study of ISP discrimination
practices is part of our ongoing work, deploying DiffProbe at
the Measurement Lab (M-Lab) [4].

We are also looking at extending the DiffProbe framework
to detect more than two classes of service, additional packet
scheduling and buffer management mechanisms, and also to
quantitatively characterize the parameters of some mechanisms
(e.g., to infer the WRED parameters or the WFQ weights). We
are also going to generate additional pairs ofA andP flows
for applications such as BitTorrent and for IPTV applications
such as Veoh and Hulu.

The DiffProbe source code and binaries are available at
http://www.cc.gatech.edu/∼partha/diffprobe/, and we will also
provide DiffProbe as a public service hosted at M-Lab.
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