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Abstract—We study network optimization that considers en- peak traffic, for reasons such as accommodating future growt
ergy minimization as an objective. Studies have shown that planned maintenance or unexpected failures, or quality-of
mechanisms such aspeed scaling can significantly reduce the  gqyice guarantees. At the same time, the energy consumptio

power consumption of telecommunication networks by matchig . ) .
the consumption of each network element to the amount of of network elements is often defined by the peak profile and

processing required for its carried traffic. Most existing research  Varies little for typical traffic, which can be a small frami

on speed scaling focuses on a single network element in isitm.  of the peak. By a conservative estimate in the same study, at

We aim for a network-wide optimization. _ ~ least 40% of the total consumption by network elements such
Specifically, we study a routing problem with the objective 55 gyitches and routers can be saved if energy proportignali

of provisioning guaranteed speed/bandwidth for a given demnd . . . . -
matrix while minimizing energy consumption. Optimizing the 1S achieved. This translates to a saving of 24 billion kwh per

routes critically relies on the characteristic of the enery curve Ye€ar attributed to data networking [4].

f(s), which is how energy is consumed as a function of the Two popular methods for effectively matching power con-
processing speeds. If f is superadditive, we show that there is sumption to traffic load are viapeed scalingor powering

no bounded approximation in general for integral routing, i.e., down The former refers to setting the processing speed of a

each traffic demand follows a single path. This contrasts wit the twork el ¢ ding to traffic load d the latt f
well-known logarithmic approximation for subadditive fun ctions. network element according to traffic load, an e latteens

However, for common energy curves such as polynomialﬁ(s) — to tumlng Oﬂ: the element BOth methOdS are the SubJeCt Of
ps®, we are able to show a constant approximation via a simple active research, though most of the work focuses on optigizi
scheme of randomized rounding. an individual element in isolation [26], [21], [37], [31]11],

The scenario is quite different when a n(())n-zero sta?up c%sb [16], [27], [28], [25]. In addition, enabling sleep modesdan
appears in the energy curve, e.gf(s) = o+ ps® :f i; o - Sizing power to traffic are also features in some commercial
For this case a constant approximation is no longer feasiblen products such as the Intel pentium processors [3], stardard
fact, for any « > 1, we show anQ(log7 N) hardness result like ADSL2 and ADSL2+ [22], or proposals to the IEEE

under a common complexity assumption. (HereN is the size of 802.3az task forces [20], [34]. Our goal is to examine the
the network.) On the positive side we presenO((o/u)"/*) and optimization problems that arise in a network consisting of
O(K) approximations, where K is the number of demands. multiple network elements.

We focus on the speed scaling model in this paper, and study
the power down model in a separate effort [7]. We assume
Energy conservation is emerging as a key issue in comach network element¢ has the speed scaling capability,

puting and networking as the ICT sector (Information ancharacterized by an energy curvg(s), which is how e
Communications Technologies) significantly steps up the etonsumes energy as a function of its processing spe¥d:
ergy efficiency of its products and services, in response poopose a routing problem with the objective of provisianin
growing energy bills, government mandates, as well as &dcidor a long-timescale traffic matrix and minimizing the total
pressures to minimize the carbon emissions by the secémrergy consumption by the network elements over the entire
[5], [30]. Many methods for avoiding waste and improvingnetwork. Routing determines the traffic load on each network
energy efficiency are being developed. One opportunitydp reelement and this in turn determines the energy consumption
significant potential saving in data networking is achigvinspecified by the energy curvg(-).
energy proportionalityf12]. Energy proportionality refers to a The algorithmic aspect of this routing problem critically
goal in which the amount of energy consumed by a networklies on the nature of the energy curfigs). For example,
element in proportion to the carried traffic load. We usg the curve should be lineaf.(s) = us, then shortest path
network element as a generic term that represents a corgputiouting is optimal. Unfortunately, situations in realityeafar
and communication resource such as a router, switch, CPUnoore complex. For example, several preliminary studies on
a link connecting this equipment. Ethernet links, edge routers, e.g. [15], [24] and the well-
As indicated in a study conducted by the US Departmeatcepted understanding of optical links and equipmentestgg
of Energy [4], the current network elements and telecommthat the energy consumption for network elements as such may
nication networks are not designed with energy optimizatiggrow subadditivelywith the speed. That is, doubling speed less
as an objective or a constraint. They are often designed fban doubles the energy, or more formafly(s1) + fe(s2) >

I. INTRODUCTION



fe(s1+s2). In this case, the routing problem corresponds to thee scaled, and one in which also the operational voltage can
well-studied problem of buy-at-bulk network design (BAB)be scaled. The authors propose heuristics for these models,
e.g. [10], [17], [18], [6]. BAB has a logarithmic approxinat that are evaluated empirically. While energy saving has al-
and almost matching logarithmic hardness. ways been a concern in wireless networks [29] (since mobile
On the other hand, the energy consumption of a microprdevices work on limited-energy batteries), they are isidally
cessor growsuperadditivelywith the speed. That is, doublingdifferent from wireline networks, and are not consideretehe
the speed more than doubles the energy consumption, or
more formally f.(s1) + fe(s2) < fe(s1 + s2). Furthermore,
the energy curve is often modeled by a polynomial function We are given a network modeled by an undirected graph
fo(s) = pes™ where y, and o are parameters associated” and a set of demands. Each demanmgquestsi; integer
with the device. (Whilea has been usually assumed to b&nits of bandwidth between a source nagand a destination
around 3 [14], it has been recently estimated to be mugRdet;. We are also given a cost functiofy(s) on each
smaller. In particular its value is 1.11, 1.66, and 1.62 fdink* e that represents the energy consumption for routing
the Intel PXA 270, a TCP offload engine, and the Pentium units of demand through link. Our aim is to route all
M 770, respectively [36].) Note that ifractional routes are Of the demands on integral routes with minimum cost. Not
allowed, i.e. a demand may be carried on multiple pati§srprisingly, the routing problem is NP hard for most fuons
between its source and destination, then the problem fatts i fe(-). We therefore consider approximation algorithms. A
the realm of convex optimization singes® is convex, and Polynomial-time algorithm is a3-approximation if for all
therefore is solvable in polynomial time [13]. However, fofnstances it returns a solution at mgsttimes the optimal.
integer routeswhere each demand must be carried on orfe problem has nog-approximation if no polynomial-time
single path, the problem has to the best of our knowledgégorithm can guarantee @-approximation for all instances
not received much attention before. Integral routing can b&der complexity assumptions such as# N P.
important for a number of reasons, e.g. if we wish to avoid Formally, the min-energy routing problem can be formu-

Il. MODEL AND RESULTS

problems associated with packet reordering. lated as the following program. Let binary variablg. indi-
In addition, a more accurate but more Comp]ex erﬁlate whether demand)asses through Iinkandl’e be the total
ergy curve for a microprocessor may bg.(s) = load one. Our route optimization problem can be formulated
0 if s=0 as follows.

Oc + pes® ifs>0 where 0. represents the non-

negligible power consumption by leakage currents, sed3J.g. (1) min Z fe(ze)
This energy function is neither superadditive nor subadit ¢

and little is known about routing optimization subject taisu subject to

functions. For the rest of the paper we explore these two-well Te = Z Yied; Ve
motivated energy functions by showing how to approximate @

the optimal solution as well as the limit to which approxima- vie € {0,1} Vi, e
tion can be accomplished. Yie : flow conservation

Previous Work: Speed scaling has been widely studieg
to save energy at the single element level. Yao et al. [Saﬁ
were the first to study speed scaling in processors, in tha fo,‘:I

of task scheduling problems. They assumed that the eneray, Fi(v) — 0 for any other noder. As mentioned in the

g)n(;ugxaloprr:getﬁzor r?)tb?eripgfecs%rr?::jsuI?:pearhgeetag}/ t\g 'StLES Wiltti]ltroduction, if the cost functiorf.(-) is subadditive then this
P P 9 corresponds to the well-studied buy-at-bulk network desig

the smallest amount of energy. Speed scaling has also be%blem. The following summarizes the main results for buy-

combined with powering down in the same context of POWeL: ik
efficient task scheduling [27]. (The survey of Irani and Rruh '
[26] reviews results and open problems under the speedhgcallTheorem 1 (BAB). For subadditive cost functiong.(-), (P;)
and powerdown models for processors.) In networks, mdsis O(log N)? approximation ratio [10] andQ(logl/4 N)
effort has been invested in reducing the consumption at thardness bound [6] iff.(-) is uniform over alle; (P;) has
edge of the Internet (edge links and routers). For instan@(log3 N) approximation ratio andQ(logl/2 N) hardness
Gunaratne et al. [24] have proposed a Markovian model bound if f.(-) is different from edge to edge. Heré is the
optimize single Ethernet link usage with speed scaling.  size of the network.
en-lt;cr)g;hga\t/)ie;sg :Stf ;L;:otg?vxﬁgger;ect’vr\]/grkalgsg ?:iﬁei;sstztr?gy In this paper we are interested in less studied functionk suc
. ; 8s superadditive, and mixed sub and superaddjtiye). To

Nedevschi et al. [33] explore both speed scaling and power-_ . : . : :

. .provide a contrast with subadditive functions, we first show
down as techniques to globally reduce energy consumption.
When using speed scaling, they consider two alternative-mod:cost functions for other network elements is left for futstady.

els, one in which only the frequency of the transmission car?All logarithms are to the base 2.

t I;(v) and O;(v) be the amount of demand entering
d leaving node, respectively, and;(v) = O;(v) — I;(v).
ow conservation means thdf;(s;) = d;, Fi(t;) = —d,,



via a simple reduction that extremely simple superadditiest functionsf.(s) = p.s®.

functions, such ag.(z) = max{0,z — 1}, lend to unbounded  We first relax the binary constraint on flow variablgs €

approximations. {0,1} to y;, € [0,1]. As a result, for polynomial cost func-

Lemma 2. If a monotone functiory.(-) satisfiesf.(1) = 0 tion_sfelg-), thle rglutinlgsprgblem |hs convex ?rfogrqmm:ng ar_1d is

and f.(2) > 0 for all e, then there is no polynomial timeoana 3(/15;1) va e_[ ] rom the optimal fractional raug,

algorithm to the min-energy routing problem with any finitg o "oun the fractional ﬂow in the Raghavan-Thpmpson man-

approximation ratio unless P=NP. her [35] as follqws. We. first decompose the fractional sohm

defined byy; . into weighted flow paths for each demand

Proof: The reduction is from the edge-disjoint path (EDPYia the following standard procedure. We repeatedly ektrac

problem, which is known to be NP-hard. Given a networgaths connecting the source and destination nodes of demand

and a set of demand, EDP decides if all demands can bkom the subgraph defined by linksor whichy; . > 0. If p

routed along edge-disjoint paths. If EDP has a solutiom thés extracted, then the weight pfis w, = min.¢, y; . and the

the resulting load on each edge is at most 1, which impligs. value of every link along is reduced byw,. The flow

a solution of cost) for the min-energy problem. In contrastconservation constraint og; . guarantees that when the last

if EDP has no solution, in any solution some link must haveath is extracted for demand everyy; . is zero. Following

load at least 2, which implies an optimal min-energy solutiathe flow decomposition, we randomly choose one path from

of cost at leastf(2) > 0. Hence, a bound-approximation tothe potentially multiple paths for each demand, using thb pa

the min-energy problem would return a zero solution iff ED®eight as the probability. At the end of the rounding, every

has a solution. m demand follows one single path.

We focus on two non-subadditive functions in this paper, Obviously, the fractional optimal solution is a lower bound
both because they do not have the issue stated in Lemmaf2he integral optimal solution. If we could bound the diffe
and because they closely model energy consumption of pertaince between the rounded solution and the fractional optima
network elements, as discussed earlier. We state the fiojpwwe would have bounded the difference between the rounded
main results. solution and the integral optimal. Unfortunately, the dire

« In Section 11l we consider polynomial functions of the2pplication of randomized rounding as described above does

form f.(s) = pes®. For uniform demands wherg is Not guarantee a good approximation. For example, consider a
the same for al, we prove ay-approximation where network with two nodes:, v andm parallel links connecting

~ only depends on. Since, as mentioned before,is them, one unit-demand with soureeand destinatior, and
very small in practice (less than 2), we consider this @ uniform cost functionf.(x) = z. The optimal fractional

be a constant approximation. This result generalizes $8/ution to(F,) distributes the demand evenly among the

an approximation that is logarithmic dil = max; d; for links, resulting in a cost ofn - f.(1/m) = 1/m*~'. The

nonuniform demands. optimal integral solution has to send the demand along one of
« In Section IV we consider polynomial functions withthe edges, resulting in cogt(1) = 1. Hence, the integrality
tart ¢ B 0 if s=0 | gap is m®~!. However, we now show how to adapt this
a startup costfe(s) = Oc + pes® ifs>0 " M procedure in order to overcome this difficulty.

contrast to polynomial cost functions whese = 0, ,

we show that there is nd)(log% N)-approximation al- A. Uniform Demands

gorithm under a common complexity assumption. This The essence of the previous example stems from the be-

lower bound even holds when all = 1 and the cost havior of f.(-) in the interval[0, 1]. We observe that, in fact,

functions f.(-) are identical for alle. for « € [0,1] we can use the cost functigfi(z) = ux since

On the positive side, we present @K ) approximation /1 anduz® agree onw = 0 andz = 1. More importantly, if

for unit demands, wher® is the number of demands. Wewe do this the integrality gap in the aforementioned example

also show arO((max,{c./p.})"/* + 1)-approximation, disappears. Formally, for unit demands, ile= 1, we define

independent ofK, for uniform demands. Again, for the cost function

nonuniform demands, an additional factor logarithmic in

D appears in the approximation ratios.

« In Section V we evaluate our proposed approximatiddote that minimizing _ g.(z.) has the same integral optimal
algorithms via simulations. For polynomials without as the original program{P;) since f.(-) and g.(-) agree
startup cost, randomized rounding performs superblyn all integral values. In addition, the optimal fractional
When the startup is large, both approximations fromolution with respect tg.(-) can still be obtained by convex
Section IV are less than satisfactory. However, we presgtbgramming asy.(-) is still convex after linearizingf.(-)

a heuristic that appears to rectify the situation. in the interval [0, 1]. We use this observation to show that
randomized rounding gives a constant factor approximation
for unit demands. Let:} be the flow on linke under the

In this section we use randomized rounding on the conveptimal fractional routing and let. be the resulting rounded
program(P;) to approximate the optimal cost for polynomiaflow. We show,

ge(x) = pe max{z, x*}. Q)

I11. A PPROXIMATION FORPOLYNOMIAL COSTFUNCTIONS



Lemma 3. For unit demands, randomized rounding the opBy randomized rounding the fractional optimal solutiontwit
timal fractional solutionz? with respect to the cost functionrespect tag.(-), we can easily derive the following parallel to
ge(x) guarantees thaf[g.(i.)] = E[fe(e)] < vge(z?), for Lemma 3.

some constang and all linkse. Corollary 4. For uniform demandsE|[f.(Z.)] < vge(x

Proof: Observe thatt[z.] = «. We consider two casesall e whereg,(-) is defined in (3).
xi <1landz} > 1.
Case liz¥ < 1. We show thatE[f.(Z.)] < y1ge(z}) for
some constant;. We partition the possible values 8f into
the ranged0, 1), [1,2), [2,4), .... We have,

*) for

The previous results only examine the expected value of the
solution. We now show how to convert this into a result that
holds with high probability.

Theorem 5. For uniform demands in which all; are equal,

Elfe(z.)] <

IN

<

fe(@e = 0)Prli, < 1] +
> felde =271 Prii, > 2]
J=0

27

0+ Y p (2 | =

27
*

- 29 \%
J20 (g) e
2a(j+1) x*Q e\’
7 - (%)
He oot \97
7>0

ge(x?) Zza j+1)72j(j*1ge)_

Jj=20

)

randomized rounding guarantees gapproximation in the
expected value of the total energy cost, whereis the
constant in Lemma 3. Further, For any constantandomized
rounding guarantees ay-approximation with probability at
leastl —1/c.

Proof: The expected total cost after randomized rounding
is B[}, fe(Ze)] = >, Elfe(Ze)] < v, ge(a?) < 7Opt,
where Opt is the integral solution to(P;). By Markov’s
inequality, the probability that a rounded solution is mttvan
¢y - Opt is upper bounded by/c. [ ]

B. Non-uniform Demands

The first inequality follows from the definition of expectaii
The second follows from a Chernoff bound [32, Theorem
4.4(1)]. We obtain the third inequality via algebraic mara
tion and the fact thath < z* < 1. Let jo = [2lg(a+4)]. Via

We now prove anO(log® ' D) approximation for non-
uniform demands with cost functiofi.(z) = p.x®, where
D = max; d; is the maximum demand bandwidth. Note that in

further algebraic manlpulat|0n we can show that all the ser wﬁlfﬁ ?A‘g?tlogglf\llgﬁﬁgezﬁeI(S)urr?ggs?’ergse;ii etrrl]eeriqg 2:%?3
in (2) for whichj > j, add up to at most 1. Hence, there is yp g

constanty; (dependent on) such that]f. (3.)] < 71ge(z7) approximation ratio has a small exponent.

Case 2:z} > 1. We partition the possible values of into
the ranges0, =), [z3, 22%), [22%, 42%), . ... By the definition
of expectation, we have

QD

Theorem 6. For nonuniform demands, randomized rounding
can be used to achieve@(log® ' D)-approximation, where
D= max; dl

Elfo(2e)] < feo(@e = 2¥)Pr(i. > 0] + Proof: We patrtition the demands intog D groups, where
Lol S od groupj > 0 consists of demands whosg is in the range of
Z:Ofe(xe Yo Prize 2 2] [27,27F1), We treat each group separately. For grgupve
= , " assume each demand requests bandwidth of exattlyand
2]_1 e .
. a(i+1) e |nvoke the randomized rounding algorithm for those demands
< gele) + ;2 gelwe) <(2j)2ﬂ'> Let 2% be the load on linke due to the optimal fractional
720 solut|0n and let:Y”) be the load after the rounding. Batfy)*
. a(j+1)—(j—lg e)2i —lge and 2 are calculated with respect to demand bandwidth
S gelze) | 1+ 22 ! ! *“| rounded up t/t!. Let Opt'Y) be the optimal solution with

720 respect to demands in grogpandOpt be the optimal solution

where the second inequality follows from a Chernoff boungith respect to demands in all groups. Note that bogt(?)

[32, Theorem 4.4(1)], and the third inequality follows fromand Opt are with respect to actual demand bandwidth.
x} > 1. The summation foy > 2 can be bounded similar to  We have

the one in Eq (2). Hence, there is a constant(dependent

on a) such thatE[f.(2.)] < y29.(z*). Combining both cases

we have that, fory = max{v1,72} > 0, every linke sat|sf|es ZE fe ZI(J)
that E[fe(ze)] < vge(@7).

It is easy to see that Lemma 3 for unit demands also applles <
to uniform demands in whicki; = d for all demands. By
linearizing f.(-) in the range of|0,d] instead of[0, 1], we
define

IN

ZE (log D)>~1 Zfe(:k 2
Z (log D)* ,yzg (4) (J)*
WZQQOpt(J)

J
(log D)~ 1y2°Opt

IN

(log D)*

ge() = pre max{d® tz, x*}. 3) <



The first inequality is due to the convexity ¢f(xz) = u.x®, where in the integer formulatior. represents whether or not
namely f(>%" «) < (log D)*"' 32, f(«¥”). In the the startup cost on link is paid for, i.e. whether or not we
second inequalitygéj)(-) refers to (3) ford = 2/t!, the route any demand on it. The second constraint er_1forces the
linearization of the functionf.(-) for demand bandwidth condition that we cannot route any demand on a link unless
2911, The second inequality is due to Corollary 4. The thirdfS Startup cost is paid for. In the objective functigr(z. ) is
inequality holds since as befopé, g. () is a lower bound on @ linearization ofiz® as in Section IIl. For exampley.(z. )

the optimal integral solution and each demand bandwidth Hgsdefined as in (3) for uniform demands. Again, the optimal
been rounded up by a factor of at most 2. The last inequalljfegral solution to(r,) is the same as to the objective of
holds due to the superadditive nature fof-). minimizing > __ ocz. + fe(z.), and its continuos relaxation is

Finally, we note thab”, £ [f (2 :@9’)} upperbounds the “°"V¢*-

expected total cost sindéj ) is calculated based on bandwidt
that is rounded up. This completes the proof. [ ]

hTheorem 7. For uniform demands, randomized rounding of
the optimal fractional solution t¢P,) guarantees aiK +-)-
approximation to the optimal integral solution in expeatat

IV. POLYNOMIAL FUNCTIONS WITH STARTUP COST where K is the number of demands andis the constant in
We now turn our attention to energy curves that are polgorollary 3.

nomials Wlthoa startup ci(;s:tc. ;I'T)ese functions have the fOrm(We remark that this ratio can be better than the naive

fe(z) = oot pez® x>0 Note that foraw < 1, ratio that would be obtained by simply routing each demand

such a function is concave and Theorem 1 summarizes #¥8Ng the minimum hop path since that solution could route

approximability. Whenn > 1, the function is neither convex all demands along a single edge whereas the optimum solution

nor concave, and therefore convex programming cannotrobtfight route all demands along separate edges. Using ttis fac

an optimal fractional solution t¢P; ). it is easy to construct examples where the cost of minimum
In Section IV-A we provide two approximations. The firshop is a factorO(K*~') away from optimal.)

one is based on rounding a newly formed convex program Proof:Letz*, y* andz* be the optimal fractional solution

defined in(P,). The resulting approximation ratio depends oAnd letz, j andi be the solutions that we get from the round-

the number of demands. The second one replaces the neitR@r From Lemma 3 we have thd[g.(Z.)] < vg.(z7) for

convex nor concave functiorf.(-) with a convex function SOme constany. It remains to relatg__ o.2; and}_, oeZe.

he(-) that “resembles’f.(-), and then uses randomized round¥e have,

ing on the problen’(Pl) with objective functionh.(-). The El2] = Pr((c=1)=1- Pr(ji. =0 forall 4
resulting ratio depends on the parametersand .. . . .

It remains a challenge to come up with approximations that = 1-TL(1 -y) < Zyiye < Kz.
are independent of the demands and cost functions and are i

small with respect to the network size. In Section IV-B, wdhe last inequality comes from the fact that in the fractlona
first discuss why existing techniques for buy-at-bulk (inieth solution, eachy; . is constrained to be at mos{. Putting

a < 1) can only guarantee approximation ratios polynomigverything together, we have that the rounded solution has
in the size of the network whea > 1. We then turn to the expected value at mo$K + ) times higher than the optimal
intrinsic hardness. In particular, for every > 1, we show solution. [ |
there is a functiory, (-) uniform over all linkse for whichno ~ The theorem above can be generalized to non-uniform
algorithms and no techniques can guarante®ding'/* N) demands. Combining the analysis for Theorems 6 and 7 we
approximation. Due to space limitation, we present a probfive the following.

sketch. Theorem 8. For nonuniform demands, randomized rounding
A. Approximation results can be used to achieve@(K + log®~ ' D)-approximation.

1) Approximation with Respect to the Number of Demands:z) Approximation with Respect to. and u.: For the
The following is a natural formulation that handles polyrnam ggcond approximation, we use a convex functigh) in place

functions with a startup cost. of f.(-) and randomized rounding on the optimal fractional
(P;) min Zoeze + ge(we) solution with respect to:.(-). To obtain an approximation
- ratio, we need to bound the difference between frational and
subject to integral solutions, and the difference betwégif-) and f.(-).
A Zy d It is intuitive that we woud likeh.(-) to be close tof.(:).
c — e The functionh,(-) starts with a line through the origin and
Yie < % switches to bef.(-) at some point. Le{s., f.(s.)) be the

‘ point at which the line tangent to the curyig-) goes through

Yieze € {0,1} . the origin. If s, < 1 thenh.(-) begins with the straight line
Yie : flow conservation, through origin to(1, f.(1)) and continues orf,(-), as shown
in Figure 1 (left). Otherwisé).(-) begins with the tangent line



up to the tangent poirs., f.(s.)) and continues orf.(-), as
shown in Figure 1 (right).

More formally, lets. = (o./((a — 1)pe))*/*. We define
the parametep. and the functiom. (), for each edge, as
follows.

Oc + [e

e = { apte(oe/((o = 1pe)) e
he(z) = { et

Oe + fex®
It can be observed that the functidn.(z) is continuous,
convex, and satisfieb.(z) < f.(z), for all integralz > 0.

if s¢ <1,
if s, > 1.

if € [0, max(1,s.)),
if > max(1,s.).

—f (=0, +pu x"
---B,x
v h ()

Fig. 1. fe(-) and its approximatiorhe (-). (Left) se < 1. (Right) se > 1.

Case 3z} € (1, s.). Note that this case can only occusijf >
1. We partition the possible values ®f into the range§), z¥),
[z, 22%), [22%, 42%), . . .. By the definition of expectation, we
have
Elfe(%.)]
< fe(@e = 2)Pr[ze > 0] +

Z fo(@e = 29T 2 Pr[i, > 2727]

j=0
< B (Tetpelwe)® |
Bex}
Z Oc + Ne(2J+le)aPT[JA?e > 27117*]
; Ber -
j=0
Oc + e i+1 A i x
< he(a} 1+ 20U+ pprg > 22
(ze) 3 > [ ]

320

where the third inequality follows from the fact thgﬁ}:“Tﬁa

e

is non-increasing fox: € (1, s.). From Eq. 4,2« = O(1+
(0e/pe)t ), and the other factor of.(z*) was shown in the
proof of Lemma 3 to be bounded by a constant Therefore,
Elfe(ze)] < O(1 + (Ue/.ue)l/a) “he(zg). u

The approximation above also applies to uniform demands.
Similar to Theorem 6, we also have the following for nonuni-
form demands.

Theorem 9. For unit demands, applying randomized rounding

to the fractional solution obtained from the convex progranhheorem 10. For polynomial functions with startup costs,
(P1) minimizing Y, he (), guaranteesE(f.(z.)] < O(1 + randomized rounding can be used to achieveOal +
(0c/ 1)) - he(x), for each linke. (maxc{oe/pe})/*)(log D)*~'-approximation, whereD =

. . max; dl
Proof: Let us fix an edge. We break the proof in three

casesx¥ <1, z¥ > max(1,s.), andz? € (1, s.).
Case 1:z} < 1. We partition the possible values df.

into the ranges0, 1), [1,2), [2,4), .... By the definition of
expectation, we have
Elfe(Ze)] < fe(@e =0)Pr(ie <1]+
> fele =274 Prii, > 2]
320
< 0+ Z(Ue + pe(27T) ) Prize > 2]
3>0
Ot e N~ 200D @2 e Y
< —
>~ ﬁexe ﬁe Z xz ewz (2])

J=0

where the last inequality follows from a Chernoff bound. Tht%
sum was shown in the proof of Lemma 3 to be bounded b

constanty;. If s, < 1, thenf. = o, + . and henceZette —
1. Otherwise,s, > 1, and theng, = @(ué/o‘aé_l/o‘). Since

B. Hardness of Approximation

The results of the previous section work well when or
K are small but give less good bounds when these parameters
are large. Recall from Theorem 1 that we have a range of
techniques that guarantee a poly-logarithmic approxionati
for the Buy-at-Bulk problem (i.e. the problem where the cost
functions are subadditive, e,g, when< 1). We briefly com-
ment on why these techniques cannot produce approximation
ratios better than polynomial in the network size whep 1.
In fact all these techniques fail on an example similar to the
one at the beginning of Section Ill. Let us revisit the exaenpl
the network has 2 nodes and v, m parallel links, andm
unit demands betweem andv. Suppose the cost function is
(r) = m+2? for x > 0 for all e. It is easy to compute that
e optimal solution routes oveym links each carrying/m

Ydfémands. The optimal cost igm(m + \/ﬁz) = 2my/m.

One technique for uniform-cost buy-at-bulk is due to Awer-
buch and Azar [10] and always returns a solution in which

_ 1/ _ i . .
se = O((0¢/pe)'*), thenpe/oe = O(1). In either case, we e routes form a tree. (In particular, the tree is taken feom

get
O + fle

Be
and thenE(f.(z.)] < O(1 + (a¢/pe)®) - he(?).
Case 2:z* > max(1, s.). In this case we hav&|f.(i.)] <
o - he(z*), from a proof identical to case 2 in Lemma 3.

= O(L+ (0¢/pe) ),

(4)

distribution that approximates the underlying distancérimé

If the solution in the above example is restricted to a trex, i
a single link, the cost would bg(m) = m + m?, which is
Q(y/m) times the optimal. Therefore, restricting a solution to
a tree sets a lower bound ¢fN in approximation ratio where
N is the network size.



The second technique of buy-at-bulk involves rounding a V. EXPERIMENTAL RESULTS

linear relaxation of a problem formulation in the spirit@), | this section, we provide the detailed experimental find-
e.g. [23], [18]. The optimal fractional solution to the akovings we associate cost functions like those previously pre
example sets:. = 1/m for all ¢ and therefore the total is sented to the links of real networks, implement the approx-
m(1/m~+1) = 14+m. This yields an integrality gap @(/m). imation algorithms presented in Sections Il and IV, and
Hence, rounding cannot be expected to give better #ah compare the approximate solutions against both the optimal
approximations. _ _ and the straight-forward shortest-paths solution. Thesaea
The third approach by Charikar and Karagiozova [17] dogsy comparing against the latter is to show that routing with
not always produce a tree and their analysis does not COMP&KRrgy in mind can be wasteful. As we shall see, we observe
agai_nst the optimal fractional sol_ution. Their solutiorectes 5 onsistent savings of 10% or more over shortest-paths.
by first ordering the demands in a random order and thefs gives initial evidence that a non-negligible percgeta
for eachm greedily routingm /i times theith demand, each s energy saving could come from global network planning
along the path that incurs the least extra cost. In our ex@mpl ,ch as routing.
@t is less expensive for a dema_md to use a link with a load\we optain the optimal integral solutions by solving the
in [1’m/2) than to start a new link. The particular scaling ofg|evant integer programs use CPLEX solver [1]. For our
the Charikar-Karagiozova algorithm routestm/2+m/3+  gpproximation algorithms, we use the CVX solver [2] to obtai
-+~ mlogm units of demands and therefore usegm the optimal fractional solutions before applying randoeniz
links. Therefore, the total cost is at leasf’/logm, which  rounding. Most of our experiments are conducted on the
again creates a polynomial gap from the optimal. Abilene Research network which consists of 10 nodes and
So far we have shown that known techniques cannot give 88 jinks, and the NSF Network which consists of 14 nodes

approximation ratio better than polynomial. It is an inéilgg  ang 20 links. See Figure 2. We also test scalability on larger
open problem whether or not there exists a polylogarithmigworks.

approximation ratio. However, we now show that we cannot
hope for better than a polylogarithmic ratio, since we hdnee t
following intrinsic hardness result.

Theorem 11. For any a > 1, there is a uniform polyno-
mial cost function with startup cost such that no algorithm
can guarantee arn?(logl/4 N) approximation unlessVP C

Z PTIM E(npolvledn),

Recall thatZ PT 1M E(nP°'¥'99 ™) is the class of languages
for which there is a randomized algorithm that always gites t
correct answer and whose expected running time’$§//o9m,
The proof of the theorem is motivated by the hardness for bux- . ] )
at-bulk [6], [8]. The construction of the hardness reduttiad A Polynomial cost function without startug; (z) = pez
its analysis are somewhat lengthy. Hence, instead of pliegen We use a quadratic functiofi.(z) = =2 for our experi-

a self-contained proof here, we give a high-level sketch. ments. For each network, we perform the routing algorithm

We start with a 3CNF(5) formula which is a boolean with different number of demands, where the number ranges
formula in conjunctive normal form in which each clausérom twice the number of nodes to six times the number of
contains exactly 3 literals and each variable appears intlgxa nodes. The source and sink nodes of each demand are chosen
5 clauses. The Probabilistically Checkable Proof (PCP)-theuniformly at random. We concentrate on unit demands. For
rem [9], [19] implies that there is a constansuch that it is each routing instance, we compare 4 values of interest, the
NP-hard to distinguish between the case wheis satisfiable optimal integral solution from CPLEX, the optimal fractain
and the case where at mos{h— ¢)-fraction of the clauses solution from CVX, the rounded integral solution and the
can be simultaneously satisfied. short-paths solution. The four curves in Figure 3 (a) and (b)

From ¢ we can use results of [6], [8] to construct a routingorrespond to the ratio of these 4 values all normalized by th
instance such that i® is a yes-instance, namely more thamptimal integral. We observe the following.

(1—e)-fraction of the clauses can be satisfied, then the optimali) The optimal fractional values are very close to the

routing cost is at most a low value 6f Otherwise is a no- integral optimal. The difference is at most 0.84% in the

instance, and the optimal routing cost is at least a highevalAbilene Research network and at most 1.2% in the NSF
of h with high probability. If we should be able to approximat@etwork. This suggests that optimal fractional solutiomigk

the routing instance to better thari¢, we would then be able is polynomially obtainable) can be a good lower bound in the
to tell a yes-instance from a no-instance. This contraditds absence of optimal integral solution (which is NP hard).

PCP theorem. However, our reduction is not polynomial. In i) The randomized rounding solutions are within 4% of the

fact the size of the routing instancerig°'¥'>s" and therefore integral optimal in the Abilene Research network and within

the complexity assumption aF P ¢ ZPTIM E(nP°¥'°9").  0.5% in the NSF network. This suggests that randomized

Fig. 2. (a) Abilene Research network and (b) NSF network



rounding performs even better in practice than the approx
mation ratio analyzed in Lemma 3.

i41) The randomized rounding solutions are consistently
least 10% better than the shortest-path solutions.

To explain these findings, we examine tir&k load, which
is the total demand flow going through We observe that
the maximum link load as a result of the integral optimal
fractional optimal and randomized rounding are quite ckose
one another. However, the maximum load of the shortest-p3
solutions is often significantly higher, as shortest-patiting
does not intend to balance the link load and therefore incy

i.GreedyActiveLinks(G = (V, E) ):
Let ' — E, B" — (), andS «— oo
Liwhile (true):
For e € E’ begin:
1. If B =0, thenE” «— E', ow. B — E'/{e}
2. LetS' =min)_, g, a2
via randomized rounding o&/(V, E")
3.IfS"+o|E"| <8,
thenE’ — E”,S — S’ 4+ o|E"”| and break

1th
end

rs If no improvement for alle € E’, break
end

high cost.

Fig. 4. Pseudocode for the GreedctiveLinks heuristic.

7 Shortest-path H
8- Random zed rounding [ !
——Ogtimal integral i
& Optimal fractional
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| ——optimal integral
| -@- optimal ractianal

& ]
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Fig. 3.

integral optimal. (a) Abilene Research network and (b) N®&fwvork

B. Polynomial function with startupf.(z) = o + pex®
We use f.(z) =

From top to bottom, values due to shortest-pathsdaaized
rounding, integral optimal and fractional optimal, all nalized by the

o + z? as the cost function, where
o € {4,16,64,256,1024}. Again the number of demands

e stops when we can no longer shrink the active set, either due

to disconnectivity or increasing cost.

We refer to the solution from the above GreedgtivelLinks
heuristic asGreedyRR where RR refers to randomized
rounding. From Table I, we observe that GreelR improves
a great deal over the(K) and O(y/o) approximations
for large o; whereas for smalb, the O(K) and O(\/0)
approximations continue to have an advantage. We therefore
have aCombinedstrategy which is to run all three strategies
for each instance and keep the best.

Again, we compare against the shortest-paths soluéh (
Like the case in whichy = 0, shortest-paths is worse off
than theO(K) and O(y/o) approximation for smalb. For
largeo, all three strategies perform poorly. If we combine the
greedy heuristic combine with shortest-paths, specifidayl
running shortest paths in line 2 of Greedtivelinks, the
improvement of the resulting solutidBreedy SPis less than

varies from twice the number of nodes to six times the numbgétisfactory
of nodes. We compare a number of routing strategies herepq 15 space consideration we only present numbers for the

Two of the strategies correspond to t¢K)

-approximation Nk network in Table 1. Again, all the values are normalized

and O(/o)-approximation, as shown in Theorems 7 and %y

Not surprisingly theO(y/c)-approximation performs poorly
for largeo, as the approximate functign (-) deviates signifi-
cantly from f.(-) for largec. The O(K) approximation is also
less than satisfactory for large The difficulty for the large
startup cost is that a large encourages aggregating traffic to
minimize the number ofctive links, namely those carrying
non-zero traffic. On the other hand, the convex nature?f
encourages load balancing traffic to avoid paying quadratic
cost on high loads. The balance between these contradictin
objectives is challenging.

We offer a heuristic GreedctiveLinks (see Figure 4) that
helps to shrink the set of active links. Initially, we assume
every link is active, namely the active link sét’ = F.

We minimize )", ., 2 to a value, sayS’. (We know from
the previous findings that randomized rounding performs ex-
tremely well formin )", 22.) The total cost ", ;; fe(x.)

is thereforeS’ + o|E’|. Note that the routes may not use
every link E/, but we nevertheless pay for all. During

the optimal integral values.

each subsequent iteration, we aim to remove one link from

the active set so that total cost is reduced. Again, for the
current active set?’ we minimize >, 2. The process

NSF Network Startup cost
Solutions | dem. 4 [ 16 [ 64 [ 256 | 1024
SP 28 1.107 | 1.053 ] 1.137 | 1.314 | 1.389
Greedy_SP 28 1.107 | 1.053 | 1.123 | 1.259 | 1.247
K-approx 28 1.017 | 1.120 | 1.270 | 1.434 | 1.516
\/o-approx 28 1.005 | 1.022 | 1.142 | 1.292 | 1.382
Greedy_RR 28 1.129 | 1.071| 1.071 | 1.133 | 1.099
Combined 28 1.005 | 1.022 | 1.071 | 1.133 | 1.099
SP 56 1.091 | 1.074 | 1.046 | 1.152 | 1.380
JGreedy_SP 56 1.091 | 1.074 | 1.046 | 1.130 | 1.252
K-approx 56 1.001 | 1.004 | 1.143 | 1.271 | 1.479
\/o-approx 56 1.001 | 1.005| 1.020 | 1.146 | 1.371
Greedy_RR 56 1.167 | 1.124 | 1.056 | 1.064 | 1.162
Combined 56 1.001 | 1.004 | 1.020 | 1.064 | 1.162
SP 84 1.077 | 1.065] 1.038 | 1.103 | 1.249
Greedy_SP 84 1.077 | 1.064 | 1.038 | 1.103 | 1.212
K-approx 84 1.001 | 1.001 | 1.012 | 1.212| 1.374
\/o-approx 84 1.002 | 1.002 | 1.003 | 1.084 | 1.260
Greedy_RR 84 1.175| 1.141 | 1.074 | 1.068 | 1.091
Combined 84 1.001 | 1.001 | 1.003 | 1.068 | 1.091
TABLE |
NSFNETWORK.




C. Running time and larger networks

[11]

The average running time for the CVX solver is aroungy
2-3 seconds for obtaining optimal fractional solutions to a
the instances presented so far. The CPLEX solver is also feist
for obtaining the integral optimal to all the instances witly 4
small startup values, namely = 0,4,...,64. The running
times vary from 30 seconds to 3 minutes. However, for larger

startup costr = 256, 1024, CPLEX takes significantly longer.

For example whewr = 1024 and the number of demand pairg15]
is 6 times the number of nodes, it took CPLEX longer than

17 hours to get a solution with relative error within 2.1% ofg)
the NSF network. For larger networks with at least 25 nodes,
CPLEX has trouble even far = 0.

We repeated our experiments on random sparse netwopks

with 100 nodes and expected node degree of 4. Although we

cannot obtain optimal integral solutions, our findings of th
performance of other algorithms and heuristics are camsist

(18]

with our findings on the Abilene Research network and the
NSF network.

VI. CONCLUSION

[19]

[20]

In this paper we consider a min-cost integer routing proble
where the cost function represents the energy curve off2g
network element. Subadditive cost functions are well stud-
ied. We focus on the less-studied polynomial functions antf!
polynomials with a startup cost. The problem is interestorg

two reasons. First, the cost function closely models thegne
consumption of some network elements and network-wit

optimization is a well-motivated but under-explored direc
for energy minimization. Second, it brings light to a chagie
ing combinatorial optimization problem. We have presented

positive and negative results for polynomial functions and

polynomial functions with startup cost. For the latter,hec [26]
nigues to accomplish better-than-polynomial approxiorati 27]
ratios independent of demands and cost function remains a
challenging problem.

(1]
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