
Bit-Stuffing Algorithms for Crosstalk Avoidance
in High-Speed Switching

Cheng-Shang Chang, Jay Cheng, Tien-Ke Huang, Xuan-Chao Huang, Duan-Shin Lee, and Chao-Yi Chen
Institute of Communications Engineering

National Tsing Hua University
Hsinchu 30013, Taiwan, R.O.C.

Email: cschang@ee.nthu.edu.tw; jcheng@ee.nthu.edu.tw; d915601@oz.nthu.edu.tw;
d9761812@oz.nthu.edu.tw; lds@cs.nthu.edu.tw; g9764501@oz.nthu.edu.tw

F

Abstract—The crosstalk effect is one of the main problems in deep sub-
micron designs of high-speed buses. To mitigate the crosstalk effect,
there are several types of crosstalk avoidance codes proposed in the
literature. In this paper, we are particularly interested in generating
forbidden transition codes that do not have opposite transitions on
any two adjacent wires. For this, we propose a sequential bit-stuffing
algorithm and a parallel bit-stuffing algorithm. For the sequential bit-
stuffing algorithm, we perform a worst-case analysis and a probabilistic
analysis. We show by both theoretic analysis and simulations that the
coding rate of the sequential bit-stuffing encoding scheme is quite close
to the Shannon capacity. In particular, for a bus with n = 10 parallel
wires, the difference is only 2.2%. Using a Markov chain analysis,
we show that the coding rate of the parallel bit-stuffing algorithm is
only slightly lower than that of the sequential bit-stuffing algorithm.
The implementation complexity of the parallel bit-stuffing algorithm is
linear with n. In comparison with the existing forbidden transition codes
that use the Fibonacci representation in the literature, our bit-stuffing
algorithms not only achieve higher coding rates but also have much
lower implementation complexity.

Index Terms—Bit-stuffing, high-speed switching, bus encoding,
crosstalk.

1 INTRODUCTION

Many electronic high-speed switch architectures, includ-
ing shared medium switches and crossbar switches, rely
on information exchange through high-speed buses. As
the VLSI technology advances, it is possible to pack more
wires in high-speed buses and attach more input/output
ports to them. However, the propagation delay through
long on-chip buses has become a serious issue in deep
sub-micron designs [1] as the crosstalk effect due to the
coupling capacitance between adjacent wires in the buses
could be detrimental. To mitigate the crosstalk effect, it is
suggested in the literature that one should avoid certain
patterns and transitions on the wires [1], and there have
been several bus encoding schemes proposed for this.
Among them, we are particularly interested in designing

Part of the results in this paper were presented at the IEEE Annual Conference
on Computer Communications (INFOCOM’10), San Diego, CA, USA,
March 15–19, 2010.

coding schemes that avoid “opposite transitions” on any
two adjacent wires [1]–[10]. Specifically, a transition on
a wire is either a 0 followed by a 1 (a 0 → 1 transition)
or a 1 followed by a 0 (a 1 → 0 transition), and opposite
transitions on adjacent wires means that there is a 0 → 1
transition on one wire and there is a 1 → 0 transition
on the other wire. A coding scheme without opposite
transitions on any two adjacent wires is called a forbidden
transition code in the literature [1]–[10].

The simplest way to avoid opposite transitions on any
two adjacent wires is to have the even-numbered wires
transmit 0 all the time and only use the odd-numbered
wires for data transmission. Such a scheme is known as
“ground shielding” in [2]. As only half of the wires are
used for data transmission, its coding rate (throughput)
is only 50%. In [3], Victor and Keutzer showed that there
exist forbidden transition codes that achieve the coding
rate log2

1+
√

5
2 ≈ 0.6942 when the number of wires is

sufficiently large. A recursive construction of such a code
was given in [4] by using the “Fibonacci representation.”
Such a Fibonacci representation for forbidden transition
codes was also previously addressed in [5]. Recently,
an explicit encoding scheme was proposed in [6] to
map every input number to its Fibonacci representation
for the forbidden transition code in [4]. An alternative
mapping that can be used for both forbidden transition
codes and forbidden overlap codes was shown in [10].
However, the overall complexity of the encoders in [6],
[10] is O(n2) for a bus with n wires (as there are n − 1
sequential stages in the encoder and each stage requires
an O(n)-bit comparator). To further improve the coding
rate, two-dimensional forbidden transition codes with
block length larger than 1 were proposed in [7], and
it was shown that the coding rate could be increased
to more than 80%. However, no explicit constructions of
such codes (and the associated encoders/decoders) were
given in [7].

Our main contribution in this paper is to propose sim-

2

ple bit-stuffing algorithms for generating forbidden tran-
sition codes and develop their associated analyses. Bit-
stuffing algorithms are commonly used in networking to
encode the data bit stream to avoid specific patterns [11],
e.g., frame delimiters and tokens in token rings. They
also have many applications in digital recording, e.g.,
runlength-limited encoding [12], [13], [14]. The success
of the bit-stuffing algorithms is mainly due to their sim-
plicity as they only have linear complexity. Despite the
fact that there exist many previous works on bit-stuffing
algorithms, it seems (to the best of our knowledge) that
our work in this paper is the first to use the bit-stuffing
algorithm for bus encoding to avoid opposite transitions
on any two adjacent wires.

In this paper, we first propose a sequential bit-stuffing
algorithm for the bus encoding problem. The idea of
our sequential bit-stuffing algorithm is very simple. We
consider a bus with n wires and index the n wires from
1 to n. When there is a 0 → 1 (resp., 1 → 0) transition on
the (i− 1)th wire and the previous bit on the ith wire is 1
(resp., 0), then a redundant bit 1 (resp., 0) is inserted on
the ith wire by the encoder so that no opposite transitions
can occur on any two adjacent wires. On the other hand,
when the decoder receives a 0 → 1 (resp., 1 → 0)
transition on the (i− 1)th wire and the previous bit on
the ith wire is 1 (resp., 0), then the decoder knows the
bit on the ith wire is a stuffed bit and it is removed by
the decoder. For our sequential bit-stuffing algorithm,
we first show through the worst-case analysis that the
asymptotic coding rate for any input data bit stream is at
least n+1

2n (more than 50%). For the probabilistic analysis,
we assume that the input data bit stream is a sequence of
independent and identically distributed (i.i.d.) Bernoulli
random variables with equal probabilities of being 0
or 1. Under our sequential bit-stuffing algorithm, the
sequence of the n-vectors transmitted on the n wires
can be modeled as a finite, irreducible, and aperiodic
(ergodic) Markov chain. Therefore, there exist unique
steady state probabilities for the Markov chain and that
in turn can be used to compute the asymptotic coding
rate when n is small. For 1 ≤ n ≤ 10, our numerical
results show that the asymptotic coding rate for the
i.i.d. Bernoulli input data bit stream is more than 82%
and is quite close to the Shannon capacity [15]–[16]. In
particular, for the case with n = 10, the difference is only
2.2%. Computing the steady state probabilities for large
n appears to be numerically demanding as the number
of states increases exponentially with n. For this, we find
that the asymptotic coding rate can be approximated by
2
√

2 − 2 ≈ 0.8284 for large n, which matches extremely
well to our simulation results.

For the sequential bit-stuffing algorithm, scalability
might be a problem as it only deals with one input
data bit stream. In practice, it is quite common to have
parallel data bit streams. To solve this problem, we
take one step further by proposing a parallel bit-stuffing
algorithm that can generate a forbidden transition code

for a bus with n wires and n parallel data bit streams.
Our first idea for parallel encoding is to allow data
bit streams to be transmitted directly on odd-numbered
wires and perform bit-stuffing on even-numbered wires.
Like the ground shielding scheme in [2], such an idea
provides the needed isolation on even-numbered wires
so that bit-stuffing can be carried out in parallel. As in
the sequential bit-stuffing algorithm, the implementation
complexity of the parallel bit-stuffing algorithm is only
O(n) for a bus with n parallel wires. By assuming i.i.d.
Bernoulli input data bit streams, we show that the coding
rate for our parallel bit-stuffing algorithm is 0.8125,
which is only slightly lower than the coding rate 0.8284
achieved by using the sequential bit-stuffing algorithm.

One problem that comes from the parallel bit-stuffing
algorithm is that the coding rates for even-numbered
wires are significantly lower than those for odd-
numbered wires. When there are only a finite number of
data bits in every data stream, one has to pad additional
bits on odd-numbered wires. To solve the uneven rate
problem, our second idea for the parallel bit-stuffing al-
gorithm is rate-balancing that adds 2×2 crossbar switches
before the encoder. The connection patterns of all the 2×2
crossbar switches are synchronized and set periodically
between the “bar” state and the “cross” state. By so
doing, every input data stream is connected alternatively
to an even-numbered wire and an odd-numbered wire.
We show by simulation that the parallel bit-stuffing
algorithm with rate-balancing significantly reduces the
number of padded bits.

One key message of this paper is that there exist
very simple encoding/decoding schemes to generate
forbidden transition codes that achieve coding rates
near the Shannon capacity. As such, bus encoding for
crosstalk avoidance in buses with a large number of
wires might be feasible. This is quite contrary to the
common belief in the literature. For example, in [8]
it was shown that there do not exist linear forbidden
transition codes and it was suggested that bus encoding
for crosstalk avoidance should be the outermost code
(along with error control coding and low-power coding).
Furthermore, in the setting of high-performance proces-
sors like superscalar and very long instruction word
(VLIW) architecture, a “segment-stuffing” algorithm was
proposed in [9], where a segment of all 0’s (or all 1’s)
is inserted whenever there are transition violations in
the data segments. Our bit-stuffing algorithm improves
the segment-stuffing algorithm in [9] by reducing the
segment size to 1 bit and eliminating the need for
shielding between adjacent segments.

As for the applicability of our work, we note there are
some general issues for using bit-stuffing algorithms: (i)
they are not memoryless and error propagation should
be contained, (ii) they require additional buffer and
delay for encoding/decoding and thus not suitable for
delay-sensitive applications, and (iii) the codes are of
variable lengths and thus not suitable for applications
that require fixed-length codes. In view of all these,

3

one possible application for our work is transmitting
variable length packets through high-speed buses in packet
switches. In such an application, bit errors are contained
in a single packet. Also, buffering is required for a
stored-and-forward network anyway and the additional
encoding/decoding delay could be relatively small when
compared with queueing delay.

The rest of this paper is organized as follows. In
Section 2, we model a bus under the constraint that
there are no opposite transitions on any two adjacent
wires as a forbidden transition channel, and obtain the
channel capacity of such a channel that serves as the
fundamental limit on the coding rate of any forbidden
transition code. In Section 3, we present our sequential
bit-stuffing algorithm for generating forbidden transition
codes. We identify a worst-case input data bit stream
for the sequential bit-stuffing algorithm in Section 3.1
and perform a probabilistic analysis in Section 3.2. An
approximate probabilistic analysis for a channel with a
large number of wires is developed in Section 3.3. To
cope with the scalability issue, we propose our paral-
lel bit-stuffing algorithm in Section 4. In Section 4.1,
we derive the coding rates of the parallel bit-stuffing
algorithm. The idea of rate-balancing is proposed in
Section 4.2. The paper is concluded in Section 5, where
we address possible extensions of our work.

2 FORBIDDEN TRANSITION CHANNELS

In this paper, we consider the discrete-time setting and
index time by t = 1, 2, We model a bus under the
constraint that there are no opposite transitions on any
two adjacent wires as a forbidden transition channel
defined as follows.

A forbidden transition channel with n parallel wires,
indexed from 1 to n, is a channel that is capable of
transmitting n binary sequences through the n parallel
wires as long as there are no opposite transitions on any
two adjacent wires. Specifically, let ci(t), i = 1, 2, . . . , n
and t = 1, 2, . . ., be the bit transmitted on the ith wire at
time t in a forbidden transition channel with n parallel
wires. Then for all i = 2, 3, . . . , n and t = 2, 3, . . ., we
have[

ci−1(t− 1) ci−1(t)
ci(t− 1) ci(t)

]
6=

[
0 1
1 0

]
or

[
1 0
0 1

]
. (1)

Let ā be the complement of a, i.e., ā = 1 if a = 0 and
ā = 0 if a = 1. Then it is easy to see that the constraint
in (1) is equivalent to the constraint that there exist no
2 ≤ i ≤ n and t ≥ 2 such that

c̄i−1(t− 1) = ci−1(t) = ci(t− 1) = c̄i(t). (2)

Denote c(t) = (cn(t), cn−1(t), . . . , c1(t)), t = 1, 2, . . ., as
the n-vector transmitted on the n parallel wires at time
t. Let Xn(t), t = 1, 2, . . ., be the number of sequences
(c(1), c(2), . . . , c(t)) that satisfy the constraint in (1) up
to time t. Then it is well known [15]–[16] that the channel
capacity of a forbidden transition channel with n parallel

TABLE 1
The channel capacity Cn given by (4) for 1 ≤ n ≤ 10.

n 1 2 3 4 5
Cn 1 0.9163 0.8941 0.8826 0.8757
n 6 7 8 9 10

Cn 0.8712 0.8679 0.8654 0.8635 0.8620

wires is the entropy rate of these constrained sequences
(see e.g., pp. 94 of [16]) and it is given by

Cn =
1
n

lim
t→∞

log2 Xn(t)
t

bits/wire/time unit. (3)

Note that the channel capacity Cn serves as the fun-
damental limit on the coding rate of any forbidden
transition code.

The channel capacity Cn is related to the adjacency
matrix An defined by (An)c,c′ = 1 if there exists no
2 ≤ i ≤ n such that c̄i−1 = c′i−1 = ci = c̄′i and
(An)c,c′ = 0 otherwise, where c = (cn, cn−1, . . . , c1)
and c′ = (c′n, c′n−1, . . . , c

′
1) ∈ {0, 1}n. In other words, if

c(t − 1) = c and c(t) = c′, then (An)c,c′ = 1 means that
the constraint in (1) is satisfied at time t, and (An)c,c′ = 0
means that the constraint in (1) is not satisfied at time t.
We assume that the states c = (cn, cn−1, . . . , c1) ∈ {0, 1}n

are ordered in the standard lexicographic order, i.e.,
in the increasing order of the integers

∑n
i=1 ci2i−1 ∈

{0, 1, . . . , 2n − 1}.
In the following theorem, we show that the channel

capacity Cn can be expressed in terms of the maximum
eigenvalue λn,max of the adjacency matrix An. Its proof
is given in Appendix A. Similar theorems were also pre-
viously reported for the capacities of various constrained
source coding problems (see e.g., [17], [18]).

Theorem 1 The channel capacity Cn of a forbidden transi-
tion channel with n parallel wires is given by

Cn =
1
n

log2 λn,max, (4)

where λn,max is the maximum eigenvalue of the adjacency
matrix An.

In Table 1, we show the channel capacity Cn of a
forbidden transition channel with n parallel wires for
1 ≤ n ≤ 10.

For large n, the computation of the capacities becomes
much more difficult. However, there are methods of ob-
taining bounds for the capacities of various constrained
source coding problems in the literature. In particular,
the Calkin-Wilf lower bound (see e.g., [19], [18], [20]) can
be used here for bounding the capacity when n → ∞.
Specifically, for any positive integer p and nonnegative
integer q,

C∞ = lim
n→∞

Cn ≥ log2 λp+2q+1,max − log2 λ2q+1,max

p
. (5)

Choosing p = q = 3, we have from Table 1 and (4) that

C∞ ≥ log2 λ10,max − log2 λ7,max

3
≥ 0.848. (6)

4

3 SEQUENTIAL BIT-STUFFING ALGORITHM

Encoder

(bit stuffing)

Forbidden

transition

channel

c1(t)

c2(t)

cn(t)

...

Decoder

(bit removing)

c1(t)

c2(t)

cn(t)

...

b3b2b1...b3b2b1...

Fig. 1. A forbidden transition channel with n parallel
wires and with a bit-stuffing encoder and a bit-removing
decoder.

Consider a forbidden transition channel with n par-
allel wires (see Figure 1). Let {b1, b2, . . .} be the input
data bit stream. If we transmit the input data bit stream
directly through the forbidden transition channel such
that the bit transmitted on the ith wire at time t is
ci(t) = bn(t−1)+i for i = 1, 2, . . . , n and t = 1, 2, . . ., then
it is possible that the constraint in (1) cannot be satisfied
and thus the input data bit stream cannot be reliably
transmitted through the forbidden transition channel.

In the following, we propose a sequential bit-stuffing
algorithm to encode the input data bits b1, b2, . . . so that
the coded bits ci(t), i = 1, 2, . . . , n and t = 1, 2, . . .,
satisfy the constraint in (1) and hence the coded bits can
be reliably transmitted through the forbidden transition
channel. The idea of our sequential bit-stuffing algorithm
is to add a redundant bit on the ith wire at time t if
c̄i−1(t − 1) = ci−1(t) = ci(t − 1), and in that case the
redundant bit ci(t) is set as ci(t) = ci−1(t) so that the
coded bits ci(t), i = 1, 2, . . . , n and t = 1, 2, . . ., always
satisfy the constraint in (1).

Algorithm 2 (Encoder: the sequential bit-stuffing algo-
rithm) Given an input data bit stream {b1, b2, . . .}. Initially,
set ci(1) = bi for i = 1, 2, . . . , n. For every time t ≥ 2,
generate the coded bit ci(t), i = 1, 2, . . . , n, by the following
bit-stuffing rule:

(i) Set c1(t) as the next input data bit.
(ii) For i = 2, 3, . . . , n,

(a) (Bit-stuffing condition) If c̄i−1(t − 1) = ci−1(t) =
ci(t−1), then ci(t) is a stuffed bit and we set ci(t) =
ci−1(t).

(b)Otherwise, set ci(t) as the next input data bit.

Under the sequential bit-stuffing algorithm in Algo-
rithm 2, it is clear that the coded bits ci(t), i = 1, 2, . . . , n
and t = 1, 2, . . ., satisfy the constraint in (1). Furthermore,
for i = 1 or t = 1, the coded bit ci(t) is always a data bit.
For 2 ≤ i ≤ n and t ≥ 2, the coded bit ci(t) is a stuffed
bit if and only if

c̄i−1(t− 1) = ci−1(t) = ci(t− 1) = ci(t). (7)

As we assume that there are no transmission errors in
a forbidden transition channel as long as there are no
forbidden transitions, it follows that the original input
data bits b1, b2, . . . can be decoded from the coded bits
ci(t), i = 1, 2, . . . , n and t = 1, 2, . . ., by simply removing
the coded bit ci(t) whenever 2 ≤ i ≤ n, t ≥ 2, and the
stuffed bit condition c̄i−1(t − 1) = ci−1(t) = ci(t − 1) =

ci(t) in (7) is satisfied. This is described in the following
bit-removing algorithm.

Algorithm 3 (Decoder: the bit-removing algorithm)
Given received coded bits ci(t), i = 1, 2, . . . , n and t =
1, 2, Initially, set bi = ci(1) for i = 1, 2, . . . , n. For every
time t ≥ 2, decode the received coded bit ci(t), i = 1, 2, . . . , n,
by the following bit-removing rule:

(i) Decode c1(t) as the next data bit.
(ii) For i = 2, 3, . . . , n,

(a) (Bit-removing condition) If c̄i−1(t− 1) = ci−1(t) =
ci(t− 1) = ci(t), then ci(t) is a stuffed bit and it is
discarded.

(b)Otherwise, decode ci(t) as the next data bit.

Unlike the fixed-length memoryless encoder that uses
the Fibonacci representation in [3], [4], and [6], we note
that our sequential bit-stuffing algorithm is a variable-
length encoder with memory. This is because our se-
quential bit-stuffing algorithm requires the knowledge
of the already coded bits in encoding the next input
data bit, and it encodes an input data bit either by
one bit (the data bit itself) or by two bits (duplicating
the data bit twice by inserting a stuffed bit that is the
same as the data bit when the bit-stuffing condition in
Algorithm 2(ii-a) is met).

Under the sequential bit-stuffing algorithm, we have
the following no adjacent stuffed bits (both in space and
in time) property. This is one of the most important
properties of our sequential bit-stuffing algorithm and
will be used in the analysis of our sequential bit-stuffing
algorithm in the rest of this paper.

Lemma 4 (No adjacent stuffed bits property) If the coded
bit ci(t) is a stuffed bit, then its four adjacent coded bits ci(t−
1), ci(t+1), ci−1(t), and ci+1(t) (in the case that i ≤ n− 1)
cannot be stuffed bits, i.e., they are all data bits.

Proof. If the coded bit ci(t) is a stuffed bit, then it follows
from (7) that 2 ≤ i ≤ n, t ≥ 2, and

c̄i−1(t− 1) = ci−1(t) = ci(t− 1) = ci(t). (8)

In the following, we show by contradiction that ci(t−1)
cannot be a stuffed bit. The proof that ci(t + 1), ci−1(t),
and ci+1(t) (in the case that i ≤ n− 1) cannot be stuffed
bits is similar.

Suppose that ci(t− 1) is a stuffed bit. Then it follows
from (7) (with t replaced by t−1) that 2 ≤ i ≤ n, t−1 ≥ 2,
and

c̄i−1(t− 2) = ci−1(t− 1) = ci(t− 2) = ci(t− 1). (9)

As we have ci(t− 1) = c̄i−1(t− 1) in (8) and ci(t− 1) =
ci−1(t− 1) in (9), a contradiction is reached.

3.1 Worst-Case Analysis
In the following theorem, we derive a tight lower bound
on the asymptotic coding rate of our sequential bit-
stuffing encoding scheme.

5

Theorem 5 The asymptotic coding rate Rn of our sequential
bit-stuffing encoding scheme for any input data bit stream
over a forbidden transition channel with n parallel wires is
lower bounded by

Rn ≥ n + 1
2n

bits/wire/time unit. (10)

Furthermore, the lower bound in (10) is tight as there exists
an input data bit stream that achieves the lower bound.
In other words, the worst-case asymptotic coding rate R∗n
of our sequential bit-stuffing encoding scheme is given by
R∗n = n+1

2n .

Proof. (i) Consider an input data bit stream {b1, b2, . . .}.
From the sequential bit-stuffing algorithm in Algo-
rithm 2, it is clear that the n coded bits at time t = 1
and all of the coded bits on the first wire are data
bits, i.e., ci(t) is a data bit for i = 1 or t = 1. From
the “no adjacent stuffed bits” property in Lemma 4, it
is easy to see that at least one of the two coded bits
ci(t) and ci(t + 1) is a data bit for i = 2, 3, . . . , n and
t = 2, 3, . . ., and at least one of the two coded bits
ci(t) and ci+1(t) is a data bit for i = 2, 3, . . . , n − 1 and
t = 2, 3, As such, among the 2(n − 1) coded bits
c2(t), c2(t+1), c3(t), c3(t+1), . . . , cn(t), cn(t+1), there are
at least n − 1 data bits for t = 2, 3, . . ., and among the
n − 1 coded bits c2(t), c3(t), . . . , cn(t), there are at least
bn−1

2 c data bits for t = 2, 3,
Let Rn(t) be the number of data bits among the first nt

coded bits ci(t′), i = 1, 2, . . . , n and t′ = 1, 2, . . . , t. Then
we have

Rn(t) ≥





n + (t− 1) + t−1
2 (n− 1)

= (n+1)t
2 + n−1

2 , if t is odd,
n + (t− 1) + t−2

2 (n− 1) + bn−1
2 c

= (n+1)t
2 + bn−1

2 c, if t is even.

(11)

It follows from (11) that

Rn =
1
n

lim
t→∞

Rn(t)
t

≥ n + 1
2n

.

(ii) Now, we give an input data bit stream that achieves
the lower bound in (10). As the input data bits can
be uniquely decoded from their coded bits under the
sequential bit-stuffing encoding scheme, it suffices to
show the coded bits of the input data bits.

Let w = (1, 1, 0, 0, 1, 1, 0, 0, . . .), x = (1, 0, 0, 1, 1, 0, 0, 1,
. . .), y = (0, 0, 1, 1, 0, 0, 1, 1, . . .), and z = (0, 1, 1, 0, 0, 1,
1, 0, . . .) be four infinite binary periodic sequences with
period 4. For 1 ≤ i ≤ n, let

(ci(1), ci(2), . . .) =





w, if i = 1 (mod 4),
x, if i = 2 (mod 4),
y, if i = 3 (mod 4),
z, if i = 0 (mod 4).

(12)

In Table 2, we show the coded bits ci(t) given by (12)
for 1 ≤ i ≤ n and 1 ≤ t ≤ 12, where n = 12. It is clear
that ci(t) given by (12) is periodic with period 4 (both in
space and in time).

TABLE 2
The coded bits ci(t) given by (12) for 1 ≤ i ≤ n and

1 ≤ t ≤ 12, where n = 12. Note that the stuffed bits are
italicized.

i \ t 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 0 0 1 1 0 0 1 1 0 0
2 1 0 0 1 1 0 0 1 1 0 0 1
3 0 0 1 1 0 0 1 1 0 0 1 1
4 0 1 1 0 0 1 1 0 0 1 1 0
5 1 1 0 0 1 1 0 0 1 1 0 0
6 1 0 0 1 1 0 0 1 1 0 0 1
7 0 0 1 1 0 0 1 1 0 0 1 1
8 0 1 1 0 0 1 1 0 0 1 1 0
9 1 1 0 0 1 1 0 0 1 1 0 0
10 1 0 0 1 1 0 0 1 1 0 0 1
11 0 0 1 1 0 0 1 1 0 0 1 1
12 0 1 1 0 0 1 1 0 0 1 1 0

It is easy to see that ci(t), i = 1, 2, . . . , n and t = 1, 2, . . .,
are valid coded bits as there are no opposite transitions
on any two adjacent wires. Furthermore, ci(t) is a stuffed
bit if and only if i ≥ 2, t ≥ 2, and i+t is odd (note that the
stuffed bits in Table 2 are italicized). As such, the number
of data bits Rn(t) among the first nt coded bits is given
by the right-hand side of (11). It follows that

Rn =
1
n

lim
t→∞

Rn(t)
t

=
n + 1
2n

.

The proof is completed.

3.2 Probabilistic Analysis

In Section 3.1, we have given a worst-case performance
analysis for the sequential bit-stuffing encoding scheme
in Algorithm 2. However, in most situations, the per-
formance of the sequential bit-stuffing encoding scheme
is much better than the worst-case scenario. For this,
we give a probabilistic performance analysis for the
sequential bit-stuffing encoding scheme in this section.

Assume that the input data bit stream {b1, b2, . . .} is a
sequence of i.i.d. Bernoulli random variables with equal
probabilities of being 0 or 1. Let ci(t), i = 1, 2, . . . , n
and t = 1, 2, . . ., be the coded bits under the se-
quential bit-stuffing encoding scheme, and let c(t) =
(cn(t), cn−1(t), . . . , c1(t)) for t = 1, 2, Then it is clear
from Algorithm 2 that c(t) is a function of c(t− 1) and
the input data bits that have not been encoded by time t.
As such, given c(t−1), c(t) is conditionally independent
of c(1), c(2), . . . , c(t − 2). This shows that the stochastic
process {c(t), t ≥ 1} is a time-homogeneous Markov
chain. The transition probability matrix Pn of the Markov
chain {c(t), t ≥ 1} is given by

(Pn)c,c′ = P (c(t) = c′|c(t− 1) = c), (13)

for c, c′ ∈ {0, 1}n and for all t = 2, 3,
As (i) c1(t) is a data bit for t = 1, 2, . . ., (ii) the

constraint in (1) and the stuffed bit condition in (7) are
satisfied, and (iii) the input data bits are i.i.d. Bernoulli
random variables with equal probabilities of being 0 or

6

TABLE 3
The values of q(ci, ci−1, c

′
i, c

′
i−1).

cici−1 \ c′ic
′
i−1 00 01 10 11

00 1
2

1
2

1
2

1
2

01 1 1
2

0 1
2

10 1
2

0 1
2

1
11 1

2
1
2

1
2

1
2

1, it then follows from the chain rule for conditional
probability that

(Pn)c,c′ = P (c(t) = c′|c(t− 1) = c)
= P (c1(t) = c′1|c(t− 1) = c)

×
n∏

i=2

P (ci(t) = c′i|c(t− 1) = c, ci−1(t) = c′i−1,

ci−2(t) = c′i−2, . . . , c1(t) = c′1)

=
1
2

n∏

i=2

P (ci(t) = c′i|ci(t− 1) = ci,

ci−1(t− 1) = ci−1, ci−1(t) = c′i−1)

=
1
2

n∏

i=2

q(ci, ci−1, c
′
i, c

′
i−1), (14)

where we have denoted q(ci, ci−1, c
′
i, c

′
i−1) as the con-

ditional probability P (ci(t) = c′i|ci(t − 1) = ci, ci−1(t −
1) = ci−1, ci−1(t) = c′i−1) which is a function of
ci, ci−1, c

′
i, c

′
i−1 and is independent of t, and the values

of q(ci, ci−1, c
′
i, c

′
i−1) are shown in Table 3.

For n ≥ 2 and c = (cn, cn−1, . . . , c1) ∈ {0, 1}n, we
denote c(n−1) = (cn−1, cn−2, . . . , c1) ∈ {0, 1}n−1. From
(14), we can see that

(Pn)c,c′ = q(cn, cn−1, c
′
n, c′n−1)(Pn−1)c(n−1),c′(n−1) . (15)

By using (15), one can easily show by induction that
there is a recursive expression for the transition prob-
ability matrix Pn. Specifically, we let E0 = F0 = G0 =
H0 = 1

2 and Oi be the zero matrix of size 2i×2i for i ≥ 0.
Then

P1 =
[

E0 F0

G0 H0

]
, (16)

and Pn, n ≥ 2, can be recursively obtained as follows:

Pn =
[

En−1 Fn−1

Gn−1 Hn−1

]
, (17)

where

En−1 =
[

1
2En−2

1
2Fn−2

Gn−2
1
2Hn−2

]
, (18)

Fn−1 =
[

1
2En−2

1
2Fn−2

On−2
1
2Hn−2

]
, (19)

Gn−1 =
[

1
2En−2 On−2
1
2Gn−2

1
2Hn−2

]
, (20)

Hn−1 =
[

1
2En−2 Fn−2
1
2Gn−2

1
2Hn−2

]
. (21)

It is clear from (16)–(21) that (Pn)0n,c > 0 and
(Pn)c,0n

> 0 for all c ∈ {0, 1}n. It follows that the Markov
chain {c(t), t ≥ 1} is finite, irreducible, and aperiodic as
its state space {0, 1}n is finite, and every state c ∈ {0, 1}n

can be reached from the state 0n and vice versa. As
such, it is well known [24] that there exist unique steady
state probabilities πn = (πn,0n

, . . . , πn,1n
) for the Markov

chain {c(t), t ≥ 1} that could be obtained by solving the
following system of linear equations:

πn = πnPn, (22)

πn1T
n =

∑

c∈{0,1}n

πn,c = 1. (23)

In the following lemma, we show a recursive ex-
pression for the steady state probabilities πn =
(πn,0n

, . . . , πn,1n
). Its proof is given in Appendix B.

Lemma 6 (i) (State aggregation property) Let πn =
(π(0)

n , π
(1)
n), where π

(0)
n = (πn,00n−1 , . . ., πn,01n−1) and

π
(1)
n = (πn,10n−1 , . . . , πn,11n−1). Then we have

πn−1 = π(0)
n + π(1)

n . (24)

(ii) (State splitting property) For n ≥ 2, πn =
(π(0)

n , π
(1)
n) could be recursively obtained from πn−1 as fol-

lows:

π(0)
n = πn−1Gn−1(In−1 − En−1 + Gn−1)−1, (25)

π(1)
n = πn−1[In−1 −Gn−1(In−1 − En−1 + Gn−1)−1],(26)

where En−1 and Gn−1 are given in (18) and (20), and In−1

is the identity matrix of size 2n−1 × 2n−1.

For example, if n = 1, then we have from (22), and
(23) that

P1 =
[

1
2

1
2

1
2

1
2

]
and π1 =

(
1
2
,
1
2

)
.

If n = 2, then we have

P2 =




1
4

1
4

1
4

1
4

1
2

1
4 0 1

4
1
4 0 1

4
1
2

1
4

1
4

1
4

1
4


 ,

and it follows from (25) and (26) in Lemma 6 that

π2 = (π1G1(I1 − E1 + G1)−1,

π1(I1 −G1(I1 − E1 + G1)−1))

=
(

3
10

,
2
10

,
2
10

,
3
10

)
.

Similarly, if n = 3, then we have

P3 =




1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
4

1
8 0 1

8
1
4

1
8 0 1

8
1
4 0 1

8
1
4 0 0 1

8
1
4

1
4

1
4

1
8

1
8 0 0 1

8
1
8

1
8

1
8 0 0 1

8
1
8

1
4

1
4

1
4

1
8 0 0 1

4
1
8 0 1

4
1
8 0 1

8
1
4

1
8 0 1

8
1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8




7

and

π3 = (π2G2(I2 − E2 + G2)−1,

π2(I2 −G2(I2 − E2 + G2)−1))

=
(

125
710

,
82
710

,
60
710

,
88
710

,
88
710

,
60
710

,
82
710

,
125
710

)
.

Given that c(t − 1) = c and c(t) = c′, where t ≥ 2,
let (Dn)c,c′ be the number of data bits among the coded
bits c′1, c

′
2, . . . , c

′
n. Since πn,c = limt→∞ P (c(t) = c), we

immediately see that the average total number of data
bits Dn transmitted over the n wires per time unit is
given by

Dn = lim
t→∞

∑

c,c′∈{0,1}n

P (c(t− 1) = c, c(t) = c′)(Dn)c,c′

= lim
t→∞

∑

c,c′∈{0,1}n

P (c(t− 1) = c)(Pn)c,c′(Dn)c,c′

=
∑

c,c′∈{0,1}n

πn,c(Pn)c,c′(Dn)c,c′ . (27)

Furthermore, the asymptotic coding rate is given by
Rn = Dn

n for n ≥ 1, and the average number of data
bits rn transmitted over the nth wire per time unit is
given by r1 = D1 and rn = Dn −Dn−1 for n ≥ 2.

In the following theorem, we show that Dn is equal
to the entropy rate H(Pn) = −∑

c,c′∈{0,1}n πn,c(Pn)c,c′

· log2(Pn)c,c′ of the Markov chain {c(t), t ≥ 1} [16]. Its
proof is given in Appendix C.

Theorem 7 For a forbidden transition channel with n par-
allel wires, the average data transmission rate Dn over the n
wires is given by

Dn = −
∑

c,c′∈{0,1}n

πn,c(Pn)c,c′ log2(Pn)c,c′ = H(Pn). (28)

Furthermore, for n ≥ 2, the average data transmission rate
rn over the nth wire is given by

rn = −
∑

c,c′∈{0,1}n

πn,c(Pn)c,c′ log2 q(cn, cn−1, c
′
n, c′n−1). (29)

For example, if n = 1, then we have from (28) and (29)
that D1 = H(P1) = 1, R1 = D1 = 1, and r1 = D1 = 1. If
n = 2, then we have D2 = H(P2) = 1.8, R2 = D2

2 = 0.9,
and r2 = D2 − D1 = 1.8 − 1 = 0.8. If n = 3, then we
have D3 = H(P3) = 187

71 ≈ 2.6338, R3 = D3
3 ≈ 0.8779,

and r3 = D3 −D2 = 187
71 − 1.8 ≈ 0.8338.

In Table 4, we show the Shannon capacity Cn in (4),
the average data transmission rate Dn over the n wires
in (28), the coding rate Rn = Dn

n of the sequential bit-
stuffing encoding scheme, the average data transmission
rate rn over the nth wire in (29), and the approximation
of rn in (33) (in Section 3.3) for 1 ≤ n ≤ 10. Several
important observations can be drawn from these nu-
merical results: (i) There is still some gap between the
coding rate Rn achieved by the sequential bit-stuffing
algorithm and the Shannon capacity Cn. This shows that
the sequential bit-stuffing algorithm does not achieve the

TABLE 4
The Shannon capacity Cn in (4), the average data

transmission rate Dn over the n wires in (28), the coding
rate Rn = Dn

n of the sequential bit-stuffing encoding
scheme, the average data transmission rate rn over the
nth wire in (29), and the approximation of rn in (33) (in

Section 3.3) for 1 ≤ n ≤ 10.
n 1 2 3 4 5

Cn 1 0.9163 0.8941 0.8826 0.8757
Dn 1 1.8 2.6338 3.4613 4.2899
Rn 1 0.9 0.8779 0.8653 0.8580
rn 1 0.8 0.8338 0.8275 0.8286

rn by (33) 1 0.8 0.8333 0.8276 0.8286
n 6 7 8 9 10

Cn 0.8712 0.8679 0.8654 0.8635 0.8620
Dn 5.1183 5.9467 6.7752 7.6036 8.4320
Rn 0.8531 0.8495 0.8469 0.8448 0.8432
rn 0.8284 0.8284 0.8284 0.8284 0.8284

rn by (33) 0.8284 0.8284 0.8284 0.8284 0.8284

Shannon capacity. However, the difference is very small.
For the case with n = 10, the difference is only 2.2%.
(ii) It seems that the average data transmission rate rn

over the nth wire converges to a constant near 0.8284,
i.e., limn→∞ rn ≈ 0.8284 (this will be further addressed
in Section 3.3).

3.3 An Approximate Probabilistic Analysis
To calculate the average data rate rn transmitted over
the nth wire given by (29), we need to compute the
steady state probabilities πn, by either directly solving
(22)–(23), or recursively applying (25)–(26), which is
numerically demanding for large n as the state space
grows exponentially with n.

In this section, we make the following Markov chain
and conditional independence assumption, and give an ap-
proximate probabilistic analysis for the calculation of rn.

(A1) The stochastic processes {cn−1(t), t ≥ 1} and
{(cn(t), cn−1(t)), t ≥ 1} are Markov chains.
Furthermore, given cn−1(t − 1), the coded bits
cn−1(t) and cn(t−1) are conditionally indepen-
dent.

Such a conditional independence assumption was pre-
viously used by Picard for analyzing Markov fields [25].
Note that the assumption in (A1) is true for n = 2 and is
only an approximation for n > 2. Specifically, for n > 2,
cn−1(t) and (cn(t), cn−1(t)) are deterministic functions of
c(t). Thus, the stochastic processes {cn−1(t), t ≥ 1} and
{(cn(t), cn−1(t)), t ≥ 1} are hidden Markov chains [16]
and they are not necessarily Markov chains. However,
as will be seen shortly, the assumption in (A1) leads
to a very good approximation for rn in the following
theorem. The proof of Theorem 8 is given in Appendix
D.

Theorem 8 Suppose that the assumption in (A1) is true.
(i) The transition probability matrix P ′n =

[(P ′n)cn−1,c′n−1
]cn−1,c′n−1∈{0,1} of the Markov chain

8

{cn−1(t), t ≥ 1} is given by

P ′n =
[

1− rn−1
2

rn−1
2

rn−1
2 1− rn−1

2

]
. (30)

(ii) The transition probability matrix P ′′n =
[(P ′′n)cncn−1,c′nc′n−1

]cncn−1,c′nc′n−1∈{0,1}2 of the Markov
chain {(cn(t), cn−1(t)), t ≥ 1} is given by

P ′′n =




1
2 − rn−1

4
rn−1

4
1
2 − rn−1

4
rn−1

4
rn−1

2
1
2 − rn−1

4 0 1
2 − rn−1

4
1
2 − rn−1

4 0 1
2 − rn−1

4
rn−1

2
rn−1

4
1
2 − rn−1

4
rn−1

4
1
2 − rn−1

4


 (31)

and the steady state probabilities π′′n = (π′′n,00, π
′′
n,01, π

′′
n,10,

π′′n,11) are given by

π′′n

=
(

2 + rn−1

2(4 + rn−1)
,

1
4 + rn−1

,
1

4 + rn−1
,

2 + rn−1

2(4 + rn−1)

)
. (32)

(iii) Starting with r1 = 1, rn could be recursively obtained
for n ≥ 2 as follows:

rn =
4

4 + rn−1
. (33)

The approximation of rn in (33) is shown in Table 4.
From Table 4, we can see that for n = 2, the approxima-
tion in (33) is the same as the exact value of rn in (29).
This is no coincidence as we have mentioned earlier that
the assumption in (A1) is true for n = 2. Furthermore,
the approximation of rn in (33) matches very well to the
exact value of rn in (29) for 3 ≤ n ≤ 10. As n → ∞,
the coding rate r∞ = limn→∞ rn can be obtained by
solving r∞ = 4

4+r∞
. The result is r∞ = 2

√
2−2 ≈ 0.8284,

which matches extremely well to the exact value of rn

in (33) for 6 ≤ n ≤ 10. Finally, we mention that we have
computed rn by using the approximation in (33) and by
running simulations for n up to 3000, and the results all
agree with 0.8284 (up to the fourth digit after the decimal
point) for 6 ≤ n ≤ 3000.

4 PARALLEL BIT-STUFFING ALGORITHM

The sequential bit-stuffing algorithm only takes one data
bit stream. This poses a scalability problem when there
are parallel data bit streams. In this section, we address
this scalability problem by proposing a parallel bit-
stuffing algorithm.

Encoder

(bit stuffing)

Forbidden

transition

channel

Decoder

(bit removing)

b1,2b1,1...

b2,2b2,1...

bn,2bn,1...

...

c1(t)

...

c2(t)

cn(t)

c1(t)

...

c2(t)

cn(t)

b1,2b1,1...

b2,2b2,1...

bn,2bn,1...

...

Fig. 2. Parallel bit-stuffing encoder and parallel bit-
removing decoder for a forbidden transition channel with
n parallel wires and n parallel data bit streams.

Parallel bit-stuffing algorithm:
The encoder of the parallel bit-stuffing algorithm

takes the input of n data bit streams {bi,1, bi,2, . . .},

i = 1, 2, . . . , n, and converts them into codewords
(c1(t), c2(t), . . . , cn(t)), t = 1, 2, . . ., so that there are no
opposite transitions on any two adjacent wires among
all the n wires for all time t (see Figure 2). The parallel
bit-stuffing algorithm is specified by using the following
four rules:

(R1) (Initial condition) For t = 0, set

(c1(0), c2(0), . . . , cn(0)) = (0, 0, . . . , 0).

(R2) (An odd-numbered wire) If i is an odd number, we
simply set ci(t) to be the next data bit of the ith data
bit stream.

(R3) (An internal even-numbered wire) If i is an even
number and i < n, we need to consider the follow-
ing three cases.

Case 1: (Bit-stuffing condition) If c̄i−1(t− 1) = ci−1(t) =
ci(t − 1), then ci(t) is a stuffed bit and we set
ci(t) = ci(t− 1).

Case 2: (Bit-stuffing condition) If c̄i+1(t− 1) = ci+1(t) =
ci(t − 1), then ci(t) is a stuffed bit and we set
ci(t) = ci(t− 1).

Case 3: Otherwise, we set ci(t) to be the next data bit
of the ith data bit stream.

(R4) (The last boundary wire) If n is an even number and
i = n, we need to consider the following two cases.

Case 1: (Bit-stuffing condition) If c̄n−1(t−1) = cn−1(t) =
cn(t − 1), then cn(t) is a stuffed bit and we set
cn(t) = cn(t− 1).

Case 2: Otherwise, we set cn(t) to be the next data bit
of the nth data bit stream.

Note from the bit-stuffing conditions in Case 1 and
Case 2 of (R3) and Case 1 of (R4) that there are no
opposite transitions on any two adjacent wires. This is
because we always stuff a bit (by setting ci(t) = ci(t−1)
in both cases) to prevent such a forbidden transition in
(2).

As shown in the parallel bit-stuffing algorithm, bits
transmitted on odd-numbered wires are always data bits.
What the decoder needs to do is simply to remove the
stuffed bits in the even-numbered wires. This can be
easily done by observing that the coded bit ci(t) for an
internal even-numbered wire i is a stuffed bit if and only
if

ci(t) = ci(t− 1) = ci−1(t) = c̄i−1(t− 1) (34)

or

ci(t) = ci(t− 1) = ci+1(t) = c̄i+1(t− 1). (35)

Once we have the coded bits satisfy (34) and/or (35), we
know that ci(t) is a stuffed bit and it should be removed.
The case with the last boundary wire can be decoded
similarly by using only (34) when n is an even number.

Clearly, the implementation complexity of the parallel
bit-stuffing algorithm is only O(n) for a bus with n
parallel wires. This is the same as that for the im-
plementation of the sequential bit-stuffing algorithm.

9

However, as both encoding/decoding for the parallel bit-
stuffing algorithm can be implemented in parallel, the
parallel bit-stuffing algorithm scales much better than
the sequential bit-stuffing algorithm.

4.1 Coding rates
In this section, we compute the coding rate of the
parallel bit-stuffing algorithm. Recall that the coding rate
(throughput) of a wire is defined as the average number
of data bits transmitted in one unit of time, and the
coding rate of a bus with n parallel wires is defined as
the average number of data bits transmitted per wire in
one unit of time. As in the probabilistic analysis for the
sequential bit-stuffing algorithm, we also assume that the
data bits are independent Bernoulli random variables with
equal probabilities of being 0 or 1.

As clearly stated in (R2) of the parallel bit-stuffing
algorithm, every bit transmitted on an odd-numbered
wire is a data bit. Thus, the coding rate for every odd-
numbered wire is 100%, and we only need to com-
pute the coding rate for even-numbered wires. For this,
we need to consider two cases: (i) an internal even-
numbered wire, i.e., i = 2, 4, 6, . . . , 2(dn/2e − 1), and (ii)
the last boundary wire when n is an even number. The
coding rates for these cases are shown in the following
theorem and its proof is deferred to Section 4.3.

Theorem 9 (i) For an internal even-numbered wire,
i.e., i = 2, 4, 6, . . . , 2(dn/2e−1), the average number
of data bits transmitted in one unit of time is 5/8.

(ii) When n is an even number, the average number of
bits transmitted on the last boundary wire is 4/5.

Let ri, i = 1, 2, . . . , n, be the coding rate of the ith wire.
If i is an odd number, one always transmits a data bit
on that wire and thus ri = 1. If i is an even number
and i < n, we know from Theorem 9(i) that ri = 5/8.
Finally, if n is an even number and i = n, we have from
Theorem 9(ii) that ri = 4/5. Let Rp

n = 1
n

∑n
i=1 ri be the

coding rate of a bus with n wires under the parallel bit-
stuffing algorithm. Then one can easily compute

Rp
n =

{
13
16 + 3

16n , if n is odd,
13
16 + 7

40n , if n is even.
(36)

In Table 5, we show the Shannon capacity Cn for a
forbidden transition channel with n wires, the coding
rate Rn of the sequential bit-stuffing algorithm, and
the coding rate Rp

n of the parallel bit-stuffing algorithm
for 1 ≤ n ≤ 10. Observe that the coding rate of the
parallel bit-stuffing algorithm is less than that of the
sequential bit-stuffing algorithm for all 1 ≤ n ≤ 10.
However, the difference is very small. The difference is
less than 1.6% for 1 ≤ n ≤ 10. Even when n → ∞,
the difference between R∞ ≈ 0.8284 and Rp

∞ = 0.8125
is still less than 2%. The advantage of the parallel bit-
stuffing algorithm is that it allows encoding/decoding to
be performed in parallel. As such, it scales much better
than the sequential bit-stuffing algorithm.

TABLE 5
The Shannon capacity Cn, the coding rate Rn of the

sequential bit-stuffing algorithm, and the coding rate Rp
n

of the parallel bit-stuffing algorithm for 1 ≤ n ≤ 10.
n 1 2 3 4 5

Cn 1 0.9163 0.8941 0.8826 0.8757
Rn 1 0.9 0.8779 0.8653 0.8580
Rp

n 1 0.9 0.875 0.8562 0.85
n 6 7 8 9 10

Cn 0.8712 0.8679 0.8654 0.8635 0.8620
Rn 0.8531 0.8495 0.8469 0.8448 0.8432
Rp

n 0.8417 0.8393 0.8344 0.8333 0.83

In Figure 3, we also compare the theoretical coding
rates of various schemes, including the ground shielding
scheme in [2] and the Fibonacci representation scheme
in [3]. Note that in the ground shielding scheme, one
always transmits 0 on every even-numbered wire. Since
our parallel bit-stuffing algorithm achieves the coding
rate of 5/8 on every even-numbered wire, our scheme
is significantly better than the ground shielding scheme
(for the average-case). On the other hand, our parallel
bit-stuffing algorithm also performs much better than the
Fibonacci representation scheme in [3]. Note that the best
hardware implementation complexity for implementing
the Fibonacci representation scheme for a bus of n wires
is O(n2) (see e.g., [6], [26]). This is also much more
complex than the O(n) complexity in our scheme.

1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Wires

C
o
d
in

g
 R

a
te

Shannon Capacity

Parallel Bit�Stuffing

Fibonacci Representation

Ground�Shielding

Fig. 3. The comparison of coding rates of various
schemes.

Even though the coding rate for an even-numbered
wire of our parallel bit-stuffing algorithm is much better
than that of the ground shielding scheme, its worse case
is as bad as that of the ground shielding scheme. For
instance, consider the scenario that the sequence of data
bits on the first (resp., third) wire is {1, 0, 1, 0, . . .} (resp.,
{0, 1, 0, 1, . . .}). Suppose that the first data bit on the
second wire is 0. Then all of the subsequent bits on
the second wire are needed to be stuffed with 0. This
is the same as transmitting a stream of 0’s on the second
wire in the ground shielding scheme, and that results
in a coding rate near 0 on the second wire. This worst-
case scenario shows how serious the problem of uneven
coding rates could be. We will provide a simple solution

10

in the next section.

4.2 Rate balancing

The problem of our parallel bit-stuffing algorithm is
that the coding rate of an even-numbered wire is lower
than that of an odd-numbered wire. When transmitting
parallel finite sequences of data bits over the forbidden
transition channel, one has to add padded bits on a wire
once it completes the transmission of its data bits before
others. As commented in the previous section, the worst
case for this could be very serious as it is possible to have
an even-numbered wire that has a coding rate near 0.

To further understand the problem of uneven coding
rates, we perform a series of experiments by simulating
the transmission of a packet of 1500 bytes (a typical
Ethernet packet size) over a bus of 32 wires under the
parallel bit-stuffing algorithm. For this experiment, we
partition the 1500× 8 data bits evenly over the 32 wires
and each wire thus needs to transmit 375 data bits. Once
a wire completes the transmission of its data bits, it
starts to add padded bits until all the wires complete
the transmission of their 375 data bits. Define the trans-
mission time of a packet as the number of transmitted
bits (including both data bits and padded bits) on a wire
when all the wires complete the transmission of their
375 data bits. In Figure 4, we show the simulation result
for the cumulative distribution function (CDF) for the
transmission time of a packet. From Figure 4, we see
that 99% of our experiments have the transmission time
less than 541. This leads to an empirical coding rate of
375/541 ≈ 0.6931 for transmitting a packet of 1500 bytes.

515 520 525 530 535 540 545 550 555
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
X: 541
Y: 0.9927

x

F
(x

)

Fig. 4. The CDF F (x) of the transmission time x of a
packet of 1500 bytes over a bus of 32 wires under the
parallel bit-buffering algorithm.

Our idea for solving the problem of uneven coding
rates is rate-balancing. As shown in Figure 5, we add
a 2 × 2 crossbar switch for every two wires before the
encoder, and append a 2 × 2 crossbar switch for every
two wires after the decoder. The connection patterns of
all these 2 × 2 crossbar switches are synchronized and
they alternate periodically (with a period of 2) between
the “bar” state and the “cross” state. In the bar state,

the first (resp., second) input wire of a crossbar switch
is connected to the first (resp., second) output wire of
that switch. On the other hand, in the cross state, the
first (resp., second) input wire of a 2× 2 crossbar switch
is connected to the second (resp., first) output wire of
that switch. By so doing, every input/output stream is
alternatively connected to an even-numbered wire and
an odd-numbered wire as shown in Figure 5. As such,
the coding rate of an internal wire is (1+5/8)/2 = 0.8125.
Moreover, as the connection patterns are synchronized,
all the data bits can still be encoded and decoded cor-
rectly.

Encoder

(bit stuffing)

Forbidden

transition

channel

Decoder

(bit removing)

b1,2b1,1...

b2,2b2,1...

bn-1,2bn-1,1...

...

c1(t)

...

c2(t)

cn-1(t)

c1(t)

...

c2(t)

cn-1(t)

bn,2bn,1... cn(t) cn(t)

b1,2b1,1...

b2,2b2,1...

bn-1,2bn-1,1...

...

bn,2bn,1...

...

...

...

...

(a)

(b)

Encoder

(bit stuffing)

Forbidden

transition

channel

Decoder

(bit removing)

b1,2b1,1...

b2,2b2,1...

bn-1,2bn-1,1

...

c1(t)

...

c2(t)

cn-1(t)

c1(t)

...

c2(t)

cn-1(t)

bn,2bn,1... cn(t) cn(t)

b1,2b1,1...

b2,2b2,1...

bn-1,2bn-1,1...

...

bn,2bn,1...

...

...

...

...

...

Fig. 5. Parallel bit-stuffing encoder and parallel bit-
removing decoder with rate-balancing for a forbidden
transition channel with n parallel wires, where n is an
even number in this case. (a) At time t = 1, 3, . . ., all the
2×2 crossbar switches are set to the bar state. (b) At time
t = 2, 4, . . ., all the 2 × 2 crossbar switches are set to the
cross state.

In Figure 6, we report the simulation result for the
parallel bit-stuffing algorithm with rate-balancing under
the same setting in Figure 4. From Figure 6, we see
that 99% of our experiments have the transmission time
less than 486. This leads to an empirical coding rate of
375/486 ≈ 0.7716 for transmitting a packet of 1500 bytes.
Clearly, the improvement is quite significant when com-
paring with the original parallel bit-stuffing algorithm
(without rate-balancing). We note that the empirical cod-
ing rate 0.7716 is still lower than the theoretical coding
rate 0.8125. This is due to the fact the theoretical coding
rate is derived in the asymptotic regime where the packet
length is assumed to be infinite.

We note that there are many schemes for adding
padded bits. Clearly, adding random bits is not good
as it might cause transitions on the same wire. Here in
our experiments, whenever the next data bit is a padded
bit, we simply set the coded bit to be the same as the
previous coded bit. By so doing, we reduce the number
of transitions on the same wire.

Also, there are other rate-balancing schemes. For in-
stance, one could use an n × n crossbar switch in front
of the encoder and run a set of n periodic connections
as in the load-balanced switches (see e.g., [27]–[30]). This
certainly will mitigate the boundary effect and achieve a
better result for rate-balancing. However, this is at the
cost of a much more complicated switch design than

11

460 465 470 475 480 485 490 495
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
X: 486
Y: 0.9919

x

F
(x

)

Fig. 6. The CDF F (x) of the transmission time x of a
packet of 1500 bytes over a bus of 32 wires under the
parallel bit-buffering algorithm with rate-balancing.

using simple 2 × 2 crossbar switches. Another possi-
ble approach is to alternate bit-stuffing between even-
numbered wires and odd-numbered wires. But this also
complicates the hardware design.

4.3 Proof of Theorem 9
(i) First, we show that for an internal even-numbered
wire, i.e., i = 2, 4, 6, . . . , 2(dn/2e−1), the average number
of data bits transmitted in one unit of time is 5/8.

Let c(t) = (ci−1(t), ci(t), ci+1(t)). According to the
parallel bit-stuffing algorithm, the code vector c(t) is a
function of c(t−1) and the input data bit streams. As the
input data bit streams consist of i.i.d. Bernoulli random
variables, the code vector at time t is independent of
all the code vectors before time t − 1 once the code
vector at time t − 1 is given. This shows that c(t) is
a time-homogeneous Markov chain. Now we calculate
the transition probabilities of the Markov chain c(t). Let
c = (c1, c2, c3) and c′ = (c′1, c

′
2, c

′
3). Denote the transition

probability from the state c to c′ by Pc,c′ , i.e.,

Pc,c′ = P (c(t) = c′|c(t− 1) = c).

Clearly, we have Pc,c′ = 0 if there is a forbidden transi-
tion as described in (1). Specifically, Pc,c′ = 0 whenever

c̄1 = c′1 = c2 = c̄′2 (37)

or

c̄3 = c′3 = c2 = c̄′2. (38)

On the other hand, we have from the chain rule that

Pc,c′ = P (c(t) = c′|c(t− 1) = c)
= P (ci−1(t) = c′1|c(t− 1) = c)
× P (ci+1(t) = c′3|c(t− 1) = c, ci−1(t) = c′1)
× P (ci(t) = c′2|c(t− 1) = c, ci−1(t) = c′1,

ci+1(t) = c′3). (39)

Recall that both ci−1(t) and ci+1(t) are data bits. Since
we assume that the data bits are i.i.d. Bernoulli random

TABLE 6
The values of the function g(c, c′).

c \ c′ 000 001 010 011 100 101 110 111
000 1 1 1 1 1 1 1 1
001 0 1 F 1 0 1 F 1
010 1 F 1 0 F F 0 0
011 1 1 1 1 F F 0 0
100 0 0 F F 1 1 1 1
101 0 0 F F 0 1 F 1
110 1 F 1 0 1 F 1 0
111 1 1 1 1 1 1 1 1

variables with equal probabilities of being 0 or 1, we
then have

P (ci−1(t) = c′1|c(t− 1) = c) = P (ci−1(t) = c′1) =
1
2
, (40)

and

P (ci+1(t) = c′3|c(t− 1) = c, ci−1(t) = c′1)

= P (ci+1(t) = c′3) =
1
2
. (41)

To compute

P (ci(t) = c′2|c(t− 1) = c, ci−1(t) = c′1, ci+1(t) = c′3),

we note that its value is also 1/2 if ci(t) is a data bit, and
its value is 1 if ci(t) is a stuffed bit. By using (R3), we
know that c′2 in this conditional probability is a stuffed
bit whenever

c′2 = c2 = c′1 = c̄1 (42)

or

c′2 = c2 = c′3 = c̄3. (43)

Otherwise, it is a data bit (excluding the cases for the
forbidden transitions in (37) and (38)). We enumerate all
the cases in Table 6, where we define a function g(c, c′),
in which “1” indicates a data bit, “0” indicates a stuffed
bit, and “F” indicates a forbidden transition (Pc,c′ = 0).
Thus, we have from (39)–(41) that

Pc,c′ =
{

0, if g(c, c′) = F,

(1
2)2(1

2)g(c,c′), if g(c, c′) = 0 or 1.
(44)

Order the eight states by (0,0,0), (0,0,1), (0,1,0), (0,1,1),
(1,0,0), (1,0,1), (1,1,0), (1,1,1). Using (44) and Table 6, we
then have the the following transition probability matrix:

P =




1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
4

1
8 0 1

8
1
4

1
8 0 1

8
1
8 0 1

8
1
4 0 0 1

4
1
4

1
8

1
8

1
8

1
8 0 0 1

4
1
4

1
4

1
4 0 0 1

8
1
8

1
8

1
8

1
4

1
4 0 0 1

4
1
8 0 1

8
1
8 0 1

8
1
4

1
8 0 1

8
1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8




.

Let

π = (π000, π001, π010, π011, π100, π101, π110, π111)

12

be the steady state probability vector. Then one can solve
π by

∑
c

πc = 1 and π = πP.

By symmetry, we know that πc1c2c3 and πc̄1c̄2c̄3 are
identical. Also, as the bits transmitted on the (i − 1)th

wire and the (i + 1)th wire are data bits, we have for all
c1 and c3 that

πc10c3 + πc11c3 =
1
4
.

From these, we can then solve

π =
(

1
6
,
1
8
,

1
12

,
1
8
,
1
8
,

1
12

,
1
8
,
1
6

)
.

With the steady state probability vector, we can then
compute the average number of data bits transmitted on
the ith wire by

∑
c

πc

∑

c′
Pc,c′g(c, c′) =

5
8
,

where i = 2, 4, 6, . . . , 2(dn/2e − 1).
(ii) When n is an even number, we show in the

following that the average number of bits transmitted
on the last boundary wire is 4/5.

For this, we only need to consider the states of the last
two wires, i.e., (cn−1(t), cn(t)). Order the four states by
(0,0), (0,1), (1,0) and (1,1). Analog to the argument used
in Theorem 9(i) for an internal even-numbered wire, it is
easy to obtain the following transition probability matrix

P =




1
4

1
4

1
4

1
4

1
4

1
4 0 1

2
1
2 0 1

4
1
4

1
4

1
4

1
4

1
4


 .

One can also observe the following from the transition
probability matrix: (i) a data bit is transmitted if the tran-
sition probability is 1/4, (ii) a stuffed bit is transmitted
if the transition probability is 1/2, and (iii) a forbidden
transition if the transition probability is 0.

Then one can solve the steady state probability vector

π = (π00, π01, π10, π11) =
(

3
10

,
1
5
,
1
5
,

3
10

)
,

and use that to show the average number of data bits
transmitted on the nth wire is 4/5.

5 CONCLUSION

Motivated by the design of high-speed switching fabrics,
in this paper we have proposed a sequential bit-stuffing
algorithm and a parallel bit-stuffing algorithm for gener-
ating forbidden transition codes to mitigate the crosstalk
effect between adjacent wires in long on-chip buses. We
also have developed the associated analysis for these two
algorithms. We have shown by both theoretic analysis
and simulations that the coding rates of these two bit-
stuffing algorithms are quite close to the Shannon capac-
ity, and hence are much better than those of the existing

forbidden transition codes in the literature, including the
Fibonacci representation in [3], [4], and [6].

In this paper, we assume i.i.d. Bernouilli random
variables with equal probabilities of being 0 or 1. This
is often a valid assumption on scrambled data, but on
internal bus systems this can be quite different. One way
to fix this is to apply a distribution transformer [13]
that converts the original data bit-streams into an i.i.d.
Bernouilli random variables with equal probabilities of
being 0 or 1. Another issue is error propagation in the bit-
stuffing algorithm. To address such a problem, one has
to put a limit on the maximum packet length, e.g., 1500
bytes in our numerical examples. When the maximum
packet length is exceeded during the decoding process,
we know there is an error and that packet is then
discarded. Discarded packets have to be retransmitted
by an upper layer protocol.

There are several research directions that are worth
further investigation.

(i) Bounding the capacity of the sequential bit-stuffing
algorithm: In this paper, we provided an approximate
probabilistic analysis for the capacity of the sequen-
tial bit-stuffing algorithm. There are recent efforts in
obtaining bounds by linear programming and convex
programming for the bit-stuffing algorithms on various
applications (see e.g., [21], [22]). It would be of interest
to apply their approaches to obtain tight bounds for our
setting.

(ii) Bounding the number of padded bits of the parallel
bit-stuffing algorithm: Unlike the fixed-length memory-
less encoder by using the the ground shielding scheme
in [2] and Fibonacci representation scheme in [3], [4], and
[6], our parallel bit-stuffing algorithm is a variable-length
encoder with memory. As such, padded bits have to be
added in our scheme. For determining the size of both
input/output buffers before the parallel encoder, one
possible future research topic is to derive tight bounds
for the number of padded bits.

ACKNOWLEDGMENT

This work was supported in part by Ministry of Science
and Technology (MOST), Taiwan, under Grant Numbers
102-2221-E-007-006-MY3, 103-2622-E-009-012 and 103-
2218-E-007-022.

REFERENCES

[1] P. P. Sotiriadis, “Interconnect modeling and optimization in deep
submicron technologies,” Ph.D. Dissertation, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, 2002.

[2] J. D. Z. Ma and L. He, “Formulae and applications of interconnect
estimation considering shield insertion and net ordering,” in
Proceedings IEEE/ACM International Conference on Computer-Aided
Design (ICCAD’01), San Jose, CA, USA, November 4–8, 2001,
pp. 327–332.

[3] B. Victor and K. Keutzer, “Bus encoding to prevent crosstalk
delay,” in Proceedings IEEE/ACM International Conference on
Computer-Aided Design (ICCAD’01), San Jose, CA, USA, November
4–8, 2001, pp. 57–63.

13

[4] M. Mutyam, “Preventing crosstalk delay using Fibonacci rep-
resentation,” in Proceedings 17th International Conference on VLSI
Design (VLSID’04), Mumbai, India, January 5–9, 2004, pp. 685–
688.

[5] B. E. Moision, A. Orlitsky, and P. H. Siegel, “On codes that avoid
specified differences,” IEEE Transactions on Information Theory,
vol. 47, pp. 433–442, January 2001.

[6] C. Duan, C. Zhu, and S. P. Khatri, “Forbidden transition free
crosstalk avoidance CODEC design,” in Proceedings 45th Annual
Design Automation Conference (DAC’08), Anaheim, CA, USA, June
8–13, 2008, pp. 986–991.

[7] X. Wu, Z. Yan, and Y. Xie, “Two-dimensional crosstalk avoidance
codes,” in Proceedings IEEE Workshop on Signal Processing Systems
(SiPS’08), Washington DC, USA, October 8–10, 2008, pp. 106–111.

[8] S. R. Sridhara and N. R. Shanbhag, “Coding for system-on-chip
networks: a unified framework,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 13, pp. 655–667, June 2005.

[9] W.-W. Hsieh, P.-Y. Chen, C.-Y. Wang, and T.-T. Hwang, “A bus-
encoding scheme for crosstalk elimination in high-performance
processor design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, pp. 2222–2227, December
2007.

[10] C.-S. Chang, J. Cheng, T.-K. Huang and D.-S. Lee, ”Explicit
constructions of memoryless crosstalk avoidance codes via C-
transform,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, no. 9, pp. 2030–2033, September 2014.

[11] L. L. Peterson and B. S. Davie, Computer Networks: A Systems
Approach, 4th edition, San Francisco, CA: Morgan Kaufmann
Publishers, 2007.

[12] R. M. Roth, P. H. Siegel, and J. K. Wolf, “Efficient coding schemes
for the hard-suqare constraint,” IEEE Transactions on Information
Theory, vol. 47, pp. 1166–1176, Mar. 2001.

[13] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf,
“Improved bit-stuffing bounds on two-dimensional constraints,”
IEEE Transactions on Information Theory, vol. 50, pp. 824–838, May
2004.

[14] S. Aviran, P. H. Siegel, and J. K. Wolf, “An improvement to the
bit stuffing algorithm,” IEEE Transactions on Information Theory,
vol. 51, pp. 2885–2891, August 2005.

[15] C. E. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal, vol. 27, pp. 379–423 (Part I), 623–656 (Part
II), July, October 1948.

[16] T. M. Cover and J. A. Thomas, Elements of Information Theory, New
York, NY: John Wiley & Sons, 1991.

[17] E. K. Orcutt and W. M. Marcellin, “Redundant multitrack (d, k)
codes,” IEEE Transactions on Information Theory, vol. 39, pp. 1744–
1750, 1993.

[18] W. Weeks and R.E. Blahut, “The capacity and coding gain of cer-
tain checkerboard codes,” IEEE Transactions on Information Theory,
vol. 44, pp. 1193–1203, 1998.

[19] N. J. Calkin and H. S. Wilf, “The number of independent sets in
a grid graph,” SIAM J. Discr. Math, vol. 11, pp. 54–60, 1998.

[20] J. Justesen and S. Forchhammer, Two-dimensional Information The-
ory and Coding, Cambridge: Cambridge University Press, 2010.

[21] I. Tal and R. M. Roth, “Bounds on the rate of 2-D bit-stuffing
encoders,” IEEE Transactions Information Theory, vol. 56, pp. 2561–
2567, 2010.

[22] I. Tal and R. M. Roth, “Convex Programming Upper Bounds on
the Capacity of 2-D Constraints,” IEEE Transactions Information
Theory, vol. 57, pp. 381–391, 2011.

[23] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge, UK:
Cambridge University Press, 1985.

[24] S. I. Resnick, Adventures in Stochastic Processes, Boston, MA:
Birkhaüser, 1992.

[25] D. K. Pickard, “Unilateral Markov fields,” Advances in Applied
Pprobability, vol. 12, pp. 655–671, 1980.

[26] X. Wu and Z. Yan, “Efficient CODEC designs for crosstalk avoid-
ance codes based on numeral systems,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 19, pp. 548–558, 2011.

[27] C.-S. Chang, D.-S. Lee and Y.-S. Jou, “Load balanced Birkhoff-
von Neumann switches, part I: one-stage buffering,” Computer
Communications, vol. 25, pp. 611–622, April 2002.

[28] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Sol-
gaard, and N. McKeown, “Scaling internet routers using optics,”
in Proceedings ACM SIGCOMM 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-

tions (SIGCOMM’03), Karlsruhe, Germany, August 25–29, 2003,
pp. 189–200.

[29] Y. Shen, S. Jiang, S. S. Panwar, and H. J. Chao, “Byte-focal: a
practical load balanced switch,” in Proceedings 2005 IEEE Workshop
on High Performance Switching and Routing (HPSR’05), Hong Kong,
P. R. China, May 12–14, 2005, pp. 6–12.

[30] J. J. Jaramillo, F. Milan, and R. Srikant, “Padded frames: a
novel algorithm for stable scheduling in load-balanced switches,”
IEEE/ACM Transactions on Networking, vol. 16, pp. 1212–1225,
October 2008.

Cheng-Shang Chang (S’85-M’86-M’89-SM’93-
F’04) received the B.S. degree from National
Taiwan University, Taipei, Taiwan, in 1983, and
the M.S. and Ph.D. degrees from Columbia Uni-
versity, New York, NY, USA, in 1986 and 1989,
respectively, all in Electrical Engineering. From
1989 to 1993, he was employed as a Research
Staff Member at the IBM Thomas J. Watson
Research Center, Yorktown Heights, N.Y. Since
1993, he has been with the Department of Elec-
trical Engineering at National Tsing Hua Univer-

sity, Taiwan, R.O.C., where he is a Tsing Hua Chair Professor. His cur-
rent research interests are concerned with network science, high speed
switching, communication network theory, and mathematical modeling
of the Internet. Dr. Chang received an IBM Outstanding Innovation
Award in 1992, an IBM Faculty Partnership Award in 2001, and Out-
standing Research Awards from the National Science Council, Taiwan,
in 1998, 2000 and 2002, respectively. He also received Outstanding
Teaching Awards from both the college of EECS and the university
itself in 2003. He was appointed as the first Y. Z. Hsu Scientific Chair
Professor in 2002 and elected to an IEEE Fellow in 2004. Dr. Chang
received the Academic Award from the Ministry of Education and the
Merit NSC Research Fellow Award from the National Science Council
in 2011. He is the author of the book “Performance Guarantees in
Communication Networks” and the coauthor of the book ”Principles,
Architectures and Mathematical Theory of High Performance Packet
Switches.” He served as an editor for Operations Research from 1992
to 1999 and an editor for IEEE/ACM Transactions on Networking from
2007 to 2009. He is currently serving as an editor-at-large for IEEE/ACM
Transactions on Networking and an editor for IEEE Transactions on
Network Science and Engineering. Dr. Chang is a member of IFIP
Working Group 7.3.

Jay Cheng received the B.S. and M.S. degrees
from National Tsing Hua University, Hsinchu,
Taiwan, R.O.C., in 1993 and 1995, respectively,
and the Ph.D. degree from Cornell University,
Ithaca, NY, USA, in 2003, all in Electrical Engi-
neering. In August 2003, he joined the Depart-
ment of Electrical Engineering at National Tsing
Hua University, Hsinchu, Taiwan, R.O.C., where
he is currently a Professor. Since October 2004,
Dr. Cheng has also been affiliated with the Insti-
tute of Communications Engineering at National

Tsing Hua University, Hsinchu, Taiwan, R.O.C. His current research
interests include mathematical logic, foundations of mathematics, game
theory, network science, optical queueing theory, high-speed switching
theory, and information theory.

14

Tien-Ke Huang (S’06-M’10) received the B.S.
and Ph.D. degrees in 2002 and 2010, respec-
tively, both from National Tsing Hua University,
Hsinchu, Taiwan, R.O.C. From 2011 to 2012,
he was a Postdoctoral Researcher with Na-
tional Tsing Hua University. In August 2012,
he joined Metanoia Communications Inc., as a
Senior Engineer for DSL systems development.
Since August 2014, he has been with Realtek
Semiconductor Corp. His research interests are
in communication theory and information theory.

Xuan-Chao Huang received the B.S., M.S., and
Ph.D. degrees from National Tsing Hua Univer-
sity, Hsinchu, Taiwan, R.O.C., in 2005, 2008,
and 2011, respectively. From 2011 to 2013, he
was a postdoctoral research fellow in National
Tsing Hua University. From 2013 to present, he
serves as a software engineer in Gorilla Inc.. His
research interests are in optical queueing theory,
high speed switching, and network clustering
algorithm.

Duan-Shin Lee (S’89-M’90-SM’98) received the
B.S. degree from National Tsing Hua University,
Taiwan, in 1983, and the MS and Ph.D. degrees
from Columbia University, New York, in 1987 and
1990, all in electrical engineering. He worked as
a research staff member at the C&C Research
Laboratory of NEC USA, Inc. in Princeton, New
Jersey from 1990 to 1998. He joined the De-
partment of Computer Science of National Ts-
ing Hua University in Hsinchu, Taiwan, in 1998.
Since August 2003, he has been a professor. He

received a best paper award from the Y.Z. Hsu Foundation in 2006.
His current research interests are high-speed switch and router design,
social networks, network science and data engineering. He is a senior
IEEE member.

Chao-Yi Chen received the B.S.degree in Elec-
trical Engineering from National Tsing Hua Uni-
versity, Hsinchu, Taiwan, in 2008, and he re-
ceived the M.S. degree in Communications En-
gineering from National Tsing Hua University,
Hsinchu, Taiwan, in 2010. He have been with
USI, Nantou, Taiwan, as a Signal Integrity Engi-
neer since 2010. He received the 10th Golden
Silicon Awards from MXIC, Taiwan, in 2010,
and he also received the EMC Design Game
Awards from BSMI, Taiwan, in 2011 and 2014,

respectively.

15

APPENDIX A
PROOF OF THEOREM 1
Let Xn,c(t), c = (cn, cn−1, . . . , c1) and t = 1, 2, . . ., be
the number of sequences (c(1), c(2), . . . , c(t)) that satisfy
the constraint in (1) up to time t and c(t) = c, i.e., the
sequence (c(1), c(2), . . . , c(t)) ends in the state c at time
t. Clearly, we have Xn,c(1) = 1 for all c ∈ {0, 1}n and
Xn(t) =

∑
c∈{0,1}n Xn,c(t) for all t = 1, 2,

Let 0n = (0, 0, . . . , 0) be the row vector of size 2n

whose entries are all equal to 0, and let 1n = (1, 1, . . . , 1)
be the row vector of size 2n whose entries are all equal
to 1. Let Xn(t) = (Xn,0n

(t), . . . , Xn,1n
(t)) be the row

vector of size 2n whose ith entry, i = 1, 2, . . . , 2n, is
given by Xn,c(t) in which c = (cn, cn−1, . . . , c1) satis-
fies

∑n
j=1 cj2j−1 = i − 1. Then it is easy to see that

Xn(t) = Xn(t− 1)An for t = 2, 3, . . ., and hence we have

Xn(t) = Xn(1)At−1
n , for t = 1, 2, (45)

As such, we have from Xn(t) =
∑

c∈{0,1}n Xn,c(t) =
Xn(t)1T

n , (45), and Xn(1) = 1n that

Xn(t) = Xn(t)1T
n = (Xn(1)At−1

n)1T
n = 1nAt−1

n 1T
n

=
∑

c,c′∈{0,1}n

(At−1
n)c,c′ . (46)

Recall that for an m × m matrix M , the maximum-
row-sum matrix norm |||M |||∞ of M is defined as [23,
Definition 5.6.5]

|||M |||∞ = max
1≤i≤m

m∑

j=1

|Mi,j |, (47)

and its spectral radius ρ(M) = max{|λ| : λ is an
eigenvalue of M} [23, Definition 5.6.8] is given by [23,
Corollary 5.6.14]

ρ(M) = lim
k→∞

|||Mk|||1/k
∞ . (48)

Furthermore, if M is nonnegative, i.e., Mi,j ≥ 0 for all
1 ≤ i, j ≤ m, then ρ(M) is an eigenvalue of M [23,
Theorem 8.3.1] and hence we have

ρ(M) = max{λ : λ is an eigenvalue of M}. (49)

As An is a nonnegative matrix, we see from (46) and
(47) that

|||At−1
n |||∞ ≤ Xn(t) ≤ 2n · |||At−1

n |||∞. (50)

It then follows from (3), (50), (48), and (49) that

Cn =
1
n

lim
t→∞

log2 Xn(t)
t

=
1
n

lim
t→∞

log2 |||At−1
n |||∞

t

=
1
n

log2

(
lim

t→∞
|||At−1

n |||1/t
∞

)
=

1
n

log2 ρ(An)

=
1
n

log2 λn,max, (51)

where λn,max = max1≤i≤2n λn,i is the maximum eigen-
value of the adjacency matrix An.

APPENDIX B
PROOF OF LEMMA 6

(i) Note that from (22) and (17), we have

π(0)
n = π(0)

n En−1 + π(1)
n Gn−1, (52)

π(1)
n = π(0)

n Fn−1 + π(1)
n Hn−1. (53)

By adding (52) and (53), and using (18)–(21), and (17),
we can see that

π(0)
n + π(1)

n = π(0)
n (En−1 + Fn−1) + π(1)

n (Gn−1 + Hn−1)

= (π(0)
n + π(1)

n)
[

En−2 Fn−2

Gn−2 Hn−2

]

= (π(0)
n + π(1)

n)Pn−1. (54)

Also, it is clear from (23) that

(π(0)
n + π(1)

n)1T
n−1 =

∑

c(n−1)∈{0,1}n−1

(πn,0c(n−1) + πn,1c(n−1))

=
∑

c∈{0,1}n

πn,c = 1. (55)

It follows from (54), (55), and the uniqueness of πn−1

that

πn−1 = π(0)
n + π(1)

n .

(ii) From (52) and (24), we can see that

π(0)
n (In−1 − En−1 + Gn−1) = π(1)

n Gn−1 + π(0)
n Gn−1

= πn−1Gn−1. (56)

From (18) and (20), we have

In−1 − En−1 + Gn−1 =
[

In−2 − 1
2Fn−2

− 1
2Gn−2 In−2

]
. (57)

Note that from (17), we have

Pn−1 =
[

En−2 Fn−2

Gn−2 Hn−2

]
.

It follows that each row sum of Fn−2 and each row sum
of Gn−2 are less than 1 since each row sum of Pn−1 is
equal to 1 and each row of En−2 and each row of Hn−2

contain at least one positive entry. Therefore, we see from
(57) and the well-known Gerschgorin’s Disk Theorem
[23, Theorem 6.1.1] that each eigenvalue of In−1−En−1+
Gn−1 is contained in the following disk:

{
z ∈ C : |z − 1| < 1

2

}
.

As such, the matrix In−1−En−1+Gn−1 has only nonzero
eigenvalues and hence is nonsingular. As a result, (25)
follows from (56) and the nonsingularity of the matrix
In−1 −En−1 + Gn−1. Finally, (26) then follows from (24)
and (25).

16

APPENDIX C
PROOF OF THEOREM 7
Suppose that c(t− 1) = c and c(t) = c′, where t ≥ 2. As
c′1 is a data bit and c′i, i = 2, 3, . . . , n, is a stuffed bit if
and only if c̄i−1 = ci = c′i−1 = c′i under our sequential
bit-stuffing algorithm, we can see from the values of
q(ci, ci−1, c

′
i, c

′
i−1) in Table 3 that

(Dn)c,c′ = 1 +
∑

i∈I(c,c′)

log2

(
1

q(ci, ci−1, c′i, c
′
i−1)

)
, (58)

where I(c, c′) = {2 ≤ i ≤ n : q(ci, ci−1, c
′
i, c

′
i−1) 6= 0}.

Note that if q(ci, ci−1, c
′
i, c

′
i−1) = 0, then we have from

(14) that (Pn)c,c′ = 0. As such, it follows from (58), the
convention 0 log2 0 = 0, and (14) that

(Pn)c,c′(Dn)c,c′

= (Pn)c,c′

(
1 +

n∑

i=2

log2

(
1

q(ci, ci−1, c′i, c
′
i−1)

))

= −(Pn)c,c′ log2

(
1
2

n∏

i=2

q(ci, ci−1, c
′
i, c

′
i−1)

)

= −(Pn)c,c′ log2(Pn)c,c′ . (59)

Therefore, (28) follows from (27) and (59).
For n ≥ 2 and c = (cn, cn−1, . . . , c1) ∈ {0, 1}n, we

denote c(n−1) = (cn−1, cn−2, . . . , c1) ∈ {0, 1}n−1. From
(15), Table 3, and (24) in Lemma 6, we can see that

∑

cn,c′n∈{0,1}
πn,c(Pn)c,c′

=
∑

cn∈{0,1}
πn,c[(Pn)c,0c′(n−1) + (Pn)c,1c′(n−1)]

=
∑

cn∈{0,1}
πn,c(Pn−1)c(n−1),c′(n−1)

×[q(cn, cn−1, 0, c′n−1) + q(cn, cn−1, 1, c′n−1)]

=
∑

cn∈{0,1}
πn,c(Pn−1)c(n−1),c′(n−1)

= πn−1,c(n−1)(Pn−1)c(n−1),c′(n−1) . (60)

It follows from (28), (15), and (60) that

Dn = −
∑

c,c′∈{0,1}n

πn,c(Pn)c,c′ log2(Pn−1)c(n−1),c′(n−1)

−
∑

c,c′∈{0,1}n

πn,c(Pn)c,c′ log2 q(cn, cn−1, c
′
n, c′n−1)

= −
∑

c(n−1),c′(n−1)∈{0,1}n−1

πn−1,c(n−1)(Pn−1)c(n−1),c′(n−1)

× log2(Pn−1)c(n−1),c′(n−1)

−
∑

c,c′∈{0,1}n

πn,c(Pn)c,c′ log2 q(cn, cn−1, c
′
n, c′n−1)

= Dn−1

−
∑

c,c′∈{0,1}n

πn,c(Pn)c,c′ log2 q(cn, cn−1, c
′
n, c′n−1). (61)

Therefore, (29) follows from rn = Dn −Dn−1 and (61).

APPENDIX D
PROOF OF THEOREM 8

(i) Let Dn−1(t) (resp., Sn−1(t)) be the event that cn−1(t)
is a data (resp., stuffed) bit. Then we have

lim
t→∞

P (Dn−1(t)) = rn−1, (62)

lim
t→∞

P (Sn−1(t)) = lim
t→∞

(1− P (Dn−1(t))) = 1− rn−1. (63)

As the sequential bit-stuffing algorithm is symmetric, we
also have

lim
t→∞

P (cn−1(t) = 0) = lim
t→∞

P (cn−1(t) = 1) =
1
2
, (64)

lim
t→∞

P (cn−1(t− 1) = cn−1(t) = 0)

= lim
t→∞

P (cn−1(t− 1) = cn−1(t) = 1). (65)

Note that

P (cn−1(t) = cn−1(t− 1))
= P (Dn−1(t))P (cn−1(t) = cn−1(t− 1)|Dn−1(t))

+P (Sn−1(t))P (cn−1(t) = cn−1(t− 1)|Sn−1(t)). (66)

Given that cn−1(t) is a stuffed bit, we know from the
bit-stuffing rule that cn−1(t) = cn−1(t − 1), and so we
have

P (cn−1(t) = cn−1(t− 1)|Sn−1(t)) = 1. (67)

Given that cn−1(t) is a data bit, cn−1(t) is a Bernoulli
random variable with equal probabilities of being 0 or
1, and is conditionally independent of cn−1(t − 1), and
thus we have

P (cn−1(t) = cn−1(t− 1)|Dn−1(t))

=
∑

cn−1∈{0,1}
P (cn−1(t− 1) = cn−1|Dn−1(t))

×P (cn−1(t) = cn−1|Dn−1(t), cn−1(t− 1) = cn−1)

=
∑

cn−1∈{0,1}

1
2
P (cn−1(t− 1) = cn−1) =

1
2
. (68)

As such, it follows from (66)–(68) and (62)–(63) that

lim
t→∞

P (cn−1(t) = cn−1(t− 1))

=
1
2
· rn−1 + 1 · (1− rn−1) = 1− rn−1

2
. (69)

Therefore, we have from (64), (65), and (69) that

(P ′n)0,0 = lim
t→∞

P (cn−1(t) = 0|cn−1(t− 1) = 0)

lim
t→∞

P (cn−1(t) = cn−1(t− 1) = 0)
P (cn−1(t− 1) = 0)

=
1
2 (1− rn−1

2)
1
2

= 1− rn−1

2
.

Similarly, we have (P ′n)1,1 = 1 − rn−1
2 . Finally, (P ′n)0,1 =

1− (P ′n)0,0 = rn−1
2 and (P ′n)1,0 = 1− (P ′n)1,1 = rn−1

2 .

17

(ii) From the assumption in (A1), we immediately see
that

(P ′′n)cncn−1,c′nc′n−1

= lim
t→∞

P (cn(t) = c′n, cn−1(t) = c′n−1

|cn(t− 1) = cn, cn−1(t− 1) = cn−1)
= lim

t→∞
P (cn−1(t) = c′n−1

|cn(t− 1) = cn, cn−1(t− 1) = cn−1)
×P (cn(t) = c′n|cn−1(t) = c′n−1,

cn(t− 1) = cn, cn−1(t− 1) = cn−1)
= lim

t→∞
P (cn−1(t) = c′n−1|cn−1(t− 1) = cn−1)

×q(cn, cn−1, c
′
n, c′n−1)

= P ′cn−1,c′n−1
q(cn, cn−1, c

′
n, c′n−1). (70)

It is easy to see that (31) follows from (70), (30), and
Table 3. By solving π′′n = π′′nP ′′n subject to the constraint
that π′′n,00 + π′′n,01 + π′′n,10 + π′′n,11 = 1, we obtain (32).

(iii) From (31), (32), and Table 3, we see that

rn = −
∑

cn,cn−1∈{0,1}
π′′n,cncn−1

∑

c′n,c′n−1∈{0,1}
(P ′′n)cncn−1,c′nc′n−1

× log2 q(cn, cn−1, c
′
n, c′n−1)

= (π′′n,00 + π′′n,11) · 1 + (π′′n,01 + π′′n,10) ·
(
1− rn−1

2

)

=
4

4 + rn−1
.

The proof is completed.

	bit-stuffing-TComputerFinal.pdf
	TC-2013-08-0572-supp

