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Abstract— We consider multiuser scheduling in wireless net- receive enough service, its backlog builds up, which forces
works with channel variations and flow-level dynamics. Reaetly, the MaxWeight scheduler to allocate more service to the
it has been shown that the MaxWeight algorithm, which is o This interaction between user backlogs and scheduling

throughput-optimal in networks with a fixed number users, fails .
to achieve the maximum throughput in the presence of flow- guarantees the correctness of the resource allocationevayw

level dynamics_ In this paper, we propose a hew a|gorithm, if a flow has Only a finite number of bitS, its backlog does
called workload-based scheduling with learning, which is provably not build up over time and it is possible for the MaxWeight
throughput-optimal, requires no prior knowledge of channds and  to stop serving such a flow and thus, the flow may stay
user demands, and performs significantly better than previasly i the network forever. Thus, in a network where finite-size
suggested algorithms. flows continue to arrive, the number of flows in the network
could increase to infinity. One may wonder why flow-level
instability is important since, in real networks, base isted
Multiuser scheduling is one of the core challenges ilimit the number of simultaneously active flows in the netkor
wireless communications. Due to channel fading and wirey rejecting new flows when the number of existing flows
less interference, scheduling algorithms need to dyndipicareaches a threshold. The reason is that, if a network model
allocate resources based on both the demands of the userswititbut such upper limits is unstable in the sense that the
the channel states to maximize network throughput. The calimber of flows grows unbounded, then the corresponding
ebrated MaxWeight algorithm developed in [2] for explaifin real network with an upper limit on the number of flows will
channel variations works as follows. Consider a networkwiexperience high flow blocking rates. This fact is demonsttat
a single base station andusers, and further assume that thn our simulations later.
base station can transmit to only one user in each time slotin [1], the authors address this instability issue of
The MaxWeight algorithm computes the product of the queldaxWeight-based algorithms, and establish necessary and
length and current channel rate for each user, and chooseafiicient conditions for the stability of networks with flew
to transmit to that user which has the largest product; tissel dynamics. The authors also propose throughput-@btim
can be broken arbitrarily. The throughput-optimality pedy scheduling algorithms. However, as the authors mentiof]in [
of the MaxWeight algorithm was first established in [2], anthe proposed algorithms require prior knowledge of channel
the results were later extended to more general channel aistribution and traffic distribution, which is difficult an
arrival models in [3]-[5]. The MaxWeight algorithm shouldsometimes impossible to obtain in practical systems, and
be contrasted with other opportunistic scheduling such fasther, the performance of the proposed algorithms is also
[6], [7] which exploit channel variations to allocate resces not ideal.
fairly assuming continuously backlogged users, but whieh a Since flow arrivals and departures are common in reality, we
not throughput-optimal when the users are not continuousye interested in developing practical scheduling algorg
backlogged. that are throughput-optimainder flow-level dynamicsie
While the results in [2]-[4] demonstrate the power ofonsider a wireless system with a single base station and
MaxWeight-based algorithms, they were obtained under thaultiple users (flows). The network contains both longdive
assumptions thathe number of users in the network is fixedlows, which keep injecting bits into the network, and short-
and the traffic flow generated by each user is long-livetlyed flows, which have a finite number of bits to transmit.
i.e., each user continually injects new bits into the nekworThe main contributions of this paper include the following:
However, practical networks have flow-level dynamics: siser « We obtain the necessary conditions for flow-level stability
arrive to transmit data and leave the network after the d&ta a  of networks with both long-lived flows and short-lived
fully transmitted. In a recent paper [1], the authors shoat th flows. This generalizes the result in [1], where only short-

|. INTRODUCTION

the MaxWeight algorithm is in fachot throughput optimal lived flows are considered.
in networks with flow-level dynamics by providing a clever « We propose a simple algorithm for networks with short-
example showing the instability of the MaxWeight schedglin lived flows only. Under this algorithm, each flow keeps

The intuition is as follows: if a long-lived flow does not track of the best channel condition that it has seen so far.


http://arxiv.org/abs/0907.3977v2

Each flow whose current channel condition is equal to the Traffic Model: The network consists of the following two
best channel condition that it has seen during its lifetintgpes of flows:

is eligible for transmission. It is shown that an algorithm « Long-lived flows: Long-lived flows are traffic streams
which uniformly and randomly chooses a flow from  that are always in the network and continually generate
this set of eligible flows for transmission is throughput-  bits to be transmitted.

optimal. Note that the algorithm is a purely opportunistic « Short-lived flows: Short-lived flows are flows that have a
algorithm in that it selects users for transmission when finite number of bits to transmit. A short-lived flow enters
they are in the best channel state that they have seen so the network at a certain time, and leaves the system after
far, without considering their backlogs. all bits are transmitted.

« Based on an optimization framework, we propose /e assume that the set of long-lived flows is fixed, and short-
use the estimatesvorkload the number of time slots lived flows arrive and depart. We Iétbe the index for long-
required to transmit the remainder of a flow based dived flows, £ be the set of long-lived flows, anfl be the
the best channel condition seen by the flow so far, Wumber of long-lived flows, i.eL = |£|. Furthermore, we let
measure the backlog of short-lived flows. By comparing,(¢) be the number of new bits injected by long-lived flow
this short-lived flow backlog to the queue lengths anigh time slot¢, where X, (¢) is a discrete random variable with
channel conditions of the long-lived flows, we develop finite support, and independently and identically distiéoli
new algorithm, named workload-based scheduling witfi.d.) across time slots. We also assulgX;(t)] = x; and
learning, which is throughput-optimal under flow-levelx;(¢) < X™ax for all [ andt.
dynamics. The term "learning” refers to the fact that the Similarly, we leti be the index for short-lived flowg,(¢) be
algorithm learns the best channel condition for each shotite set of short-lived flows in the network at timeand I (¢)
loved flow and attempts to transmit when the channgk the number of short-lived flows at timgi.e., I(t) = |Z(t)|.
condition is the best. We denote byf; the size (total number of bits) of short-lived

« We use simulations to evaluate the performance of tfiew i, and assumg; < F™a for all i.
proposed scheduling algorithm, and observe that thelt is important to note that we allow different short-lived
workload-based scheduling with learning performs signifltows to have different maximum link rates. A careful con-
icantly better than the MaxWeight scheduling in variousideration of our proofs will show the reader that the lezgni
settings. algorithm is not necessary if all users have the same maximum

The terminology of long-lived and short-lived flows abovéate and that one can simply transmit to the user with the best

has to be interpreted carefully in practical situationsptac- channel state if it is assumed that all users have the same
tice, each flow has a finite size and thus, all flows eventualljaximum rate. However, we do not believe that this is a very
will leave the system if they receive sufficient service. Fhurealistic scenario since SNR variations will dictate diget

all flows are short-lived flows in reality. Our results suggegnaximum rates for different users.

that transmitting to users who are individually in their bes Residual Size and Queue LengthFor a short-lived flow
estimated channel state so far is thus, throughput opti@ral. 7, et Q;(¢) which we call the residual size, denote the number
the other hand, it is also well known that real network traffief bits still remaining in the system at tinte For a long-lived
consists of many flows with only a few packets and a few flowfW [, let Q;() denote the number of bits stored at the queue
with a huge number of packets. If one considers the time scaf the base station.

required to serve the small-sized flows, the large-sizedsflow Channel Model: There is a wireless link between each flow
will appear to be long-lived (i.e., persistent forever) met and the base station. Denote B (¢) the state of the link
terminology above. Thus, if one is interested in perfornean®etween short-lived flow and the base station at timgi.e.,
over short time-scales, an algorithm which considers flo#¢ maximum rate at which the base station can transmit to
with a very large number of packets as being long-lived maport-lived flow: at time¢), and Ry(t) the state of the link
lead to better performance and hence, we consider the mBgéween long-lived flow and the base station at tinie We
general model which consists of both short-lived flows longssume thatz;(t) and E;(t) are discrete random variables
lived flows. Our simulations later confirm the fact that thaith finite support. Define?"** and R;"** to be the largest
algorithm which treats some flows are being long-lived leadglues that these random variables can take, R€R;(t) >

to better performance although through-optimality does né;"**) = 0 for eachj € L{J (U, Z(¢)) . Further, assume that
require such a model. In addition, long-lived flows paryiallthere exisp®* and R™** such that

capture the scenario where all bits from a flow do not arrive Pr(R;(t) = RPax) > pmax Vi, t

at the base station all at once. This fact is also exploited in max {max; R, max, R} < Rmax,

our simulation experiments.
The states of wireless links are assumed to be independent
Il. BASIC MODEL across flows and time slots (but not necessarily identically
Network Model: We consider a discrete-time wirelesdistributed across flows). The independence assumpti@sscr
downlink network with a single base station and many flowtime slots can be relaxed easily but at the cost of more
(users). The base station can serve only one flow at a timecomplicated proofs.



1. W ORKLOAD-BASED SCHEDULING WITH LEARNING o Oldest-first Tie-breaking: Let 3; denote the number of
time slots a short-lived flow has been in the network.
The base station keeps tragk= min{7, 3;} for every
short-lived flow, wherer is some fixed positive integer.
Among all short-lived flows satisfying?; (t) = R™<(t)
or R;(t) > Q(t), the tie-breaking rule selects the one
fz;naX(t) = max Ri(s), with the largestr;, and the ties are broken uniformly and
max{t—D,b; }<s<t randomhﬂ
whereb; is the time short-lived flow joins the network and The “goodness” of these two tie-breaking rules are proved in
D > 0 is called the learning period. A key component of thi&ppendix C and D, and the impact of the tie-breaking rules
algorithm is to useR™* to evaluate the workload of short-on performance is studied in Sectionl VI using simulations.
lived flows (the reason will be explained in a detail in Seatio Remark 2:Thea in inequality [1) is a parameter balancing
[V). However, R"** is in general unknown, so the schedulinghe performance of long-lived flows and short-lived flows. A

In this section, we introduce a new scheduling algorithm
called Workload-based Scheduling with Learning (WSL).
Workload-based Scheduling with Learning: For a short-
lived flow i, we define

algorithm usesk®*(¢) as an estimate afR}"**. large o will lead to a small number of short-lived flows but
During each time slot, the base station first checks thrge queue-lengths of long-lived flows, and vice versa.
following inequality: Remark 3:In Theorem[B, we will prove that WSL is
throughput optimal whe is sufficiently large. From purely
Qq(t) through-optimality considerations, it is then natural kmase
@ ,XZ(;) {RmaX(t) - Ilneaax @ R(1), (1) D = oo. However, in practical systems, if we chooBetoo
S g

large, such aso, then it is possible that a flow may stay in

wherea > 0. the system for a very long time if its best channel condition
« Ifinequality (T) holds, then the base station serves a shoPecurs extremely rarely. Thus, it is perhaps best to choose a
lived flow as follows: if at least one short-lived flow (sayfinite D to tradeoff between performance and throughput.
flow ) satisfiesR;(t) > Qi(t) or R;(t) = R™(t), then Remark 4:If all flows are short-lived, then the algorithm
the base station selects such a flow for transmission (t&igWPlifies as follows: If at least one Shorﬁ'g\ggd flow (saywflo
are broken according to good tie-breaking rule, which is ©) satisfiesRi(t) > Qi(t) or Ri(t) = R;"*(t), then the
defined at the end of this algorithm); otherwise, the bad@se station uniformly and randomly selects such a flow for

station picks an arbitrary short-lived flow to serve. transmission (ties are broken arbitrarily); otherwise tiase
« Ifinequality (T) does not hold, then the base station serv&&tion picks an arbitrary short-lived flow to serve. Simply
a long-lived flow!* such that stated, the algorithm serves one of the flows which can be
completely transmitted or sees its best channel state enther
I* € arg max Qi(t)R;(¢) best channel state is an estimate based on past observations
If no such flow exists, any flow can be served. We do not
(ties are broken arbitrarily). separately prove the throughput optimality of this scemari

“Good” tie-breaking rule: Assume that the tie-breakingsince it is a special case of the scenario considered hete. Bu
rule is applied to pick a short-lived flow every time sloit is useful to note that, in the case of short-lived flows only
(but the flow is served only ifaZ-em) Qi(t) ~ the algorithm does not consider backlogs at all in making
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. [R;"axa) heduling decisi
HR,(1)). We define€, ... (t) to be th { that Scheduling decisions. | |
maxies Qi(t) R (1)). We definet,ss(t) to be the event that = = o o WSL (with anye = 0) is throughput

the tie-breaki I lect: hort-lived fl Rk (¢ : ) . ) . 2
¢ tie-breaking rule selects a short-lived flow withi*(¢) 7~ optimal in the following sections, i.e., the schedulingippl

R A tie-breaking rule is said to bgoodif the following :
condition holds: Consider the WSL with the given tie-breaki can support any set of traffic flows that are supportable by
any other algorithm. In the next section, we first present the

rule and learning period. Given anye,,;ss > 0, there exist o . . )
N and D g Zuch that Yemiss necessary conditions for the stability, which also define th
€miss

Emise v network throughput region.
Pr(Emiss(t)) < €miss IV. NECESSARYCONDITIONS FORSTABILITY
f D > D, and W, (t — D) > N,... In this section, we establish the necessary conditions for

D the stability of networks with flow-level dynamics. Firstew

Remark 1:While all WSL scheduling algorithms with goodintroduce the following definitions and notations:
tie-breaking rules are throughput optimal, their perfonces « We classify the short-lived flows into different classes.
in terms of other metrics could be different depending upon Classk is associated with random variablés, and £, 8

the tle_breakmg rules. We consider two tle_breakmg rufes 1We set a upper bouné on 3 for technical reasons that facilitate the

this paper: throughput-optimality proof. Sinc& can be arbitrarily large, we conjecture
« Uniform Tie-breaking' Among all short-lived flows that this upper bound is only for analysis purpose, and rtptired in practical
: systems.

satl_sfylng Rz(t) = R"™(t) or Ri(t) > Qi(t), the base- "2y yse* to indicate that the notation is associated with a class oftsh
station uniformly and randomly selects one to serve. lived flows instead of an individual short-lived flow.



A short-lived flow i belongs to class: if R;(t) has the V. THROUGHPUTOPTIMALITY OF WSL

same distribution agt; and the size of flow (f;) has the  Fjrst we provide some intuition into how one can derive
same distribution ag’,. We let Ax(t) denote the number o \ws| algorithm from optimization decomposition consid-
of class# flows joining the network at time, whereAx ()  grations. Then, we will present our main throughput optitpal
are i.i.d. across time slots ar[Ax(¢)] = Ax. Denote by regyits. Given traffic parametefs;} and{\;}, the necessary
K the set of distinct classes. We assume Wais finite, cqngitions for the supportability of the traffic is equivaleo

K| = K, and A [t] < A for all t andk € K. the feasibility of the following constraints:
« Let c denote anL-dimensional vector describing the state

of the channels of the long-lived flows. In state R.; is T <) cce TePeiReyr vl
the service rate that long-lived flowcan receive if it is H ia H
i ME || =2 < c.sTe 6
scheduled. We denote Igthe set of all possible states. Lerc Ak Rpe|] = Lcec HosT ©
o Let C(t) denote the state of the long-lived flows at time DierPei + s <1 Ve.

t, and 7. denote the probability thaf(¢) is in statec.
« Letp.; be the probability that the base station serves flo
[ when the network is in state Clearly, for anyc, we have

For convenience, we view the feasibility problem as an opti-
Wization problem with the objectivimax A, where A is some
constant. While we have not explicitly stated that the and

ch,z <1 |'S are non-negative, this is assumed throughout.
el Partially augmenting the objective using Lagrange muttipl
Note that the sum could be less tharif the base station ©'S: We get
schedules a short-lived flpw in this state. _ max A — Y0 a1 — 3, TepeiRei) —
o Let uc s be the probability that the base station serves a A
short-lived flow when the network is in state 4s (Zkelc AxE H}ﬁf; H = Dcec Mc,sﬁc)
o Let Oy 3(t) denote the numb_er of s_hort-lived flows that ¢ S ies Ped + fes < 1 Ve.
belong to clas$ and have residual siz€(t) = /5. Note o
that 3 can only take on a finite number of values. For the moment, let us assume Lagrange multipligrand

Theorem 1:Consider traffic parametefa;} and{\}, and s are given. _Then the ma_ximization_ p_rob!em above can be
suppose that there exists a scheduling policy guaranteeingdecomposed into a collection of optimization problems, one

for eachc :
Fmax
Jim E ST+ DD Orpt)| < oo pIg}gijZquc,zpc,z + gshic,s
leL keK p=1 leL
. N t. < 1.
Then there exisp.; and . s such that the following inequal- st YiepPel T ies <1
ities hold: It is easy to verify that one optimal solution to the optintiaa
ch,z <1 Veec @) proplem above is:
ler o if s > maxjer Ry, thenpe s =1 andpe; = 0(Vi);
» otherwise, s = 0, and p.;» = 1 for somel* ¢
IS Z;WCPCJRCJ vieL ©) argmax q;Re; andpe; = 0 for otherl.
ce . .
& The complementary slackness conditions give
k
Sae[[ ] Sun @
kek k cec q | x — Zﬂ'cpc_,chyl =0.
ceC
< . . . . .
IGZLPCJ thes S1VeEC ®) Since z; is the mean arrival rate of long-lived flow and

ZCEC TePe, i Re, IS the mean service rate, the conditiongn
Proof: Note thaty" . mepeiRe, andzcec lic.sT are the says that if the mean arrival rate is less than the mean servic
mean service rates allocated to long-lived flovand short- rate,q; is equal to zero. Along with the non-negativity condi-
lived flows respectively, so inequalityl(3) arid (4) indictiat tion ong,, this suggests that perhapsbehaves likes a queue
the mean service rates should be no less than the mean ariNit these arrival and service rates. Indeed, it turns oat th
rates. A the mean of the queue lengths are proportional to Lagrange
Next, we note thai, E H%H is the expected number of multipliers (see the surveys in [8]-[10]). For long-livedl
time slots required to transmit short-lived flows belongtng W€ can treat the queue-length() as a time-varying estimate
classk assuming the flows are always served with Iﬁg@ix_ of Lagrange multipliex;;. Similarly ¢; can be associated with
Inequality [3) states that the overall time used to servg{on@ queue whose arrival rate s, .- AvE H AQZXH , Which is
lived and short-lived flows should be no more than the tinthe mean rate at which workload arrives where workload is
available. The complete proof is based on the Strict Seipparatmeasured by the number of slots needed to serve a short-lived

Theorem and is along the lines of a similar proof in [4]m flow if it is served when its channel condition is the best. The




service rate iszcec e,sTe Which is the rate at which the Assume that\; and £}, are such that the Markov chaM is
workload can potentially decrease when a short-lived flow iseducible and aperiodic
picked for scheduling by the base station. Thus, the wotkloa Theorem 2:Given any traffic X;(¢) and Ax(¢t) such that

in the system can serve as a dynamic estimatg, of (1 +¢e)X;(¢t) and (1 + €)Ax(t) are supportable, the Markov
Letting chainM(t) is positive-recurrentinder WS, which implies that
Wa(t) = Z [Qz‘(tw lim_, o0 E[M(#)] < 0o under WS,
B nax Proof: We consider the following Lyapunov function:
and aW,(t) (o > 0) be an estimate of, the observations V() = a(We(1)* + > (Qut)?, (8)
above suggest the following workload-based scheduling-alg leL
rithm if R™®* are known. and prove that
Workload-based Scheduling (WS):During each time slot,
the base station checks the following inequality: E[V(t+1) = V(#)M(t)] < Uslmper — Ulmpgr,
aWs(t) > max Qi(t)Ry(1). (7) for someU, > 0, U > 0, and a finite sefl'. Positive recur-

rence ofM then follows from Foster’s Criterion for Markov
» If inequality (7) holds, then the base station serves a shoghains [11]. The detailed proof is presented in Appendix A.
lived flow as follows: if at least one short-lived flow (say m
flow i) safisfiesR;(t) > Qi(t) or Ri(t) = R, then e next study WSL, wheré?"=* is estimated from the
such a flow is selected for transmission (ties are brok@fsiory. We defined;, 5., (t) to be the number of short-lived
arbitrarily); otherwise, the base station picks an arbjtragiows that belong to clask: have a residual size of, and

short-lived flow to serve. _ have R"®*(t) = r. Furthermore, we define
« If inequality (7) does not hold, then the base station serves

a long-lived flowl* such thatl* € argmax;c, Q;(t) R (¥)

(ties are broken arbitrarily). M(n) = | {Qi(t) }iee, {Okpr(t)}  rex
« The factora can be obtained from the optimization for- 1<ps ™™
mulation by multiplying constrainf{6) by on both sides ISrsT (DT StsnT

U from someT > D. It is easy to see thabI(n) is a finite-
However, this algorithm which was directly derived fromyimensionalMarkov chain under WSE.

dual decomposition considerations is not implementalpieesi  Theorem 3:Consider trafficX; (¢) and A (¢) such that 1+
Ri"™s are unknown. So WSL use8y"**(t) to approximate ¢)x,(¢) and (1 + ¢)A4(t) are supportable. Given WSL with a
R***. Note that an inaccurate estimate &f"** not only goodtie-breaking rule, there exist®, such that the Markov
affects the base station’s decision on whetReft) = Ri*, chainM(n) is positive-recurrentinder the WSL with learning
but also on its computation o QT(QW . However, it is not period D > D, and the given tie-breaking rule.
difficult to see that the error in the estimate of the total Proof: The proof of this theorem is built upon the
workload is a small fraction of the total workload when théollowing two facts:
total workload is large: when the workload is very large, the, \When the number of short-lived flows is large, the majority
total number of short-lived flows is large since their fileesiz  of short-lived flows must have been in a network for a

are bounded. Since the arrival rate of short-lived flows $® al |Ong time and have obtained the correct estimate of the best
bounded, this further implies that a large number of short- channel condition, which implies that
lived flows must have arrived a long time ago which means

that with high probability, their estimate of their best ohal Z [Qi(t)—‘ N Z Qi(1)
. : . Rmax(f) |
i€T(t) i€Z(t) v

condition must be correct. max

Next we will prove that both WS and WSL can stabilize any
traffic X;(t) andA(¢) such thaf1+¢)X;(¢t) and(1+€)Ax(t) « When the number of short-lived flows is large, the short-
are supportable,i.e., satisfying the conditions presented in lived flow selected by the base station (say flowhas a
Theorem[]l. Even though WS is not practical, we study it high probability to satisfyR;(t) = R or R;(t) > Q;(t).
first since the proof of its throughput optimality is easieda  From these two facts, we can prove that with a high
provides insight into the proof of throughput-optimality oprobability, the scheduling decisions of WSL are the same

WSL. as those of WS, which leads to the throughput optimality of
Let WSL. The detailed proof is presented in Appendix B.
M(t) = ({Qu(t) her, {Ok,a(t) e, 1<p<pmax) . -
Since the base station makes decisionsMi(t) and R(t) _ 3This Markov chain is well-defined under the uniform tie-ieg rule.

. .. For other good tie-breaking rules, we may need to first diigbhange the
{{Ri(t)}iEZ(t)’ {Rl(t)}leﬂ} u_nder WS. It is easy to verify gefinition of M (n) to include the information required for tie-breaking, and
that M(t) is a finite-dimensionaMarkov chain under WS. then use the analysis in Appendix B to prove the positive meage.



VI. SIMULATIONS Simulation I: Short-lived Flow or Long-lived Flow?

) ) ) ) We first use the simulation to demonstrate the importance

In this section, we use simulations to evaluate the perfqjz cnsidering a flow with a large number of packets as being
mance of different variants of WSL and compare it to othgg, jied. We consider a network consisting of multiple S-
scheduling policies. There are three types of flows useden s and three M-flows, where the arrival of S-flows follows a

simulations: truncated Poisson process with maximum val0e and mean
« S-flow: An S-flow has a finite size, generated from &alue\. All the links are assumed to be G-links. We evaluate
truncated exponential distribution with mean vaifeand the following two schemes:

maximum value150. Non-integer values are rounded to , Scheme-1:Both S-flows and M-flows are considered to be
integers. short-lived flows.

« M-flow: An M-flow keeps injecting bits into the network . Scheme-2: An M-flow is considered to be long-lived
for 10,000 time slots and leaves the network. The number pefore its last packet arrives, and to be short-lived aftat.t

O_f b_|ts _gene_rated at each time slot follows a Poisson g performance of these two schemes are shown in Figure
distribution with mean valu_é_. ) . [, where WS with Uniform Tie-breaking Rule is used as
« L-flow: An L-flow keeps injecting bits into th? networkthe scheduling algorithm. We can see that the performances
and never leaves the network. The number of bits generaigd g hstantially different (note that the network is stabl

at each time slot follows a Poisson distribution with meafder both schemes). The number of queued bits of M-

valuel. flows under Scheme-1 is larger than that under Scheme-2 by
Here S-flows represent short-lived flows that have finitessizévo orders of magnitudeThis is because even an M-flow
and whose bits arrive all at once; L-flows represent longontains a huge number of bit$0( 000 on average), it can
lived flows that continuously inject bits and never leave thee served only when the link rate i under Scheme-1.
network; and M-flows represent flows of finite size but whosghis simulation suggests that when the performance we are
arrival rate is controlled at their sources so that they ol nimterested is at a small scale (e.g. acceptable queuehlengt
arrive instantaneously into the network. Our simulatiol wibeing< 100) compared with the size of the flow (e.g0* in
demonstrate the importance of modeling very large, butfinitthis simulation), the flow should be viewed a long-lived flow
sized flows as long-lived flows. for performance purpose.

We assume that the channel between each user and the %ase lation I The | f Learning PerioB
station is distributed according to one of the followingethr imulation [I: The Impact of Learning Peri
distributions: In this simulation, we investigate the impact Of on the
performance of WSLU. Recall that it is nature to choose

= oo for purely throughput-optimality considerations, but
probability 20%. e dlsadvantgge is that a rovy may stay in the network for

. . ' , . a very long time if the best link state occurs very rarely.

o P-link: A P-link has five possible link rates . - . :
We consider a network consisting of S-flows, which arrive
{5,10,15,20,25}, and each of the states happens . ) . .

. 2. according to a truncated Poisson process with maximum value
with probability 20%. )

L . . . . 100 and mean\, and three L-flows. All links are assumed to
o R-link:  An R-link has six possible link rates : : . L

i . e R-links. Figuré2 depicts the mean and standard deviation
{10, 20, 30,40,100}, and the probabilities assomateolb . .
with these link states arf0.5,0.2,0.2,0.09,0.01} of the file-transfer delays witth = 16 and D = co. As we
T e expected, the standard deviation under WSLU with= oo is

The G, P and R stand for Good, Poor and Rare, respectivelignificantly larger than that under WSLU with = 16. This
We include these three different distributions to model thsccurs because the best link raf# occurs with a probability
SNR variations among the users, where G-links represet li).01. This simulation confirms that in practical systems, we
with high SNR (e.qg., those users close to the base statien),nfay want to choose a finit® to get desired performance. In
links represent links with low SNR (e.g., those users faryawahe following simulations, we choose = 16.
from the base station), and R-links represent links whosé be
state happens rarely. The R-links will be used to study the
impact of learning period on the network performance.

We name the WSL with the uniform tie-breaking rule In the following simulations, we choosP = 16. In the
WSLU, and the WSL with the oldest-first tie-breaking ruléntroduction, we have pointed out that the MaxWeight is not
WSLO. In the following simulations, we will first demonsteat throughput optimal under flow-level dynamics because the
that the WSLU performs significantly better than previouslgacklog of a short-lived queue does not build up even when
suggested algorithms, and then show that the performaiitcbas not being served for a while. To overcome this, one
can be further improved by choosing a good tie-breakirapuld try to use the delay of the head-of-line packet, irttefa
policy (e.g., WSLO). We setv to be 50 in all the following queue-length, as the weight because the head-of-line dallay
simulations. keep increasing if no service is received. In the case of-long

o G-link: A G-link has five possible link rates
{10, 20, 30,40,50}, and each of the states happens wit
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Fig. 1. Scheme-1 treats M-flows as short-lived flows, and ®eh2 treats

M-fi long-lived flows. . . .
ows as fong-ived flows P-link. Figure[# shows the number of short-lived flows and

file-transfer delay under different values afWe can see that
lived flows only, this algorithm is known to be throughputthe MaxWeight becomes unstable even whies arrival rate

optimal [4]. We will show that this Delay-based schedulin§f S-flows is very smallthis is because the MaxWeight stops

does not solve the instability problem when there are shop€rving S-flows when the backlogs of F-flows are large, so S-

lived flows. flows stay in the network forever. The delay-based schedulin
Delay-based SchedulingAt each time slot, the base statiorP€rforms better than the MaxWeight, but significantly worse

selects a flowi such thati € argmax; D;(t)R;(t), where than WSLU.

D;(t) is the delay experienced so far by the head-of-line pac

of flow 7. k§|trnulat|on IV: Blocking probability of various algorithms

0 While our theory assumes that the number of flows in
the network can be infinite, in reality, base stations lirhi t
Simulation lIl: Performance comparison of various algbmts  numper of simultaneously active flows, and reject new flows
We first consider the case where all flows are S-flows, whigthen the number of existing flows above some threshold. In
arrive according to a truncated Poisson process with maximuhis simulation, we assume that the base station can support
value 100 and mean\. An S-flow is assigned with a G-link at most20 S-flows. A new S-flow will be blocked 20 S-
or a P-link equally likely. flows are already in the network. In this setting, the number
Figure[3 shows the average file-transfer delay and averagfeflows in the network is finite, so we compute the blocking
number of S-flows under different values &f We can see probability, i.e., the fraction of S-flows rejected by thesba
that WSLU performs significantly better than the MaxWeighgtation.
and Delay-based algorithms. Specifically, under MaxWeight We consider the case where no long-lived flow is in the
and Delay-based algorithms, both the number of S-flows andtwork and the case where both short-lived and long-lived
file-transfer delay explode whekh > 0.102. WSLU, on the flows are present in the network. The flows and channels
other hand, performs well even when= 0.12. are selected as in Simulation Ill. The results are shown in
Next, we consider the same scenario with three L-flows Figure[® and16. We can see that the blocking probability under
the network. Two of the L-flows have G-links and one has\&/SLU is substantially smaller than that under the MaxWeight
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Fig. 4. The performance of the delay-based, MaxWeight, angL\W

Fig. 3. The performance of the delay-based, MaxWeight, anglLly @gorithms in a network with both S-flows and L-flows

algorithms in a network without long-lived flows

Finally we consider the situation in which the base station
or delay-based scheduling. Thus, this simulation dematestr can support at mog0 S-flows. A new S-flow will be blocked
that instability under the assumption when the number ofdlovf 20 S-flows are already in the network. The simulation setting
is allowed to unbounded implies high blocking probabititieis the same as that in Simulation IV. We calculate the blogkin
for the practical scenario when the base station limits tigobabilities, and the results are shown in Figdre 9[and 0. W
number of flows in the network. can see that the blocking probability under the WSLO is much

smaller than that under the WSLU policy wheris large.

Simulation V: WSLU versus WSLO

In this simulation, we study the impact of tie-breaking sule _ ) ) o
on performance. We compare the performance of the WSLU'” this paper, we st_ud|ed mgltluser s_chedulmg in network_s
and WSLO. We first study the case where the base statlY_YHh flow-level dynamlcs_. We first obtalngd necessary gond|-
does not limit the number of simultaneously active flows arfiPns for flow-level stability of networks with both longved
there is no long-lived flow in the network. The simulatioflows and short-lived flows. Then based on an optimization
setting is the same as that in Simulation IIl. Figlite 7 shovfgmework, we proposed the workload-based scheduling with
the average file-transfer delay and average number of S-fld&&ning that is throughput-optimal under flow-level dynesn
under different values of. We can see that the WSLO reduce&nd requires no prior knowledge about channels and traffic. |
the file-transfer delay and number of S-flows by neary; the simulations, we evaluated the performance of the pexpos
when = 0.13, which indicates the importance of selecting &cheduling algorithms, and demonstrated that the proposed
good tie-breaking rule for improving the network perforraan @lgorithm performs significantly better than the MaxWeight

Next, we study the case where the base station does Agfeduling in various settings.
limit the number of simultaneously active flows and there are
three L-flows in the network. Figuild 8 shows the number of
short-lived flows and file-transfer delay under differeniies Research supported by NSF Grants 07-21286 and 08-31756,
of A\. We can see again that the WSLO algorithm has a mué&RO MURI Subcontracts, and the DTRA grants HDTRA1-08-
better performance than the WSLU, especially whéslarge. 1-0016 and HDTRA1-09-1-0055.

VII. CONCLUSIONS
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We consider the following Lyapunov function

APPENDIXA: PROOF OFTHEOREM[Z
Recall that

max lel

Wi = 30 [Q—“)] V(D) = o (W,(0) + 3 (Qi(0)* ©

We define

> ¥ ]|

KeK ieAr(t) We will prove that the drift of the Lyapunov function satisfie

which is the amount of new workload (from short-lived flows)

injected in the network at timg and ., (¢) to be the decrease

of the workload at time, i.e., us(t) = 1 if the workload of

short-lived flows is reduced by one apg(t) = 0 otherwise. E[V(t +1) — V() M(t)] < Ualnmer — Ulmgr,
Based on the notations above, the evolution of short-lived

flows can be described as:

Ws(t+1):Ws(t)+As(t)_,LLs(t)' .
) ) for someU,; > 0, U > 0, and a finite sefl’ (the values of
Further, the evolution of);(t) can be described as these parameters will be defined in the following analysis).
Qit+1) = Qu(t) + Xy(t) — () + wy(t), Positive recurrence d¥1 then follows from Foster’s Criterion

) ) for Markov chains [11].
where; (t) is the decrease ap,(¢) due to the service long-

lived flow [ receives at time, andw;(t) is the unused service First, since the number of arrivals, the sizes of shortdive
due to the lack of data in the queue. flows and channel rates are all bounded, it can be verified that
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there existd/, independent OM(t), such that \l;llgt;h 1LC_)f.Io\A;I'She blocking probabilities of the WSLU and WSLO in etwork
E[V(t+1) = V(¢)M(t)] that
—E [a (W, (t+1)° - a (W, (1)) + E[V(t+1) - V() M(t)] - U
2 2 < 20WL(DE [E [jies — 1s(8)] C(1) = ] M(D)
D_(Qut+1)? = (Qu)*| M(®) 23" QutE[E [pesRes — ()] C(t) = ]| M(1)]
lel lel el
< 2 HE[A(t) — t)| M(t <
<U -+ 2017, ()E [Ax(t) — ua (5] M(D)] + el (O - 26 QU)o
2> QUOE[Xi(t) — (1) M(#)] lec
leL A where .
<U +2aW,(1) ((ZAkE {Ai’“axw ) A= <Z)\kE LF’“‘ W )
keK Rk ke Rgldx
- E[us(t)lM(t)]) Next we assumeC(t) = c and analyze the following
guantity
23 Qult) (w1 — E [m(®) M(2)))
lec AW (t) (pte,s — ps() + Y Qut) (PesRes — mu(t)) . (10)

lec
We have the following facts:

Recall that we assume that + €)E[X;] and (1 + €)E[A] » Fact 1: Assume that there exists a short-lived flosuch
satisfy the supportability conditions of Theoréin 1. By amidi that R;(t) = R or R;(t) > Q;(t). If a short-lived
and subtracting corresponding ;R.; and s s, we obtain flow is selected to be served, then the workload of the



selected flow is reduced by one apd(t) = 1. If long- R™*max;ec, Q(t). Therefore, we can conclude that in
lived flow [ is selected, the rate flowreceives isR. ;. this case (Case Il),

Thus, we have that E[V(t+1) = V(t)M(t)]

aWs(t)ps(t) + > Qut)pm(t)
leZL < U+2¢ <ons(t) + R max Ql(t))
= S t ] t C, —
max {OLW ( ) maxj Ql( )R ,l} _26aWS(t))\ — 9% Z Ql (t)xl (14)
Z aWs (t)ﬂc,s + Z Ql(t)pc,ch,la leL
fec < U—eaWo(t)h—e> Qut)a
where the last inequality holds becadsg pc,; + ftc,s < et
1. Therefore, we have < -U, (15)
@ <o where inequality[[14) holds due to the definition qf
in this case (@1), and inequality[{d15) holds due to inequalify](12).

o Case lll: Assume thatiV,(t) < Uw and Q;(t) > Ug
for somel. In this case, if a long-lived flow is selected
for a givenc, we have

o Fact 2: Assume that there does not exist a short-lived
flow ¢ such thatR;(t) = R or R;(t) > Q;(t). In this
case, we have

@) < aW(t)+ Ilneaﬁle(t)Rc,l @9 < aWs(t)ue,s < aWs(t).
max Otherwise, if a short-lived flow is selected, it means for
< Ws(t) + R . ) ’ ’
s aWi(®) Ter Qu(t) the givenc, we havemax; Q;(t)Rc,; < aW,(t), and

H @) < 2aW(t).
Therefore, we can conclude that in this case,
E[V(t+1) — V(£)IM(t)]
<U + 4aW(t) — 2aW(H)A = 2¢ Y Qu(t)z;  (16)

Now we define a sel’ such that
T:{M:WSSUW andQl SUQ Vl},

whereUy is a positive integer satisfying that

(1 - pre)rtt < smin {3, 2iueend 2¢ (11 et
Uy > 20, (12) <U + 4aUw — 2eaW ()X — 26 ¥ Qu(t)z
lec
andUg is a positive integer satisfying <-U, (17)
Ug > M (13) where the last inequality yields from the definitionidf
€EMINyer T m)

We next compute the drift of the Lyapunov function accord- From the analysis above, we can conclude that
ing to the value ofM(¢).
« Case I: AssumeM(t) € T. According to the definition E[V(t+1) = V(OIM(®)] < Ualmwer — Ulmegr,
of T, we have whereU; = U + 2aUw + 2R™*LUg and T is a set with
max a finite number of elements. Invoking Foster’s criteriore th
EV(E+1) - VIOIM®)] < U+ 2alw + 2R LUq. Markov chain M(t) is positive recur?ent and the the?;em
o Case II: AssumelW,(t) > Uy . Since the size of a short- holds.
lived flow is upper bounded by™* W, (t) > Uw

implies that at least2 short-lived flows are in the

APPENDIX B: PROOF OFTHEOREM[3|

network at timet. Define eventS(t) such thatR;(t) = Consider the network that is operated under WSL, and
R and R;(t) > Q;(t) do not hold for any short-lived define? () to be
flow 4. . S—
Recall that () 2 {Qult), Rult), Qa(t), Ra(t), RP()}

min Pr(R;(t) = R™*) > pmax, Now given#(t), we define the following notations:

’ o Definepq,(t) = Ry(t) if flow [ is selected by WSL, and
Given at Ieast% short-lived flows are in the network, pa:1(t) = 0 otherwise.
we have that o Define s, (t) = 1 if flow ¢ is selected by WSL and the
max JW_ workload of flow: can be reduced by one, apd;(t) = 0
= < — max < . )
Prils@ =1) < (1 =p™) 7 <@ otherwise.

According to facts 1 and 2[I0) is positive only if S(t) o Define pq,(t) = Ry(¢) if flow [ is selected by WS, and
occurs and the value qff0) is bounded byaW,(t) + p1.(t) = 0 otherwise.



o Define py1,;(t) = 1 if flow i is selected by WS and the
workload of flowi can be reduced by one, apg;(t) = 0
otherwise.

We remark thaj:,; (¢) is the action selected by the base station

at timet under WSL anduy.;(t) is the action selected by the
base station at timeé under WS, assuming the same histor
H(t).

We define the Lyapunov function to be

7)) + Y (Qu(nT))

el

V(n) = (18)

First, it is easy to verify that there exist§ independent of
M(n) such that

E[V(n+1) = V(n)|M(n)]
(n+1)T-1
<U, + 2aE {WS(nT) > (At) - p2is(t) M(n):|
t=nT
(n+1)T-1
+) 2E [Qz(nT) > (Xut) — paa(t)) M(n)] :
lel t=nT

Dividing the time into two segment®7,nT + D — 1] and

[nT + D, (n+ 1)T — 1], we obtain
E[V(n+1) — V()| M(n)]
<Uy +20W,(nT)AD + 2> Qu(nT)z, D
(n+1)Tl—€1£ ~
+MEPWW)§:(&@—MﬁDMW]
t=nT+D
(n+1)T—1
+) 2E [QI(HT) > (X(t) — p2a(t) M(")] :
el t=nT+D
Note that|Q;(t1) — Q:i(t2)| and|Wy(t1) — Wi (t2)| are both

bounded by some constants independenivifn), so there
existsU such that

E[V(n+1) = V(n)M(n)]
<U +20W,(nT)AD + 2> Qi(nT)x;D

leL
+2E [

+) 2E

leL

(n+1)T—-1

a Y W) (As(t) — pais(1) M(n):|
t=nT+D

Now, by adding and subtracting,..(¢), we obtain

V(n)|M(n)]

<U +20W,(nT)AD + 2> Qi(nT)x,D +
lel

(n+1)T—1

>

t=nT+D

Qu(t) (Xu(t) = p2a(t))

E[V(n+1)—
(n+1)T—-1

> Drift(t),

t=nT+D

where
Drift (¢)
=2E [QW 1) A(t) + > Qut) Xu(t) M(n)] (19)
Y SR ()t iSle;uz M(n)  (20)
+;;EQ1 MH)EZM@HMWH (21)
+;pmmmmm—mwmmwy (22)

Note that[[211)4(2R) is the difference between WS and WSL.

In the following analysis, we will prove that this differemés
small compared to the absolute value [of] (1B)3(20).
We define

Diff (1) =aW(t) (u1;5(1)

+ZQ1

leL

= p2; s(t))

(p;0(t) — p2a(t)),

and compute its value in three different situations:

« Situ-A: Consider the situation in which/W,(t) <
maxe Qi (t)R;(t). We note thatiV,(t) > W,(t) since
Rxax(¢) < R for all ¢+ and i. Therefore, given
aW,(t) < 3, Qi(t), both WS and WSL will select
a long-lived flow. In this case, we can conclude that

pa(t) = poq(t) and py,s(t) = pa;s(t) =0,
and
Diff (t) =

Situ-B: Consider the situation in whichaW,(t) >
max;cc Qi(t)R;(t). In this case, both WS and WSL will
select a short-lived flow, which implies that

pa(t) = paq(t) =0,

and
Diff () =aW(t) (p1:s(t) — pas(t))
< aW; (t) (1 - .UQ;S(t)) .

Situ-C: Consider the situation in whicheW, () >
maxjes Qi(t)Ri(t) > aWs(t). In this case, WS will
select a long-lived flow and WSL will select a short-lived
flow. We hence have

Nl;l(t) >0 andﬂl;s(t) = M2;l(t) =0,

and
Diff () = Tax Qu(t)Ru(t) — oW () pa;s(t)

< aW, (t) — Wi (t)pa;s(t)



According to the analysis above, we have that
E [Diff (¢)| M (n)]
<E [aW,(t)|Situ-B, yi2s = 0, M(n)} x
pr (Situ-B, fi2s = 0|M(n))
+E
Pr (Situ-C, Wos = O|M(n))
[a W, (t) — aW, (£)|Situ-C, o, = 1, M(n)} X

[V, (£)|Situ-C, 12, = 0, M(n)} x

+E

Pr (Situ-C, Hos = 1|M(n)) .

Next we define a finite setl’. We first introduce some
constants:

o €] = min{

€y = wgﬁ, and D., and N, are the numbers that
guaranteePr (€,,;s5(t)) < €2, which are defined by the
goodness of the tie-breaking rule.
AP = KAmaxpmax which is the maximum number
of bits of short-lived flows injected in one time slot, and
also the upper bound on the new workload injected in the
network in one time slot.

We define a sel" such that
In this definition,Uyy is a positive integer satisfying that

de eming x;
16 4Rmax

W (nT)<Uw +2T+

20T 4 2TRMNS 2y
min; x; min; x;

23, @ RMAX T
a)

M) : ) nry<io+

w_
(1 —pg™) 7™ < ey, (23)
- 4U 4 8e5 A ARAXT 440, D R™®* |80 or R™AX T+ 4ND2% D
Uy > T2——0 — —(24)
e
U
ez 2 Ney, (25)
and ﬁQ is a positive integer satisfying
~ r7 max (17 2ZZILRmaxT max
4U+6aR™™ (U + ==L 4 (AR +2)T
€emin; xrp

Since the changes 6¥;(t) and@;(t) during each time slot is
bounded by some constants independen]f/[ih), it is easy
to verify thatY is a set of a finite number of elements.

Next, we analyze the drift of Lyapunov function case by
case assuming thab > P"g ki;;‘zglﬁ;ﬁ%’%max] and T >
’7(4+6)D—‘ '

« Case |: Assume that\/ (n) €
verify thatE[V (n+1) — V(n)|
constant’/,.

o Case Il: Assume that

In this case, it is easy to

T.
M(n)] is bounded by some

23, 4 R™™T

> Uw + T.
X > Uw +

W, (nT) > Uy + 2T +

Recall that€,,;ss(t) is the event such that the tie-breaking
rule selects a short-lived flow witi™**(¢) # R™*. Note
that uu2,5(t) = 0 implies thaté,,;s5(t) occurs. Also note the
following facts:

- For anynT < t < (n+ 1)T, we have W (t) <
W(nT) 4+ N T,

Given W, (nT) > Uy + T, we haveW,(t) > Uw
forall nT <t < (n+ 1)T — 1. Then according to
the definition ofe; and Uy, and assumption that the
tie-breaking rule is good, we have

Pr (gmlss(t)) <€

foral nT+ D<t<(n+1)T - 1.
Given anyM(n) and anynT+ D <t < (n+1)T -1,
we have

E :aWS(t) — W (t)|Situ-C, pras = 1, M(n)} X
Pr (Situ—Q fizs = 1|1\71(n))

W, () = W (HIM(n)]

E[aWW(t) - aWi(t)| Wit = D)l | M(n)]

a1 YOW,(t — D)R™™ + axglvaXmM(n)]

<E — Ds
(27)
<E [a(1 — p™™) (W, (t) + D)R™> + a)\rv’l’/aXD|l\~/I(n)} ,

where the inequality (27) holds because at mgst D
bits belonging to short-lived flows are in the network for
less thanD time slots at time, and a flow having been
in the network for at leasD time slots can estimate
correctly its workload with a probability at least—

(1 —p™)P.

Now according to the observations above, we can obtain
that

E[Diff (t)|M(n)]
<esa (Wi (nT) + ANy T') + eace (R W (nT) + A7)
+E [0‘(1 — PP (Wi(t) + D)R™™ + aA™*D|M(n)| .

Combining with the analysis leading tb {14) in Appendix
A, we conclude that

Drift (¢)
<2E |:€1 (aWs(t) + R max Ql(t))

—caWo(t)A — €Y Qu(t)z
el
+ exr (Wi (nT) 4+ NB2<T)
+ exr (R™™W, (nT) 4+ NB2¥T)

+ a1 = PP (W, (1) + D)R™™ + aXi DIM(n)|

o]

where the last inequality holds due to the definitiorlof .
Case lll: Assume that

<E l—e <o¢5\WS(t) + mQu(t)

leL

257, @ RMaT

W,(nT) < Uy + 2T +
a\



and Assume thatV short-lived flows are in the network at time

- 20\T  2TR™> Y,z _ - t— D and denote byV the set of these short-lived flows. Our
Qu(nT) > Uq + - mme, Uq proof contains the following two steps:

. Step 1: We first obtain an upper bound on

for somel. In this case, we have
Diff (£) < aW,(t) < aR™ W, (t). Ny 2 Hz P RP(t) # R andi € NH :
Combining with the analysis leading tb {16) in Appendixonsidering a short-lived flow (flo@) which is in the network
A, we have that at timet — D, we have
Drlﬁ:(t) Pr (Rzna)((t) 7& Rl(nax) S (1 p;naX)D L €.

<2E [aR™™ W (t) 4+ 2aWi(t)

Thus,E[N;] < eN. According to the Chernoff bound, we have
o <aAW +;$1Ql )‘M 1 Pr(N, > 1.1eN + D)
) ) - ~(L.1eN+D — E[N1])?
<E l—e (mws(t) + leQl(t)> M n)] , = o ( 3E[Ny] )
lec i < exp (_ (0.1eN + D)Z)
where the last inequality holds due to the definitiorlef. - 3eN
O < exp(—0.003eN + 0.06D).

Now, combining the three cases together, we can obtain that
Next note that at mosik' \™#* short-lived flows join the

E[V(n+1) = V(n)|M(n)] network during each time slot, so we can conclude that
<U A _
<U + 2aWs(nT)/\D + 2lezﬁQl(nT)$lD PI‘( {’L . leax(t) 75 Rzr’nax} > 1.1eN + K \max]D +D)

(n+1)T 1 < exp (—0.003eN + 0.06D).
[ <OL)\W + Z IZQZ ) M ‘| . )
i nT+D = Step 2:Since at most one flow can be completely transmit-
ted in one time slot, so leas{ — D flows are in the network
<U +2aW.(nT)AD + 22 Qu(nT)z, D at timet, each having a probability at leagf'®* to be in the

leL best channel state.

7 D) (aws(ncm S xlczm:m) b (i Rty = ey} < 0y - )

leL
_ < . Rmax < O 9 max N D
—|—6(T—D)(Oz/\T—|—leRmaXT) = (|{Z ( )max ( )}| Ps ( ))
et < exp (—0.003p™(N — D)).
<-U, Summary: From step 1 and step 2, we can conclude that
where the last inequality yields from the definitionidf, and Pr(Episs (1))

Ug. Finally, we can conclude the theorem from the Foster’s 1.1eN + KA™aXD 4+ D
Criterion. 0.9pm(N — D)
APPENDIXC: THE UNIFORM TIE-BREAKING RULE +exp (—0.003eN 4 0.06D) ,

Recall that we defin€,,,;s:(t) to be the event that the tie-
breaking rule selects a short-lived flow wiltj**<(t) # R®>x.
Proposition 4: The uniform tie-breaking rule is good.
Proof: Suppose set

Tty = {i: Ri(t) = RP™(t) or Ri(t) = Q1) }

Under the uniform tie-breaking;,,,;ss(t) occurs with proba-
bility

+ exp (—0.003p2***(N — D))

which converges to zero as boih and N/D go to infinity.
The proposition holds because the sizes of short-lived flows
are bounded and a large workload implies a large number of
short-lived flows. |

APPENDIXD: OLDEST-FIRST TIE-BREAKING RULE

Proposition 5: The oldest-first tie-breaking is good tie-
breaking rule.
{i Li € J(t) and R () # R;nax} Proof: We assume that at time slot- D, there areN >
2D? short-lived flows in the network. We groughort-lived
MOl flowsinto groupsG according to the time they arrived at the
{i : Rgnax(t) #+ R;-“ax} network such that groug>(¢) contains all flows arriving no
— . less thanr time slots ago at timeé, and groupg.(¢) contains
{i Ri(t) = R?mx(t)}‘ the flows arriving exact time slots ago at time (r < 7).

IN




Case 1: Assume thatG-(t — D)| > D?. We first consider

the following probability [1]

Pr (a flow € G (t) is selected at and R™*(t) +# Rf“ax) . 2
2

Note thatGz(t) can contain at mostXA™**D additional

flows compared taG-(t — D) since |G.| < KA™** for all

7 < 7. Following the analysis for the uniform tie-breaking in [3]

Appendix C, we can easily prove that

Pr (a flow € G- (t) is selected at and R™*(t) # R?lax) [4]

—0
(5]
as D goes to infinity.
Next, note that at most one short-lived flow can be com-
pletely transmitted in one time slot, $9-(¢) containing at [6]
leastD? — D flows at timet, which implies that

Pr (a flow ¢ G- (t) is selected at and R™™(t) # R;naX) -

max\D?—D
S (1 — Ds ) .

(8]
Therefore, we conclude that

[0
[10]

Pr (the selected flow at has Ry"™(t) # Rf“*")

=Pr (a flow G-(t) is selected at and R"™(t) # R?“”‘)
_ (11]
+Pr (a flow ¢ G-(t) is selected at and R}"**(t) # Rf“ax)

which converges to zero @3 goes to infinity.

Case 2: Assume thatG-(t — D)| < D?. In this case, we
search the groups starting from gro@p(t) and stop at group
7 if D*+ DKA™> > ST |G.(t)| > D?. Note that when
D is sufficiently large, such* exists andr* > D because
N > 2D? and|G,.| < KA™® for all 7 < 7. Considering a
certain flow: such that € U7__.G,(t), we have that

T=7%*

Pr (flow i is selected at and R (t) # R?’a")
e (i) 4 1)
<(1

max)D 4

— Ds €.

Thus, we can obtain that

Pr (a flow € UT_, .G, (t) is selected at and R™**(t) +# R?a")
<(D?* + DK \™®)e,
which converges to zero d3 goes to infinity. Further, similar
to the analysis in Case 1, we can obtain that whens
sufficiently large,

Pr (a flow ¢ UT_5'Gn(t) is selected at and R"™(t) # R?’a")

maX)D2

S(l_ps

)

which converges to zero as well.
Combining Case 1 and 2, we can conclude that the oldest-
first tie-breaking is a good tie-breaking rule. |
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