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UUSee: Large-Scale Operational On-Demand
Streaming with Random Network Coding

Zimu Liu, Chuan Wu, Baochun Li, and Shugiao Zhao

Abstract—Since the inception of network coding in information
theory, we have witnessed a sharp increase of research interest in
its applications in communications and networking, where the
focus has been on more practical aspects. However, thus far,
network coding has not been deployed in real-world commercial
systems in operation at a large scale, and in a production setting.
In this paper, we present the objectives, rationale, and design
in the first production deployment of random network coding,
where it has been used in the past year as the cornerstone of a
large-scale production on-demand streaming system, operated by
UUSee Inc., delivering thousands of on-demand video channels
to millions of unique visitors each month. To achieve a thorough
understanding of the performance of network coding, we have
collected 200 Gigabytes worth of real-world traces throughout
the 17-day Summer Olympic Games in August 2008, and present
our lessons learned after an in-depth trace-driven analysis.

I. INTRODUCTION

Network coding, since its inception in information theory [1],
has attracted a substantial amount of attention in networking
research. It has widely been accepted that, with network coding,
the cut-set bound of information flow rates in a multicast
communication session can be achieved. As content distribu-
tion systems in the Internet attempt to disseminate content
from a single source to a number of subscribing receivers,
they naturally resemble multicast sessions. Gkantsidis and
Rodruiguez [2] showed how to use network coding to improve
download time by a 30% margin in peer-to-peer file content
distribution. In this context, network coding helps to eliminate
the need for finding rare data blocks. Small-scale trials with
around a hundred testing nodes have been conducted to verify
this claim [3].

In the context of peer-assisted live and on-demand video
streaming systems, it has also been shown that network coding
is beneficial in peer-assisted live streaming systems, especially
in cases where server bandwidth supplies barely meet user
demand [4]. R? [5] has proposed a set of design principles
for new peer-assisted live streaming protocols to take full
advantage of network coding. Feng ef al. [6] have sought to
mathematically analyze peer-assisted live streaming systems
with network coding, with a focus on playback quality, initial
buffering delays, server bandwidth costs, and extreme peer
dynamics. It has been theoretically shown that network cod-
ing helps achieve provably good overall performance. Finally,
Annapureddy et al. [7], [8] have shown similar advantages with
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the use of network coding, when it evaluated the use of network
coding in peer-assisted on-demand streaming.

Despite the foundation established by extensive existing
research in the literature, thus far, network coding has not
yet been reported to be deployed in real-world operational
video streaming or content distribution systems — or any
large-scale operational systems in a production setting. What
are the lingering challenges that prevent such a deployment?
Would the benefits brought forth by network coding justify the
computational costs on both servers and users? We believe it is
time to begin a reality check of network coding in a commercial
deployment at a scale involving millions of unique online users.

In this paper, we present the first production deployment of
random network coding as a core technology in the UUSee on-
demand video streaming system, operated by UUSee Inc. [9],
one of the leading peer-assisted media content providers in
China. The UUSee on-demand streaming protocol is specif-
ically designed from the ground up to incorporate network
coding, following the rationale and design objectives that we
will illustrate. We seek to present an impartial, extensive,
and in-depth analysis of 200 Gigabytes worth of operational
traces, which we have collected throughout the 17-day Summer
Olympic Games in August 2008, with UUSee as one of the
official online broadcasting partners in China. The goal of our
analysis is to make critical observations and draw conclusions
about the suitability of using network coding in an operational
environment with a large number of users. We also wish to
locate new challenges to be addressed, and aspects of the
protocol to be improved.

The remainder of this paper is organized as follows. In
Sec. II, we present the objectives, rationale, and system design
of the UUSee peer-assisted on-demand streaming system with
network coding. In Sec. III, we describe details of our mea-
surement traces, collected over the 2008 Beijing Olympics. In
Sec. IV, we present a thorough analysis of our traces, with
a focus on the performance of our new on-demand streaming
system based on network coding. With the hope of identifying
new challenges to be addressed to improve system performance,
we make impartial and critical observations about the lessons
learned in our trace-driven analysis, and then conclude the
paper in Sec. V.

II. OBJECTIVES, RATIONALE AND SYSTEM DESIGN

At UUSee Inc., the ultimate design objective is to design,
test, and implement the best possible on-demand video stream-
ing system from the ground up, that scales up to thousands of
on-demand video channels and millions of users, without the
penalty of excessive server bandwidth costs. It was a daunting
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and risky task to venture into the unchartered territory of
network coding, as its performance benefits, while extensively
studied and theoretically sound, had never been tested in a real-
world, large-scale deployment at the time of our design. In this
section, we begin with our performance objectives in the UUSee
design, and then illustrate the factors that have motivated us to
deploy random network coding.

A. Design Objectives

Following the success of peer-assisted live streaming, on-
demand streaming has recently been deployed in a peer-assisted
fashion, as documented in the PPLive case study [10]. While it
is certainly feasible to deploy on-demand video streaming at a
large scale, in our view, existing systems have not yet achieved
the best possible performance feasible in on-demand streaming
systems. What constitutes critical criteria that can be used to
judge if a new system is better than existing ones, then? In
the process of redesigning the UUSee on-demand streaming
system, we seek to achieve the following design objectives.

> Minimized server bandwidth costs. Server bandwidth
available from data centers and content distribution networks
(CDNs) is a finite and expensive resource. For example, it has
been estimated that Google consumes $500 million every year
on YouTube bandwidth costs. No matter how much bandwidth
we provision at the dedicated streaming servers, it has to
be utilized judiciously to serve the largest number of users
possible. Using peer assistance — by designing peer-to-peer
(P2P) protocols to facilitate bandwidth assistance from peer
uploads — can substantially reduce the volume of server
bandwidth used, but the strategy will not invalidate the need to
conserve server bandwidth. The UUSee design of peer-assisted
on-demand streaming seeks to conserve server bandwidth to
the maximum extent possible, by maximizing peer bandwidth
contributions to serve other peers.

> Minimized buffering delay after a random seek. In on-
demand video streaming systems, one of the most important
performance metrics is the buffering delay after a random seek
operation, which is the time a user would have to wait for
after seeking to a new point in the video stream for on-demand
playback. We wish to minimize the average buffering delays
across all channels.

> Consistently satisfactory playback quality. In on-demand
streaming systems, to maintain a consistently satisfactory level
of playback quality for a streaming user, the system only needs
to make sure that the average download rate for a video stream
is higher than the streaming playback rate of that stream. In
the UUSee design, we certainly wish to maintain a satisfactory
level of playback quality, as a basic requirement to maintain
the quality of user experience.

B. Rationale of Applying Network Coding

Random linear network coding has been well established
in recent research literature (e.g., [11]), and has been shown
to be able to take advantage of redundant network capacity
that is otherwise left untapped. In the context of on-demand
media streaming, each media segment is divided into n blocks

b = [b1, b2, ...,b,]T, where each block has a fixed number of
bytes k (referred to as the block size). In practical random
network coding [12], to code a new coded block z;, the
source first independently and randomly chooses a set of
coding coefficients [c;1,¢j2, -+ ,¢jp] in GF(28), one for each
original block it has buffered. It then produces one coded block
T = Z?:l c¢ji - b;. While peers are free to send out new
coded blocks by recoding the coded blocks received, a receiving
peer decodes as soon as it has received n linearly independent
coded blocks x = [x1,T2,...,2,]T. It first forms an n x n
coefficient matrix C, using the coefficients of each block b;.
Each row in C corresponds to the coefficients of one coded
block. It then recovers the original blocks b = [by, ba, .. ., b,
as b = C~!x, computed using Gaussian elimination or Gauss-
Jordan elimination, the latter of which can be performed
progressively as coded blocks are being received. The inversion
of C is only possible when its rows are linearly independent.

It has been proposed that random linear network coding can
be deployed in peer-assisted live streaming systems [5]. What
is the most important benefit of random linear network coding
in live streaming systems, and is such a benefit also applicable
in on-demand streaming?

The upshot of network coding is that it makes “perfect
coordination” possible, where an arbitrary number of serving
peers (referred to as seeds) can be used to serve the same
segment to a receiving peer, illustrated in Fig. 1. When multiple
peers serve the same segment, it does not matter how bandwidth
availability varies on each seed-to-peer connection. The receiv-
ing peer simply “holds a bucket” for the segment until it is
“full.” With Gauss-Jordan elimination, the receiving peer can
even progressively recover original blocks as it receives coded
ones in a “pipelining” fashion, so that the entire segment is
immediately playable after the last block is received — from
any of the seeds. This is due to the fact that, with random
linear network coding, randomly generated coding coefficient
vectors from different seeds are linearly independent with high
probability. There is no need for seeds to explicitly exchange
protocol messages with one another or with the receiving peer.

What are the immediately intuitive benefits derived from such
“perfect coordination” using network coding? We believe that
the advantages are two-fold.

D> Being oblivious to seed qualities. With multiple seeds
serving the segment to one receiving peer, dedicated streaming
servers and ordinary peers can collaborate with ease, and there
is no need to design an elaborate protocol to select a high-
quality peer or lightly-loaded streaming server. As long as a
seed (a server or a peer) has the segment in its cache, its upload
capacity can be utilized to serve such a segment. Even the
“slowest” seed can be tapped to serve at least a coded block,
if the block size is sufficiently small.

D> Rateless erasure codes. Since random linear codes are
rateless erasure codes and are near-optimal, they transform
an n-block message into a practically infinite encoded form,
identical to known fountain codes (such as the LT code). In
other words, encoded blocks can be generated ad infinitum,
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Fig. 1. Perfect coordination. Fig. 2. “Braking:” the end game.

and as long as n linearly independent blocks are received, they
are sufficient to recover the original segment. In the context of
peer-assisted streaming systems over the Internet, this property
directly implies that UDP flows can be used to communicate
these blocks, rather than TCP connections, since losing coded
blocks between a sending and a receiving peer is no longer a
concern — more will be received from the same sending peer
or a different one. Since UDP is stateless, it scales well on
dedicated streaming servers and ordinary peers alike.

The good news is that, while these advantages hold in the
context of live streaming, we see no reason why they do not
hold in the peer-assisted on-demand streaming system to be
designed in UUSee.

C. Challenges of Applying Network Coding

What, then, is the flip side of the coin? Tradeoffs accompany
any advantages, and it is important to identify challenges when
random network coding is applied in a real-world operational
streaming system.

The first challenge we have encountered is how the size of
a block is determined. A coded block is the basic transmission
unit used to serve a portion of a segment, and to accommodate
slower seeds so that they serve at least one block in a reasonable
amount of time, we inclined to use a smaller block size, such
as 1 KB, so that a block directly corresponds to a UDP packet.
This is a plausible choice if there were no overhead imposed
by coding coefficients. With random linear coding on GF(2%),
each coefficient occupies a byte, and such overhead depends
on the number of blocks in a segment.

Shall we use a smaller number of blocks in each segment to
mitigate such coefficient overhead in a small 1 KB UDP packet?
The answer is that we cannot afford to, since a smaller number
of blocks will lead to a different type of overhead related to
the “end game” after a segment is completely received and
decoded on the receiving peer. Illustrated in Fig. 2, “braking”
acknowledgment messages need to be sent back to each of
the seeds, respectively, to stop them from sending more coded
blocks. Due to the latency for these braking messages to be
received by sending peers, additional redundant blocks may be
received by the receiving peer after the segment is complete,
and will need to be discarded. As the number of blocks in
a segment becomes smaller, the overhead of such redundant
blocks is more significant.

Finally, the need for exchanging segment availability in-
formation between sending and receiving peers calls for a
larger segment size, since a larger size reduces the number

of bits required to represent segment availability in an on-
demand video stream. However, our preliminary tests on coding
complexity have shown that, even with the most optimized
implementation of random linear coding, going beyond 512
blocks in each segment risks taxing a low-end CPU, typical in
power-efficient notebook computers [13].

D. UUSee: System Design with Network Coding

Attracted by the rationale motivating the use of network
coding, our objective is to redesign the on-demand streaming
system from the ground up to take advantage of network
coding, while mitigating its drawbacks in practical use.

Similar to a traditional peer-assisted video-on-demand sys-
tem such as PPLive [10], thousands of channels are supported in
the system, and we use tracking servers to maintain information
about participating peers in all video channels, including their
IP addresses, listening ports, and videos currently cached. Peers
(streaming users) are organized in a mesh topology similar to
any alternative peer-to-peer streaming system, with each peer
serving cached video segments to a number of downstream
peers, while being served by a number of seeds with respect to
segments it needs to receive. Seeds can be dedicated streaming
servers or ordinary peers, but the objective is to maximize
contributions from ordinary peers so that server bandwidth costs
can be minimized.

When a peer selects to watch a video in the UUSee on-
demand streaming system, the tracking server introduces it
to the existing mesh, involving both peers and servers, by
assigning it a number of existing peers having contents around
its starting playback point cached. A cache is maintained on
the peer in non-volatile storage, which stores segments of
video channels previously viewed and already downloaded. In
UUSee, to fully utilize peer upload bandwidth, it is possible
for a peer to serve segments to other peers, even if the user is
not currently viewing any video at the time.

In response to the aforementioned challenges of applying
network coding in operational on-demand streaming systems,
we have adopted the following design choices in UUSee.

> Overhead. Applying the lesser of two evils principle, we
believe that the overhead caused by redundant blocks—received
after the segment is completely downloaded by a receiving
peer—is a more significant concern. To mitigate such overhead,
we must use a larger number of blocks in a segment, and a
smaller block size. In UUSee, we use 1 KB as the size of
a block, corresponding to a single UDP packet. We use 300
to 500 blocks in a segment, depending on the streaming rate
of the video channel. With this design choice, if we continue
to embed coding coefficients into coded blocks, overhead up
to 50% of the data size will be incurred. As such, we have no
choice but to embed only the PRNG seed that is used to produce
the sequence of random coefficients with a known pseudo-
random number generator (PRNG). This effectively reduces the
overhead to just 4 bytes, regardless of the number of blocks, n,
in a segment. The only side effect is that peers are no longer
able to serve coded blocks to others before completely receiving
a segment [4]. However, since on-demand streaming systems
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do not have any requirements on the playback lag between
live events and their playback (an important concern in live
streaming), such a side effect is a non-issue in on-demand
streaming.

> Exchanges of segment availability. In any streaming mesh,
peers need to exchange content availability information among
one another, in order to select serving peers to stream segments
from. In on-demand streaming, peers cache video segments in
non-volatile storage, and can afford a larger cache size than live
streaming by two orders of magnitude, e.g., 2 GB in on-demand
vs. 10 MB in live streaming. With design choices on block
and segment sizes when network coding is used, the number
of segments in the peer cache is simply too large for segment
availability information to be exchanged, even with just a single
bit needed per segment.

To alleviate the overhead, the UUSee on-demand stream-
ing system has employed a two-level cache map design. At
the coarse-granularity level, group availability bitmaps (group
maps) are used to indicate the groups in a video stream a peer
currently holds in its cache. Group maps are typically only a
few bytes long. A corresponding bit is set to 1 when a peer
has cached 80% of content belonging to a group. At the fine-
granularity level, segment availability bitmaps (segment maps)
are used to represent segments a peer currently holds within
a specific group, which is typically 10 — 30 bytes long. A
corresponding bit is set to 1 when a peer has fully downloaded
and decoded an entire segment.

With the two-level design, peers with the same group can
be organized to serve one another, and segment availability
information can be exchanged among peers holding the same
group. In UUSee, the use of network coding helps substantially
to mitigate the overhead of exchanging segment availability.
Segment sizes in UUSee are as large as 500 KB, as compared
to only 14 KB in PPLive [14]. This implies that the sizes of
segment maps are up to 35 times smaller. Table I illustrates the
sizes of media units at different granularities, adopted in the
UUSee system design.

> The push protocol for perfect coordination. Since random
linear network coding is used to achieve perfect coordination
across multiple seeds, coded blocks from any of the seeds are
equally useful. Upon the explicit request from a downstream
peer p for a particular video segment, a seed starts to push
freshly generated coded blocks consecutively to p as UDP pack-
ets (and with flow control), until the braking acknowledgment
message arrives. The downstream peer p may send explicit
requests to more than one seed, and may simply send one
braking acknowledgment message (as the “stop” signal) to each
seed after it has successfully decoded the segment progressively
using Gauss-Jordan elimination.

With the push protocol and perfect coordination, upload
bandwidth at ordinary serving peers can be fully utilized. Only
one request is sent for each segment to each serving peer,
whereas acknowledgment messages only need to be sent after
completely receiving a segment (300 — 500 KB in UUSee),
which has a much larger size than that without network coding.

TABLE I
UUSEE ON-DEMAND STREAMING: MEDIA UNITS
[ Unit | Functional Purpose [ Size |
Video Unit for cache storage > 100 MB
Group Unit for content search in neighbor discovery > 10 MB
Segment | Unit for fine-grained content exchange and | ~ 500 KB
playback
Block Unit for coding and transmission 1 KB

If network coding is not used, an explicit request needs to be
sent for every single small segment. To saturate available upload
bandwidth from ordinary peers and to minimize server band-
width usage, every packet matters — the significant savings in
request messages amount to more coded blocks being served
by peers. Coupled with perfect coordination, the small block
size used, and careful overhead mitigation, the UUSee system
is designed to scale to a large number of users with a finite
pool of dedicated servers.

III. MEASUREMENT TRACES

In January 2008, we have incorporated our system design
in a production-quality implementation, from the ground up
as a complete redesign of peer-assisted on-demand streaming.
It has been tested and deployed in the UUSee operational
streaming system shortly after. To closely monitor, inspect,
and evaluate the run-time behavior of the system, we have
implemented detailed measurement and reporting capabilities
within each UUSee client. Each peer collects a set of its vital
statistics, encapsulates them into “heartbeat” reports to be sent
to our dedicated logging servers every 5 minutes via UDP. The
statistics can be classified into three categories:

D> General information includes the video it is playing,
its instantaneous aggregate download and upload throughput
from and to all neighbors, its download and upload bandwidth
capacities, as well as a list of all its neighbors, with the number
of blocks sent to or received from each neighbor within the past
5 minutes, and the type of source for the blocks exchanged.
There are three types of sources, namely media server, playing
peer (i.e., the neighbor serves the block from a video it is
currently watching), and cached peer (i.e., the neighbor serves
the blocks from a cached video it previously watched).

> Network coding metrics include the overall number of
segments requested from neighbors in the past 5 minutes, along
with the total number of linearly dependent blocks received
within these segments. In addition, for each individual UDP
connection between a peer and its neighbor, we record the
average number of redundant blocks received per segment over
all the requested segments in the past 5 minutes.

> User behavior data record critical operations of a peer,
including joins, departures, and random seeks, as well as the
buffering delays experienced upon its joins and random seeks.

Our UUSee measurements, to be presented in the remainder
of this paper, feature 200 Gigabytes worth of operational
traces, collected during the 17-day 2008 Summer Olympics,
from 14:51:58, Friday, August 8, 2008 (GMT+8) to 23:43:56,
Sunday, August 24, 2008 (GMT+8). With snapshots of the
entire UUSee system every 5 minutes throughout this period,
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TABLE II
STATISTICS OF THE UUSEE TRACE SET
Number of Videos 993
Number of Peer Sessions 31,836, 830
Number of Video Sessions 142,924,594
Number of View Durations 274,415,220
Number of Heartbeat Reports | 3,742,295, 041
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Fig. 3.  Session model for an online peer: t; — the buffering delay after
selecting a video to watch; to — the buffering delay after a random seek.

we believe this set of traces best captured the characteristics of
UUSee in a variety of typical scenarios, including large flash
crowds gathered to watch many Olympic videos as soon as they
were published on UUSee.

Basic statistics and session model

Table II presents a glance of the scale of the traces. We give
a detailed session model in Fig. 3, to distinguish the different
durations occurred during a peer’s online time. We refer to the
period between join and departure of a peer into and from the
UUSee system as a peer session, and the duration in which a
peer watches the same video as one video session. Within one
video session, the peer may jump to watch different portions
by issuing random seek commands, and the duration in which
a peer continuously watches a part of a video is referred to as
one view duration. From the statistics in Table II, interesting
observations can be made: a peer on average switches videos to
watch 4.5 times during one peer session, and issues 1.9 random
seek commands within each video session.

Distribution of video popularity

Fig. 4 shows the distribution of user population across the
993 videos in our UUSee traces, in terms of the cumulative
number of video sessions and the peak number of concurrent
peers on a typical day for each video. The plots illustrate the
large span of peer population across videos, from thousands of
concurrent peers to only a few dozens.

In UUSee, videos are encoded into different streaming bi-
trates between 264 kbps and 1.3 Mbps, corresponding to dif-
ferent streaming qualities. In our study, we have categorized the
videos into two classes, namely the normal-quality videos (914
videos in total), with streaming bitrates around 264 — 800 kbps,
and high-quality videos (79 in total), with streaming bitrates
larger than 800 kbps. We have observed that the high-quality
videos are usually less popular — even the most popular high-
quality video has only 127 concurrent viewers. This is possibly
due to the less sufficient last-mile bandwidth at most UUSee
users in China, which poses a significant challenge in streaming
these videos: the higher the playback bitrate of a video is, the
larger bandwidth a peer demands for a smooth playback; with
few peers watching the same video, even scarcer bandwidth
supply can be obtained from peers, and the deficiency has to be

TABLE III
STATISTICS OF THREE REPRESENTATIVE VIDEOS
e Length | Bitrate Peak
Sample Description (min) (kbps) | Population
NQ A normal-quality video 122 471 284
HQ A high-quality video 157 966 98
0G An Olympic Games video 94 637 2491
- 10° »
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5 2 © o
E% 10° E § § 10? E
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EZ 1o {1 MOl | 2819 {0 no| 3
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Fig. 4. Distribution of video popularity on August 12, 2008, with three

representative samples marked.

compensated by the servers. It has therefore been an important
task in our measurement study to investigate the on-demand
streaming performance of high-quality videos. In addition,
videos of the 2008 Summer Olympics include a number of
flash crowd scenarios with thousands of concurrent peers. The
streaming performance during such scenarios represents another
focus of our investigation.

We have zoomed into a large number of videos to explore
a variety of performance characteristics in our study. For ease
of illustration, we have chosen three representative videos to
present our measurements at the microscopic level, but will
also give results regarding all channels at the macroscopic level
whenever needed. Table III lists the basic statistics of the three
representative videos, the samples of which are also marked in
Fig. 4.

IV. NETWORK CODING IN OPERATION:
MEASUREMENTS AND ANALYSES

We now investigate the suitability of using network coding in
the new UUSee system design, by exploring properties revealed
by our 200 GB worth of real-world traces.

A. Playback Quality

A smooth playback quality represents the most desirable user
experience in an on-demand streaming system, as provided
by a consistent download rate no lower than the streaming
playback bitrate of a video stream. To investigate such playback
smoothness in UUSee, we have carefully examined the down-
load rates at peers in different channels. Fig. 5 plots the average
download rates across all peers in the three representative video
channels, respectively, along with the evolution of the number
of simultaneous peers in each channel, from 00:00, Sunday,
August 10, 2008 to 23:55, Saturday, August 16, 2008.

The sample NQ and the sample HQ are both classic movies
available on UUSee since the beginning. Fig. 5(a) and (b)
show a regular daily evolutionary pattern of the concurrent peer
population watching the two videos, respectively. We observe
that for the NQ video, the average download rate is above
the required streaming rate for the majority of times, during
both daily peak hours and off-peak hours. For the HQ video,

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 04,2010 at 03:06:08 UTC from IEEE Xplore. Restrictions apply.



This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings

This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

= 300 - = 3000F ; ; . e =
= 2 £=} = Number of concurrent online peers
% 200 = % 2000 |+ Number of joins/departures in recent 5 ming |
i 100] 2 2 1000~ - \
(e . 0
© o B . . . . . . . . . . . . .
§ 80 5 175F |— = Required streaming rate = 120.8 KB/y 5 120f 1
3 1 g0 1 g wr- o ™ Ao renl e
= 60 = \ wa hpa = =125 L) : I A = 40r : |— — Required streaming rate = 79.6 KB/sl’
Z 50 ; ; ; ; ; ; Z 100 i ; ; ; ; ; Z 0 ; ; ; ; ; ; ; : : : : : :
/A Aug 10 Aug 11 Aug 12 Aug 13 Aug 14 Aug 15 Aug 16~ = Aug 10 Aug 11 Aug 12 Aug 13 Aug 14 Aug 15 Aug 16~ 2 Aug 10 Aug 11 Aug 12 Aug 13 Aug 14 Aug 15 Aug 16 Aug 17 Aug 18 Aug 19 Aug 20 Aug 21 Aug 22 Aug 23
Sun Mon Tue Wed Thu Fri Sat Sun  Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun on Tue Wed Thu Fri Sat
(@) NQ (b) HQ (c) OG
Fig. 5. Evolution of the concurrent peer population and average download rate (in KB/s) in three representative channels.
T T T < 35 T 5 35 T T T
ol 1.4r xxx Normal-quality videos|| 2 30t | =¥ NQ| 2 301 [ ¥ Aug 11|
;ﬂ < 12k Q e 000 High-quality videos 225 .| —a— HQ 2 251 L |—a— Aug 18|
~ X ; DX R 20fAh T 220
G 1.0f X a a
Sl VR o 15 o 15K
Elz £ 10 £ 10
£|% 0s 5 10f 5 10F
HERA
Clia tﬂ Sr A A &:5 Sp A
0.6 ‘ ‘ ‘ ‘ ‘ ‘ R 23} 0 I I I M 0 I I I
0 20 40 60 80 100 120 140 0:00 6:00 12:00 18:00 0:00 0:00 6:00 12:00 18:00  0:00
View Duration (min) Time Time
Fig. 6. Normalized playback quality vs. view duration for all channels. (a) NQ and HQ on August 15 (b) OG on August 11 and 18

download rates vary more significantly over time and there
are more times when it is not up to the required streaming
rate, that happen mostly during the hours with more severe
peer churn (evaluated by the number of joins/departures in
the recent 5 minutes in the figures). Considering the high
bandwidth demand and few supplying peers in the HQ channel,
the observations come without much surprise. Nevertheless, we
are going to explore its detailed causes with respect to the
server/peer bandwidth supplies in our later discussions.

The sample Olympic Games video (OG) was published on
UUSee around noon on August 10, 2008. As shown in Fig. 5(c),
there are flash crowds of viewers during the first two days
of its release, with the interest decreasing over time. During
the flash crowds, the average download rate is relatively low,
as the sustainable threshold for the video has been breached,
when the number of supplying peers in the system, who have
watched and can thus serve the video from their caches, is
small. Nevertheless, the download rate quickly picks up and
goes beyond the required streaming rate starting from the third
day on, when an increasing number of supplying peers emerge.
We are going to explore the role of peer caches in the playback
quality in details in Sec. IV-C.

We now investigate the impact of VCR dynamics within a
channel on the playback smoothness of peers in the channel
in Fig. 6. The level of VCR dynamics in a video channel is
evaluated by the average view duration of peers watching the
video across the trace period, where a shorter average view
duration represents more frequent peer VCR operations in the
channel. Fig. 6 plots the average view duration vs. the average
ratio of the download rate over the required playback rate within
all UUSee channels, where each sample represents one video
channel. We observe only slightly worse playback smoothness
in channels with severe VCR dynamics, than those with long
staying peers.

B. Buffering Delay

Theoretically, the use of network coding achieves perfect
coordination among peers, and is thus promising to shorten

Fig. 7. Evolution of the average buffering delay in 3 representative channels.
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vs. number of available seeds during
the buffering period at all peers.

ing delays over all videos in normal-
quality and high-quality categories.

the buffering delay typically experienced at peers. To explore
the gain of network coding in this aspect, we plot in Fig. 7 the
evolution of average buffering delays in the three representative
videos, including both the initial buffering delay upon peer
joining the channel and the re-buffering delay after each random
seek operation. We observe that the average buffering delay
for the NQ video is always lower than 13 seconds, during
both peak and off-peak hours. This is 28% shorter than the
measurement result (18 seconds) in comparable videos on the
PPLive VoD streaming platform [10]. As a peer starts to play
after buffering 24 seconds of video content in UUSee, our result
(24 seconds of video downloaded in 13 seconds) is also better
than the measurement from GridCast [15], in which 70% of
peers use 8 seconds to buffer 10 second worth of video content.
On the other hand, the delay in the HQ channel could be larger,
but is in general below a reasonable 20 seconds. Surprisingly,
Fig. 7(b) shows that the buffering delay in the OG video is still
reasonable low during the flash crowd on August 11, i.e., 18
seconds, as compared to that on August 18 with much fewer
viewers.

To explore the situation across all videos, we plot in Fig. 8
the CDF of buffering delays at all peers in all video channels
across the trace period. The initial buffering delays and re-
buffering delays in both the normal-quality and high-quality
categories are averaged below 17 seconds, with those for the
latter category only 2 — 3 seconds longer than the first category.

While one would expect a longer buffering delay when peers
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videos in two snapshots on August 15.

have fewer suppliers in a typical streaming system, we observe
from Fig. 9 that even with only 1 — 4 seeds available during
the buffering period, the average buffering delays are still at
similar levels as cases with over 20 seeds. This shows that
UUSee can generally provide users a short and stable buffering
delay regardless of their neighborhood sizes, by using network
coding that enables prefect coordination among peers.

C. Server Bandwidth Consumption

Having observed the benefits of network coding in enhancing
peer streaming qualities, we next examine whether perfect
coordination with network coding is able to conserve server
bandwidth consumption to the maximum extent possible, which
is the most important design objective in peer-assisted on-
demand streaming. We investigate the percentages of bandwidth
contributions from servers and peers within all the downloads,
respectively, inside each channel.

Fig. 10 shows the CDF of the percentage of server band-
width contribution for all the channels, in two snapshots of
the UUSee system at 9 am. and 9 p.m., August 15, 2008,
respectively. We observe that the mean percentage of server
contribution is around 30% and the 75th percentile is 41%.
These numbers are impressively lower than the only known
relevant measurement in [15], which shows that 73% of the
video content viewed in GridCast was directly served by the
servers. Fig. 10 also presents a slight drop of server bandwidth
consumption at the peak hour (9 p.m.) than at the off-peak hour
(9 a.m.), revealing the good scalability of UUSee, that peers are
contributing more bandwidth relative to the servers even with a
large number of concurrent viewers. This observation is further
validated by Fig. 12, in which we plot the percentage of server
contribution against channels with different populations, and
observe a decreasing level of server consumption in channels
with increasing numbers of peers.

Zooming into individual channels, we take a closer look at
the percentage of bandwidth contribution from playing peers
and cached peers in Fig. 11. We observe that 80% of the
streaming bandwidth is served by peers in normal quality
videos (NQ and OG) and 60% in the high-quality video
(HQ). Among the bandwidth contribution from peers, a large
portion (about 70%) is from cached peers. Especially for the
Olympics video, cached copies place an increasingly important
role over time when more peers have watched it. To achieve this
significant alleviation of server bandwidth, our trace study has
also shown that up to 80% of the upload capacity is efficiently
utilized at any online peer at any time to serve useful blocks for
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videos in its cache — currently watched or previously viewed.
All these could not have been possible without our design using
network coding.

We further investigate the relation between server consump-
tion and the level of VCR dynamics in the channels. Fig. 13
shows only slight server consumption increases in case of
shorter view durations, for both normal-quality and high-quality
video channels. This, again, benefits from perfect coordination
with the use of network coding.

From Fig. 11(b) and Fig. 13, we observe the relative lack of
contributions from a smaller number of peers in high-quality
channels. A closer examination reveals that most ISPs (that
UUSee peers belong to) have capped the upload capacities of
users to 512 kbps, which is only 64% of the playback bitrate in
a typical 800 kbps high-quality channel. Hence, to supplement
the deficiency, the servers play a more significant role in serving
video content in those channels. As UUSee deploys a limited
number of servers to serve each channel, the available server
capacity may not have been sufficient for these bandwidth-
demanding channels, thus leading to the slightly lower playback
quality as shown in Sec. IV-A.

D. Signaling Overhead

Any advantages may come with tradeoffs. We now start to
look at the flip side of the coin, with respect to the overhead
brought by applying network coding. We first investigate the
signaling overhead in UUSee, which includes three types: (1)
block header overhead, about 30 bytes per block transmitted,
containing the four-byte PRNG seed, segment index, and other
metadata; (2) group and segment maps; and (3) the segment
request and braking acknowledgment messages. We evaluate
the signaling overhead of each type using the percentage of
their incurred traffic volume in the total traffic volume in each
video channel. Fig. 14 plots the CDF of the overall signaling
overhead in all the channels on a typical day. We observe that
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the overall signaling overhead in any channel is lower than
4.65%. Measurements of PPLive have shown a comparable
overhead of 10% [10], which is twice as high as ours.

Fig. 15 breaks down three types of signaling overhead and
plots them against channels with different populations. We
observe that the segment request and braking acknowledgment
messages only take up a minimal 0.2% of the overall traffic in
the system, benefiting largely from UUSee’s push protocol and
its choice of large segment sizes (300—500 KB). In addition, the
two-level cache map design and large segment sizes have also
kept the overhead of exchanging group/segment availability
bitmaps to as low as 1.4% on average. The block header
overhead, around 2.8%, is already minimized as compared to
carrying all coefficients with each block. Regardless of channel
populations, the signaling overhead remains at similar levels,
which further exhibits the excellent scalability of the UUSee
design in a real-world deployment.

E. Linear Dependence

Though blocks coded with independently and randomly
chosen coding coefficients are linearly independent with a
high probability in theory [16], in a realistic system, more
linear dependence may appear due to a number of practical
implementation issues, e.g., a sequence of coding coefficients
generated from a PRNG seed may not be as “random” as those
uniformly randomly selected from GF(2%). It is therefore an
important task for us to evaluate how significant the ratio of
redundant linearly dependent blocks over all received coded
blocks at each peer is (referred to as linear dependence ratio),
in order to evaluate the potential negative effects of network
coding in a real-world operational system.

Fig. 16 plots the CDF of the average linear dependence ratio
per peer in all the channels over the trace period. The ratio in
all the channels is no larger than 0.00023 (0.023%), which is
indeed very low, and more than half of the channels enjoy zero
linear dependence. High-quality channels generally have lower
linear dependence than normal-quality ones, mainly due to the
lower probability of conflicts among PRNG seeds at a smaller
number of peers.

We have further explored any possible correlation between
the channel population and the linear dependence ratio in
Fig. 17, using continuous snapshots over two weeks of the OG
traces. We observe a slight logarithmic increase of the linear
dependence ratio with the increase of the channel population.
We may infer that even with millions of concurrent peers in a
video channel, the linear dependence ratio will only be around
0.036%, which is still very low. All these observations show
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that our practical network coding implementation produces few
redundant blocks due to linear dependence.

F. Braking Redundancy

As it takes time for the braking messages to reach the seeds,
a downstream peer may receive additional redundant blocks
after a segment is complete, as discussed in Sec. II-C. To
reduce braking redundancy within the constraints of coding
complexity, we have carefully chosen a relatively large number
of blocks, 300 — 500, in each segment. We now validate this
design choice by evaluating the braking redundancy, as the
average percentage of additional redundant blocks received for
each segment, at peers in UUSee on-demand streaming.

Fig. 18 plots the CDF of the braking redundancy at all
peers in all channels on two typical days. We observe an
average redundancy percentage of about 2.5% per segment.
Considering the number of neighbors each peer may have
(10 — 30), we derive that the average number of redundant
blocks per segment, received along each download link at a
peer, is at most 1 — 2. As a sending peer pushes blocks faster
when the link bandwidth towards the receiver is larger, we
naturally wonder whether the braking redundancy is higher
along links with high bandwidth. We investigate this in Fig. 19,
where we group P2P links in all the channels according to
their capacities, and plot the mean number of redundant blocks
received per segment along the links in each group. We observe
no evident relation between the two quantities, and the number
of redundant blocks per link remains at only a few. We believe
such a low redundancy level, 1—2 redundant blocks per link for
each segment with 300 — 500 blocks, is already the minimum
we can achieve, and the choice of a large number of blocks in
a segment, subject to computational constraints of decoding, is
appropriate to maintain a low percentage of redundancy.

V. LESSONS LEARNED AND CONCLUDING REMARKS

In UUSee, we have designed and implemented the first
operational on-demand streaming system with random network
coding, and have observed a superior level of real-world
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streaming performance. It has become evident that our design
objectives have been achieved: multiple seeds are allowed to
collaboratively serve a peer, leading to minimized buffering
delays and server bandwidth costs. The playback quality has
been satisfactory for normal-quality videos. For high-quality
videos, the use of network coding has downgraded negative
effects when the server bandwidth supply becomes tight. With
an attempt to be impartial, we now wish to critically examine
what has been less satisfactory from our measurements on 200
GB of traces, and inspect possibilities for improvement by
revisiting our design choices.

In retrospect, one of the most pressing concerns in our mea-
surement studies is the overhead incurred by network coding.
We are eager to revise our design choices so that overhead can
be minimized, especially the redundancy due to latencies of the
“braking” acknowledgment messages after segments have been
completely downloaded. While one or two redundant blocks do
not seem to be excessive, the total number of these redundant
blocks, however, increases linearly as more seeds are engaged
in a perfectly coordinated fashion. One design alternative is
to refine the protocol to allow an “early braking” mechanism,
which allows a downstream peer to acknowledge a subset of its
seeds even before all n linearly independent blocks are received.
Of course, important design challenges abound as this possible
alternative is explored in real-world streaming: When should a
peer send out such “early braking” acknowledgment messages?
What are the best candidates among the seeds that should be
chosen to receive these messages? An incorrect design would
easily swing the pendulum too far to the other extreme: a peer
may be too aggressively stopping seeds, and suffering from a
longer time completing the download.

While the “early braking” design remains an engineering
heuristic, would it be possible to learn from recent theoretical
advances in network coding? The primary roadblock towards
using more blocks in each segment has been the computational
complexity of decoding: O(n® + n?k) operations on GF(2%)
would have to be performed, for a segment with n blocks,
each of k bytes. Silva er al. [17] have proposed a sparse
network coding approach with overlapped classes (loosely
corresponding to segments in this paper), and can be seen as
a combination of fountain coding and network coding. The
basic idea is to decrease the decoding complexity by allowing
blocks from decoded classes (using Gauss-Jordan elimination)
to be back-substituted into still undecoded classes. The bad
news, however, is that such faster decoding requires a block
to belong to multiple overlapped classes (analogous to letters
in a crossword puzzle), which leads to additional overhead
to maintain more coefficient vectors. The new code is also
designed to minimize overhead without feedback, and it is not
clear how it can reduce redundancy when feedback is allowed
but delayed.

Finally, it has been proposed in [18], [19] that, rather than
acknowledging the number of packets received as in TCP,
the degree of freedom can be acknowledged to the sender as
feedback if network coding is used. The concept may very

well be useful in the “early braking” heuristic, where feedback
does not have to be binary (as in “green” vs. “red”), and can
instead include finer-granularity information about the current
state of downloading a segment, i.e., the degree of freedom
in the coded blocks received so far. When the degree of
freedom reaches n, the download is complete and all seeds
will stop sending. Before it reaches n, seeds can reduce their
rate of sending to mitigate overhead, effectively corresponding
to a new design of flow control with network coding. While
promising, the degree of freedom itself needs more bits to
code compared to a single bit in the “binary” feedback mode,
and it is not clear if the additional overhead consumed on
feedback can be justified. In upcoming revisions of the UUSee
on-demand streaming system with network coding, we will
continue to evaluate existing theoretical advances in network
coding, leaving no stone unturned to realize its advantages and
mitigate its drawbacks.
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