
On Constructing Efficient Shared Decision Trees for
Multiple Packet Filters

Bo Zhang T. S. Eugene Ng
Department of Computer Science

Rice University

Abstract—Multiple packet filters serving different purposes
(e.g., firewalling, QoS) and different virtual routers are often de-
ployed on a single physical router. The HyperCuts decision tree is
one efficient data structure for performing packet filter matching
in software. Constructing a separate HyperCuts decision tree for
each packet filter is not memory efficient. A natural alternative is
to construct shared HyperCuts decision trees to more efficiently
support multiple packet filters. However, we experimentally show
that naively classifying packet filters into shared HyperCuts
decision trees may significantly increase the memory consumption
and the height of the trees. To help decide which subset of
packet filters should share a HyperCuts decision tree, we first
identify a number of important factors that collectively im pact
the efficiency of the resulted shared HyperCuts decision tree.
Based on the identified factors, we then propose to use machine
learning techniques to predict whether any pair of packet filters
should share a tree. Given the pair-wise prediction matrix,a
greedy heuristic algorithm is used to classify packets filters into
a number of shared HyperCuts decision trees. Our experiments
using both real packets filters and synthetic packet filters show
that the shared HyperCuts decision trees consume considerably
less memory.

Index Terms—Packet filter, packet classification, data structure,
virtual router, HyperCuts.

I. I NTRODUCTION

Packet filters are widely used on network devices such
as routers to perform various services including firewalling,
quality of service (QoS), virtual private networks (VPNs),
load balancing, traffic engineering, etc. Therefore, multiple
packet filters serving different purposes may be deployed
on a single physical router. With the emergence of virtual
routers as a promising technology to provide network services,
even more packet filters belonging to different virtual routers
need to be stored on a single physical host router. In this
paper, we show that by using a shared data structure to
represent multiple packet filters, memory consumption can be
considerably reduced. Consequently, more packet filters can be
deployed and more virtual routers can be efficiently supported
on a single physical router.

A. The Need for Multiple Packet Filters on a Single Router

Multiple packet filters may be deployed on a single router
to support different network services such as firewalling, QoS,
VPNs, load balancing and traffic engineering. Due to the
complexity of the network services, each packet filter may
be large and complex as well. For example, recent studies
have shown that a complex packet filter on modern routers or
firewalls can have as many as 50,000 rules [24].

Today router virtualization is already available in com-
mercial routers from both Cisco [1] and Juniper [2]. It is
quickly emerging as a promising technology to support new
network services such as router consolidation [12], customer-
specific routing, policy-based routing [7], multi-topology rout-
ing [17] [20] and network virtulization [3] [5]. For example,
with the help of router virtualization, network operators can
now consolidate a large number of existing routers onto a
newly-purchased router by running one virtual router instance
for each existing router. When performing router consolida-
tion, all the packet filters deployed on existing routers will
be exported to the new router. A Juniper router today can be
configured with as many as 128 virtual routers. Therefore, a
modern router may need to support a large number of packet
filters.

B. Challenges of Deploying Multiple Packet Filters on a
Single Router

One key challenge of holding a large number of packet
filters on a single physical router is memory consumption. As
more packet filters are deployed, the memory requirement will
also increase accordingly.

Ternary content addressable memory (TCAM) is the de
facto industry standard for hardware-based fast packet classifi-
cation. However, TCAM has a few limitations. Firstly, TCAM
consumes lots of power. Secondly, TCAM chips are expensive.
They are often more expensive than network processors [13].
Thirdly, due to its high power consumption and high cost,
the capacity of TCAM on each router is usually restricted
by system designers. What is worse, in order to represent
a packet filter in TCAM, the packet filter rules have to be
converted to the ternary format, which will lead to the range
expansion problem. For example, the Cisco 12000, a high-
end Gigabit switch router designed for large service provider
and enterprise networks, can only hold up to 20,000 rules in
its TCAM. Although some recently proposed TCAM-based
packet classifier compression techniques [15] [6] may help
to alleviate this problem, the amount of memory required to
store a large number of packet filters can still easily exceed
the capacity of the installed TCAM on a physical router.

Therefore, software based packet classification using fast
memory such as SRAM is still widely used on many routers
including both edge routers such as the Cisco 7200 series
and core routers such as the Cisco 12000 series. Although
SRAM consumes less power and occupies smaller space, it

2

is still costly. Therefore, any technique that can considerably
reduce the memory requirement of holding multiple packet
filters can be useful in practice. The saved memory can be
used to improve cache performance, to more efficiently hold
more packet filters and to support more virtual routers.

C. Improving Memory Efficiency by Sharing Data Structure

In software based packet classification systems, each packet
filter is represented by a data structure such as a decision tree.
A separate data structure for each packet filter is not memory
efficient. A natural alternative is to use a shared data structure.
In this paper, we will use the HyperCuts [18] decision tree to
represent packet filters since it is one of the most efficient data
structures for performing packet filter matching.

In Section II, we briefly introduce the HyperCuts data
structure and then extend the original HyperCuts data structure
to support multiple packet filters. Section III first uses a
simple experiment to show that naively clustering packet filters
to shared HyperCuts decision trees may result in signifi-
cantly increased memory consumption. Section IV presents
our approach of clustering packet filters into multiple shared
HyperCuts decision trees. The idea is to first identify important
factors that can affect the efficiency of the constructed shared
HyperCuts decision tree. Based on the identified factors, we
then leverage machine learning techniques to predict which
pairs of packet filters should share a tree. Given the pair-
wise prediction, a heuristic clustering algorithm is used to
cluster all packet filters into a number of shared HyperCuts
decision trees. We evaluate the accuracy of the pair-wise
prediction and the memory saving by constructing shared
trees for clustered packet filters in Section V. Evaluation
results using both real packet filters and synthetic packet filters
show that the pair-wise prediction is accurate and the shared
HyperCuts decision tree can considerably reduce the memory
consumption. We discuss related work in Section VI and
conclude in Section VII.

II. BACKGROUND

A. Packet Filters Notations

Informally, a packet filter of sizen is a list ofn ordered rules
{R1, R2, ..., Rn} that collectively define a packet classification
policy. Each ruleRi is composed of two parts: a combination
of D values, one for each selected packet header field, and
an associated action. The most commonly used five packet
header fields are: source IP address, destination IP address,
source port, destination port, and protocol type. Each of the
D values specified inRi could be a single value or an interval
of values or the special value ANY used to specify all possible
legitimate values for that field. Typical actions associated with
a rule include permit, deny, marking the ToS bit, etc. A packet
P is considered to match the ruleRi if all the D header fields
of P match the corresponding values inRi. If P matches
more than one rule, then the rule with the smallest index in the
packet filter is returned. The associated action of the returned
rule will be performed onP accordingly.

A simple packet filter with 10 rules defined on 5 fields is
shown in Table I.

B. The HyperCuts Data Structure and Algorithm

Decision trees have been shown to be a powerful data struc-
ture for performing packet classification by using geometric
cutting [21]. Several different variants of decision tree based
packet classification algorithms (e.g., [23] [11] [18]) have been
proposed. HyperCuts [18] is considered to be one of the most
efficient decision tree based algorithms. In this section, we will
briefly introduce the HyperCuts data structure and algorithm.
A more detailed discussion can be found in [18].

A HyperCuts decision tree is composed of two types of
nodes: internal nodes and leaf nodes. Each leaf node contains
less thanBucketSize number of rules, whereBucketSize is
a small constant (e.g., 4). The small number of rules stored in
a leaf node will be linearly traversed to find the matched rule
with the smallest index in the original packet filter. By contrast,
an internal node contains more thanBucketSize rules, so
rules stored in the internal node have to further split to its
child nodes.

The HyperCuts decision tree is efficient because it splits
rules in internal nodes using the information from multiple
packet fields. In contrast to HyperCuts, HiCuts [11] only splits
rules on one packet field at a time. In order to decide which
subset of packet fields to use to split rules on an internal node,
the HyperCuts algorithm will first count the number of unique
elements on each field for all rules stored on the node. Let
us take the 10 rules in Table I as an example, the number of
unique elements in all five fields is 10, 10, 1, 9, 2 respectively.
The HyperCuts algorithm will then consider the set of fields
for which the number of unique elements isgreater than the
meanof the number of unique elements for all the fields. For
example, given a node holding the 10 rules in Table I, the
three fields of source IP, destination IP and destination port
should be considered for cutting. After determining which set
of fields to cut, the HyperCut algorithm uses several heuristics
to decide how many cuts should be performed on each field.
Due to the space limitation, we will not discuss those heuristics
in detail here. However, it is worth noting that the number of
child nodes that an internal node can be split into is limited
by a factor of the number of rules stored in the node. The
function is defined asf(N) = spfac×

√
N , whereN is the

number of rules in the internal node andspfac is a small
constant with a default value of 2. This technique is used by
both the HiCuts and the HyperCuts algorithms to reduce the
memory consumption.

C. Extend the HyperCuts Data Structure and Algorithm

To allow multiple packet filters to share a HyperCuts
tree, the original HyperCuts data structure and tree building
algorithm need to be extended. Figure 1 (a) shows two separate
HyperCuts trees, each of which only has one internal node (its
root) and four leaf nodes. Figure 1 (b) shows the corresponding
shared HyperCuts tree. As can be seen, the internal node on
shared HyperCuts tree is the same as the one in the original

3

Rule ID Source IP Destination IP Source port Destination port Protocol Action
R0 104.253.26.143/31 151.217.12.0/23 ANY 1489 TCP act0

R1 103.11.193.196/31 151.193.40.150/32 ANY 27000 TCP act0

R2 51.109.218.92/30 243.82.86.0/23 ANY 135 TCP act1

R3 133.202.88.44/30 78.87.20.226/31 ANY [1300-1349] TCP act2

R4 137.180.89.7/32 243.82.125.14/32 ANY 6789 TCP act1

R5 201.130.210.90/31 6.92.31.0/25 ANY 1533 TCP act0

R6 119.10.210.90/31 6.92.31.0/25 ANY 1526 UDP act0

R7 119.67.166.172/31 151.143.84.75/32 ANY 1521 TCP act3

R8 71.252.162.33/32 151.166.64.162/32 ANY [1300-1349] TCP act4

R9 209.137.112.252/31 151.248.122.158/32 ANY [61200-61209] TCP act2

TABLE I
A SIMPLE PACKET FILTER EXAMPLE WITH10 RULES ON FIVE FIELDS

Fig. 1. Example of Shared HyperCuts tree: (a) Two separate HyperCuts
trees. (b) The corresponding shared HyperCuts tree.

HyperCuts tree. Each internal node only records the number
of cuts performed on each field and a list of pointers to its
child nodes. On the other hand, leaf nodes have to be slightly
extended to support multiple packet filters sharing the tree.
In the original HyperCuts tree, a leaf node is composed of
a header (indicating the node is a leaf node) and a pointer
to the set of rules stored in this leaf node. In the shared
HyperCuts tree oftwo packet filters, a leaf node is composed
of the same header andtwo pointers, one for each packet filter.
When a packet reaches a leaf node when searching the shared
HyperCuts tree, since it knows which packet filter this packet
is being matched, it will directly calculate which pointer it
should access next. Therefore, the time to access a leaf node
on the shared HyperCuts tree is still the same as in the original
HyperCuts tree. In this simple example, by making the two
packet filters share a tree, we saved one internal node and 4
headers of leaf nodes.

Now we continue to explain how we extend the original
HyperCuts tree construction algorithm. The idea is to use a
corresponding average value across all packet filters to replace
the value used in the original algorithm. For example, suppose
that the two packet filtersF1 andF2 are sharing a HyperCuts
decision tree. Given an internal node on the shared tree, if the
number of stored rules from each packet filter isN1 andN2,
then the number of child nodes this internal node can have
is bounded byspfac ×

√

(N1 + N2)/2. Similarly, to decide
the subset of fields for cutting on each internal node, we will
first calculate the number of unique elements in each field on
a per packet filter basis. Let us denote the number of unique

elements for rules fromF1 andF2 asu1j andu2j respectively,
where 1 ≤ j ≤ D. Then the number of unique elements
on each fielduj for the current internal node is defined as
uj = (u1j +u2j)/2. The rest of the algorithm is just the same
as original HyperCuts algorithm.

D. Efficiency Metrics of The HyperCuts Decision Tree

Given a constructed HyperCuts tree, we wish it consumes
as little memory as possible. Thus, a natural metric of interest
is memory consumption. In addition, we wish to do fast
packet classification using the shared HyperCuts tree, so the
tree search time (i.e., from the root to leaf nodes) is also
important. We use the following two metrics to characterize
the tree search time:
Average depth of leaf nodes:The depth of a leaf node is
just the length of the shortest path from itself to the root.
Assuming each leaf node has the same probability to be
reached during a packet matching, then the average depth of
all leaf nodes reflects on average how many internal nodes
need to be accessed to terminate this tree search.
Height of the tree: This metric characterizes the largest
number of internal nodes needed to be accessed for a packet
to reach a leaf node. It corresponds to the worst case search
time.

III. C HALLENGES OFCONSTRUCTINGEFFICIENT SHARED

HYPERCUTS DECISION TREE

To construct efficient shared HyperCuts decision trees, one
key question to answer is: which subset of packet filters should
share a HyperCuts decision tree so that the resulted shared tree
is more efficient than a set of separate trees? In this section,
we first introduce the filter data sets used in the paper. We then
experimentally show that naively letting multiple packet filters
share a HyperCuts decision tree will significantly increasethe
memory consumption and height of the shared trees.

A. Filter Data Sets

We extracted a set of real packet filters from the configu-
ration files of routers in a large-scale campus network [19]
at Purdue University. We did not include the 260 packet
filters that contain no more thanBucketSize number of
rules, because their corresponding HyperCuts decision trees
just contain one root node. In our experiment throughout the
paper, we always setBucketSize as 4.

4

Because it is hard to obtain other real packet filters, a
synthetic filter generator ClassBench [22] is used to generate
some synthetic filters. The ClassBench tool takes a parameter
file as the input and then generate synthetic filters using
the information stored in the input parameter file. We used
three parameter files provided by ClassBench and they were
originally generated from three real access control lists (ACLs)
on Cisco routers. Given each parameter file, we generate two
sets of 1,000 synthetic filters. The first set of 1,000 synthetic
filters all contain 100 rules, while the size distribution ofthe
second set of 1,000 synthetic filters follows an exponential
distribution with the average value of 100. Please note that
when generating synthetic filters with exponential size distri-
bution, we also discard the filters containing no more than
BucketSize rules.

Some basic statistics about the set of real packet filters and
the six sets of synthetic filters are summarized in Table II.

B. Making Random Packet Filters Share HyperCuts Trees?

In this section, we will use a simple experiment to show that
extra care has to be taken in deciding which set of packet filters
should share a tree. Naively making a set of random packet
filters share a tree will significantly degrade the performance.

In our experiment, for each filter data set, we randomly
choosen distinct filters, wheren is a small number. Given
the n selected filters, we first build a separate tree for each
selected filter. Let us denote the memory consumption of
the n trees asmi, the average depths of leaf nodes of the
n trees asdi, and the heights of then trees ashi, where
1 ≤ i ≤ n. Then we construct a shared HyperCuts decision
tree to represent the selectedn filters. Let us denote the
memory of the shared tree, the average depth of leaf nodes in
the shared tree and the height of the shared tree asmshared,
dshared and hshared. Now we can define thememory con-
sumption ratio asmshared/

∑n

i=1
mi, theaverage leaf depth

ratio as dshared/(
∑n

i=1
di/n), and thetree height ratio as

hshared/(
∑n

i=1
hi/n). The smaller the ratios are, the more

benefits we obtain by making then packet filters share a single
HyperCuts tree. A ratio larger than1 means that the shared tree
has worse performance thann separate trees. Given each fixed
n, we repeat the experiment 1000 times, i.e., we randomly
select 1000 sets ofn distinct filters for our experiment. We
also varyn from 2 to 10.

Figure 2 (a) shows the average memory consumption ratio
across 1000 runs for all 7 data sets. As can be seen, when
the number of randomly selected filters increases, the memory
consumption ratio becomes higher for all 7 data sets. This is
because the more random packet filters are selected, the harder
it is to construct a HyperCuts tree suitable for all packet filters.
When 10 random packet filters share a HyperCuts decision
tree, it will consume 2 to 20 times more memory than simply
using 10 separate trees. Figure 2 (b) shows the average of the
average leaf depth ratios across 1000 runs. Similarly, the more
random packet filters are selected to share a tree, the largerthe
ratios are. The tree height ratio results are very similar tothe
average leaf depth ratio results, so they are not shown here.

2 4 6 8 10
0

5

10

15

20

25

30

Size of random groups

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 r

a
ti
o

Purdue

Syn1−Exp

Syn1−100

Syn2−Exp

Syn2−100

Syn3−Exp

Syn3−100

2 4 6 8 10
0

5

10

15

20

Size of random groups

A
v
e

ra
g

e
 l
e

a
f
d

e
p

th
 r

a
ti
o

Purdue

Syn1−Exp

Syn1−100

Syn2−Exp

Syn2−100

Syn3−Exp

Syn3−100

(a) (b)

Fig. 2. (a) Memory consumption increases when random packetfilters share
a HyperCuts tree. (b) Average depths of leaf nodes increase when random
packet filters share a HyperCuts tree.

By comparing the memory consumption ratio and average
leaf depth ratio, we can also observe that the average leaf depth
ratio increases more rapidly with the increase ofn than the
memory consumption ratio does. The reason is that the sizes
of all internal nodes in a HyperCuts tree are not the same.
Please recall that the number of child nodes that an internal
node can have is related to the number of rules stored in the
node. Because those nodes closer to the root usually contain
more rules, they accordingly have more child pointers (4 bytes
for each pointer). Thus, internal nodes closer to the root are
much larger than the internal nodes far from the root. This
explains why a HyperCuts tree with doubled height consumes
less than doubled memory.

IV. CLUSTERING PACKET FILTERS TO CONSTRUCT

EFFICIENT SHARED HYPERCUTS DECISION TREES

As shown in Section III, letting a set of random filters share
a HyperCuts tree leads to increased memory consumption and
tree search time. In this section, we propose a novel approach
to clustering packet filters to form efficient shared HyperCuts
decision trees. In our approach, to help decide which subset
of packet filters should share a tree, we first identify a number
of important factors that collectively impact the efficiency of
the resulted shared tree. Based on the identified factors, we
then propose to use machine learning techniques to predict
whether any pair of packet filters should share a HyperCuts
decision tree. Given the pair-wise prediction on all possible
pairs, a greedy heuristic algorithm is used to classify packets
filters into a number of shared HyperCuts decision trees.

A. Factors Affecting the Efficiency of the Shared Tree

In this section, we first present some important factors that
can characterize each individual packet filter. Then based on
the collection of factors from a set of packet filters, we can
decide whether they should share a tree or not. According to
our analysis, there are two classes of factors that can impact
the efficiency of the shared HyperCuts decision tree:
Class-1 factorsinclude some simple statistical properties of
a packet filter itself. They include thesize of the packet
filter and the number of unique elements in each field. As
you can see, to obtain the Class-1 factors, we do not need

5

Data Set Name Parameter File Number of Filters Size Distribution Average Size Minimum Size Maximum Size
Purdue N/A 140 N/A 21.5 5 763

Syn1-Exp ACL1 1000 Exponential 98.21 5 1002
Syn1-100 ACL1 1000 Uniform size:100 100 100 100
Syn2-Exp ACL3 1000 Exponential 101.9 5 910
Syn2-100 ACL3 1000 Uniform size:100 100 100 100
Syn3-Exp ACL4 1000 Exponential 106.3 5 874
Syn3-100 ACL4 1000 Uniform size:100 100 100 100

TABLE II
SUMMARY OF BASIC STATISTICS ABOUT THE SEVEN FILTER DATA SETS.

to build the HyperCuts decision tree for the packet filter.
These factors are important because they are used in the
HyperCuts tree construction algorithm. Thus, they can affect
the structure of the final HyperCuts tree. However, only Class-
1 factors are not enough to determine the structure or memory
consumption of the final HyperCuts decision tree. Two packet
filters with identical Class-1 factors may have very different
tree structures. Therefore, we identify the second class of
factors as follows.
Class-2 factorsrepresent the characteristics of the constructed
HyperCuts decision tree. That is, the HyperCuts tree must
be constructed to obtain the Class-2 factors of a packet
filter. Because we want the final shared tree to have good
performance, thememory consumption of the tree, theaverage
depth of leaf nodesand theheight of the treeare one part of
the Class-2 factors. In addition, thenumber of leaf nodes, the
number of internal nodesand thetotal number of cuts on each
field are also included into the Class-2 factors, because they
can more accurately reflect the actual structure and memory
consumption of the HyperCuts tree. For example, the more
nodes a tree has, the more memory it will generally consume.
In addition, the total number of cuts performed on each field
can reflect the relative importance of each field so it can impact
the structure of the constructed tree.

Given the two classes of important factors, now we may
cluster all the packet filters into a number of shared trees
using their corresponding factors. To make the packet filters
clustering problem simpler, in the following section, we will
first study how to determine whether two packet filters should
share a tree using their corresponding factors.

B. Predicting Good Pairs of Packet Filters

Two packet filters are defined to be a “good” pair if
their shared HyperCuts tree has decreased memory usage
and decreased average depth of leaf nodes compared to the
two separate HyperCuts trees. This problem is clearly a
classification problem, i.e., we need to classify all pairs of
packet filters into either good pairs or bad pairs. However,
it is non-trivial to manually derive some effective rules for
us to accurately decide whether a pair of packet filters should
share a tree or not. Luckily, some effective supervised machine
learning techniques [16] can help perform this classification
task. We will study a few representative supervised machine
learning techniques in Section V.

To use machine learning techniques to predict whether a
pair of filters is good, we need to first prepare some training
data to train a model. Given a filter data set withN distinct
packet filters, we can randomly selectM pairs of filters out of

all possibleN ×(N −1)/2 pairs as the training data. For each
selected pair of filters, we can decide whether they are a good
pair by constructing two separate trees and one shared tree.
For each selected pair of filters, we can also calculate their
factors. By feeding all these information to certain machine
learning technique, a model can be learned to be used to
predict whether any new pair of packet filter is good or bad.
We will evaluate the prediction accuracy of different machine
learning techniques in Section V.

C. Clustering Packet Filters Based on Pair-wise Prediction

By using the model learned from a small amount of training
pairs, we can now predict whether any pair of filters is good
or not. Based on the pair-wise prediction for all possible pairs
of all filters, an undirected graphG can be constructed. In
the graphG, each node represents a distinct packet filter. Two
nodes inG are connected with an edge if and only if the
two corresponding packet filters are predicted to be a good
pair. Given the constructed graphG, the following clustering
algorithm is proposed to determine which subset of packet
filters should share a HyperCuts decision tree:

INPUT OF ALGORITHM: G andα ∈[0 1]
OUTPUT OF ALGORITHM: A set of packet filter clusters:Sclusters

01: Sfilters = {All packet filters};
02: Sclusters = { };
03: WHILE(|Sfilters| > 0)
04: clusteri = { };
05: Findfm ∈ Sfilters who has most neighbors fromSfilters in G;
06: clusteri = clusteri ∪ {fm};
07: Sfilters = Sfilters\{fm};
08: WHILE TRUE
09: Findfn ∈ Sfilters with most neighbors fromclusteri in G

if multiple choices exist, pick the one with largest degree in G,
let us assumefn hask neighbors fromclusteri in G,

10: IF (k ≥ α × |clusteri|)
11: clusteri = clusteri ∪ {fn};
12: Sfilters = Sfilters\{fn};
13: ELSE break the WHILE loop;
14: END-IF
15: END-WHILE
16: Sclusters = Sclusters ∪ {clusteri};
17: END-WHILE
18: RETURNSclusters;

In the above algorithm,α is a constant value between0
and1. Intuitively, the higher theα value is, the more difficult
that a packet filter can join an existing cluster. For example,
if α is set to0, then all packet filters in the same connected
component inG will share a HyperCuts decision tree. On the
other hand, ifα is set to1, then a set of packet filters will
be clustered together if and only if the corresponding nodes
in G form a clique. We will evaluate the performance of the
clustering algorithm with differentα values in Section V-B.

6

V. PERFORMANCEEVALUATION

In Section V-A, we first evaluate how accurately we can
predict whether a pair of packet filters should share a tree.
We then study the performance of the packet filter clustering
algorithm in Section V-B. Finally, we show the detailed
breakdown of the time spent on each step of our approach
in Section V-C.

A. Accuracy of Predicting Good Pairs

As introduced in Section IV, we want to apply supervised
machine learning techniques to address this classificationprob-
lem. A supervised machine learning technique can automati-
cally learn a model from some training data. The training data
consists of pairs of input vectors, and desired outputs. After
a model is learned, it can then be used to predict an output
value for any valid input vectors. We discuss how we define
the input vectors, the output values and three classification
techniques we studied in detail as follows.

1) Three Types of Input Vectors:Based on the two classes
of factors introduced in Section IV-A, we can define three
types of input vectors for each pair of packet filters. The first
type of input vectors is composed of only the Class-1 factors
from both filters. The second type of input vectors is composed
of only the Class-2 factors of both filters. The third type of
input vectors includes both the Class-1 and Class-2 factorsof
the two filters. We evaluate the impact of using different types
of input vectors in Section V-A4.

2) Defining Output Values:The output of our classification
problem should be a label indicating whether the input vectors
correspond to a good pair or not. That is, there are only
two possible output values: good or bad. In this section,
we define two packet filters as a good pair if their shared
HyperCuts tree’s memory consumption ratio and average leaf
depth ratio are both smaller than 1. That is, the shared
HyperCuts tree must have decreased memory consumption
and deceased average depth of leaf nodes compared against
two separate HyperCuts trees. Please note that in the above
definition, if we replace the average depth of leaf nodes with
the height of the tree, the prediction accuracy is a little worse
according to our study. The reason is that the heights of trees
are determined by the leaf node with largest depth, so it is
not as stable as the average depth of all the leaf nodes. Due
to limited space, we only present the prediction accuracy by
using the definition of good pairs based on average leaf depth
ratio and memory consumption ratio.

We studied the percentage of good pairs by examining
10,000 random selected pairs from each data set. The fractions
of good pairs vary from 8% to 16% across all 7 data sets.
Since the fractions of good pairs are relatively small, any
classification technique that can accurately identify goodpairs
can be useful in practice.

3) Three Classification Techniques:We studied three rep-
resentative classification techniques including the decision tree

(DT) [16] 1, the generalized linear regression (GLR) [16] and
the naive Bayse classifier (NBC) [16]. We plan to study more
classification techniques such as the neural network in the
future.

It is straightforward to apply the DT technique to perform
classification here. For GLR technique, if we use the output
values1 and 0 to represent the good pair and the bad pair
respectively in the training data, then given a new pair of
filters, GLR will output a value between 0 and 1. In our
experiment, if the returned value by GLR is larger than 0.5
then we predict the pair as good. Otherwise, the pair is
predicted to be bad. As for NBC, we cannot directly feed the
input vectors defined in Section V-A1 to NBC technique. NBC
requires a set of features instead. In our experiment, we simply
define a corresponding feature from each factor. For example,
the size of the first packet filter in the pair is a factor. We can
define its corresponding feature as follows: we first calculate
the 10th percentile and 90th percentile of the sizes of the first
packet filter from all good pairs in the training data. A pair
of testing packet filters is then said to have this feature if the
size of its first packet filter falls into the above 10th and 90th
percentile range. After we convert factors into features, the
NBC can be used directly to perform classification.

4) Accuracy of Pair-Wise Prediction:For each data set, we
randomly select 10,000 pairs and then calculate both Class-
1 and Class-2 factors for those selected pairs. We also need
to determine whether each selected pair is good or bad. To
evaluate the prediction accuracy using different types of input
vectors, we randomly choose 1,000 pairs (i.e., 10%) out of the
10,000 pairs as the training data. We then use the rest 9,000
pairs as the testing data to test the prediction accuracy of the
learned model. We repeat this experiment 10 times, each of
which uses a different 1,000 pairs as the training data. Figure 3
and 4 show the average false positive rate and the average
false negative rate of the three classification techniques using
different input vectors across 10 runs.

First of all, different types of input vectors have a significant
impact on the false positive and false negative rate for all three
techniques. Only using Class-1 factors as input gives the worst
prediction accuracy for both DT and GLR. Including Class-2
factors in the input vectors help improve the performance of
both DT and GLR. This is expected because Class-1 factors
are relatively simple and they are not sufficient to predict
the final HyperCuts decision tree. However, including more
factors as input does not help NBC. Instead, when more and
more factors are included as input, the performance of NBC
is getting worse. The NBC technique assumes that all the
input variables are independent to each other, while in our
case, those input factors may not be completely independent.
When having more and more dependent variables into the
input vectors, the performance may get worse.

Secondly, among the three techniques we have studied, DT
technique has the best overall performance. GLR does not

1To avoid ambiguity, we always use “HyperCuts decision tree”to refer the
packet classification technique, while using “decision tree” or “DT” in this
section to represent the machine learning techniques used

7

Purdue Syn1−Exp Syn1−100 Syn2−Exp Syn2−100 Syn3−Exp Syn3−100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

al
se

 p
os

iti
ve

 r
at

e

Decision Tree

Class−1 factors as input

Class−2 factors as input

Class−1 & Class−2 factors as input

Purdue Syn1−Exp Syn1−100 Syn2−Exp Syn2−100 Syn3−Exp Syn3−100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
al

se
 p

os
iti

ve
 r

at
e

Generalized Linear Regression

Class−1 factors as input

Class−2 factors as input

Class−1 & Class−2 factors as input

Purdue Syn1−Exp Syn1−100 Syn2−Exp Syn2−100 Syn3−Exp Syn3−100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
al

se
 p

os
iti

ve
 r

at
e

Naive Bayse Classifier

Class−1 factors as input

Class−2 factors as input

Class−1 & Class−2 factors as input

(a) (b) (c)

Fig. 3. False positive rate: (a) Decision tree (DT) (b) Generalized linear regression (c) Naive Bayse classifier.

Purdue Syn1−Exp Syn1−100 Syn2−Exp Syn2−100 Syn3−Exp Syn3−100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
al

se
 n

eg
at

iv
e

ra
te

DecisionTree

Class−1 factors as input

Class−2 factors as input

Class−1 & Class−2 factors as input

Purdue Syn1−Exp Syn1−100 Syn2−Exp Syn2−100 Syn3−Exp Syn3−100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
al

se
 n

eg
at

iv
e

ra
te

Generalized Linear Regression

Class−1 factors as input

Class−2 factors as input

Class−1 & Class−2 factors as input

Purdue Syn1−Exp Syn1−100 Syn2−Exp Syn2−100 Syn3−Exp Syn3−100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
al

se
 n

eg
at

iv
e

ra
te

Naive Bayse Classifier

Class−1 factors as input

Class−2 factors as input

Class−1 & Class−2 factors as input

(a) (b) (c)

Fig. 4. False negative rate: (a) Decision tree (DT) (b) Generalized linear regression (c) Naive Bayse classifier.

0.25 0.5 0.75 1
0

1

2

3

4

5

6

7

8

α

R
a

tio

Purdue

Memory consumption

Height of tree

Average depth of leaf nodes

Fig. 5. Shared HyperCuts trees V.S. separate HyperCuts trees (Purdue data).

work well because its linear model simply can not accurately
capture the complex relationships among those factors. NBC
falls short because it assumes that all factors are independent
while they are acutally not. If both Class-1 and Class-2 factors
are used in the input vectors to train the decision tree, thenthe
false positive rates will vary from 3% to 8%. In addition, the
average false negative rate across the 7 data sets is 23%. A
low false positive rate is important because it means that only
a small percentage of bad pairs will be mistakenly predicted
to be good ones. A 23% false negative rate means that 77% of
all good pairs can still be correctly identified by the learned
model.

B. Performance of The Filter Clustering Algorithm

Since we have shown that the DT technique using both
Class-1 and Class-2 factors as input has the best prediction
accuracy among the three techniques we studied, in this section
we will use DT to predict the goodness of all pairs of packet
filters in a data set. Based on the pair-wise prediction provided
by DT, we can construct a graphG for each filter data set. We
can then apply our filter clustering algorithm to cluster nodes
in G to decide which subset of packet filters should share a
HyperCuts decision tree. DT is trained by using a training
data set of 1,000 random pairs, and the results presented in
this section are the average values across 10 runs. Recall that
in addition toG, the proposed clustering heuristic algorithm
also needs a constantα. In our experiment, we varyα from
0.25 to 1.

Figure 5 shows the performance of the final constructed
shared trees for 140 Purdue filters. Whenα = 0.25, the
shared trees actually have much worse performance than the
140 separate trees. Please recall that a smallerα value means
that a packet filter can more easily join an existing cluster.
When a packet filter is mistakenly classified into a wrong filter
cluster, the overall performance of the cluster will significantly
degrade. When a largerα such as0.5 is used, the performance
becomes better. The overall memory saving is over 40%. In
the meantime, the average heights of the shared trees and
the average depth of leaf nodes in shared trees are slightly
decreased.

8

0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

α

R
at

io

Syn1−Exp

Memory consumption

Height of tree

Average depth of leaf nodes

0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

α

R
at

io

Syn2−Exp

Memory consumption
Height of tree
Average depth of leaf nodes

0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

α

R
at

io

Syn3−Exp

Memory consumption
Height of tree
Average depth of leaf nodes

(a) (b) (c)

Fig. 6. Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Syn1-Exp (b) Syn2-Exp (c) Syn3-Exp.

0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

α

R
at

io

Syn1−100

Memory consumption
Height of tree
Average depth of leaf nodes

0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

α

R
at

io

Syn2−100

Memory consumption
Height of tree
Average depth of leaf nodes

0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

α

R
at

io

Syn3−100

Memory consumption

Height of tree

Average depth of leaf nodes

(a) (b) (c)

Fig. 7. Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Syn1-100 (b) Syn2-100 (c) Syn3-100.

Figure 6 and Figure 7 show the overall performance of the
6 synthetic data sets. As can be observed, whenα increases,
the memory consumption ratio generally increases while the
average leaf depth ratio and tree height ratio decrease. If we
fix α as1, then we can reduce memory consumption over 20%
on average while only increasing average leaf depth by 3% on
average across all 6 synthetic data sets.

As you can see, the parameterα plays a vital role in deter-
mining the filter clustering results and also the performance
of the constructed shared HyperCuts decision trees. However,
determining the optimalα value for a specific packet filter
data set is beyond the scope of this paper. We will continue
to study this problem as our future work.

C. Computation Time Breakdown

In this section, we want to study the computation time spent
on each step in our approach. We break our approach into 7
steps: (1) calculating Class-1 factors, (2) calculating Class-2
factors, (3) generating 1,000 training pairs, (4) trainingthe
DT, (5) predicting the goodness of all pairs to constructG,
(6) clustering packet filters and (7) constructing the shared
HyperCuts decision trees. As for implementation, steps (4)-
(6) are implemented in Matlab and the other steps are imple-
mented in theC++ language. The desktop machine used in
our experiment has a 2.6 GHz AMD Opteron processor and
4 GB of main memory.

Table III shows the detailed breakdown of time (in seconds)

spent on each step for all 7 data sets. When performing the
packet filter clustering step, we setα = 0.5. As can be seen,
the step of preparing the training data takes the most time for
all 7 data sets. The reason is that we need to construct 2,000
separate HyperCuts tree and 1,000 shared HyperCuts trees.
The time spent in clustering packet filters and constructing
shared HyperCuts trees is relatively modest. Therefore, a
network operator may want to run the filter clustering and
shared tree construction steps a few times with differentα
values to select oneα offering best performance. In summary,
it takes our approach about 17 seconds to construct shared
HyperCuts trees for 140 real packet filters and about 6.8
minutes on average to construct a set of shared HyperCuts
trees for 1,000 synthetic packet filters.

VI. RELATED WORK

To the best of our knowledge, this paper is the first to
study how to construct efficient shared data structures for
multiple packet filters. The HyperCuts [18] decision tree is
used in our study because it is one of the most efficient packet
classification data structures.

Our work is inspired by Fu and Rexford [9], who observed
that the forwarding information bases (FIBs) of different
virtual routers on the same physical router share a large
number of common prefixes. They proposed to use a shared
trie data structure to hold multiple FIBs. They also proposed
a corresponding lookup algorithm to search the shared trie

9

Data Sets Name Class 1 Class 2 Generating 1k training pairs Training PredictingG Clustering Constructing shared trees Total
Purdue 1.7 4.9 6.9 0.29 0.01 0.52 2.6 16.92

Syn1-Exp 28.2 86.4 298.9 0.1 0.33 57.6 51.3 522.83
Syn1-100 24.7 69.3 138.6 0.3 0.7 62.0 21.1 316.7
Syn2-Exp 28.7 86.9 315.0 0.31 0.78 46.6 26.7 504.99
Syn2-100 23.5 74.5 143.9 0.15 0.33 7.7 48.6 298.68
Syn3-Exp 23.9 72.3 312.0 0.51 0.88 36.9 65.8 512.29
Syn3-100 24.5 74.2 141.1 0.41 0.75 31.7 35.3 307.96

TABLE III
COMPUTATION TIME BREAKDOWN (IN SECONDS) FOR EACH STEP IN THE PROPOSED APPROACH.

data structure. Their evaluation results show that by sharing
a trie data structure, the memory requirement can be greatly
reduced and the IP lookup time also decreases. However, their
work only focused on merging forwarding tables. How to
construct efficient shared data structures for multiple packet
filters is not studied. In addition, in their approach, all FIBs are
always merged into a single shared FIB, while our approach
can automatically classify packet filters into multiple shared
HyperCuts decision trees.

Several packet classifier compression techniques (e.g., [15],
[6], [8], [4], [14]) for TCAM-based packet classification
systems have been proposed. However, these techniques are
specifically designed for optimizing TCAM-based systems.
In addition, they all try to reduce TCAM memory usage by
compressing each individual packet classifier, while the key
idea of our approach is to save memory by allowing multiple
packet filters to efficiently share data structures.

VII. C ONCLUSION AND FUTURE WORK

To the best of our knowledge, this paper is the first to
study how to construct efficient shared data structure such as
the HyperCuts decision tree for multiple packet filters. We
have identified a set of important factors that can affect the
performance of the constructed shared HyperCuts trees. We
then propose a novel approach to clustering packet filters into
shared HyperCuts decision trees. Our evaluation using both
real packet filters and synthetic packet filters shows that by
enabling multiple packet filters to share HyperCuts decision
trees, memory consumption can be considerably reduced. We
also show that the proposed approach is practical. It only
takes a few minutes to finish clustering 1,000 packet filters
and to construct the corresponding shared HyperCuts decision
trees. As future work, we will investigate how to efficiently
cope with the dynamics of packet filters in practice. We plan
to study efficient mechanisms for incrementally updating the
shared decision trees when some packets filters are changed.
We will also study whether our proposed technique can be
applied to other data structures that can represent packet filters
(e.g., the decision diagram [10]).

ACKNOWLEDGMENTS

This research was sponsored by the NSF under CAREER
Award CNS-0448546, NeTS FIND Award CNS-0721990, by
Microsoft Corp., and by an Alfred P. Sloan Research Fel-
lowship. Views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,

of NSF, Microsoft Corp., the Alfred P. Sloan Foundation, or
the U.S. government.

REFERENCES

[1] “Cisco Logical Routers,” http://www.cisco.com/en/US/docs/ios xr sw/
iosxr r3.2/interfaces/command%/reference/hr32lr.html.

[2] “Juniper Logical Routers,” http://www.juniper.net/techpubs/software/
junos/junos85/feature-guide-85%/id-11139212.html.

[3] T. Anderson, L. Peterson, S. Shenker, and T. Turner, “Overcoming the
Internet Impasse Through Virtualization,” inIEEE Computer, vol. 38,
no.4, May 2005.

[4] D. Applegate, G. Galinescu, D. Johnson, H. Karloff, K. Ligett, and
J. Wang, “Compressing Rectilinear Pictures and MinimizingAccess
Control Lists,” in ACM SODA, 2007.

[5] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In vini
veritas: realistic and controlled network experimentation,” in Proc. ACM
SIGCOMM, September 2006.

[6] Chad R. Meiners and Alex X. Liu and Eric Torng, “Topological Trans-
formation Approaches to Optimizing TCAM-Based Packet Processing
System,” inACM SIGMETRICS, 2009.

[7] Cisco, Inc., “Policy-based routing, white paper,” http://www.cisco.com/
warp/public/732/Tech/plicywp.pdf.

[8] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla, “Packet
Classifiers in Ternary CAMs Can Be Smaller,” inACM SIGMETRICS,
2006.

[9] J. Fu and J. Rexford, “Efficient IP-Address Lookup with a Shared
Forwarding Table For Multiple Virtual Routers,” inACM CoNEXT, 2008.

[10] M. G. Gouda and A. X. Liu, “Firewall Design: Consistency, Com-
pleteness and Compactness,” inProceedings of 24th IEEE International
Conference on Distributed Computing Systems (ICDCS), 2004.

[11] P. Gupta and N. McKeown, “Packet Classification Using Hierarchical
Intelligent Cuttings,” inHot Interconnects, 1999.

[12] Juniper Networks, Inc., “Intelligent Logical Router Service,” www.
juniper.net/solutions/literature/whitepapers/200097.pdf.

[13] P. Lekkas,Network Processors - Architectures, Protocols, and Platforms,
2003.

[14] A. X. Liu, C. R. Meiners, and Y. Zhou, “All-match based complete
redundancy removal for packet classifiers in TCAMs,” inIEEE INFO-
COM, 2008.

[15] C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving: A Non-prefix
Approach to Compressing Packet Classifiers in TCAMs,” inIEEE ICNP,
2009.

[16] T. Mitchell, Machine Learning. McGraw Hill, 1997.
[17] P. Psenak and S. Mirtorabi and A. Roy and L. Nguyen and P. Pillay-

Esnault, “Multi-Topology (MT) Routing in OSPF,” IETF RFC 4915,
2007.

[18] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “PacketClassification
Using Multidimensional Cutting,” inACM SIGCOMM, 2003.

[19] Y. Sung, S. Rao, G. Xie, and D. Maltz, “Towards Systematic Design of
Enterprise Networks,” inACM CoNEXT, 2008.

[20] T. Przygienda and N. Shen and N. Sheth, “Multi-Topology(MT) Routing
in Intermediate System to Intermediate Systems (IS-ISs),”IETF RFC
5120, 2008.

[21] D. E. Taylor, “Survey and Taxonomy of Packet Classification Tech-
niques,” inACM Computing Surveys, vol. 37, no 3, 2005.

[22] D. E. Taylor and J. S. Turner, “ClassBench: A Packeet Classification
Benchmark,” inIEEE INFOCOM, 2005.

[23] T. Woo, “A Modular Approach to Packet Classification: Algorithms and
Results,” inIEEE INFOCOM, 2000.

[24] C. Zhang, M. Winslett, and C. Gunter, “On the Safety and Efficiency
of Firewall Policy Deployment,” inIEEE Symposium on Security and
Privacy, May 2007.

