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Abstract—Multiple packet filters serving different purposes Today router virtualization is already available in com-
(e.g., firewalling, QoS) and different virtual routers are dten de- mercial routers from both Cisco [1] and Juniper [2]. It is
ployed on a single physical router. The HyperCuts decisionree is quickly emerging as a promising technology to support new

one efficient data structure for performing packet filter matching twork h h X lidati 12 "
in software. Constructing a separate HyperCuts decision e for network services such as router consolidation [12], custem

each packet filter is not memory efficient. A natural alternaive is ~ SPecific routing, policy-based routing [7], multi-topojogout-
to construct shared HyperCuts decision trees to more efficigly ing [17] [20] and network virtulization [3] [5]. For example

support multiple packet filters. However, we experimentaly show with the help of router virtualization, network operatornc
that naively classifying packet filters into shared HyperCus o consolidate a large number of existing routers onto a

decision trees may significantly increase the memory consution . - .
and the height of the trees. To help decide which subset of newly-purchased router by running one virtual router inséa

packet filters should share a HyperCuts decision tree, we fits for each existing router. When performing router conselida
identify a number of important factors that collectively impact tion, all the packet filters deployed on existing routersl wil

the efficiency of the resulted shared HyperCuts decision t® pe exported to the new router. A Juniper router today can be
Based on the identified factors, we then propose to use maclein .qnigured with as many as 128 virtual routers. Therefore, a

learning techniques to predict whether any pair of packet fiters d ¢ dt tal b f ket
should share a tree. Given the pair-wise prediction matrix,a MOUErM router may need to support a large number or packe

greedy heuristic algorithm is used to classify packets filts into ~ filters.

a number of shared HyperCuts decision trees. Our experimerst . . .

using both real packets filters and synthetic packet filters sow B. Challenges of Deploying Multiple Packet Filters on a
that the shared HyperCuts decision trees consume considésty ~ Single Router

less memory.

Index Terms—Packet filter, packet classification, data structure, One key (_:hallenge _Of h0|d|ng_ a large number of _paCket
virtual router, HyperCuts. filters on a single physical router is memory consumption. As
more packet filters are deployed, the memory requiremeht wil

|. INTRODUCTION also increase accordingly.

Packet filters are widely used on network devices suchTernary content addressable memory (TCAM) is the de
as routers to perform various services including firewgllin facto industry standard for hardware-based fast packssitita
quality of service (QoS), virtual private networks (VPNs)Qation. However, TCAM has a few limitations. Firstly, TCAM
load balancing, traffic engineering, etc. Therefore, rpidti consumes lots of power. Secondly, TCAM chips are expensive.
packet filters serving different purposes may be deployddiey are often more expensive than network processors [13].
on a single physical router. With the emergence of virtudhirdly, due to its high power consumption and high cost,
routers as a promising technology to provide network sesyic the capacity of TCAM on each router is usually restricted
even more packet filters belonging to different virtual evat by system designers. What is worse, in order to represent
need to be stored on a single physical host router. In ttspacket filter in TCAM, the packet filter rules have to be
paper, we show that by using a shared data structure c@nverted to the ternary format, which will lead to the range
represent multiple packet filters, memory consumption aan Bxpansion problem. For example, the Cisco 12000, a high-
considerably reduced. Consequently, more packet filterbea end Gigabit switch router designed for large service prewid
deployed and more virtual routers can be efficiently supgsbrtand enterprise networks, can only hold up to 20,000 rules in
on a single physical router. its TCAM. Although some recently proposed TCAM-based

) ) ) packet classifier compression techniques [15] [6] may help
A. The Need for Multiple Packet Filters on a Single Routeriq gjjeviate this problem, the amount of memory required to

Multiple packet filters may be deployed on a single routestore a large number of packet filters can still easily exceed
to support different network services such as firewallingSQ the capacity of the installed TCAM on a physical router.
VPNSs, load balancing and traffic engineering. Due to the Therefore, software based packet classification using fast
complexity of the network services, each packet filter maypemory such as SRAM is still widely used on many routers
be large and complex as well. For example, recent studiesluding both edge routers such as the Cisco 7200 series
have shown that a complex packet filter on modern routersamd core routers such as the Cisco 12000 series. Although
firewalls can have as many as 50,000 rules [24]. SRAM consumes less power and occupies smaller space, it



is still costly. Therefore, any technique that can consitsr A simple packet filter with 10 rules defined on 5 fields is

reduce the memory requirement of holding multiple packehown in Table I.

filters can be useful in practice. The saved memory can be i

used to improve cache performance, to more efficiently hof 1he HyperCuts Data Structure and Algorithm

more packet filters and to support more virtual routers. Decision trees have been shown to be a powerful data struc-
ture for performing packet classification by using geoncetri

C. Improving Memory Efficiency by Sharing Data Structurecutting [21]. Several different variants of decision tresséd

In software based packet classification systems, each padi@cket classification algorithms (e.g., [23] [11] [18]) bareen
filter is represented by a data structure such as a decigien tProposed. HyperCuts [18] is considered to be one of the most
A separate data structure for each packet filter is not memdifjicient decision tree based algorithms. In this secticayuill
efficient. A natural alternative is to use a shared datastrac Priefly introduce the HyperCuts data structure and algorith
In this paper, we will use the HyperCuts [18] decision tree # More detailed discussion can be found in [18].
represent packet filters since it is one of the most efiiciatad A HyperCuts decision tree is composed of two types of
structures for performing packet filter matching. nodes: internal nodes and leaf nodes. Each leaf node qsntain

In Section Il, we briefly introduce the HyperCuts dat4€ss thanBucketSize number of rules, wher&ucketSize is _
structure and then extend the original HyperCuts datatstraic @ Small constant (e.g., 4). The small number of rules stared i
to support multiple packet filters. Section Il first uses glleaf node will b.e Ilnegrly trav.er.sed to find 'Fhe matched rule
simple experiment to show that naively clustering packetrl W|th the smallest index in the original packet filter. By cwrst,
to shared HyperCuts decision trees may result in signifil! internal node contains more thdhucketSize rules, so
cantly increased memory consumption. Section IV preseﬁtﬂ_es stored in the internal node have to further split to its
our approach of clustering packet filters into multiple siar child nodes. . S o
HyperCuts decision trees. The idea is to first identify inigor ~ The HyperCuts decision tree is efficient because it splits
factors that can affect the efficiency of the constructedesha "'Ul€s in internal nodes using the information from multiple
HyperCuts decision tree. Based on the identified factors, Wacket fields. In contrast to HyperCuts, HiCuts [11] onlyitspl
then leverage machine learning techniques to predict whitf{€s on one packet field at a time. In order to decide which
pairs of packet filters should share a tree. Given the pafidbset of packet fields to use to split rules on an internaénod
wise prediction, a heuristic clustering algorithm is used the HyperCuts algor!thm will first count the number of unique
cluster all packet filters into a number of shared Hypercugements on each field for all rules stored on the node. Let
decision trees. We evaluate the accuracy of the pair-widé take the 10 rules in Table | as an example, the number of
prediction and the memory saving by constructing sharéfique elements in all five fields is 10, 10, 1, 9, 2 respegivel
trees for clustered packet filters in Section V. Evaluatioh"® HyperCuts algorithm will then consider the set of fields
results using both real packet filters and synthetic packetdi for which the number of unique elementsgeeater than the
show that the pair-wise prediction is accurate and the shaf@&anof the.number of unique elements for all _the fields. For
HyperCuts decision tree can considerably reduce the mem&%AMPle, given a node holding the 10 rules in Table I, the

consumption. We discuss related work in Section VI arijree fields of source IP, destination IP and destinationt por
conclude in Section VII. should be considered for cutting. After determining whieh s

of fields to cut, the HyperCut algorithm uses several hdusist

II. BACKGROUND to decide how many cuts should be performed on each field.
Due to the space limitation, we will not discuss those héigas
in detail here. However, it is worth noting that the number of

Informally, a packet filter of size is a list ofn ordered rules child nodes that an internal node can be split into is limited
{R1, Rs, ..., R,, } that collectively define a packet classificatiorby a factor of the number of rules stored in the node. The
policy. Each ruleR; is composed of two parts: a combinatiorfunction is defined ag(N) = spfac x /N, whereN is the
of D values, one for each selected packet header field, amgmber of rules in the internal node argdfac is a small
an associated action. The most commonly used five packehstant with a default value of 2. This technique is used by
header fields are: source IP address, destination IP addréessh the HiCuts and the HyperCuts algorithms to reduce the
source port, destination port, and protocol type. Each ef tmemory consumption.
D values specified iR; could be a single value or an interval .
of values or the special value ANY used to specify all possibfc: Extend the HyperCuts Data Structure and Algorithm
legitimate values for that field. Typical actions assoalatéth To allow multiple packet filters to share a HyperCuts
a rule include permit, deny, marking the ToS bit, etc. A packéee, the original HyperCuts data structure and tree mgldi
P is considered to match the rulg if all the D header fields algorithm need to be extended. Figure 1 (a) shows two separat
of P match the corresponding values ®. If P matches HyperCuts trees, each of which only has one internal node (it
more than one rule, then the rule with the smallest indexén thoot) and four leaf nodes. Figure 1 (b) shows the correspandi
packet filter is returned. The associated action of the metlir shared HyperCuts tree. As can be seen, the internal node on
rule will be performed onP accordingly. shared HyperCuts tree is the same as the one in the original

A. Packet Filters Notations



Rule ID Source IP Destination IP Source port| Destination port| Protocol | Action
Ro 104.253.26.143/31| 151.217.12.0/23 ANY 1489 TCP act0
Ry 103.11.193.196/31| 151.193.40.150/32 ANY 27000 TCP act0
Ro 51.109.218.92/30 243.82.86.0/23 ANY 135 TCP actl
Rs 133.202.88.44/30 78.87.20.226/31 ANY [1300-1349] TCP act2
Ry 137.180.89.7/32 243.82.125.14/32 ANY 6789 TCP actl
Rs 201.130.210.90/31 6.92.31.0/25 ANY 1533 TCP act0
Re 119.10.210.90/31 6.92.31.0/25 ANY 1526 UDP act0
Ry 119.67.166.172/31| 151.143.84.75/32 ANY 1521 TCP act3
Rs 71.252.162.33/32 | 151.166.64.162/32 ANY [1300-1349] TCP actd
Ry 209.137.112.252/31] 151.248.122.158/32 ANY [61200-61209] TCP act2

TABLE |
A SIMPLE PACKET FILTER EXAMPLE WITH10 RULES ON FIVE FIELDS

Root of HyperCuts tree 1 elements for rules fronk; andF; asu; andug; respectively,

wherel < j < D. Then the number of unique elements
on each fieldu; for the current internal node is defined as
uj = (u1;+u9;)/2. The rest of the algorithm is just the same

as original HyperCuts algorithm.

Field,: 2 cuts
Field,: 2 cuts

[r] [ [n] 7]

Root of HyperCuts tree 2

Root of the shared HyperCuts tree

Field,: 2 cuts
Field,: 2 cuts

D. Efficiency Metrics of The HyperCuts Decision Tree

Field,: 2 cuts
Field,: 2 cuts

Given a constructed HyperCuts tree, we wish it consumes
as little memory as possible. Thus, a natural metric of eger
is memory consumption In addition, we wish to do fast
packet classification using the shared HyperCuts tree, o th
tree search time (i.e., from the root to leaf nodes) is also
important. We use the following two metrics to characterize
the tree search time:
Average depth of leaf nodes:The depth of a leaf node is

HyperCuts tree. Each internal node only records the numigft the length of the shortest path from itself to the root.
of cuts performed on each field and a list of pointers to itsSSUMINg each leaf node has the same probability to be
child nodes. On the other hand, leaf nodes have to be slighffched during a packet matching, then the average depth of
extended to support multiple packet filters sharing the. tr leaf nodes reflects on average h_OW many internal nodes
In the original HyperCuts tree, a leaf node is composed B ?d to be accessed toltermlnz?\te this tree §earch.
a header (indicating the node is a leaf node) and a poin[é‘?'ght of _the tree: This metric characterizes the largest
to the set of rules stored in this leaf node. In the shar&§mber of internal nodes needed to be accessed for a packet
HyperCuts tree ofwo packet filters, a leaf node is compose&) reach a leaf node. It corresponds to the worst case search
of the same header amafo pointers, one for each packet filter.'Me:
When a packet reaches a leaf node when searching the shamed
HyperCuts tree, since it knows which packet filter this packe
is being matched, it will directly calculate which pointér i
should access next. Therefore, the time to access a leaf nod€o construct efficient shared HyperCuts decision trees, one
on the shared HyperCuts tree is still the same as in the atigiiey question to answer is: which subset of packet filters lshou
HyperCuts tree. In this simple example, by making the twghare a HyperCuts decision tree so that the resulted shraeed t
packet filters share a tree, we saved one internal node ani$ 4nore efficient than a set of separate trees? In this section
headers of leaf nodes. we first introduce the filter data sets used in the paper. We the
Now we continue to explain how we extend the origing@#Xperimentally show that naively letting multiple packéefis
HyperCuts tree construction algorithm. The idea is to usesfare a HyperCuts decision tree will significantly incretee
corresponding average value across all packet filters tagep Mmemory consumption and height of the shared trees.
the value used in the original algorithm. For example, sgppo i
that the two packet filterg’;, and F; are sharing a HyperCutsA' Filter Data Sets
decision tree. Given an internal node on the shared trebeif t We extracted a set of real packet filters from the configu-
number of stored rules from each packet filteiNis and No, ration files of routers in a large-scale campus network [19]
then the number of child nodes this internal node can hase Purdue University. We did not include the 260 packet
is bounded byspfac x /(N1 + N2)/2. Similarly, to decide filters that contain no more thaBucketSize number of
the subset of fields for cutting on each internal node, we williles, because their corresponding HyperCuts decisias tre
first calculate the number of unique elements in each field arst contain one root node. In our experiment throughout the
a per packet filter basis. Let us denote the number of unigpaper, we always sdBucketSize as 4.

@ (b)

Fig. 1. Example of Shared HyperCuts tree: (a) Two separateetButs
trees. (b) The corresponding shared HyperCuts tree.

CHALLENGES OFCONSTRUCTINGEFFICIENT SHARED
HYPERCUTS DECISION TREE



Because it is hard to obtain other real packet filters, ¢
synthetic filter generator ClassBench [22] is used to geeera —Purde
some synthetic filters. The ClassBench tool takes a paramet
file as the input and then generate synthetic filters using .
the information stored in the input parameter file. We usec
three parameter files provided by ClassBench and they wel
originally generated from three real access control [i&GL(s)
on Cisco routers. Given each parameter file, we generate tw
sets of 1,000 synthetic filters. The first set of 1,000 symthet
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filters all contain 100 rules, while the size distributionthé& Y s 3 w v+ 3
second set of 1,000 synthetic filters follows an exponentia. Size ofrandom groups Size ofandom groups
distribution with the average value of 100. Please note that (a) (b)

when generating synthetic filters with exponential sizdrdis Fig. 2. (a) Memory consumption increases when random pdittest share
bution, we also discard the filters containing no more thénHyperCuts tree. (b) Average depths of leaf nodes increasen wandom
BucketSize rules. packet filters share a HyperCuts tree.

Some basic statistics about the set of real packet filters andBy comparing the memory consumption ratio and average
the six sets of synthetic filters are summarized in Table II. leaf depth ratio, we can also observe that the average lgéi de

) _ ratio increases more rapidly with the increasenothan the

B. Making Random Packet Filters Share HyperCuts Trees?memory consumption ratio does. The reason is that the sizes

In this section, we will use a simple experiment to show thaf all internal nodes in a HyperCuts tree are not the same.
extra care has to be taken in deciding which set of packetiltd’lease recall that the number of child nodes that an internal
should share a tree. Naively making a set of random packetde can have is related to the number of rules stored in the
filters share a tree will significantly degrade the perforosan node. Because those nodes closer to the root usually contain

In our experiment, for each filter data set, we randomiyore rules, they accordingly have more child pointers (£byt
choosen distinct filters, wheren is a small number. Given for each pointer). Thus, internal nodes closer to the roet ar
the n selected filters, we first build a separate tree for eaghuch larger than the internal nodes far from the root. This
selected filter. Let us denote the memory consumption explains why a HyperCuts tree with doubled height consumes
the n trees asm;, the average depths of leaf nodes of thkess than doubled memory.
n trees asd;, and the heights of the trees ash;, where
1 < i < n. Then we construct a shared HyperCuts decision
tree to represent the selected filters. Let us denote the
memory of the shared tree, the average depth of leaf nodes i\s shown in Section Ill, letting a set of random filters share
the shared tree and the height of the shared tree @s,.q, @ HyperCuts tree leads to increased memory consumption and
dsharea aNd hsnarea. NOW we can define thenemory con- tree search time. In this section, we propose a novel approac
sumption ratio asmspared/ Z?:l m;, theaverage leaf depth to clustering packet filters to form efficient shared HypdasCu
ratio as dspared/ (> +—, di/n), and thetree height ratio as decision trees. In our approach, to help decide which subset
hsharea/ (X1 hi/n). The smaller the ratios are, the moref packet filters should share a tree, we first identify a numbe
benefits we obtain by making thepacket filters share a singleof important factors that collectively impact the efficignaf
HyperCuts tree. A ratio larger thdrmeans that the shared treghe resulted shared tree. Based on the identified factors, we
has worse performance tharseparate trees. Given each fixethen propose to use machine learning techniques to predict
n, we repeat the experiment 1000 times, i.e., we randomihether any pair of packet filters should share a HyperCuts
select 1000 sets aof distinct filters for our experiment. We decision tree. Given the pair-wise prediction on all pdssib
also varyn from 2 to 10. pairs, a greedy heuristic algorithm is used to classify ptck

Figure 2 (a) shows the average memory consumption rafilbers into a number of shared HyperCuts decision trees.
across 1000 runs for all 7 data sets. As can be seen, when ] o
the number of randomly selected filters increases, the memér Factors Affecting the Efficiency of the Shared Tree
consumption ratio becomes higher for all 7 data sets. This isIn this section, we first present some important factors that
because the more random packet filters are selected, therhacdn characterize each individual packet filter. Then based o
it is to construct a HyperCuts tree suitable for all packé&difd. the collection of factors from a set of packet filters, we can
When 10 random packet filters share a HyperCuts decisidacide whether they should share a tree or not. According to
tree, it will consume 2 to 20 times more memory than simplgur analysis, there are two classes of factors that can impac
using 10 separate trees. Figure 2 (b) shows the average ofttie efficiency of the shared HyperCuts decision tree:
average leaf depth ratios across 1000 runs. Similarly, theem Class-1 factorsinclude some simple statistical properties of
random packet filters are selected to share a tree, the ugera packet filter itself. They include thsize of the packet
ratios are. The tree height ratio results are very similaht filter and the number of unique elements in each field
average leaf depth ratio results, so they are not shown hergou can see, to obtain the Class-1 factors, we do not need

IV. CLUSTERING PACKET FILTERS TO CONSTRUCT
EFFICIENT SHARED HYPERCUTS DECISION TREES



Data Set Name| Parameter File| Number of Filters| Size Distribution | Average Size| Minimum Size | Maximum Size

Purdue N/A 140 N/A 215 5 763
Synl-Exp ACL1 1000 Exponential 98.21 5 1002
Syn1-100 ACL1 1000 Uniform size:100 100 100 100
Syn2-Exp ACL3 1000 Exponential 101.9 5 910
Syn2-100 ACL3 1000 Uniform size:100 100 100 100
Syn3-Exp ACL4 1000 Exponential 106.3 5 874
Syn3-100 ACL4 1000 Uniform size:100 100 100 100

TABLE Il

SUMMARY OF BASIC STATISTICS ABOUT THE SEVEN FILTER DATA SETS

to build the HyperCuts decision tree for the packet filteall possibleN x (IV —1)/2 pairs as the training data. For each
These factors are important because they are used in $edected pair of filters, we can decide whether they are a good
HyperCuts tree construction algorithm. Thus, they cancaffepair by constructing two separate trees and one shared tree.
the structure of the final HyperCuts tree. However, only &lasFor each selected pair of filters, we can also calculate their
1 factors are not enough to determine the structure or memdagtors. By feeding all these information to certain maehin
consumption of the final HyperCuts decision tree. Two packietarning technique, a model can be learned to be used to
filters with identical Class-1 factors may have very diffgre predict whether any new pair of packet filter is good or bad.
tree structures. Therefore, we identify the second class \WWe will evaluate the prediction accuracy of different maehi
factors as follows. learning techniques in Section V.
Class-2 factorsrepresent the characteristics of the constructed i , . -
HyperCuts decision tree. That is, the HyperCuts tree mLEt Clustering Packet Filters Based on Pair-wise Prediction
be constructed to obtain the Class-2 factors of a packetBy using the model learned from a small amount of training
filter. Because we want the final shared tree to have gopdirs, we can now predict whether any pair of filters is good
performance, thenemory consumption of the tretheaverage Or not. Based on the pair-wise prediction for all possiblegpa
depth of leaf nodeand theheight of the treeare one part of of all filters, an undirected grapti can be constructed. In
the Class-2 factors. In addition, tmember of leaf nodeghe the graphG, each node represents a distinct packet filter. Two
number of internal nodesnd thetotal number of cuts on eachnodes inG are connected with an edge if and only if the
field are also included into the Class-2 factors, because tH#o corresponding packet filters are predicted to be a good
can more accurately reflect the actual structure and mem@ajir. Given the constructed graih the following clustering
consumption of the HyperCuts tree. For example, the moagorithm is proposed to determine which subset of packet
nodes a tree has, the more memory it will generally consuniiéers should share a HyperCuts decision tree:
In addition, the total number of cuts performed on each field \npuT OF ALGORITHM: G and«a €[0 1]
can reflect the relative importance of each field so it can gthpa OUTPUT OF ALGORITHM: A set of packet filter clusterSiciysters
the structure of the constructed tree.

Given the two classes of important factors, now we may 02 nstors =
cluster all the packet filters into a number of shared treeso03: WHlLE(\SfZ“m\ > 0)
using their corresponding factors. To make the packet dilter 04; ‘#Zt}f: E:‘éf];tera Who has most neighbors froifyizers in G:
clustering problem simpler, in the following section, wellwi .

cluster; = cluster; U {fm};
first study how to determine whether two packet filters should 07:  Syiiers = Sritters\{fm}:

Sfmers = {All packet filters};

i i i 08: WHILE TRUE
share a tree using their corresponding factors. pos Find f € S it1ens With most neighbors fromaduster; in G
B. Predicting Good Pairs of Packet Filters if multiple choices exist, pick the one with largest degree,
’ i i o let us assumgf,, hask neighbors fromcluster; in G,
Two packet filters are defined to be a “good” pair if 10: IF (¢ > a x |cluster;|)
their shared HyperCuts tree has decreased memory usage:: cluster; = cluster; U {fn};

. Stitters = Sfitters n s
and decreased average depth of leaf nodes compared to thes, g/ 9e break the (;V;”E.{Eﬁ’gi’,p;

two separate HyperCuts trees. This problem is clearly a4 END-IF

classification problem, i.e., we need to classify all paifs o ig; gc’\zlqit\z:“EESczusmsU{clustem};

packet filters into either good pairs or bad pairs. However, 17. END-WHILE

it is non-trivial to manually derive some effective rules fo  18: RETURNS iy sters:

us to accurately decide whether a pair of packet filters shoul In the above algorithm¢ is a constant value betweeh

share a tree or not. Luckily, some effective supervised iimachand 1. Intuitively, the higher thex value is, the more difficult

learning techniques [16] can help perform this classifigati that a packet filter can join an existing cluster. For example

task. We will study a few representative supervised machiifex is set to0, then all packet filters in the same connected

learning techniques in Section V. component inG' will share a HyperCuts decision tree. On the
To use machine learning techniques to predict whetherother hand, ifa is set tol, then a set of packet filters will

pair of filters is good, we need to first prepare some trainifge clustered together if and only if the corresponding nodes

data to train a model. Given a filter data set withdistinct in G form a clique. We will evaluate the performance of the

packet filters, we can randomly selddt pairs of filters out of clustering algorithm with different values in Section V-B.



V. PERFORMANCEEVALUATION (DT) [16] 1, the generalized linear regression (GLR) [16] and
the naive Bayse classifier (NBC) [16]. We plan to study more
In Section V-A, we first evaluate how accurately we caolassification techniques such as the neural network in the
predict whether a pair of packet filters should share a trefature.
We then study the performance of the packet filter clusteringlt is straightforward to apply the DT technique to perform
algorithm in Section V-B. Finally, we show the detaileclassification here. For GLR technique, if we use the output
breakdown of the time spent on each step of our approagilues1 and 0 to represent the good pair and the bad pair
in Section V-C. respectively in the training data, then given a new pair of
filters, GLR will output a value between 0 and 1. In our
experiment, if the returned value by GLR is larger than 0.5
then we predict the pair as good. Otherwise, the pair is

As introduced in Section IV, we want to apply superviseBrediCted to be pad. As for NBC, we cannot directlly feed the
machine learning techniques to address this classificptiop-  NPUt vectors defined in Section V-Al to NBC technique. NBC
lem. A supervised machine learning technique can automdfduires a set of features instead. In our experiment, wplgim
cally learn a model from some training data. The trainingidafi€fine & corresponding feature from each factor. For example
consists of pairs of input vectors, and desired outputserAftthe_S'ZG_’ of the first pgcket filter in the pair is a fa<_:tor. We can
a model is learned, it can then be used to predict an outﬂﬂf'ne its correspondlng feature as f_ollows: we first cateulf_;l
value for any valid input vectors. We discuss how we defirf8€ 10th percentile and 90th percentile of the sizes of tise fir

the input vectors, the output values and three classificatiBacket filter from all good pairs in the training data. A pair
techniques we studied in detail as follows. of testing packet filters is then said to have this featurééf t

1) Three Types of Input Vector8ased on the two classe<SiZ€ of |_ts first packet filter falls into the aboye 10th andho0t
ercentile range. After we convert factors into featurés, t

of factors introduced in Section IV-A, we can define thre BC can be used directly to perform classification
types of input vectors for each pair of packet filters. Thet firs 4) Accuracy of Pair-Wise Predictioror each datai set, we
type of Input vectors Is composed o_f only the C'?SS'l faCtO|r§ndomly select 10,000 pairs and then calculate both Class-
from both filters. The second type of input vectors is comgdos and Class-2 factors for those selected pairs. We also need
.Of only the C!ass-2 factors of both filters. The third type % determine whether each selected pair is géod or bad. To
Input vegtors includes both the _Class-l and_ Clas_s-2 f"jl(“‘forsevaluate the prediction accuracy using different typesptit
thg two filters. We evalu_ate the impact of using differentetyp vectors, we randomly choose 1,000 pairs (i.e., 10%) out®f th
of input vectors in Section V-A4. 10,000 pairs as the training data. We then use the rest 9,000
2) Defining Output ValuesThe output of our classification pairs as the testing data to test the prediction accuracieof t
problem should be a label indicating whether the input wectoearned model. We repeat this experiment 10 times, each of
correspond to a good pair or not. That is, there are onjhich uses a different 1,000 pairs as the training data.rEigu
two possible output values: good or bad. In this sectioBng 4 show the average false positive rate and the average
we define two packet filters as a good pair if their sharggse negative rate of the three classification techniqségyu
HyperCuts tree’s memory consumption ratio and average Igfferent input vectors across 10 runs.
depth ratio are both smaller than 1. That is, the sharedrirst of all, different types of input vectors have a sigrafi¢
HyperCuts tree must have decreased memory consumptighact on the false positive and false negative rate fohatie
and deceased average depth of leaf nodes compared agaid$tniques. Only using Class-1 factors as input gives thstwo
two separate HyperCuts trees. Please note that in the abgigjiction accuracy for both DT and GLR. Including Class-2
definition, if we replace the average depth of leaf nodes Withctors in the input vectors help improve the performance of
the height of the tree, the prediction accuracy is a littles&0 poth DT and GLR. This is expected because Class-1 factors
according to our study. The reason i_s that the heights Ost.re(?re relatively simple and they are not sufficient to predict
are determined by the leaf node with largest depth, so itt$e final HyperCuts decision tree. However, including more
not as stable as the average depth of all the leaf nodes. Ry&ors as input does not help NBC. Instead, when more and
to limited space, we only present the prediction accuracy Byore factors are included as input, the performance of NBC
using the definition of good pairs based on average leaf depfhgetting worse. The NBC technique assumes that all the
ratio and memory consumption ratio. input variables are independent to each other, while in our
We studied the percentage of good pairs by examinirgse, those input factors may not be completely independent
10,000 random selected pairs from each data set. The fnactigvhen having more and more dependent variables into the
of good pairs vary from 8% to 16% across all 7 data sefigput vectors, the performance may get worse.
Since the fractions of good pairs are relatively small, any Secondly, among the three techniques we have studied, DT
classification technique that can accurately identify gpaiis technique has the best overall performance. GLR does not

can be useful in practice. .
e . . . To avoid ambiguity, we always use “HyperCuts decision treefefer the
3) Three Classification TechnlqueWe studied three rep- packet classification technique, while using “decisiore’trer “DT” in this

resentative classification techniques including the d@tisee section to represent the machine learning techniques used

A. Accuracy of Predicting Good Pairs
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B. Performance of The Filter Clustering Algorithm
Since we have shown that the DT technique using both

[l Viemory consumption

et of e Class-1 and Class-2 factors as input has the best prediction
Average depth ofleafnodes accuracy among the three techniques we studied, in thi®sect

we will use DT to predict the goodness of all pairs of packet
filters in a data set. Based on the pair-wise prediction olexi
by DT, we can construct a graggh for each filter data set. We
can then apply our filter clustering algorithm to cluster esd
ll Il I in G to decide which subset of packet filters should share a
- HyperCuts decision tree. DT is trained by using a training
¢ data set of 1,000 random pairs, and the results presented in
Fig. 5. Shared HyperCuts trees V.S. separate HyperCuts (Reedue data). (IS section are the average values across 10 runs. Reatll th
in addition to G, the proposed clustering heuristic algorithm
also needs a constant In our experiment, we varg from
0.25to 1.
work well because its linear model simply can not accurately Figure 5 shows the performance of the final constructed
capture the complex relationships among those factors. NBBared trees for 140 Purdue filters. Whan= 0.25, the
falls short because it assumes that all factors are independshared trees actually have much worse performance than the
while they are acutally not. If both Class-1 and Class-2dizct 140 separate trees. Please recall that a smallalue means
are used in the input vectors to train the decision tree, then that a packet filter can more easily join an existing cluster.
false positive rates will vary from 3% to 8%. In addition, th&Vhen a packet filter is mistakenly classified into a wrongffilte
average false negative rate across the 7 data sets is 23%eluster, the overall performance of the cluster will sigrafitly
low false positive rate is important because it means tht ordegrade. When a largersuch ag).5 is used, the performance
a small percentage of bad pairs will be mistakenly predicté#comes better. The overall memory saving is over 40%. In
to be good ones. A 23% false negative rate means that 77%le meantime, the average heights of the shared trees and
all good pairs can still be correctly identified by the leatnethe average depth of leaf nodes in shared trees are slightly
model. decreased.

0.75 1
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Figure 6 and Figure 7 show the overall performance of trspent on each step for all 7 data sets. When performing the
6 synthetic data sets. As can be observed, wheéncreases, packet filter clustering step, we set= 0.5. As can be seen,
the memory consumption ratio generally increases while thige step of preparing the training data takes the most time fo
average leaf depth ratio and tree height ratio decreasee If all 7 data sets. The reason is that we need to construct 2,000
fix a as1, then we can reduce memory consumption over 208gparate HyperCuts tree and 1,000 shared HyperCuts trees.
on average while only increasing average leaf depth by 3% ®he time spent in clustering packet filters and constructing
average across all 6 synthetic data sets. shared HyperCuts trees is relatively modest. Therefore, a

As you can see, the parameteplays a vital role in deter- network operator may want to run the filter clustering and
mining the filter clustering results and also the perforn@ganshared tree construction steps a few times with diffekent
of the constructed shared HyperCuts decision trees. Hawew@lues to select one offering best performance. In summary,
determining the optimak value for a specific packet filter it takes our approach about 17 seconds to construct shared
data set is beyond the scope of this paper. We will contintiyperCuts trees for 140 real packet filters and about 6.8
to study this problem as our future work. minutes on average to construct a set of shared HyperCuts

trees for 1,000 synthetic packet filters.

C. Computation Time Breakdown

In this section, we want to study the computation time spent V1. RELATED WORK

on each step in our approach. We break our approach into 7To the best of our knowledge, this paper is the first to
steps: (1) calculating Class-1 factors, (2) calculatings&i2 study how to construct efficient shared data structures for
factors, (3) generating 1,000 training pairs, (4) trainthe multiple packet filters. The HyperCuts [18] decision tree is
DT, (5) predicting the goodness of all pairs to constrGgt used in our study because it is one of the most efficient packet
(6) clustering packet filters and (7) constructing the stharelassification data structures.
HyperCuts decision trees. As for implementation, steps (4) Our work is inspired by Fu and Rexford [9], who observed
(6) are implemented in Matlab and the other steps are impteat the forwarding information bases (FIBs) of different
mented in theC++ language. The desktop machine used ivirtual routers on the same physical router share a large
our experiment has a 2.6 GHz AMD Opteron processor andmber of common prefixes. They proposed to use a shared
4 GB of main memory. trie data structure to hold multiple FIBs. They also propbse
Table 11l shows the detailed breakdown of time (in seconda) corresponding lookup algorithm to search the shared trie



Data Sets Namg Class 1| Class 2| Generating 1k training pairg Training | PredictingGG | Clustering | Constructing shared trees Total

Purdue 1.7 4.9 6.9 0.29 0.01 0.52 2.6 16.92
Syn1-Exp 28.2 86.4 298.9 0.1 0.33 57.6 51.3 522.83
Syn1-100 247 69.3 138.6 0.3 0.7 62.0 21.1 316.7
Syn2-Exp 28.7 86.9 315.0 0.31 0.78 46.6 26.7 504.99
Syn2-100 235 745 143.9 0.15 0.33 7.7 48.6 298.68
Syn3-Exp 23.9 72.3 312.0 0.51 0.88 36.9 65.8 512.29
Syn3-100 245 74.2 141.1 0.41 0.75 31.7 35.3 307.96

TABLE Il

COMPUTATION TIME BREAKDOWN (IN SECONDS) FOR EACH STEP IN THE PROPOSED APPROACH

data structure. Their evaluation results show that by sgariof NSF, Microsoft Corp., the Alfred P. Sloan Foundation, or
a trie data structure, the memory requirement can be greatig U.S. government.
reduced and the IP lookup time also decreases. Howevar, thei

work only focused on merging forwarding tables. How to 1] “Cisco Logical Routers.” hitpi _ en/igBesi /
. . . ISCO Logical Routers, P //IWww.CIsco.com/en CS/I0g XI_Swi
construct efficient shared data structures for multiplekptc iosxr_r3.2/interfaces/command%/reference/hr32Ir.html.

filters is not studied. In addition, in their approach, alBElare  [2] “Juniper Logical Routers.” http://www.juniper.nethpubs/software/
always merged into a single shared FIB, while our approach junos/unos8s/feature-guide-85%/id-11139212.html.

. . . . . [3] T. Anderson, L. Peterson, S. Shenker, and T. Turner, f€ming the
can automatically classify packet filters into multiple sdth Internet Impasse Through Virtualization.” #EEE Computer, vol. 38,

HyperCuts decision trees. no.4 May 2005.
Several packet classifier compression techniques (ef,, [1[4] D- Applegate, G. Galinescu, D. Johnson, H. Karloff, Kgéit, and

o J. Wang, “Compressing Rectilinear Pictures and Minimizifgcess
[6], [8], [4], [14]) for TCAM-based packet classification Control Lists” in ACM SODA 2007.

systems have been proposed. However, these techniques @rea. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Bekf“In vini
specifically designed for optimizing TCAM-based systems. veritas: realistic and controlled network experimentatian Proc. ACM

- SIGCOMM September 2006.
In addition, they all try to reduce TCAM memory usage by[6] Chad R. Meiners and Alex X. Liu and Eric Torng, “TopologicTrans-

compressing each individual packet classifier, while thg ke ~ formation Approaches to Optimizing TCAM-Based Packet Bssing
idea of our approach is to save memory by allowing muItipIem System,” inACM SIGMETRICS2009.

. . Cisco, Inc., “Policy-based routing, white paper,” httwww.cisco.com/
packet filters to efficiently share data structures. warp/public/732/Tech/plicywp.pdf.

[8] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. ShukRacket
VII. CONCLUSION AND FUTURE WORK Classifiers in Ternary CAMs Can Be Smaller,” X\CM SIGMETRICS

. . i 2006.
To the best of our knowledge, this paper is the first tqo] j. Fu and J. Rexford, “Efficient IP-Address Lookup with haged
study how to construct efficient shared data structure sach a Forwarding Table For Multiple Virtual Routers,” AxCM CoNEXT2008.
the HyperCuts decision tree for multiple packet filters. W& M. G. Gouda and A. X. Liu, *Firewall Design: Consistencgom-

: i . pleteness and Compactness,Hroceedings of 24th IEEE International
have identified a set of important factors that can affect the conference on Distributed Computing Systems (ICDCE)4.

performance of the constructed shared HyperCuts trees. g P. Gupta and N. McKeown, “Packet Classification Usingriichical

: ; ; Intelligent Cuttings,” inHot Interconnects1999.
then propose a novel approach to CIUStermg packet filtéos ”Elﬁ] Juniper Networks, Inc., “Intelligent Logical Routereisice,” www.

shared HyperCuts decision trees. Our evaluation using both juniper.net/solutions/literature/whitpapers/200097.pdf.
real packet filters and synthetic packet filters shows that B8] P.LekkasNetwork Processors - Architectures, Protocols, and Pratfp

; ; . i 2003.
enabling multiple packet filters to share HyperCuts denisi 14 A X, Liu, C. R. Meiners, and Y. Zhou, “All-match based raplete

trees, memory consumption can be considerably reduced. We redundancy removal for packet classifiers in TCAMs1EEE INFO-
also show that the proposed approach is practical. It only COM, 2008.

; s ; - ] C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving: A Neprefix
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and to construct the corresponding shared HyperCuts decisi  2q09.
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; ; . ; ; 7] P. Psenak and S. Mirtorabi and A. Roy and L. Nguyen andilRyP
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