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Abstract— We consider multiuser scheduling in wireless net-
works with channel variations and flow-level dynamics. Recently,
it has been shown that the MaxWeight algorithm, which is
throughput-optimal in networks with a fixed number users, fails
to achieve the maximum throughput in the presence of flow-
level dynamics. In this paper, we propose a new algorithm,
called workload-based scheduling with learning, which is provably
throughput-optimal, requires no prior knowledge of channels and
user demands, and performs significantly better than previously
suggested algorithms.

I. I NTRODUCTION

Multiuser scheduling is one of the core challenges in
wireless communications. Due to channel fading and wire-
less interference, scheduling algorithms need to dynamically
allocate resources based on both the demands of the users and
the channel states to maximize network throughput. The cel-
ebrated MaxWeight algorithm developed in [2] for exploiting
channel variations works as follows. Consider a network with
a single base station andn users, and further assume that the
base station can transmit to only one user in each time slot.
The MaxWeight algorithm computes the product of the queue
length and current channel rate for each user, and chooses
to transmit to that user which has the largest product; ties
can be broken arbitrarily. The throughput-optimality property
of the MaxWeight algorithm was first established in [2], and
the results were later extended to more general channel and
arrival models in [3]–[5]. The MaxWeight algorithm should
be contrasted with other opportunistic scheduling such as
[6], [7] which exploit channel variations to allocate resources
fairly assuming continuously backlogged users, but which are
not throughput-optimal when the users are not continuously
backlogged.

While the results in [2]–[4] demonstrate the power of
MaxWeight-based algorithms, they were obtained under the
assumptions thatthe number of users in the network is fixed
and the traffic flow generated by each user is long-lived,
i.e., each user continually injects new bits into the network.
However, practical networks have flow-level dynamics: users
arrive to transmit data and leave the network after the data are
fully transmitted. In a recent paper [1], the authors show that
the MaxWeight algorithm is in factnot throughput optimal
in networks with flow-level dynamics by providing a clever
example showing the instability of the MaxWeight scheduling.
The intuition is as follows: if a long-lived flow does not

receive enough service, its backlog builds up, which forces
the MaxWeight scheduler to allocate more service to the
flow. This interaction between user backlogs and scheduling
guarantees the correctness of the resource allocation. However,
if a flow has only a finite number of bits, its backlog does
not build up over time and it is possible for the MaxWeight
to stop serving such a flow and thus, the flow may stay
in the network forever. Thus, in a network where finite-size
flows continue to arrive, the number of flows in the network
could increase to infinity. One may wonder why flow-level
instability is important since, in real networks, base stations
limit the number of simultaneously active flows in the network
by rejecting new flows when the number of existing flows
reaches a threshold. The reason is that, if a network model
without such upper limits is unstable in the sense that the
number of flows grows unbounded, then the corresponding
real network with an upper limit on the number of flows will
experience high flow blocking rates. This fact is demonstrated
in our simulations later.

In [1], the authors address this instability issue of
MaxWeight-based algorithms, and establish necessary and
sufficient conditions for the stability of networks with flow-
level dynamics. The authors also propose throughput-optimal
scheduling algorithms. However, as the authors mention in [1],
the proposed algorithms require prior knowledge of channel
distribution and traffic distribution, which is difficult and
sometimes impossible to obtain in practical systems, and
further, the performance of the proposed algorithms is also
not ideal.

Since flow arrivals and departures are common in reality, we
are interested in developing practical scheduling algorithms
that are throughput-optimalunder flow-level dynamics.We
consider a wireless system with a single base station and
multiple users (flows). The network contains both long-lived
flows, which keep injecting bits into the network, and short-
lived flows, which have a finite number of bits to transmit.
The main contributions of this paper include the following:

• We obtain the necessary conditions for flow-level stability
of networks with both long-lived flows and short-lived
flows. This generalizes the result in [1], where only short-
lived flows are considered.

• We propose a simple algorithm for networks with short-
lived flows only. Under this algorithm, each flow keeps
track of the best channel condition that it has seen so far.
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Each flow whose current channel condition is equal to the
best channel condition that it has seen during its lifetime
is eligible for transmission. It is shown that an algorithm
which uniformly and randomly chooses a flow from
this set of eligible flows for transmission is throughput-
optimal. Note that the algorithm is a purely opportunistic
algorithm in that it selects users for transmission when
they are in the best channel state that they have seen so
far, without considering their backlogs.

• Based on an optimization framework, we propose to
use the estimatedworkload, the number of time slots
required to transmit the remainder of a flow based on
the best channel condition seen by the flow so far, to
measure the backlog of short-lived flows. By comparing
this short-lived flow backlog to the queue lengths and
channel conditions of the long-lived flows, we develop a
new algorithm, named workload-based scheduling with
learning, which is throughput-optimal under flow-level
dynamics. The term ”learning” refers to the fact that the
algorithm learns the best channel condition for each short-
loved flow and attempts to transmit when the channel
condition is the best.

• We use simulations to evaluate the performance of the
proposed scheduling algorithm, and observe that the
workload-based scheduling with learning performs signif-
icantly better than the MaxWeight scheduling in various
settings.

The terminology of long-lived and short-lived flows above
has to be interpreted carefully in practical situations. Inprac-
tice, each flow has a finite size and thus, all flows eventually
will leave the system if they receive sufficient service. Thus,
all flows are short-lived flows in reality. Our results suggest
that transmitting to users who are individually in their best
estimated channel state so far is thus, throughput optimal.On
the other hand, it is also well known that real network traffic
consists of many flows with only a few packets and a few flows
with a huge number of packets. If one considers the time scales
required to serve the small-sized flows, the large-sized flows
will appear to be long-lived (i.e., persistent forever) in the
terminology above. Thus, if one is interested in performance
over short time-scales, an algorithm which considers flows
with a very large number of packets as being long-lived may
lead to better performance and hence, we consider the more
general model which consists of both short-lived flows long-
lived flows. Our simulations later confirm the fact that the
algorithm which treats some flows are being long-lived leads
to better performance although through-optimality does not
require such a model. In addition, long-lived flows partially
capture the scenario where all bits from a flow do not arrive
at the base station all at once. This fact is also exploited in
our simulation experiments.

II. BASIC MODEL

Network Model: We consider a discrete-time wireless
downlink network with a single base station and many flows
(users). The base station can serve only one flow at a time.

Traffic Model: The network consists of the following two
types of flows:

• Long-lived flows: Long-lived flows are traffic streams
that are always in the network and continually generate
bits to be transmitted.

• Short-lived flows: Short-lived flows are flows that have a
finite number of bits to transmit. A short-lived flow enters
the network at a certain time, and leaves the system after
all bits are transmitted.

We assume that the set of long-lived flows is fixed, and short-
lived flows arrive and depart. We letl be the index for long-
lived flows, L be the set of long-lived flows, andL be the
number of long-lived flows, i.e.,L = |L|. Furthermore, we let
Xl(t) be the number of new bits injected by long-lived flowl
in time slott, whereXl(t) is a discrete random variable with
finite support, and independently and identically distributed
(i.i.d.) across time slots. We also assumeE[Xl(t)] = xl and
Xl(t) ≤ Xmax for all l and t.

Similarly, we leti be the index for short-lived flows,I(t) be
the set of short-lived flows in the network at timet, andI(t)
be the number of short-lived flows at timet, i.e.,I(t) = |I(t)|.
We denote byfi the size (total number of bits) of short-lived
flow i, and assumefi ≤ Fmax for all i.

It is important to note that we allow different short-lived
flows to have different maximum link rates. A careful con-
sideration of our proofs will show the reader that the learning
algorithm is not necessary if all users have the same maximum
rate and that one can simply transmit to the user with the best
channel state if it is assumed that all users have the same
maximum rate. However, we do not believe that this is a very
realistic scenario since SNR variations will dictate different
maximum rates for different users.

Residual Size and Queue Length:For a short-lived flow
i, let Qi(t) which we call the residual size, denote the number
of bits still remaining in the system at timet. For a long-lived
flow l, let Ql(t) denote the number of bits stored at the queue
at the base station.

Channel Model: There is a wireless link between each flow
and the base station. Denote byRi(t) the state of the link
between short-lived flowi and the base station at timet (i.e.,
the maximum rate at which the base station can transmit to
short-lived flow i at time t), andRl(t) the state of the link
between long-lived flowl and the base station at timet. We
assume thatRi(t) and Rl(t) are discrete random variables
with finite support. DefineRmax

i andRmax
l to be the largest

values that these random variables can take, i.e.,P (Rj(t) >
Rmax

j ) = 0 for eachj ∈ L
⋃

(
⋃

t I(t)) . Further, assume that
there existpmax

s andRmax such that

Pr(Ri(t) = Rmax
i ) ≥ pmax

s ∀i, t

max {maxiR
max
i ,maxl R

max
l } ≤ Rmax.

The states of wireless links are assumed to be independent
across flows and time slots (but not necessarily identically
distributed across flows). The independence assumption across
time slots can be relaxed easily but at the cost of more
complicated proofs.



III. W ORKLOAD-BASED SCHEDULING WITH LEARNING

In this section, we introduce a new scheduling algorithm
called Workload-based Scheduling with Learning (WSL).
Workload-based Scheduling with Learning: For a short-
lived flow i, we define

R̃max
i (t) = max

max{t−D,bi}≤s≤t
Ri(s),

wherebi is the time short-lived flowi joins the network and
D > 0 is called the learning period. A key component of this
algorithm is to useRmax

i to evaluate the workload of short-
lived flows (the reason will be explained in a detail in Section
V). However,Rmax

i is in general unknown, so the scheduling
algorithm usesR̃max

i (t) as an estimate ofRmax
i .

During each time slot, the base station first checks the
following inequality:

α
∑

i∈I(t)

⌈

Qi(t)

R̃max
i (t)

⌉

> max
l∈L

Ql(t)Rl(t), (1)

whereα > 0.

• If inequality (1) holds, then the base station serves a short-
lived flow as follows: if at least one short-lived flow (say
flow i) satisfiesRi(t) ≥ Qi(t) or Ri(t) = R̃max

i (t), then
the base station selects such a flow for transmission (ties
are broken according to agood tie-breaking rule, which is
defined at the end of this algorithm); otherwise, the base
station picks an arbitrary short-lived flow to serve.

• If inequality (1) does not hold, then the base station serves
a long-lived flowl∗ such that

l∗ ∈ argmax
l∈L

Ql(t)Rl(t)

(ties are broken arbitrarily).

“Good” tie-breaking rule: Assume that the tie-breaking
rule is applied to pick a short-lived flow every time slot
(but the flow is served only ifα

∑

i∈I(t)

⌈

Qi(t)

R̃max

i
(t)

⌉

>

maxl∈L Ql(t)Rl(t)). We defineEmiss(t) to be the event that
the tie-breaking rule selects a short-lived flow withR̃max

i (t) 6=
Rmax

i . A tie-breaking rule is said to begood if the following
condition holds: Consider the WSL with the given tie-breaking
rule and learning periodD. Given anyǫmiss > 0, there exist
Nǫmiss

andDǫmiss
such that

Pr (Emiss(t)) ≤ ǫmiss

if D ≥ Dǫmiss
and Ws(t − D) ≥ Nǫmiss

.
�

Remark 1:While all WSL scheduling algorithms with good
tie-breaking rules are throughput optimal, their performances
in terms of other metrics could be different depending upon
the tie-breaking rules. We consider two tie-breaking rulesin
this paper:

• Uniform Tie-breaking: Among all short-lived flows
satisfyingRi(t) = R̃max

i (t) or Ri(t) ≥ Qi(t), the base-
station uniformly and randomly selects one to serve.

• Oldest-first Tie-breaking: Let βi denote the number of
time slots a short-lived flow has been in the network.
The base station keeps trackτi = min{τ̄ , βi} for every
short-lived flow, wherēτ is some fixed positive integer.
Among all short-lived flows satisfyingRi(t) = R̃max

i (t)
or Ri(t) ≥ Qi(t), the tie-breaking rule selects the one
with the largestτi, and the ties are broken uniformly and
randomly.1

The “goodness” of these two tie-breaking rules are proved in
Appendix C and D, and the impact of the tie-breaking rules
on performance is studied in Section VI using simulations.

Remark 2:Theα in inequality (1) is a parameter balancing
the performance of long-lived flows and short-lived flows. A
largeα will lead to a small number of short-lived flows but
large queue-lengths of long-lived flows, and vice versa.

Remark 3: In Theorem 3, we will prove that WSL is
throughput optimal whenD is sufficiently large. From purely
through-optimality considerations, it is then natural to choose
D = ∞. However, in practical systems, if we chooseD too
large, such as∞, then it is possible that a flow may stay in
the system for a very long time if its best channel condition
occurs extremely rarely. Thus, it is perhaps best to choose a
finite D to tradeoff between performance and throughput.

Remark 4:If all flows are short-lived, then the algorithm
simplifies as follows: If at least one short-lived flow (say flow
i) satisfiesRi(t) ≥ Qi(t) or Ri(t) = R̃max

i (t), then the
base station uniformly and randomly selects such a flow for
transmission (ties are broken arbitrarily); otherwise, the base
station picks an arbitrary short-lived flow to serve. Simply
stated, the algorithm serves one of the flows which can be
completely transmitted or sees its best channel state, where the
best channel state is an estimate based on past observations.
If no such flow exists, any flow can be served. We do not
separately prove the throughput optimality of this scenario
since it is a special case of the scenario considered here. But
it is useful to note that, in the case of short-lived flows only,
the algorithm does not consider backlogs at all in making
scheduling decisions.

We will prove that WSL (with anyα > 0) is throughput-
optimal in the following sections, i.e., the scheduling policy
can support any set of traffic flows that are supportable by
any other algorithm. In the next section, we first present the
necessary conditions for the stability, which also define the
network throughput region.

IV. N ECESSARYCONDITIONS FORSTABILITY

In this section, we establish the necessary conditions for
the stability of networks with flow-level dynamics. First, we
introduce the following definitions and notations:
• We classify the short-lived flows into different classes.
Class-k is associated with random variableŝRk and F̂k.

2

1We set a upper bound̄τ on β for technical reasons that facilitate the
throughput-optimality proof. Sincēτ can be arbitrarily large, we conjecture
that this upper bound is only for analysis purpose, and not required in practical
systems.

2We useˆ to indicate that the notation is associated with a class of short-
lived flows instead of an individual short-lived flow.



A short-lived flow i belongs to classk if Ri(t) has the
same distribution aŝRk and the size of flowi (fi) has the
same distribution aŝFk. We let Λk(t) denote the number
of class-k flows joining the network at timet, whereΛk(t)
are i.i.d. across time slots andE[Λk(t)] = λk. Denote by
K the set of distinct classes. We assume thatK is finite,
|K| = K, andΛk[t] ≤ λmax for all t andk ∈ K.

• Let c denote anL-dimensional vector describing the state
of the channels of the long-lived flows. In statec, Rc,l is
the service rate that long-lived flowl can receive if it is
scheduled. We denote byC the set of all possible states.

• Let C(t) denote the state of the long-lived flows at time
t, andπc denote the probability thatC(t) is in statec.

• Let pc,l be the probability that the base station serves flow
l when the network is in statec. Clearly, for anyc, we have

∑

l∈L

pc,l ≤ 1.

Note that the sum could be less than1 if the base station
schedules a short-lived flow in this state.

• Let µc,s be the probability that the base station serves a
short-lived flow when the network is in statec.

• Let Θk,β(t) denote the number of short-lived flows that
belong to class-k and have residual sizeQ(t) = β. Note
that β can only take on a finite number of values.
Theorem 1:Consider traffic parameters{xl} and{λk}, and

suppose that there exists a scheduling policy guaranteeing

lim
t→∞

E





∑

l∈L

Ql(t) +
∑

k∈K

Fmax

∑

β=1

Θk,β(t)



 < ∞.

Then there existpc,l andµc,s such that the following inequal-
ities hold:

∑

l∈L

pc,l ≤ 1 ∀c ∈ C (2)

xl ≤
∑

c∈C

πcpc,lRc,l ∀l ∈ L (3)

∑

k∈K

λkE

[⌈

F̂k

R̂max
k

⌉]

≤
∑

c∈C

µc,sπc. (4)

(

∑

l∈L

pc,l

)

+ µc,s ≤ 1 ∀c ∈ C. (5)

Proof: Note that
∑

c πcpc,lRc,l and
∑

c∈C µc,sπc are the
mean service rates allocated to long-lived flowl and short-
lived flows respectively, so inequality (3) and (4) indicatethat
the mean service rates should be no less than the mean arrival
rates.

Next, we note thatλkE
[⌈

F̂k

R̂max

k

⌉]

is the expected number of

time slots required to transmit short-lived flows belongingto
class-k assuming the flows are always served with rateR̂max

k .
Inequality (5) states that the overall time used to serve long-
lived and short-lived flows should be no more than the time
available. The complete proof is based on the Strict Separation
Theorem and is along the lines of a similar proof in [4].

V. THROUGHPUTOPTIMALITY OF WSL

First, we provide some intuition into how one can derive
the WSL algorithm from optimization decomposition consid-
erations. Then, we will present our main throughput optimality
results. Given traffic parameters{xl} and{λk}, the necessary
conditions for the supportability of the traffic is equivalent to
the feasibility of the following constraints:

xl ≤
∑

c∈C πcpc,lRc,l ∀l
∑

k∈K λkE
[⌈

F̂k

R̂max

k

⌉]

≤
∑

c∈C µc,sπc (6)
∑

l∈L pc,l + µc,s ≤ 1 ∀c.

For convenience, we view the feasibility problem as an opti-
mization problem with the objectivemaxA, whereA is some
constant. While we have not explicitly stated that thex’s and
µ’s are non-negative, this is assumed throughout.

Partially augmenting the objective using Lagrange multipli-
ers, we get

maxA−
∑

l∈L ql(xl −
∑

c πcpc,lRc,l)−

qs

(

∑

k∈K λkE
[⌈

F̂k

R̂max

k

⌉]

−
∑

c∈C µc,sπc

)

s.t.
∑

l∈L pc,l + µc,s ≤ 1 ∀c.

For the moment, let us assume Lagrange multipliersql and
qs are given. Then the maximization problem above can be
decomposed into a collection of optimization problems, one
for eachc :

max
pc,µc,s

∑

l∈L

qlRc,lpc,l + qsµc,s

s.t.
∑

l∈L pc,l + µc,s ≤ 1.

It is easy to verify that one optimal solution to the optimization
problem above is:

• if qs > maxl∈L qlRc,l, thenµc,s = 1 andpc,l = 0(∀l);
• otherwise,µc,s = 0, and pc,l∗ = 1 for some l∗ ∈
argmax qlRc,l andpc,l = 0 for other l.

The complementary slackness conditions give

ql

(

xl −
∑

c∈C

πcpc,lRc,l

)

= 0.

Since xl is the mean arrival rate of long-lived flowl and
∑

c∈C πcpc,lRc,l is the mean service rate, the condition onql
says that if the mean arrival rate is less than the mean service
rate,ql is equal to zero. Along with the non-negativity condi-
tion on ql, this suggests that perhapsql behaves likes a queue
with these arrival and service rates. Indeed, it turns out that
the mean of the queue lengths are proportional to Lagrange
multipliers (see the surveys in [8]–[10]). For long-lived flow l,
we can treat the queue-lengthQl(t) as a time-varying estimate
of Lagrange multiplierql. Similarly qs can be associated with
a queue whose arrival rate is

∑

k∈K λkE
[⌈

F̂k

R̂max

k

⌉]

, which is

the mean rate at which workload arrives where workload is
measured by the number of slots needed to serve a short-lived
flow if it is served when its channel condition is the best. The



service rate is
∑

c∈C µc,sπc which is the rate at which the
workload can potentially decrease when a short-lived flow is
picked for scheduling by the base station. Thus, the workload
in the system can serve as a dynamic estimate ofqs.

Letting

Ws(t) =
∑

i∈I(t)

⌈

Qi(t)

Rmax
i

⌉

andαWs(t) (α > 0) be an estimate ofqs, the observations
above suggest the following workload-based scheduling algo-
rithm if Rmax

i are known.
Workload-based Scheduling (WS):During each time slot,
the base station checks the following inequality:

αWs(t) > max
l∈L

Ql(t)Rl(t). (7)

• If inequality (7) holds, then the base station serves a short-
lived flow as follows: if at least one short-lived flow (say
flow i) satisfiesRi(t) ≥ Qi(t) or Ri(t) = Rmax

i , then
such a flow is selected for transmission (ties are broken
arbitrarily); otherwise, the base station picks an arbitrary
short-lived flow to serve.

• If inequality (7) does not hold, then the base station serves
a long-lived flow l∗ such thatl∗ ∈ argmaxl∈L Ql(t)Rl(t)
(ties are broken arbitrarily).

• The factorα can be obtained from the optimization for-
mulation by multiplying constraint (6) byα on both sides

�

However, this algorithm which was directly derived from
dual decomposition considerations is not implementable since
Rmax

i ’s are unknown. So WSL uses̃Rmax
i (t) to approximate

Rmax
i . Note that an inaccurate estimate ofRmax

i not only
affects the base station’s decision on whetherRi(t) = Rmax

i ,

but also on its computation of
⌈

Qi(t)
Rmax

i

⌉

. However, it is not
difficult to see that the error in the estimate of the total
workload is a small fraction of the total workload when the
total workload is large: when the workload is very large, the
total number of short-lived flows is large since their file sizes
are bounded. Since the arrival rate of short-lived flows is also
bounded, this further implies that a large number of short-
lived flows must have arrived a long time ago which means
that with high probability, their estimate of their best channel
condition must be correct.

Next we will prove that both WS and WSL can stabilize any
traffic Xl(t) andΛk(t) such that(1+ǫ)Xl(t) and(1+ǫ)Λk(t)
are supportable,i.e., satisfying the conditions presented in
Theorem 1. Even though WS is not practical, we study it
first since the proof of its throughput optimality is easier and
provides insight into the proof of throughput-optimality of
WSL.

Let

M(t) = ({Ql(t)}l∈L, {Θk,β(t)}k∈K,1≤β≤Fmax) .

Since the base station makes decisions onM(t) andR(t) =
{{Ri(t)}i∈I(t), {Rl(t)}l∈L} under WS. It is easy to verify
that M(t) is a finite-dimensionalMarkov chain under WS.

Assume thatΛk andF̂k are such that the Markov chainM is
irreducible andaperiodic.

Theorem 2:Given any trafficXl(t) and Λk(t) such that
(1 + ǫ)Xl(t) and (1 + ǫ)Λk(t) are supportable, the Markov
chainM(t) is positive-recurrentunder WS, which implies that
limt→∞ E[M(t)] < ∞ under WS.

Proof: We consider the following Lyapunov function:

V (t) = α (Ws(t))
2
+
∑

l∈L

(Ql(t))
2, (8)

and prove that

E[V (t+ 1)− V (t)|M(t)] ≤ Ud1M(t)∈Υ − U1M(t) 6∈Υ,

for someUd > 0, U > 0, and a finite setΥ. Positive recur-
rence ofM then follows from Foster’s Criterion for Markov
chains [11]. The detailed proof is presented in Appendix A.

We next study WSL, whereRmax
i is estimated from the

history. We defineΘk,β,r(t) to be the number of short-lived
flows that belong to class-k, have a residual size ofβ, and
haveR̃max

i (t) = r. Furthermore, we define

M̃(n) =






{Ql(t)}l∈L, {Θk,β,r(t)} k∈K

1≤β≤Fmax

1≤r≤R̂max

k







(n−1)T+1≤t≤nT

from someT ≥ D. It is easy to see that̃M(n) is a finite-
dimensionalMarkov chain under WSL.3

Theorem 3:Consider trafficXl(t) andΛk(t) such that(1+
ǫ)Xl(t) and(1 + ǫ)Λk(t) are supportable. Given WSL with a
good tie-breaking rule, there existsDǫ such that the Markov
chainM̃(n) is positive-recurrentunder the WSL with learning
periodD ≥ Dǫ and the given tie-breaking rule.

Proof: The proof of this theorem is built upon the
following two facts:

• When the number of short-lived flows is large, the majority
of short-lived flows must have been in a network for a
long time and have obtained the correct estimate of the best
channel condition, which implies that

∑

i∈I(t)

⌈

Qi(t)

Rmax
i

⌉

≈
∑

i∈I(t)

⌈

Qi(t)

R̃max
i (t)

⌉

.

• When the number of short-lived flows is large, the short-
lived flow selected by the base station (say flowi) has a
high probability to satisfyRi(t) = Rmax

i or Ri(t) ≥ Qi(t).

From these two facts, we can prove that with a high
probability, the scheduling decisions of WSL are the same
as those of WS, which leads to the throughput optimality of
WSL. The detailed proof is presented in Appendix B.

3This Markov chain is well-defined under the uniform tie-breaking rule.
For other good tie-breaking rules, we may need to first slightly change the
definition of M̃(n) to include the information required for tie-breaking, and
then use the analysis in Appendix B to prove the positive recurrence.



VI. SIMULATIONS

In this section, we use simulations to evaluate the perfor-
mance of different variants of WSL and compare it to other
scheduling policies. There are three types of flows used in the
simulations:

• S-flow: An S-flow has a finite size, generated from a
truncated exponential distribution with mean value30 and
maximum value150. Non-integer values are rounded to
integers.

• M-flow: An M-flow keeps injecting bits into the network
for 10, 000 time slots and leaves the network. The number
of bits generated at each time slot follows a Poisson
distribution with mean value1.

• L-flow: An L-flow keeps injecting bits into the network
and never leaves the network. The number of bits generated
at each time slot follows a Poisson distribution with mean
value1.

Here S-flows represent short-lived flows that have finite sizes
and whose bits arrive all at once; L-flows represent long-
lived flows that continuously inject bits and never leave the
network; and M-flows represent flows of finite size but whose
arrival rate is controlled at their sources so that they od not
arrive instantaneously into the network. Our simulation will
demonstrate the importance of modeling very large, but finite-
sized flows as long-lived flows.

We assume that the channel between each user and the base
station is distributed according to one of the following three
distributions:

• G-link: A G-link has five possible link rates
{10, 20, 30, 40, 50}, and each of the states happens with
probability20%.

• P-link: A P-link has five possible link rates
{5, 10, 15, 20, 25}, and each of the states happens
with probability20%.

• R-link: An R-link has six possible link rates
{10, 20, 30, 40, 100}, and the probabilities associated
with these link states are{0.5, 0.2, 0.2, 0.09, 0.01}.

The G, P and R stand for Good, Poor and Rare, respectively.
We include these three different distributions to model the
SNR variations among the users, where G-links represent links
with high SNR (e.g., those users close to the base station), P-
links represent links with low SNR (e.g., those users far away
from the base station), and R-links represent links whose best
state happens rarely. The R-links will be used to study the
impact of learning periodD on the network performance.

We name the WSL with the uniform tie-breaking rule
WSLU, and the WSL with the oldest-first tie-breaking rule
WSLO. In the following simulations, we will first demonstrate
that the WSLU performs significantly better than previously
suggested algorithms, and then show that the performance
can be further improved by choosing a good tie-breaking
policy (e.g., WSLO). We setα to be 50 in all the following
simulations.

Simulation I: Short-lived Flow or Long-lived Flow?

We first use the simulation to demonstrate the importance
of considering a flow with a large number of packets as being
long-lived. We consider a network consisting of multiple S-
flows and three M-flows, where the arrival of S-flows follows a
truncated Poisson process with maximum value100 and mean
valueλ. All the links are assumed to be G-links. We evaluate
the following two schemes:

• Scheme-1:Both S-flows and M-flows are considered to be
short-lived flows.

• Scheme-2: An M-flow is considered to be long-lived
before its last packet arrives, and to be short-lived after that.

The performance of these two schemes are shown in Figure
1, where WS with Uniform Tie-breaking Rule is used as
the scheduling algorithm. We can see that the performances
are substantially different (note that the network is stable
under both schemes). The number of queued bits of M-
flows under Scheme-1 is larger than that under Scheme-2 by
two orders of magnitude.This is because even an M-flow
contains a huge number of bits (10, 000 on average), it can
be served only when the link rate is50 under Scheme-1.
This simulation suggests that when the performance we are
interested is at a small scale (e.g. acceptable queue-length
being≤ 100) compared with the size of the flow (e.g.,104 in
this simulation), the flow should be viewed a long-lived flow
for performance purpose.

Simulation II: The Impact of Learning PeriodD

In this simulation, we investigate the impact ofD on the
performance of WSLU. Recall that it is nature to choose
D = ∞ for purely throughput-optimality considerations, but
the disadvantage is that a flow may stay in the network for
a very long time if the best link state occurs very rarely.
We consider a network consisting of S-flows, which arrive
according to a truncated Poisson process with maximum value
100 and meanλ, and three L-flows. All links are assumed to
be R-links. Figure 2 depicts the mean and standard deviation
of the file-transfer delays withD = 16 andD = ∞. As we
expected, the standard deviation under WSLU withD = ∞ is
significantly larger than that under WSLU withD = 16. This
occurs because the best link rate100 occurs with a probability
0.01. This simulation confirms that in practical systems, we
may want to choose a finiteD to get desired performance. In
the following simulations, we chooseD = 16.

In the following simulations, we chooseD = 16. In the
introduction, we have pointed out that the MaxWeight is not
throughput optimal under flow-level dynamics because the
backlog of a short-lived queue does not build up even when
it has not being served for a while. To overcome this, one
could try to use the delay of the head-of-line packet, instead of
queue-length, as the weight because the head-of-line delaywill
keep increasing if no service is received. In the case of long-
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Fig. 1. Scheme-1 treats M-flows as short-lived flows, and Scheme-2 treats
M-flows as long-lived flows.

lived flows only, this algorithm is known to be throughput-
optimal [4]. We will show that this Delay-based scheduling
does not solve the instability problem when there are short-
lived flows.

Delay-based Scheduling:At each time slot, the base station
selects a flowi such thati ∈ argmaxi Di(t)Ri(t), where
Di(t) is the delay experienced so far by the head-of-line packet
of flow i.

�

Simulation III: Performance comparison of various algorithms

We first consider the case where all flows are S-flows, which
arrive according to a truncated Poisson process with maximum
value 100 and meanλ. An S-flow is assigned with a G-link
or a P-link equally likely.

Figure 3 shows the average file-transfer delay and average
number of S-flows under different values ofλ. We can see
that WSLU performs significantly better than the MaxWeight
and Delay-based algorithms. Specifically, under MaxWeight
and Delay-based algorithms, both the number of S-flows and
file-transfer delay explode whenλ ≥ 0.102. WSLU, on the
other hand, performs well even whenλ = 0.12.

Next, we consider the same scenario with three L-flows in
the network. Two of the L-flows have G-links and one has a
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Fig. 2. The performance of WSLU withD = 16 andD = ∞

P-link. Figure 4 shows the number of short-lived flows and
file-transfer delay under different values ofλ. We can see that
the MaxWeight becomes unstable even whenthe arrival rate
of S-flows is very small.This is because the MaxWeight stops
serving S-flows when the backlogs of F-flows are large, so S-
flows stay in the network forever. The delay-based scheduling
performs better than the MaxWeight, but significantly worse
than WSLU.

Simulation IV: Blocking probability of various algorithms

While our theory assumes that the number of flows in
the network can be infinite, in reality, base stations limit the
number of simultaneously active flows, and reject new flows
when the number of existing flows above some threshold. In
this simulation, we assume that the base station can support
at most20 S-flows. A new S-flow will be blocked if20 S-
flows are already in the network. In this setting, the number
of flows in the network is finite, so we compute the blocking
probability, i.e., the fraction of S-flows rejected by the base
station.

We consider the case where no long-lived flow is in the
network and the case where both short-lived and long-lived
flows are present in the network. The flows and channels
are selected as in Simulation III. The results are shown in
Figure 5 and 6. We can see that the blocking probability under
WSLU is substantially smaller than that under the MaxWeight
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Fig. 3. The performance of the delay-based, MaxWeight, and WSLU
algorithms in a network without long-lived flows

or delay-based scheduling. Thus, this simulation demonstrates
that instability under the assumption when the number of flows
is allowed to unbounded implies high blocking probabilities
for the practical scenario when the base station limits the
number of flows in the network.

Simulation V: WSLU versus WSLO

In this simulation, we study the impact of tie-breaking rules
on performance. We compare the performance of the WSLU
and WSLO. We first study the case where the base station
does not limit the number of simultaneously active flows and
there is no long-lived flow in the network. The simulation
setting is the same as that in Simulation III. Figure 7 shows
the average file-transfer delay and average number of S-flows
under different values ofλ. We can see that the WSLO reduces
the file-transfer delay and number of S-flows by nearly75%
whenλ = 0.13, which indicates the importance of selecting a
good tie-breaking rule for improving the network performance.

Next, we study the case where the base station does not
limit the number of simultaneously active flows and there are
three L-flows in the network. Figure 8 shows the number of
short-lived flows and file-transfer delay under different values
of λ. We can see again that the WSLO algorithm has a much
better performance than the WSLU, especially whenλ is large.
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Fig. 4. The performance of the delay-based, MaxWeight, and WSLU
algorithms in a network with both S-flows and L-flows

Finally we consider the situation in which the base station
can support at most20 S-flows. A new S-flow will be blocked
if 20 S-flows are already in the network. The simulation setting
is the same as that in Simulation IV. We calculate the blocking
probabilities, and the results are shown in Figure 9 and 10. We
can see that the blocking probability under the WSLO is much
smaller than that under the WSLU policy whenλ is large.

VII. C ONCLUSIONS

In this paper, we studied multiuser scheduling in networks
with flow-level dynamics. We first obtained necessary condi-
tions for flow-level stability of networks with both long-lived
flows and short-lived flows. Then based on an optimization
framework, we proposed the workload-based scheduling with
learning that is throughput-optimal under flow-level dynamics
and requires no prior knowledge about channels and traffic. In
the simulations, we evaluated the performance of the proposed
scheduling algorithms, and demonstrated that the proposed
algorithm performs significantly better than the MaxWeight
scheduling in various settings.
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Fig. 5. The blocking probabilities of the delay-based, MaxWeight, and WSLU
in a network without L-flow
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Fig. 6. The blocking probabilities of the delay-based, MaxWeight, and WSLU
in a network with L-flow

APPENDIX A: PROOF OFTHEOREM 2

Recall that

Ws(t) =
∑

i∈I(t)

⌈

Qi(t)

Rmax
i

⌉

.

We define

As(t) =
∑

k∈K

∑

i∈Λk(t)

⌈

fi

R̂max
k

⌉

,

which is the amount of new workload (from short-lived flows)
injected in the network at timet, andµs(t) to be the decrease
of the workload at timet, i.e., µs(t) = 1 if the workload of
short-lived flows is reduced by one andµs(t) = 0 otherwise.
Based on the notations above, the evolution of short-lived
flows can be described as:

Ws(t+ 1) = Ws(t) +As(t)− µs(t).

Further, the evolution ofQl(t) can be described as

Ql(t+ 1) = Ql(t) +Xl(t)− µl(t) + ul(t),

whereµl(t) is the decrease ofQl(t) due to the service long-
lived flow l receives at timet, andul(t) is the unused service
due to the lack of data in the queue.
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Fig. 7. The performance of the WSLU and WSLO algorithms in a network
without L-flows

We consider the following Lyapunov function

V (t) = α (Ws(t))
2
+
∑

l∈L

(Ql(t))
2. (9)

We will prove that the drift of the Lyapunov function satisfies

E[V (t+ 1)− V (t)|M(t)] ≤ Ud1M(t)∈Υ − U1M(t) 6∈Υ,

for someUd > 0, U > 0, and a finite setΥ (the values of
these parameters will be defined in the following analysis).
Positive recurrence ofM then follows from Foster’s Criterion
for Markov chains [11].

First, since the number of arrivals, the sizes of short-lived
flows and channel rates are all bounded, it can be verified that
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Fig. 8. The performance of the WSLU and WSLO algorithms in a network
with both S-flows and L-flows

there existsU, independent ofM(t), such that

E[V (t+ 1)− V (t)|M(t)]

=E
[

α (Ws(t+ 1))
2 − α (Ws(t))

2
+

∑

l∈L

(Ql(t+ 1))2 −
∑

l∈L

(Ql(t))
2

∣

∣

∣

∣

∣

M(t)

]

≤U + 2αWs(t)E [As(t)− µs(t)|M(t)] +

2
∑

l∈L

Ql(t)E [Xl(t)− µl(t)|M(t)]

≤U + 2αWs(t)

((

∑

k∈K

λkE

[⌈

F̂k

R̂max
k

⌉])

− E [µs(t)|M(t)]
)

+ 2
∑

l∈L

Ql(t) (xl − E [µl(t)|M(t)]) .

Recall that we assume that(1 + ǫ)E[Xl] and (1 + ǫ)E[Λk]
satisfy the supportability conditions of Theorem 1. By adding
and subtracting correspondingpc,lRc,l and µc,s, we obtain
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Fig. 9. The blocking probabilities of the WSLU and WSLO in a network
without L-flows
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Fig. 10. The blocking probabilities of the WSLU and WSLO in a network
with L-flows

that

E[V (t+ 1)− V (t)|M(t)]− U

≤ 2αWs(t)E [E [µc,s − µs(t)|C(t) = c]|M(t)]

+2
∑

l∈L

Ql(t)E [E [pc,lRc,l − µl(t)|C(t) = c]|M(t)]

−2ǫαWs(t)λ̄− 2ǫ
∑

l∈L

Ql(t)xl,

where

λ̄ =

(

∑

k∈K

λkE

[⌈

F̂k

R̂max
k

⌉])

.

Next we assumeC(t) = c and analyze the following
quantity

αWs(t) (µc,s − µs(t)) +
∑

l∈L

Ql(t) (pc,lRc,l − µl(t)) . (10)

We have the following facts:

• Fact 1: Assume that there exists a short-lived flowi such
that Ri(t) = Rmax

i or Ri(t) ≥ Qi(t). If a short-lived
flow is selected to be served, then the workload of the



selected flow is reduced by one andµs(t) = 1. If long-
lived flow l is selected, the rate flowl receives isRc,l.
Thus, we have that

αWs(t)µs(t) +
∑

l∈L

Ql(t)µl(t)

= max {αWs(t),maxl Ql(t)Rc,l}

≥ αWs(t)µc,s +
∑

l∈L

Ql(t)pc,lRc,l,

where the last inequality holds because
∑

l pc,l + µc,s ≤
1. Therefore, we have

(10) ≤ 0

in this case.
• Fact 2: Assume that there does not exist a short-lived

flow i such thatRi(t) = Rmax
i or Ri(t) ≥ Qi(t). In this

case, we have

(10) ≤ αWs(t) + max
l∈L

Ql(t)Rc,l

≤ αWs(t) +Rmaxmax
l∈L

Ql(t).

�

Now we define a setΥ such that

Υ = {M : Ws ≤ UW andQl ≤ UQ ∀l} ,

whereUW is a positive integer satisfying that

(1− pmax
s )

UW
Fmax ≤ ǫ

2 min
{

λ̄, minl∈L xl

Rmax

}

, ǫ1 (11)

UW ≥ 2U
ǫαλ̄

, (12)

andUQ is a positive integer satisfying

UQ ≥
2αUW + U

ǫminl∈L xl

. (13)

We next compute the drift of the Lyapunov function accord-
ing to the value ofM(t).

• Case I: AssumeM(t) ∈ Υ. According to the definition
of Υ, we have

E[V (t+ 1)− V (t)|M(t)] ≤ U + 2αUW + 2RmaxLUQ.

• Case II: AssumeWs(t) > UW . Since the size of a short-
lived flow is upper bounded byFmax, Ws(t) > UW

implies that at least UW

Fmax short-lived flows are in the
network at timet. Define eventS(t) such thatRi(t) =
Rmax

i andRi(t) ≥ Qi(t) do not hold for any short-lived
flow i.
Recall that

min
i

Pr(Ri(t) = Rmax
i ) ≥ pmax

s .

Given at least UW

Fmax short-lived flows are in the network,
we have that

Pr(1S(t) = 1) ≤ (1− pmax
s )

UW
Fmax ≤ ǫ1.

According to facts 1 and 2,(10) is positive only ifS(t)
occurs and the value of(10) is bounded byαWs(t) +

Rmaxmaxl∈L Ql(t). Therefore, we can conclude that in
this case (Case II),

E[V (t+ 1)− V (t)|M(t)]

≤ U + 2ǫ1

(

αWs(t) +Rmaxmax
l∈L

Ql(t)

)

−2ǫαWs(t)λ̄ − 2ǫ
∑

l∈L

Ql(t)xl (14)

≤ U − ǫαWs(t)λ̄ − ǫ
∑

l∈L

Ql(t)xl

≤ −U, (15)

where inequality (14) holds due to the definition ofǫ1
(11), and inequality (15) holds due to inequality (12).

• Case III: Assume thatWs(t) ≤ UW andQl(t) > UQ

for somel. In this case, if a long-lived flow is selected
for a givenc, we have

(10) ≤ αWs(t)µc,s ≤ αWs(t).

Otherwise, if a short-lived flow is selected, it means for
the givenc, we havemaxl Ql(t)Rc,l ≤ αWs(t), and

(10) ≤ 2αWs(t).

Therefore, we can conclude that in this case,

E[V (t+ 1)− V (t)|M(t)]

≤U + 4αWs(t)− 2ǫαWs(t)λ̄− 2ǫ
∑

l∈L

Ql(t)xl (16)

≤U + 4αUW − 2ǫαWs(t)λ̄− 2ǫ
∑

l∈L

Ql(t)xl

≤− U, (17)

where the last inequality yields from the definition ofUQ

(13).

From the analysis above, we can conclude that

E[V (t+ 1)− V (t)|M(t)] ≤ Ud1M(t)∈Υ − U1M(t) 6∈Υ,

whereUd = U + 2αUW + 2RmaxLUQ andΥ is a set with
a finite number of elements. Invoking Foster’s criterion, the
Markov chain M(t) is positive recurrent and the theorem
holds.

APPENDIX B: PROOF OFTHEOREM 3

Consider the network that is operated under WSL, and
defineH(t) to be

H(t) ,
{

Ql(t), Rl(t), Qi(t), Ri(t), R̃
max
i (t)

}

.

Now givenH(t), we define the following notations:

• Defineµ2;l(t) = Rl(t) if flow l is selected by WSL, and
µ2;l(t) = 0 otherwise.

• Defineµ2;i(t) = 1 if flow i is selected by WSL and the
workload of flowi can be reduced by one, andµ2;i(t) = 0
otherwise.

• Defineµ1;l(t) = Rl(t) if flow l is selected by WS, and
µ1;l(t) = 0 otherwise.



• Defineµ1;i(t) = 1 if flow i is selected by WS and the
workload of flowi can be reduced by one, andµ1;i(t) = 0
otherwise.

We remark thatµ2;j(t) is the action selected by the base station
at timet under WSL andµ1;j(t) is the action selected by the
base station at timet under WS, assuming the same history
H(t).

We define the Lyapunov function to be

V (n) = α (Ws(nT ))
2 +

∑

l∈L

(Ql(nT ))
2. (18)

First, it is easy to verify that there existsU1 independent of
M̃(n) such that

E[V (n+ 1)− V (n)|M̃(n)]

<U1 + 2αE



Ws(nT )

(n+1)T−1
∑

t=nT

(As(t)− µ2;s(t))

∣

∣

∣

∣

∣

∣

M̃(n)





+
∑

l∈L

2E



Ql(nT )

(n+1)T−1
∑

t=nT

(Xl(t)− µ2;l(t))

∣

∣

∣

∣

∣

∣

M̃(n)



 .

Dividing the time into two segments[nT, nT + D − 1] and
[nT +D, (n+ 1)T − 1], we obtain

E[V (n+ 1)− V (n)|M̃(n)]

<U1 + 2αWs(nT )λ̄D + 2
∑

l∈L

Ql(nT )xlD

+ 2αE



Ws(nT )

(n+1)T−1
∑

t=nT+D

(As(t)− µ2;s(t))

∣

∣

∣

∣

∣

∣

M̃(n)





+
∑

l∈L

2E



Ql(nT )

(n+1)T−1
∑

t=nT+D

(Xl(t)− µ2;l(t))

∣

∣

∣

∣

∣

∣

M̃(n)



 .

Note that|Ql(t1)−Ql(t2)| and|Wk(t1)−Wk(t2)| are both
bounded by some constants independent ofM̃(n), so there
existsŨ such that

E[V (n+ 1)− V (n)|M̃(n)]

<Ũ + 2αWs(nT )λ̄D + 2
∑

l∈L

Ql(nT )xlD

+ 2E



α

(n+1)T−1
∑

t=nT+D

Ws(t) (As(t)− µ2;s(t))

∣

∣

∣

∣

∣

∣

M̃(n)





+
∑

l∈L

2E





(n+1)T−1
∑

t=nT+D

Ql(t) (Xl(t)− µ2;l(t))

∣

∣

∣

∣

∣

∣

M̃(n)



 .

Now, by adding and subtractingµ1;·(t), we obtain

E[V (n+ 1)− V (n)|M̃(n)]

≤Ũ + 2αWs(nT )λ̄D + 2
∑

l∈L

Ql(nT )xlD +

(n+1)T−1
∑

t=nT+D

Drift(t),

where

Drift(t)

=2E

[

αWs(t)As(t) +
∑

l∈L

Ql(t)Xl(t)

∣

∣

∣

∣

∣

M̃(n)

]

(19)

− 2E[αWs(t)µ1;s(t) +
∑

l∈L

Ql(t)µ1;l(t)|M̃(n)] (20)

+
∑

l∈L

2E[Ql(t) (µ1;l(t)− µ2;l(t)) |M̃(n)] (21)

+ 2E
[

αWs(t) (µ1;s(t)− µ2;s(t)) |M̃(n)
]

. (22)

Note that (21)+(22) is the difference between WS and WSL.
In the following analysis, we will prove that this difference is
small compared to the absolute value of (19)+(20).

We define

Diff (t) =αWs(t) (µ1;s(t)− µ2;s(t))

+
∑

l∈L

Ql(t) (µ1;l(t)− µ2;l(t)) ,

and compute its value in three different situations:

• Situ-A: Consider the situation in whichαW̃s(t) ≤
maxl∈L Ql(t)Rl(t). We note thatW̃s(t) ≥ Ws(t) since
R̃max

i (t) ≤ Rmax
i for all t and i. Therefore, given

αW̃s(t) ≤
∑

l∈L Ql(t), both WS and WSL will select
a long-lived flow. In this case, we can conclude that

µ1;l(t) = µ2;l(t) andµ1;s(t) = µ2;s(t) = 0,

and

Diff (t) = 0

• Situ-B: Consider the situation in whichαWs(t) >
maxl∈L Ql(t)Rl(t). In this case, both WS and WSL will
select a short-lived flow, which implies that

µ1;l(t) = µ2;l(t) = 0,

and

Diff (t) =αWs(t) (µ1;s(t)− µ2;s(t))

≤ αWs(t) (1− µ2;s(t)) .

• Situ-C: Consider the situation in whichαW̃s(t) >
maxl∈L Ql(t)Rl(t) ≥ αWs(t). In this case, WS will
select a long-lived flow and WSL will select a short-lived
flow. We hence have

µ1;l(t) > 0 andµ1;s(t) = µ2;l(t) = 0,

and

Diff (t) = max
l∈L

Ql(t)Rl(t)− αWs(t)µ2;s(t)

≤ αW̃s(t)− αWs(t)µ2;s(t)

�



According to the analysis above, we have that

E[Diff (t)|M̃(n)]

≤E
[

αWs(t)|Situ-B, µ2;s = 0, M̃(n)
]

×

Pr
(

Situ-B, µ2;s = 0|M̃(n)
)

+E
[

αW̃s(t)|Situ-C, µ2;s = 0, M̃(n)
]

×

Pr
(

Situ-C, µ2;s = 0|M̃(n)
)

+E
[

αW̃s(t)− αWs(t)|Situ-C, µ2;s = 1, M̃(n)
]

×

Pr
(

Situ-C, µ2;s = 1|M̃(n)
)

.

Next we define a finite set̃Υ. We first introduce some
constants:

• ǫ1 = min
{

λ̄ǫ
16 ,

ǫminl xl

4Rmax

}

.

• ǫ2 = λ̄ǫ
16Rmax , and Dǫ2 and Nǫ2 are the numbers that

guaranteePr (Emiss(t)) ≤ ǫ2, which are defined by the
goodness of the tie-breaking rule.

• λmax
W = KλmaxFmax, which is the maximum number

of bits of short-lived flows injected in one time slot, and
also the upper bound on the new workload injected in the
network in one time slot.

We define a set̃Υ such that

Υ̃ =

{

M̃(n) :
Ws(nT )≤ŨW+2T+

2
P

l xlR
maxT

αλ̄

Ql(nT )≤ŨQ+ 2αλ̄T
minl xl

+
2TRmax P

l xl
minl xl

∀l

}

.

In this definition,ŨW is a positive integer satisfying that

(1 − pmax
s )

ŨW
Fmax ≤ ǫ1, (23)

ŨW ≥
4Ũ

T−D
+8ǫ2αλ

max

W T+4αDRmax+8ǫ2αR
maxT+4λmax

W D

ǫαλ̄
(24)

ŨW

Fmax ≥ Nǫ2 , (25)

and ŨQ is a positive integer satisfying

ŨQ ≥
4Ũ+6αRmax(ŨW+

2
P

l xlR
maxT

αλ̄
+(λmax

W +2)T )

ǫminl xl
. (26)

Since the changes ofWs(t) andQl(t) during each time slot is
bounded by some constants independent ofM̃(n), it is easy
to verify thatΥ̃ is a set of a finite number of elements.

Next, we analyze the drift of Lyapunov function case by
case assuming thatD >

⌈

log λ̄ǫ−log 16−logRmax

log(1−pmax
s )

⌉

and T >
⌈

(4+ǫ)D
ǫ

⌉

.

• Case I: Assume thatM̃(n) ∈ Υ̃. In this case, it is easy to
verify that E[V (n+1)−V (n)|M̃(n)] is bounded by some
constantŨd.

• Case II: Assume that

Ws(nT ) > ŨW + 2T +
2
∑

l xlR
maxT

αλ̄
≥ ŨW + T.

Recall thatEmiss(t) is the event such that the tie-breaking
rule selects a short-lived flow with̃Rmax

i (t) 6= Rmax
i . Note

thatµ2;s(t) = 0 implies thatEmiss(t) occurs. Also note the
following facts:

- For any nT ≤ t ≤ (n + 1)T, we haveW (t) ≤
W (nT ) + λmax

W T,
- Given Ws(nT ) ≥ ŨW + T, we haveWs(t) ≥ ŨW

for all nT ≤ t ≤ (n + 1)T − 1. Then according to
the definition ofǫ2 and ŨW and assumption that the
tie-breaking rule is good, we have

Pr (Emiss(t)) ≤ ǫ2

for all nT +D ≤ t ≤ (n+ 1)T − 1.
- Given anyM̃(n) and anynT +D ≤ t ≤ (n+1)T −1,

we have

E
[

αW̃s(t)−Ws(t)|Situ-C, µ2;s = 1, M̃(n)
]

×

Pr
(

Situ-C, µ2;s = 1|M̃(n)
)

≤E
[

αW̃s(t)−Ws(t)|M̃(n)
]

=E
[

E
[

αW̃s(t)− αWs(t)
∣

∣

∣Ws(t−D)|
]∣

∣

∣ M̃(n)
]

≤E
[

α(1 − pmax
s )DWs(t−D)Rmax + αλmax

W D|M̃(n)
]

(27)

≤E
[

α(1 − pmax
s )D(Ws(t) +D)Rmax + αλmax

W D|M̃(n)
]

,

where the inequality (27) holds because at mostλmax
W D

bits belonging to short-lived flows are in the network for
less thanD time slots at timet, and a flow having been
in the network for at leastD time slots can estimate
correctly its workload with a probability at least1 −
(1− pmax

s )D.

Now according to the observations above, we can obtain
that

E[Diff (t)|M̃(n)]

≤ǫ2α (Ws(nT ) + λmax
W T ) + ǫ2α (RmaxWs(nT ) + λmax

W T )

+ E
[

α(1 − pmax
s )D(Ws(t) +D)Rmax + αλmax

W D|M̃(n)
]

.

Combining with the analysis leading to (14) in Appendix
A, we conclude that

Drift(t)

≤2E
[

ǫ1

(

αWs(t) +Rmaxmax
l∈L

Ql(t)

)

− ǫαWs(t)λ̄ − ǫ
∑

l∈L

Ql(t)xl

+ ǫ2α (Ws(nT ) + λmax
W T )

+ ǫ2α (RmaxWs(nT ) + λmax
W T )

+ α(1 − pmax
s )D(Ws(t) +D)Rmax + αλmax

W D|M̃(n)
]

≤E

[

−ǫ

(

αλ̄Ws(t) +
∑

l∈L

xlQl(t)

)∣

∣

∣

∣

∣

M̃(n)

]

,

where the last inequality holds due to the definition ofŨW .
• Case III: Assume that

Ws(nT ) < ŨW + 2T +
2
∑

l xlR
maxT

αλ̄



and

Ql(nT ) > ŨQ +
2αλ̄T

minl xl

+
2TRmax

∑

l xl

minl xl

> ŨQ

for somel. In this case, we have

Diff (t) ≤ αW̃s(t) ≤ αRmaxWs(t).

Combining with the analysis leading to (16) in Appendix
A, we have that

Drift(t)

≤2E [αRmaxWs(t) + 2αWs(t)

−ǫ

(

αλ̄Ws(t) +
∑

l∈L

xlQl(t)

)∣

∣

∣

∣

∣

M̃(n)

]

≤E

[

−ǫ

(

αλ̄Ws(t) +
∑

l∈L

xlQl(t)

)∣

∣

∣

∣

∣

M̃(n)

]

,

where the last inequality holds due to the definition ofŨQ.

�

Now, combining the three cases together, we can obtain that

E[V (n+ 1)− V (n)|M̃(n)]

≤Ũ + 2αWs(nT )λ̄D + 2
∑

l∈L

Ql(nT )xlD

+

(n+1)T−1
∑

t=nT+D

E

[

−ǫ

(

αλ̄Ws(t) +
∑

l∈L

xlQl(t)

)∣

∣

∣

∣

∣

M̃(n)

]

≤Ũ + 2αWs(nT )λ̄D + 2
∑

l∈L

Ql(nT )xlD

− ǫ(T −D)

(

αλ̄Ws(nT ) +
∑

l∈L

xlQl(nT )

)

+ ǫ(T −D)(αλ̄T +
∑

l∈L

xlR
maxT )

≤− Ũ ,

where the last inequality yields from the definition ofŨW and
ŨQ. Finally, we can conclude the theorem from the Foster’s
Criterion.

APPENDIX C: THE UNIFORM TIE-BREAKING RULE

Recall that we defineEmiss(t) to be the event that the tie-
breaking rule selects a short-lived flow with̃Rmax

i (t) 6= Rmax
i .

Proposition 4: The uniform tie-breaking rule is good.
Proof: Suppose set

J (t) =
{

i : Ri(t) = R̃max
i (t) or Ri(t) ≥ Qi(t)

}

.

Under the uniform tie-breaking,Emiss(t) occurs with proba-
bility

∣

∣

∣

{

i : i ∈ J (t) and R̃max
i (t) 6= Rmax

i

}∣

∣

∣

|J (t)|

≤

∣

∣

∣

{

i : R̃max
i (t) 6= Rmax

i

}∣

∣

∣

∣

∣

∣

{

i : Ri(t) = R̃max
i (t)

}∣

∣

∣

.

Assume thatN short-lived flows are in the network at time
t−D and denote byN the set of these short-lived flows. Our
proof contains the following two steps:

Step 1: We first obtain an upper bound on

N1 ,

∣

∣

∣

{

i : R̃max
i (t) 6= Rmax

i and i ∈ N
}∣

∣

∣ .

Considering a short-lived flow (flowi) which is in the network
at time t−D, we have

Pr
(

R̃max
i (t) 6= Rmax

i

)

≤ (1 − pmax
s )D , ǫ.

Thus,E[N1] ≤ ǫN. According to the Chernoff bound, we have

Pr (N1 ≥ 1.1ǫN +D)

≤ exp

(

−
(1.1ǫN +D − E[N1])

2

3E[N1]

)

≤ exp

(

−
(0.1ǫN +D)2

3ǫN

)

≤ exp (−0.003ǫN + 0.06D) .

Next note that at mostKλmax short-lived flows join the
network during each time slot, so we can conclude that

Pr
(∣

∣

∣

{

i : R̃max
i (t) 6= Rmax

i

}∣

∣

∣ ≥ 1.1ǫN +KλmaxD +D
)

≤ exp (−0.003ǫN + 0.06D) .

Step 2:Since at most one flow can be completely transmit-
ted in one time slot, so leastN −D flows are in the network
at timet, each having a probability at leastpmax

s to be in the
best channel state.

Pr
(∣

∣

∣

{

i : Ri(t) = R̃max
i (t)

}∣

∣

∣ ≤ 0.9pmax
s (N −D)

)

≤ Pr (|{i : Ri(t) = Rmax
i (t)}| ≤ 0.9pmax

s (N −D))

≤ exp (−0.003pmax
s (N −D)) .

Summary: From step 1 and step 2, we can conclude that

Pr(Emiss(t))

≤
1.1ǫN +KλmaxD +D

0.9pmax
s (N −D)

+ exp (−0.003pmax
s (N −D))

+ exp (−0.003ǫN + 0.06D) ,

which converges to zero as bothD andN/D go to infinity.
The proposition holds because the sizes of short-lived flows
are bounded and a large workload implies a large number of
short-lived flows.

APPENDIX D: OLDEST-FIRST TIE-BREAKING RULE

Proposition 5: The oldest-first tie-breaking is agood tie-
breaking rule.

Proof: We assume that at time slott−D, there areN >
2D2 short-lived flows in the network. We groupshort-lived
flows into groupsG according to the time they arrived at the
network such that groupGτ̄ (t) contains all flows arriving no
less than̄τ time slots ago at timet, and groupGτ (t) contains
the flows arriving exactτ time slots ago at timet (τ < τ̄ ).



Case 1: Assume that|Gτ̄ (t−D)| ≥ D2. We first consider
the following probability

Pr
(

a flow ∈ Gτ̄ (t) is selected att and R̃max
i (t) 6= Rmax

i

)

.

Note that Gτ̄ (t) can contain at mostKλmaxD additional
flows compared toGτ̄ (t − D) since |Gτ | ≤ Kλmax for all
τ < τ̄ . Following the analysis for the uniform tie-breaking in
Appendix C, we can easily prove that

Pr
(

a flow ∈ Gτ̄ (t) is selected att and R̃max
i (t) 6= Rmax

i

)

→ 0

asD goes to infinity.
Next, note that at most one short-lived flow can be com-

pletely transmitted in one time slot, soGτ̄ (t) containing at
leastD2 −D flows at timet, which implies that

Pr
(

a flow 6∈ Gτ̄ (t) is selected att and R̃max
i (t) 6= Rmax

i

)

≤ (1− pmax
s )

D2−D
.

Therefore, we conclude that

Pr
(

the selected flow att hasR̃max
i (t) 6= Rmax

i

)

=Pr
(

a flow Gτ̄ (t) is selected att and R̃max
i (t) 6= Rmax

i

)

+Pr
(

a flow 6∈ Gτ̄ (t) is selected att and R̃max
i (t) 6= Rmax

i

)

which converges to zero asD goes to infinity.
Case 2: Assume that|Gτ̄ (t −D)| < D2. In this case, we

search the groups starting from groupGτ̄ (t) and stop at group
τ∗ if D2+DKλmax >

∑τ̄

τ=τ∗ |Gτ (t)| ≥ D2. Note that when
D is sufficiently large, suchτ∗ exists andτ∗ > D because
N > 2D2 and |Gτ | ≤ Kλmax for all τ < τ̄ . Considering a
certain flowi such thati ∈ ∪τ̄

τ=τ∗Gτ (t), we have that

Pr
(

flow i is selected att and R̃max
i (t) 6= Rmax

i

)

≤ Pr
(

R̃max
i (t) 6= Rmax

i

)

≤ (1− pmax
s )D , ǫ.

Thus, we can obtain that

Pr
(

a flow ∈ ∪τ̄
τ=τ∗Gτ (t) is selected att and R̃max

i (t) 6= Rmax
i

)

≤(D2 +DKλmax)ǫ,

which converges to zero asD goes to infinity. Further, similar
to the analysis in Case 1, we can obtain that whenD is
sufficiently large,

Pr
(

a flow 6∈ ∪τ∗−1
τ=0 Gh(t) is selected att and R̃max

i (t) 6= Rmax
i

)

≤ (1− pmax
s )

D2

,

which converges to zero as well.
Combining Case 1 and 2, we can conclude that the oldest-

first tie-breaking is a good tie-breaking rule.
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