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Abstract—We propose and investigate a deterministic traveling
wave model for the progress of epidemic routing in disconnected
mobile ad hoc networks. In epidemic routing, broadcast or
unicast is achieved by exploiting mobility: message-carrying
nodes “infect” non message-carrying nodes when they come
within communication range of them. Early probabilistic analyses
of epidemic routing follow a “well-mixed” model which ignores
the spatial distribution of the infected nodes, and hence do not
provide good performance estimates unless the node density is
very low. More recent work has pointed out that the infection
exhibits wave-like characteristics, but does not provide a detailed
model of the wave propagation. In this paper, we model mes-
sage propagation using a reaction-diffusion partial differential
equation that has a traveling wave solution, and show that
the performance predictions made by the model closely match
simulations in regimes where the well-mixed model breaks down.
In particular, we show that well-mixed models are generally
overly optimistic in regard to the scaling of the message delivery
delay with problem parameters such as communication range,
node density, and total area. In contrast to prior work, our model
provides insight into the spatial distribution of the “infection,”
and reveals that the performance is sensitive to the geometry of
the deployment region, not just its area.

I. INTRODUCTION

We consider the problem of message dissemination in
disconnected mobile ad hoc networks (MANETs). Such delay-
tolerant networks arise naturally in many contexts, including
battlefield communication networks, animal tag based sensor
networks [1], [2], and emergency response networks. In this
setting, a given source node may be unable to reach its
intended destination using multiple hops of communication
for the current network topology. Instead, knowledge of the
message spreads like an infection through the nodes as they
employ short-range broadcast opportunistically; hence the
commonly used term epidemic routing. Eventual delivery of
the message is guaranteed for typical mobility models, so
the main focus is on understanding how performance metrics
such as end-to-end delay and memory requirements scale as
a function of parameters such as the number of nodes, the
communication range, the mobility model, and the geometry
of the region over which the network is deployed. To this end,
we derive a partial differential equation (PDE) model for the
dissemination of information via epidemic routing.

Early analyses of epidemic routing employ a mathematical
simplification that applies for exceedingly sparse deployments

[2], [3], [4], [5], [6]. In those settings, nodes meet sufficiently
infrequently so that the infected, or informed, agents may be
modeled as uniformly distributed in space at any given point
of time, in which case it suffices to track only the number of
informed agents. Following parlance common in the modeling
of chemical reactions [7] (which in turn is similar to the
modeling of the spread of infection), we use the term “well-
mixed” for this regime, since spatial correlations wash away.
While analytical predictions based on the well-mixed model
exhibit remarkable agreement with simulations for very sparse
deployments, they become increasingly inaccurate as the node
density increases.

More recent work indicates that information dissemination
via epidemic routing exhibits wave-like behavior. Kong and
Yeh [8] use percolation theory to show that the delivery
delay scales linearly with the source-destination distance when
the network is in a subcritical (non-percolated) regime, con-
sistent with wave-like propagation. Jacquet et al. [9], [10]
explicitly point out wave-like propagation of information,
using probabilistic journey analysis to derive upper bounds on
the asymptotic speed of information propagation, and lower
bounds on the asymptotic broadcast delay. These results are
derived in an asymptotic regime, as the number of nodes
and area of a square region tend to infinity at constant or
diminishing node density. In contrast, our goal is to derive
an explicit model for wave-like propagation that provides an
accurate scaling law for the expected delivery delay in non-
asymptotic regimes (and not necessarily square deployment
regions).

Figure 1 shows simulation snapshots for information propa-
gation in two regimes. The well-mixed model provides a good
approximation in the very low-density regime (a), while radial
wave-like behavior is evident in the higher density regime
(b). To model the second regime, we obtain a PDE model of
the spatiotemporal density of informed nodes that is closely
related to models for population dispersal, chemical reactions,
and the spread of infection.
Contributions: Our contributions are summarized as follows:
• We derive a reaction-diffusion PDE model for the prop-

agation of information in MANETs using epidemic rout-
ing.

• We obtain traveling wave solutions to the PDE model
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(a) Uniform Spread (b) Radial Wave Spread

Fig. 1: The above simulation snapshots show (a) a very sparse
deployment in which informed nodes, represented by filled
circles, are distributed essentially uniformly, and (b) a denser
deployment exhibiting a wave of information expanding from
a centrally located source. Existing well-mixed scaling laws
apply to the situation in (a), whereas the reaction-diffusion-
based laws derived in this paper apply to (b).

using techniques developed for spatial epidemics.
• We derive scaling laws expressing how the message

delivery delay depends on the communication radius,
node density, total area, and the region’s shape.

• We show that there is a clear transition from the well-
mixed regime to the wave propagation regime as the node
density and/or the communication radius increases.

• We show that the geometry of the deployment region
significantly affects information dissemination by study-
ing rectangular regions with different aspect ratios. Such
effects cannot be captured by the well-mixed model, since
they require a detailed model for the spatio-temporal
evolution of the “infection.”

Related work: We have already mentioned prior models
for epidemic routing, including well-mixed approximations
[2], [3], [4], [5], [6] and probabilistic analyses indicating
wave-like behavior [8], [9], [10]. As far as we know, the
present paper is the first attempt to use PDEs to provide a
detailed model of the wave-like spatiotemporal evolution of
information propagation due to epidemic routing. In doing
this, we are building on a long history of using PDEs to
model similar phenomena such as population dispersal and
spatially evolving epidemics. R. A. Fisher studied in 1937 a
1-D population undergoing spatial diffusion with a density-
dependent Pearl-Verhulst (logistic) growth term [11], and
traveling wave solutions were formalized the following year
by Kolmogoroff, Petrovsky, and Piscounoff [12]. Extensions to
2D growth can be found in the 1951 work of Skellam [13]. In
epidemics, slightly more complicated PDEs are used to model
the spread of disease. The additional complexity comes from
considerations for incubation periods, recovery, vaccination,
and node death. The book by Rass and Radcliffe provides a
good review of this work [14]. The MANET application differs

from these prior models because we have a clear notion of the
destination node, and are interested in studying message delay.

We note that the scaling laws for delay that we are interested
in are different from the throughput scaling laws that have
been the subject of intensive investigation since the seminal
work of Gupta and Kumar [15], including work by Gross-
glauser and Tse [16] that shows that mobility can be exploited
to improve throughput scaling. In contrast to the throughput
scaling considered in these papers, our work, as well as the
prior work in epidemic routing that we have mentioned above,
focuses on delay scaling in disconnected MANETs.
Outline: The remainder of this paper is organized as follows.
In Section II, the store-carry-and-copy routing protocol is
described, and the well-mixed scaling law is reviewed. A
reaction-diffusion partial differential equation model is intro-
duced in Section III. A traveling wave solution to the PDE
model is derived in Section IV, and resulting scaling laws,
are described in Section V. In Section VI, the validity of the
PDE model is tested in a simulation study of nodes employing
a random direction mobility model. Concluding remarks and
future directions are given in Section VII.

II. PROBLEM FORMULATION AND EXISTING RESULTS

A. Problem Formulation

The routing problem is set in a large planar region R of
total area A. Within this region, a total of N nodes move
randomly and independently according to a given mobility
model. Consider a single source node that carries a message
to be delivered to a particular destination node. Each node is
able to communicate with any other node that wanders within
a communication range R. Interference with other communi-
cations need not be considered because mobility operates at a
timescale much slower than that of communication.

While the source could simply wait for the destination to
wander within communication range, the end-to-end delay can
be significantly reduced using a store-carry-and-copy protocol
in which each node copies messages to other nodes that come
within the communication range R [17]. A figure of merit
often used to describe the message passing process is the mean
delivery delay (MDD), which is the expected elapsed time
between the generation of the message at the source, and the
final delivery of the message to the destination. The focus of
this paper is on determining how this figure of merit scales
with the problem data:
R A planar deployment region
A Total area of R
V Node velocity
N Number of nodes deployed
R Communication radius
Generally speaking, one would expect the delivery delay

to decrease as R, N , or V increase. Similarly, the delivery
delay can be decreased by modifying the shape of the region
R so that the average separation distance between the source
and destination is reduced. The PDE model developed later
applies to the general class of mobility models that can
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Fig. 2: The shaded region represents the area swept by the
communication ball of an informed node with communication
radius R moving at relative speed Ve for time dt.

be parameterized by a diffusion-like coefficient D and an
effective relative speed between nodes Ve. In the simulation
section, we use the random direction mobility model.

B. Existing Scaling Laws

Scaling laws are a central focus of active research on
mobility-assisted communication. Many authors have derived
scaling laws of message delay for various protocols and param-
eters. In this paper, we focus on an opportunistic, time-optimal,
routing protocol in which new information is forwarded every
time two nodes meet. Previous scaling laws for this and other
protocols are applicable only in “well-mixed” situations for
which the node inter-meeting times are long compared to
the mixing time of the mobility model. The mixing time of
the system is a sufficiently large scalar Tmix so that if two
nodes start at the same position, their positions are essentially
independent and uniformly distributed after an interval of
length Tmix.

To pinpoint when the existing well-mixed laws are applica-
ble, let I(t) denote the expected number of informed nodes
(i.e. those knowing the message) at time t and assume that
the nodes’ density and communication radius are sufficiently
small so that the time between consecutive encounters is larger
than the mixing time, with large probability. After such time,
the distribution of informed and uninformed nodes will each
be uniform, with densities I/A and (N − I)/A, respectively.
As depicted in Fig. 2, in a small interval of time dt, the
communication ball of each informed node sweeps a region
of area

dA = 2RVedt. (1)

Therefore, during this period, an average of 2RVe(N−I)/Adt
uninformed nodes will be encountered, which means that the
rate at which one informed node will meet uninformed nodes
is equal to 2RVe(N − I)/A. Assuming that all I informed
nodes encounter uninformed nodes at this rate, the expected
number of nodes informed about a particular message can be
described by the following ordinary differential equation,

dI

dt
=

2RVe
A

I(N − I). (2)

To determine under what conditions the well-mixed ap-
proximation is valid, note that the maximum expected rate

1 2

N

N-2 N-13
λ(N − 2) 2λ(N − 3)

2λλ λ(N − 1)

λ(N − 2)

λ(N − 2)3λ

Fig. 3: The Markov model used in [3] to derive the well-mixed
scaling law. The state represents the number of informed
nodes, except for the destination node which is labeled as
“N .”

of message passing under a well-mixed assumption is

max
I∈[0,N ]

2RVeI(N − I)
A

=
RVeN

2

2A
,

and therefore the expected time between message passing
events is of order no smaller than

2A
RVeN2

=
2

RVeρ2
0A

,

where ρ0 := N/A denotes the nodes’ density. For the well-
mixed assumption to hold, this time must be larger than the
mixing time, which means that

2
RVeρ2

0A
≥ Tmix ⇔ 2

Rρ2
0A

3
2
≥ V Tmix√

A
. (3)

In practice, this relationship will hold for R, ρ0, and A small.
It is important to note from (3) that the well-mixed assumption
will fail to hold when the area or number of nodes is scaled-up
at constant node density. One would expect the dimensionless
quantity VeTmix/

√
A to remain constant as one varies Ve and

A for the same basic motion model of the nodes.
The well-mixed scaling law of Groenevelt et al. [3] comes

from a combination of the above derivation of the fact that
the nodes meet at a rate λ := 2RVe/A, with a Markov model,
see Fig. 3. The Markov chain can be solved to arrive at the
scaling law for the mean delivery delay,

MDD =
A

2RVe(N − 1)

N−1∑
i=1

1
i

(4)

=
A

2RVe(N − 1)

(
log(N − 1) + γ +O

(
1

N − 1

))
.

(5)

Here, γ ≈ 0.577 is Euler’s constant.

III. PDE APPROACH

To go beyond the infrequent meetings required for the well-
mixed scaling law to hold, in this section we derive a reaction-
diffusion partial differential equation that will be used in the
following sections to derive a new scaling law. The PDE
models the evolution of the density of informed nodes, and we
show that it reduces to the usual well-mixed ODE (2) under
a uniform density assumption. However, when nodes instead
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meet sufficiently frequently so as to render the uniform density
assumption invalid, traveling waves occur in the density of
informed nodes because nodes initially close to the source
will receive the message before those initially far from the
source. The message passing process is thus spatial, and must
be treated with a PDE instead of an ODE.

To begin, let ρI(x, t) and ρU (x, t) be the density of in-
formed and uninformed nodes, respectively, at time t and point
x ∈ R. Assume that the motion model admits a uniform steady
state total density of nodes, ρ0 := N/A, and that the nodes
are initially spatially distributed uniformly. At any time and
point we have

ρU (x, t) + ρI(x, t) = ρ0. (6)

Two factors cause the individual densities to change. The
first is node mobility, which we approximate by diffusion. The
time-rate of change of the density of informed nodes under
diffusion alone varies as

∂ρI(x, t)
∂t

= D

(
∂2

∂x2
1

+
∂2

∂x2
2

)
ρI(x, t) (7)

= D∆ρI(x, t), (8)

where D is the effective diffusion coefficient of the motion
model with units of distance2/time from Fick’s laws [18], and
∆ is the Laplace operator.

For a continuous time random walk mobility model, the
effective diffusion coefficient is just the usual diffusion coef-
ficient computed as

D =
1

2n
E
[
‖x(t+ dt)− x(t)‖2

]
dt

, ∀t, dt (9)

where n = 2 is the dimension of the walk. For other
mobility models, like the random direction model used in the
simulation section, the ratio in (9) may not be constant for
every dt > 0, but it may still be approximately constant for
the relevant time intervals. For such models, the constant D in
(7) should be viewed as an effective diffusion coefficient that is
specific to the motion model under consideration and that can
be estimated through Monte Carlo simulations or sometimes
derived theoretically [19]. Once D is determined, it can be
used as N and R are varied.

The second factor influencing density is the copying of
message from one node to another. As this process unfolds,
ρI(x, t) increases locally and ρU (x, t) decreases so that the
steady state density is preserved. The rate at which ρU (x, t)
is converted to ρI(x, t) locally is determined by the flux of
message knowledge across the communication boundary of
radius R about each uninformed node. As discussed in Section
II, in a small interval of time of length dt, an informed node
at a point x sweeps a small area 2RVedt given by (1). In this
area, one would expect to find 2RVeρU (x, t)dt uninformed
nodes. If we now consider the effect of all informed nodes in
a small area dA centered at x, we have ρI(x, t)dA informed
nodes, each passing messages to uninformed nodes at rate
2RVeρU (x, t). This leads to a rate of infection per unit of

time and per unit of area equal to

2RVeρI(x, t)ρU (x, t), (10)

resulting in a time-rate of change of ρI(x, t) given by

∂ρI(x, t)
∂t

= 2RVeρI(x, t)ρU (x, t), (11)

which using (6) becomes

∂ρI(x, t)
∂t

= 2RVeρI(x, t)
(
N

A
− ρI(x, t)

)
. (12)

It is interesting to note that this equation is equivalent to a
logistic growth model known as the Pearl-Verhulst model in
spatial ecology [20]. The Pearl-Verhulst model has the form,

∂ρ(x, t)
∂t

= ro ρ(x, t)
(

1− ρ(x, t)
K

)
, (13)

where ro is the intrinsic growth rate and K is the carrying
capacity. From (12), we find an intrinsic growth rate of
ro = 2RVeN/A and carrying capacity of K = N/A. The
Pearl-Verhulst model gives a “reproduction” rate for each
node that depends on the local population density, instead of
growing at a constant rate as in the Malthusian (exponential)
growth model. In the MANET context, this density dependent
growth is credible since each informed node is most effective
at passing messages when surrounded mostly by uninformed
nodes, because when other informed nodes are nearby, com-
petition for uninformed nodes makes each informed node
pass messages (reproduce) at a lower rate. The local message
passing rate is zero at the carrying capacity ρI(x, t) = N/A
because all nearby nodes have already received the message.

Under the combined diffusion (7) and message passing (12),
the net time-rate of change of the density of informed nodes
is given by

∂ρI(x, t)
∂t

= D∆ρI(x, t) + 2RVeρI(x, t)
(
N

A
− ρI(x, t)

)
,

(14)
which is a two-dimensional version of a classic nonlinear
reaction-diffusion equation known as the Fisher-Kolmogoroff-
Petrovsky-Piscounoff (FKPP) equation [21].

As one might expect, the well-mixed ODE for the expected
number of informed nodes (2) can be recovered from the
reaction-diffusion PDE (14). Specifically, the expected number
of informed nodes,

I(t) =
∫
R
ρI(x, t)dx, (15)

varies as
dI(t)
dt

=
∫
R

∂ρI(x, t)
∂t

dx (16)

=
∫
R
D∆ρI(x, t) + 2RVeρI(x, t)

(
N

A
− ρI(x, t)

)
dx

(17)

= 2RVe
∫
R
ρI(x, t)

(
N

A
− ρI(x, t)

)
dx, (18)
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where the final equality follows from the fact that diffusion
only spreads nodes around and does not increase the number of
informed nodes. If we then assume that the density is uniform
so that ρI(x, t) = I(t)/A for all x, we find that (18) reduces
to

dI

dt
=

2RVe
A

I (N − I) , (19)

which is precisely the well-mixed model (2).
In modeling the speed at which information propagates from

the source xs, it is convenient to study the radial component
r = ‖x− xs‖ of the polar form of the FKPP equation (14),

∂ρI(r, t)
∂t

= D

(
∂2

∂r2
+

1
r

∂

∂r

)
ρI(r, t)

+ 2RVeρI(r, t)
(
N

A
− ρI(r, t)

)
. (20)

For r sufficiently large, (20) reduces to the one-dimensional
FKPP equation,

∂ρI(r, t)
∂t

= D
∂2ρI(r, t)
∂r2

+ 2RVeρI(r, t)
(
N

A
− ρI(r, t)

)
.

(21)
Remark 1: The derivation of the infection rate in (10)
presumed a motion model in which nodes move with constant
velocity over short time intervals (see Fig 2). While this is
reasonable for most motion models, including the widely used
random direction model considered in Section VI, it would
technically not be true, e.g., for a pure random walk for which
the paths are discontinuous at every point. However, even in
this case, our model would still apply because all that we
need is a linear relationship between the area increment swept
by a node in a small time interval of length dt (the region
depicted in gray in Fig. 2) and the product 2Rdt as in (1).
This type of relation would still hold for motion models like
a random walk, except that the area increment would have a
different shape than the one in Fig. 2 (it would essentially
be an annulus) and Ve should be understood as an effective
velocity defined as the ratio between the area increment and
2Rdt. By the same token, a circular communication range is
also not crucial for this model, as different shapes would still
result in a similar relationship between the area increment and
the time interval of length dt.

IV. TRAVELING WAVE SOLUTION

Partial differential equations can be difficult to solve in
general. One approach frequently taken is to look for a
traveling waveform solution. That is to say we look for a
solution to ρI(r, t) of the form,

ρI(r, t) = Ω(r − ct), (22)

for some waveform Ω : R→ R+ and wave speed c [21]. The
one-dimensional FKPP equation (21) is well-known to have
a traveling wave solution, which we derive for the MANET

0 500 1000 1500 2000 2500
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Wave Profile
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Simulation Datac

w

Fig. 4: A traveling wave profile (24) derived from the reaction-
diffusion partial differential equation is drawn over simulation
data from Section VI. The waveform travels to the right at
speed c and has width w as indicated.

problem in Appendix A. The result is that a traveling wave
solution exists for a wave speed of

c = 2

√
2RVeND

A
. (23)

No closed form solution is known for the waveform Ω, but a
good approximation from [21] reveals the density of informed
agents to be

ρI(r, t) =
N

A

[
r0De

r0z/c

c2(1 + er0z/c)2
log
(

4er0z/c

(1 + er0z/c)2

)
+

1
1 + er0z/c

]
, (24)

neglecting terms of order c−4 and higher, with

r0 =
2RVeN
A

, z = r − ct. (25)

A waveform and example simulation data for the MANET
parameters considered in Section VI is shown in Fig. 4.
Remark 2: We note that the traveling wave approach to
solving the PDE (14) does not respect the fact that nodes
cannot leave the region, and thus is not always appropriate.
Nonetheless, we expect the wave solution to be accurate when
the wave width, see Fig. 4, is less than the size of the region,

w = 8

√
2D

ρ0RVe
<
√
A. (26)

V. SCALING LAW

To derive the scaling laws that follow, we divide the
expected source-destination distance by the wave speed com-
puted in Section IV:

MDD =
1
c
E [‖xs − xd‖] (27)

=
√

A

8RVeND
E [‖xs − xd‖] . (28)

For motion models with a uniform steady-state distribution and
expected net motion equal to zero, such as a random walk or
a random heading model, the expected distance between the
source and destination should be computed as the distance
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between two points selected uniformly randomly [10]. For
rectangular regions with side lengths of a and b, this expected
distance is [22],

E [‖xs − xd‖] =
1
3
ab2 +

a2

6b
log
(
b+ ab2
a

)
+
b2

6a
log
(
a+ ab2

b

)
− ab25

15a2b2
+
a5 + b5

15a2b2
, (29)

where ab2 =
√
a2 + b2, which when the region is a square

with a = b simplifies to

E [‖xs − xd‖] =
a

15

(
2 +
√

2 + 5 log(1 +
√

2)
)
≈ 0.5214a.

(30)
From (28) and (30), we conclude that the overall scaling

law for the message delivery delay in a square region of side
length a =

√
A and random source and destination is given

by

MDDsquare = κ
A√

2RVeDN
, (31)

where

κ =
1
30

(
2 +
√

2 + 5 log(1 +
√

2)
)
≈ 0.1776. (32)

The above results for the mean delivery delay in a non-well-
mixed system should be compared to the well-mixed model
(5).

A few key observation stem from this work.
1) The MDD scales with 1/

√
R instead of the 1/R, which

would be predicted by the well-mixed model. This
means that doubling the communication radius only
decreases the MDD by 30%, instead of 50%.

2) The MDD scales with A/
√
N =

√
A/ρ0, instead of

A log(N)/N = log(Aρ0)/ρ0, which would be predicted
by the well-mixed model. This means that if we double
the node density while keeping the area fixed, the MDD
is only decreased by 30%, instead of 50%. Alternatively,
if we double the area, while keeping the node density
fixed, the MDD increases by 41%, instead of a small
additive increase, which would be predicted by the well-
mixed model (simply due to the log(Aρ0) term).

Overal, we conclude that the previously derived well-mixed
models are generally overly optimistic in regard to the scaling
of the MDD with the problem parameters. While some of the
changes in scaling are simple percentage adjustments (e.g.,
30% vs. 50%), the scaling law with the total area is fundamen-
tally different, as the well-mixed model predicts essentially no
growth of delay with area, whereas under reasonable network
parameters the delay is likely to grow with the square-root
of the area. In fact, for different geometries (28) may lead to
even worse scaling scaling behaviors.

VI. SIMULATION RESULTS

In this section, we present simulation results to support the
PDE-based traveling wave scaling law. We begin by describing
the node mobility model and simulation environment from
which the data are generated. Then, we show an example

TABLE I: Default parameters used in simulations.

Parameter Meaning Value
N Number of nodes 200
A Area 16km2

γ Rectangular region aspect ratio 1
R Communication radius 100m
V Absolute node speed 1m/s
Ve Effective relative speed 1.27m/s
τ Mean time between heading changes 900s
D Effective diffusion coefficient 28m2/s

in which the traveling wave solution accurately predicts the
spatial spread of informed nodes in a rectangular region.
Finally, we compare the well-mixed (5) and PDE (28) scaling
laws through parametric studies of how the delivery delay
scales with the number of nodes, communication radius, and
aspect ratio of a rectangular region.

A. Node Mobility Model and Simulation Environment

Each node follows a random direction mobility model in
which periods of linear motion are interrupted by random
heading changes [23]. Specifically, each node travels straight
at constant speed V for an exponentially distributed amount of
time with mean τ before choosing a new heading uniformly
on [0, 2π). Nodes are reflected off any region boundaries
that they may encounter. For the large values of τ used
in the simulations below, heading changes are infrequent so
the effective node relative velocity is essentially the average
relative speed between two nodes,

Ve =
1

2π

∫ 2π

0

√
(V + V cos(θ))2 + (V sin(θ))2

dθ =
4V
π
.

(33)

Parameter values used throughout this section, unless stated
otherwise, are given in Table I. These parameter values reflect
problems of interest to the U.S. Army [24]. The effective
diffusion coefficient was determined through Monte Carlo
simulations for the specific motion model considered here,
and was not varied throughout trials. However, it should be
emphasized that the specific value of this coefficient, as well
as the value of Ve above, does not affect the scaling laws,
as they simply shift vertically the log-log plots in Figs. 6
and 7. Simulation trials were conducted from random initial
conditions in a custom C++ application.

B. Traveling Wave Propagation

We first demonstrate the correspondence between the trav-
eling wave solution for the density of informed agents and
simulation data. In Fig. 5, the position of informed (filled)
and uninformed (empty) nodes are shown at several points
in time. The red arc is centered at the initial location of the
source and has radius ct, with wave speed c computed using
(23). Data for this figure was generated with N = 250 nodes,
an aspect ratio of γ = 3, and all other parameter values given
in Table I.
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(a) t=1000s

(b) t=3000s

(c) t=4500s

(d) t=6000s

Fig. 5: The location of informed (filled) and uninformed
(empty) nodes is shown at several points in time to demon-
strate the traveling wave solution. The leading edge of the
wave is represented by the red arc, which is centered on the
initial position of the source and has radius ct.

In addition to the leading edge of the traveling wave closely
matching simulation data, the analytical solution for the den-
sity (24) also well approximates the informed node density.
Fig. 4 from Section IV showed the traveling waveform over
simulation data generated with N = 500 agents, a centrally
located source, and all other parameters as given in Table I.

C. Scaling Results

Number of Nodes: In this first simulation study, we vary
the number of nodes, while keeping all other parameters at
the values in Table I. The results in Fig. 6 indicate that
the well-mixed model accurately describes the scaling law
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Fig. 6: Scaling the number of agents shows a transition from
well-mixed to wave behavior. For the parameters used here,
this transition takes place near N = 25 nodes.

at low node densities (N/A < 25 nodes/16 km2) for which
the system is well-mixed. The traveling wave solution is not
appropriate in this regime because the wave is wider than the
region (26). As the number of nodes increases, the well-mixed
assumption (3) breaks down while the wave width decreases
so that the traveling wave solution becomes accurate. The
expected delivery delay scales as log(N)/N according to the
well-mixed model, and 1/

√
N according to the traveling wave

model.
Both scaling laws suggest that increasing the number of

agents should decrease the mean delivery delay, a trend clearly
exhibited in the data. The difference in scaling comes from the
fact that the well-mixed model inherently assumes that each
informed node is equally efficient at spreading the message,
whereas the wave model takes into account the fact that only
nodes at the front of the wave are effective. As N becomes
large the node density increases and only a fraction of the
nodes (i.e. those at the front of the wave) are effective, so
the well-mixed model gives predictions that are too optimistic
(smaller delays).
Communication Radius: In this second simulation study, we
vary the communication radius keeping all other parameters
at their default values. The results are shown in Fig. 7. Again,
a transition from well-mixed to traveling wave behavior is
apparent, this time the traveling wave accurately predicts the
simulation results for communication radii above R = 30m.
The expected delivery delay scales as 1/R for the well-mixed
model, in contrast to the 1/

√
R scaling for the traveling wave

model.
When R is small for a given region, the well-mixed assump-

tion (3) holds. Nodes that are initially close are likely to pass
by each other without communicating, resulting in a process
that unfolds approximately uniformly throughout the area. The
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Fig. 7: Scaling of the mean delivery delay with communication
radius R. A transition from well-mixed to PDE wave behavior
is apparent near R = 30m.

traveling wave solution is not appropriate in this regime as
the wave is too wide for the size of the region (26). As the
communication radius is increased, the well-mixed assumption
breaks down while the wave width decreases to a point where
the traveling wave solution becomes accurate. A given node
will then almost surely meet nearby nodes before meeting
those initially far away, an effect which triggers the traveling
wave behavior modeled by the PDE. Note that the transition
from well-mixed to traveling wave would happen at R less
than 30m if the problem was scaled up in area or number of
nodes at constant node density.

Geometry: Finally, we explore scaling of the delivery delay
with the geometry of the deployment region. Here, geometry is
quantified by the aspect ratio (i.e. length divided by width) of
a rectangular region with the nominal area of 16km2. For this
experiment, N = 250 nodes were used for which traveling
waves are triggered even for an aspect ratio of one. Fig. 8
shows the predictions of mean delivery delay as a function of
the aspect ratio for the well-mixed and traveling wave models.
The estimates from the well-mixed model depend only on the
total deployment area, and therefore cannot account for the
significant impact of aspect ratio on performance. This leads
to an overestimation of the number of informed agents in the
proximity of uninformed agents. The estimated mean delivery
time is overly optimistic, reaching an error of 83% as the
aspect ratio increases. In contrast, the traveling wave model
provides accurate estimates, with prediction error reaching
only 11% even at large aspect ratios. This is because the
mean delivery delay for the traveling model is estimated as
the expected source-destination distance divided by the wave
speed, and the former increases according to (29) with aspect
ratio.

1 5 10 25
103

104

Aspect Ratio

M
DD

 

 

Simulation
Well−Mixed
PDE

Fig. 8: Scaling with the aspect ratio of a rectangular region of
constant area. The traveling wave model gives mean delivery
delay predictions that are a function of the aspect ratio whereas
the well-mixed model does not.

VII. CONCLUSION

The results of this paper show that the complex, stochastic,
spatiotemporal evolution of epidemic routing is well ap-
proximated by a deterministic reaction-diffusion model for
information propagation. Our model provides accurate perfor-
mance estimates for moderate node densities, with information
dissemination occurring as a traveling wave propagating out
from the information source. Since the well-mixed model
suggested in prior analyses of epidemic routing provides
accurate estimates when the density evolves uniformly, a
combination of the two models is applicable over a broad
range of parameter values. Note, however, that traveling waves
cannot be avoided as the area or number of nodes is scaled
up at constant density. Unlike the well-mixed model, the
reaction-diffusion model captures the effect of the geometry
of the deployment region on information propagation. For
rectangular deployment regions, the reaction-diffusion model
gives reasonably good predictions over a large range of aspect
ratios.

An important topic for future work is to evaluate our
approach for a variety of mobility models, and determine how
the effective diffusion coefficient D and the effective relative
velocity Ve depend on the mobility model. We would also
like to model the effect of minor protocol variations (e.g.,
message deletion upon timer expiry to reduce node memory
requirements) on the delivery delay. From a system design
viewpoint, it is important to extend the model to a mix
of agents with widely different mobility characteristics. This
would enable us to determine, for example, if a small number
of highly mobile agents can drastically speed up information
propagation.
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APPENDIX A
DERIVATION OF THE TRAVELING WAVE SPEED

The key observation needed to solve the traveling wave
solution is that the partial differential equation for ρI(r, t)
becomes an ordinary differential equation for Ω(z), where
z = r − ct. Substituting the waveform (22) into the one-
dimensional FKPP equation (21) reveals,

−cdΩ(z)
dz

= D
d2Ω(z)
dz2

+ 2RVeΩ(z)
(
N

A
− Ω(z)

)
, (34)

a second order nonlinear differential equation for Ω(z). Letting
Ψ(z) = dΩ(z)/dz, (34) can be written as

d

dz

[
Ω
Ψ

]
=
[

Ψ
− c
DΨ− 2RVe

D Ω
(
N
A − Ω

)] . (35)

A closed form solution to this equation is not available in
general. However, we are looking for a particular solution for
Ω(z) that tends to N/A as z → −∞ and to 0 as z →∞. In
other words, we are looking for a solution that has all nodes
informed well behind the wavefront, and none of the nodes
informed well ahead of the wavefront. The equilibria of (35)
are (Ω(z),Ψ(z)) = {(0, 0), (N/A, 0)}, so the desired solution
must go from the (N/A, 0) equilibrium point to the (0, 0)
equilibrium point. Such a solution, connecting one equilibrium
point to another, is called a heteroclinic orbit.

A further constraint on the solution for the waveform is that
the density of informed nodes cannot be negative, so Ω(z) ≥ 0
for all z. To determine if a non-negative solution can exist for
the waveform, we first linearize (35),

d

dz

[
Ω
Ψ

]
=
[

0 1
− 2RVeN

AD
4RVeΩ−c

D

] [
Ω
Ψ

]
. (36)

At (Ω,Ψ) = (0, 0), the eigenvalues of the linearization are

λ± = − c

D
±
√

c2

D2
− 8RVeN

AD
, (37)

which have negative real part indicating that this equilibrium
point is stable, as desired. However, to ensure that the wave-
form Ω(z) remains non-negative, the solution cannot oscillate
about the origin. To ensure no oscillation, we must have both
eigenvalues real, so

c ≥ 2

√
2RVeND

A
. (38)

A range of wave speeds are possible, and each wave speed
gives a slightly different wave profile. However, most initial
conditions result in a wave that translates at the minimum
speed, so we take equality in (38) [12]. Unlike the one-
dimensional PDE (21), the two-dimensional PDE (20) does
not have traveling wave solutions at small distances from
the source due to the additional D

r
∂ρI

∂r term. However, one
can see that the speed of information propagation at small r
will be slightly slower because the density ρI decreases with
increasing radius r making ∂ρI

∂r negative.
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