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Abstract—The problem of anonymous networking when an
eavesdropper observes packet timings in a communication net-
work is considered. The goal is to hide the identities of source-
destination nodes, and paths of information flow in the network.
One way to achieve such an anonymity is to useMixes. Mixes
are nodes that receive packets from multiple sources and change
the timing of packets, by mixing packets at the output links,
to prevent the eavesdropper from finding sources of outgoing
packets. In this paper, we consider two simple but fundamental
scenarios: double input-single output Mix and double input-
double output Mix. For the first case, we use the information-
theoretic definition of the anonymity, based on average entropy
per packet, and find an optimal mixing strategy under a strict
latency constraint. For the second case, perfect anonymityis
considered, and maximal throughput strategies with perfect
anonymity are found under a strict latency constraint and an
average queue length constraint.

I. I NTRODUCTION

Secure communication has become increasingly important.
Privacy and anonymity considerations apply to all compo-
nents of a communication network, such as contents of data
packets, identities of source-destination nodes, and paths of
information flow in the network. While a data packet’s content
can be protected by encrypting the payload of the packet,
an eavesdropper can still detect the addresses of the source
and the destination bytraffic analysis. For example, observing
the header of the packet can still reveal the identities of
its corresponding source-destination pair.Onion Routing[1]
and Tor network [2] are well-known solutions that provide
protection against both eavesdropping and traffic analysis. The
basic idea is to form an overlay network of Tor nodes, and
relay packets through several Tor nodes instead of taking the
direct path between the source and the destination. To create
a private network, links between Tor nodes are encrypted
such that each Tor node only knows the node from which
it receives a packet and the node to which it forwards the
packet. Therefore, any node in the Tor network sees only two
hops (the previous and next nodes) but is not aware of the
whole path between the source and the destination, Therefore,
a compromised node cannot easily identify source-destination
pairs. But Tor cannot solve all anonymity problems. If an
eavesdropper can observe the traffic in and out of some nodes,
it can still correlate the incoming and outgoing packets of
relay nodes to identify the source and the destination or, at
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least, discover parts of the route between the source and the
destination. This kind of statistical analysis is known as timing
analysis since the eavesdropper only needs packet timings.For
example, in Figure 1, if the processing delay is small, thereis
a high correlation between output and input processes, and the
eavesdropper can easily identify the source of each outgoing
packet.

To provide protection against the timing analysis attack,
nodes in an anonymous network need to perform an additional
task, known as mixing, before transmitting packets on output
links. A node with mixing ability is called aMix. In this
solution, a Mix receives packets from multiple links, re-
encrypts them, and changes the timings of packets, by mixing
(reordering) packets at the output links, in such a way that
the eavesdropper cannot relate an outgoing packet to its
corresponding sender.

The original concept of Mix was introduced by Chaum
[3]. The Mix anonymity was improved by random delaying
[4] (Stop-and-go MIXes), and dummy packet transmission [5]
(ISDN-MIXes), and used for the various Internet applications
such as email [6] and WWW [7](Crowds). Other proposed
anonymity schemes are JAP [8], MorphMix [9], Mixmaster
[10], Mixminion [11], Buses [12], etc.

However, theoretical analysis of the performance of Chaum
mixing is very limited. The information-theoretic measure
of anonymity, based on Shannon’s equivocation [13], was
used in [14], [15] to evaluate the performance of a few
mixing strategies, under some attack scenarios, however, their
approach does not take into account the delay or traffic
statistics; whereas, modifying packet timings to obfuscate the
eavesdropper indeed increases the transmission latency. In
[16], [17], the authors consider the performance of so-called
generalized Mixes, e.g., a timed pool Mix, under some active
attack scenarios. In a timed pool Mix, the Mix collects input
messages that are placed in a pool during a round/cycle of the
Mix, and then flushes the messages out with some probability.
The flushing probability is characterized by a functionP (n)
representing the probability of the messages being sent in the
current round, given that the Mix containsn messages in the
pool. Again, this is a very specific type of Mix and it is not
clear if this is optimal. So, the question of interest is the
following: what is the maximum achievable anonymity under
a constraint on delay?

Characterizing the anonymity as a function of traffic load
and the delay constraint has been considered in [18]. The
authors in [18] have considered a Mix with two input links
and one output link, where arrivals on the input links are two
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Fig. 1. The double input-single output Mix. The capacity of each input link
is 1 packet/time slot and the capacity of the output link is2 packets/time slot.

poisson processes with equal rates, and they characterize upper
and lower bounds on the maximum achievable anonymity
under a strict delay constraint. The basic idea is that the Mix
waits for a certain amount of time, collects packets from two
sources, and sends a batch containing the received packets to
the output. The implicit assumption in [18] is that there is no
constraint on the capacity of the output link, i.e., the batch
can be transmitted instantaneously at the output, no matter
how many packets are contained in the batch.

The path between any source-destination pair in an anony-
mous network contains several nodes; each of which has,
possibly, several input links and several output links. At each
node, to perform routing, traffic generated by two or more
sources can be merged into one outgoing stream, or the
merged stream can be decomposed at several output links for
different destinations. To expose the main features of mixing
strategies, we focus on two fundamental cases: a double input-
single output Mix, Figure 1, and a double input-double output
Mix, Figure 2. Compared to [18], our model considers cases
with finite link capacities and we derive optimal solutions
for certain cases. The remainder of the paper is organized
as follows. In section II, the double input-single output Mix
is considered, and the optimal mixing strategy is found to
maximize the anonymity under a strict latency constraint.
Section III is devoted to the double input-double output Mix,
where the optimal mixing strategy is found under a strict
latency constraint and an average queue length constraint.
Finally, we end the paper with some concluding remarks.

II. D OUBLE INPUT-SINGLE OUTPUT M IX

Consider Figure 1 where there are two incoming flows,
red and blue, and one outgoing link. The capacity of each
input link is 1 packet/time-slot, and the capacity of the output
link is 2 packets/time-slot. This model ensures that packets do
not have to be dropped due to lack of capacity, even when
the input links bring in data at maximum rate. Red and blue
packets arrive according to i.i.d. Bernoulli processes with rates
λR andλB respectively. There is an eavesdropper observing
the incoming and outgoing packets. Assume the eavesdropper
knows the source of each incoming packet, i.e., its color. This
might be made feasible by traffic analysis if the Mix is the
first hop of the route or, otherwise, by timing analysis of the

Mix

Fig. 2. The double input-double output Mix. The capacity of each link is1
packet/time slot.

previous hop. Given the source of each incoming packet, the
eavesdropper aims to identify the source of each outgoing
packet, i.e., assign colors, red and blue, to the outgoing stream
of packets.

First, consider the case where we do not allow for any
delay, i.e., the Mix must send packets out in the same slot
in which they arrived. Note that this is possible, without any
packet drop, since at most two packets arrive in each slot,
and the capacity of the output link is2 packets/slot. Then, the
only way to confuse the eavesdropper is to send out a random
permutation of received packets in each slot.

By allowing a strict delayT ≥ 1 for each packet, the Mix
can do better; it can select and permute packets from the
current slot and also from the previous slots, up toT slots
before.

Next, we introduce a few notations and then define the
mixing strategy under a strict delay constraintT per packet.
The definitions are quite general and could be used to describe
the mixing strategy and its anonymity for any multiple input-
single output Mix, under a delay constraintT .

Let the random variableIk denote arrivals ink-th slot.
Therefore, for the double input-single output Mix,Ik can be
∅, R, B, or RB, where they respectively denote the cases of
no arrivals, red arrival but no blue arrival, blue arrival but no
red arrival, and both red and blue arrivals. Similarly definea
random variableOk for the output at slotk. For the double
input-single output Mix,Ok ∈ {∅, R,B,RR,BB,RB,BR}
(note that ordering ofRB orBR at the output matters). There
is an eavesdropper (Eve) who knows whether there is a packet
at the output or not, i.e., at each timek, Eve knows a random
variableGk := |Ok|. For any stochastic process{Xk}k≥1,
defineX(N) := X1 · · ·XN .

Since we work with a discrete-time system, we have to
specify the order in which different events occur: at each
time slotk, first packet arrivals occur at the beginning of the
time slot, and then departures occur. At the end of time slot
k, let Qk(j) be a queue containing packets that have been
in the system forj time slots,0 ≤ j ≤ T − 1 (j = 0
corresponds to packets arrived in the current slot but have not
transmitted). In the case of double input-single output Mix,
obviously,Qk(j) ∈ {∅, R,B,RB}, for 0 ≤ j ≤ T − 1.
Let Qk := [Qk(0), Qk(1), · · ·Qk(T − 1)] be the collection
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of such queues which represent existing packets in the Mix at
the end of slotk. A mixing strategy consists of aselection
strategy followed by apermutationstrategy. At each time
k, the Mix randomly selects packets fromQk−1, and also
from the newly arrived packetsIk, and then send a random
permutation of the selected packets to the output. LetDk(j+1)
denote the packets selected fromQk−1(j) by the Mix at slot
k, for 0 ≤ j ≤ T − 11. Then, the queue dynamics can be
described as

Qk(j + 1) = Qk−1(j)\Dk(j + 1), (1)

and
Qk(0) = Ik\Dk(0) (2)

whereDk(0) denoted the packets selected from new arrivals
Ik and “\” is the set difference operator. Note thatQk(T ) =
∅ because for any mixing strategy, under delay constraint
T , packets that have been in the system forT time slots
have to be transmitted, i.e.,Dk(T ) = Qk−1(T − 1). Let
Dk := [Dk(0), · · ·Dk(T )]. Hence,Dk = Υ(Qk−1, Ik), for
some random selection strategyΥ, and Ok = Π(Dk) for
some permutation strategyΠ, thusOk = ψ(Qk−1, Ik) where
ψ = Π ◦ Υ is the mixing strategy. LetΨT denote the set
of all possible mixing strategies that satisfy the strict delay
constraintT .

Next, we define anonymity of a mixing strategyψ ∈ ΨT ,
based on the average conditional entropy of the output se-
quence given the input sequence and the sequenceG, as
follows.

Definition 1. The anonymityAψ of a mixing strategyψ is
defined as

Aψ = lim
N→∞

1

N(λR + λB)
H(O(N)|I(N), G(N)). (3)

Note that in the above definition, the numerator is the
entropy of the output sequence of lengthN given that Eve:
(i) observes the input sequence of lengthN , and (ii) detects
packet transmissions at the output. The denominator is the
average number of red and blue arrivals inN slots. So, as
N → ∞, anonymity is the amount of uncertainty in each
outgoing packet, bits/packet, observed by Eve.

Remark 1. By using the Fano’s inequality, the anonymity
provides a lower bound for the probability of error in detection
incurred by the eavesdropper [19].

Without loss of generality, we can assume that the optimal
mixing strategy does not change the ordering of packets from
the same flow. This can be justified as follows. For any
input sequence of lengthN , consider the set of possible
output sequences of lengthN , under the mixing strategy
ψ. If, for example, the red packets do not appear at the
output in the same order as their arrival order, we can simply
reorder them according to their arrival order, without changing
the conditional probability of the appearance of the output
sequence given the input sequence. Note that this does not

1At the moment that we move from slotk− 1 to slotk, the delay of each
remaining packet increases by1, hence we have used the notationDk(j+1)
for packets selected from queueQk−1(j) at timek.

reduce the anonymity and also will not violate the delay
constraint (Eve is only interested in detecting the colors of
the packets at the output, not their arrival times.). This also
means that the mixing strategy is compatible with network
protocols such as TCP, as it does change the sequence numbers
of packets from the same flow.

A. Structure of Optimal Mix Strategy

We wish to find the optimal strategyψ∗ ∈ ΨT that maxi-
mizes the anonymity. For mixing under a strict delayT , the
output packets at timek are selected from the packets received
in the current slot or the pastT time slots that have not
been transmitted before; however, in general, the rule, which
determines which packet has to be transmitted, itself could
possibly depend on the entire history up to timek. In other
words, if we letFk := {I(k−1), O(k−1)} denote the history up
to the beginning of time slotk,Ok = ψk,Fk

(

Qk, Ik). Here, we
assume that the Mix strategy and the Eve detection strategy are
both causal and online meaning that transmission and detection
decisions forOk, has to be made at timek, and only depend
on the history up to timek. Then, we show that the optimal
mixing strategy, in fact, only needs a finite memoryT and
does not need the entire history, i.e.,Ok = ψQk−1

(

Qk−1, Ik
)

.
By the chain rule [20], the conditional entropy in (3) can

be written as

H(O(N)|I(N), G(N))

=
N
∑

k=1

H(Ok|I
(N), G(N), O(k−1)) (4)

=

N
∑

k=1

H(Ok|I
(k), G(k), O(k−1)) (5)

=

N
∑

k=1

H(Ok|I
(k), Gk, O

(k−1)) (6)

=

N
∑

k=1

H(Ok|I
(k), Gk, O

(k−1), Qk−1) (7)

≤
N
∑

k=1

H(Ok|Gk, Qk−1, Ik), (8)

where (5) is because the Mix strategy and the Eve detection
strategy are both causal and online, (6) follows from the fact
that givenO(k−1), G(k−1) does not contain any information,
(7) holds because givenI(k−1) andO(k−1), Qk−1 is known,
and finally (8) follows from the fact that conditioning reduces
the entropy.

Hence, for any mixing strategyψ ∈ ΨT ,

Aψ ≤ lim
N→∞

1

N(λR + λ)

N
∑

k=1

H(Ok|Gk, Qk−1, Ik). (9)

Next, consider maximizing the Right-Hand-Side (RHS) of (9).
We can defineQk to be state of a Markov chainQ at the
end of timek (at the beginning of timek + 1). Note that,
for the double input-single output Mix, under strict delayT ,
Qk ∈ {∅, R,B,RB}

T . Hence, maximizing RHS of (9) can
be interpreted as an average reward maximization problem
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over an appropriately definedMarkov Decision Process(MDP)
Qk with finite number of states. More accurately, maximizing
RHS of (9) can be written as

max
ψ∈ΨT

lim
N→∞

1

N

N
∑

k=1

Eqk−1
[c(qk−1, ψk)], (10)

where the reward function is given by

c(qk−1, ψk) = H(Ok|qk−1, Ik, Gk)

= Eik [H(Ok|qk−1, ik, Gk)], (11)

whereqk andik are realizations of random variablesQk andIk
respectively2. Hence, we have a finite state MDP with bounded
rewards. Consider the class of stationary (and Markov) policies
ST ⊂ ΨT , where, at each timek, decision is made only based
onQk−1, i.e.,Ok = ψQk−1

(

Qk−1, Ik
)

. A sufficient condition
for existence of an optimal stationary policy for (10) is given
by the following lemma [21], [25].

Lemma 1. Suppose there exists a constantw and a bounded
functionφ, unique up to an additive constant, satisfying the
following optimality equation

w + φ(q) = max
u
{c(q, u) + E[φ(Q1)|Q0 = q, ψ1 = u]} , (12)

thenw is the maximal average-reward and the optimal sta-
tionary policyψ∗ is the one that chooses the optimizingu(.).

Next, we show that (12) always has a solution. Letτ :=
min{k ≥ 1 : Qk = ∅} where byQk = ∅ ≡ {∅}T we mean
a state where there are no packets in the Mix waiting for
transmission. Next, consider the class of stationary policies
ST ⊂ ΨT , i.e., Ok = ψQk−1

(

Qk−1, Ik
)

. Then we have, for
anyψ ∈ ST , and for any initial stateq,

E
ψ [τ |Q0 = q] ≤

T

(1− λR)T (1− λB)T
<∞. (13)

This is because starting from any initial state, after a null
input sequence of lengthT , i.e., no arrivals forT time slots,
the Markov chain has to return to∅ state. Such a sequence
occurs with probability(1−λR)T (1−λB)T and the expected
time is bounded as in (13) for any stationary Markov policy
as long asλR andλB are strictly less than one. The following
lemma is a corollary of Theorem (6.5) of [25] (page 164).

Lemma 2. AssumeEψ[τ |Q0 = q] ≤ B < ∞ for all ψ ∈ ST
and allq, then there exists aw andφ(.) satisfying DP equation
(12).

Hence, it follows from Lemmas 2 and 1 that the maximizer
of RHS of (9) is a stationary policy. Moreover, observe that
for any stationary policy, the inequality in (8) and accordingly
in (9) can be replaced by equality, and therefore, the stationary
policy ψ∗ given by (12) always exists and actually maximizes
the anonymity and the maximum achievable anonymity, by
definition, is given by

Aψ
∗

=
w

λR + λB
.

2Throughout the paper, we use a capital letter for a random variable and
the corresponding lower-case letter to denote a realization of that random
variable.

Note that the above argument is still valid for any multiple
input-single output Mix and any link capacities as long as the
output link capacity is greater than or equal to the sum of
input-links’ capacities to ensure that there is no need to drop
packets.

In general, the DP equation (12) can be written in form of
the following LP

max w (14)

w + φ(q) ≤ c(q, u) + E[φ(Q1)|Q0 = q, u1 = u] ;

∀q ∈ {∅, R,B,RB}T

which can be solved numerically. However, the number of
states grows exponentially inT which makes the character-
ization of strategies and computation of the optimal strategy
complicated especially for largeT . For smallT , we might
be able to find the optimal solution explicitly. To illustrate
the structure of the optimal solution, we present the explicit
solutions for T = 0 and T = 1 in the following two
subsections.

B. The Optimal Mix Strategy forT = 0

The case ofT = 0 is trivial since, in this case, for stationary
policies, the output sequence is i.i.d. as well, and therefore

RHS of (9) =
1

N

N
∑

k=1

H(Ok|Ik, Gk)

= H(O1|I1, G1)

= λRλBH(O1|I1 = RB,G1 = 2).

Therefore, to maximize the anonymity, the Mix must send a
random permutation of the received packets, in the case of both
read and blue arrival, with equal probability to getH(O1|I1 =
RB,G1 = 2) = 1. Correspondingly, the maximum anonymity
is given by

Aψ
∗

=
λRλB
λR + λB

.

In the rest of this section, we consider the more interesting
case ofT = 1, where each packet has to be sent out in the
current slot or in the next slot.

C. The Optimal Mix Strategy forT = 1

As we proved in section II-A, we only need to consider
the class of stationary policies that maximize the RHS of
(9). Therefore, forT = 1, the optimal mixing strategy is
the solution to the following average entropy maximization
problem

max lim
N→∞

1

N

N
∑

k=1

Eqk−1
[H(Ok|Ik, qk−1, Gk)],

where nowqk−1 ∈ {∅, R,B,RB}. Recall that the random
variableQk−1 (=Qk−1(0) here) denotes what has been left in
the queue, at the end of time slotk − 1, for transmission in
the time slotk, where we have defined the initial condition
as Q0 = ∅, and qk−1 is the realization ofQk−1. Roughly
speaking, the actionψk is to randomly select some packets
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from Ik and qk−1, and send the permutation of the selected
packets to the output. Letw denote the maximum value of
the above average entropy maximization problem, then, by
definition,Aψ

∗

= w
λR+λB

, and the optimal mixing strategyψ∗

is the one that chooses the corresponding optimal policy for
the average entropy maximization problem. In order to solve
the problem, next we identify the possible actions for different
states which will allow us to define the reward function in more
detail and provide an explicit solution.

1) Set of possible actions and corresponding rewards for
different states:There is a set of possible actions for each
state depending on different arrival types. In the following,
we identify the set of actions and their corresponding rewards
for each case.

(a) AssumeQk−1 = ∅, then

(i) If Ik = ∅: In this case, obviously, there will be no
transmission at the output link,Gk = 0, and the queue
will remain empty as well, i.e.,Ok = ∅ andQk = ∅.
The corresponding entropy isH(Ok|Ik = ∅, Qk−1 =
∅, Gk) = 0.

(ii) If Ik = R: Two options are possible; the Mix can
queue the arrived packet (Gk = 0) with probability
αk, or send the packet in the current slot (Gk = 1)
with probability 1 − αk. No matter what the Mix
does, the entropy in this slotH(Ok|Ik = R,Qk−1 =
∅, Gk) = 0. Correspondingly, the queue is updated as
Qk = R, with probability of αk, or Qk = ∅, with
probability of 1− αk.

(iii) If Ik = B: This case is similar to the previous case
except that we useβk instead ofαk. Therefore,Qk =
B, with probabilityβk, or Qk = ∅, with probability
1− βk, andH(Ok|Ik = B,Qk−1 = ∅, Gk) = 0.

(iv) If Ik = RB: The Mix has four options; it can queue
both packets (with probability1− sk), send both out
(with probability sk(1 − yk)), keep onlyR and send
B out (with probabilityskyk(1 − pk)), or keep only
B and sendR out (with probability skykpk). Note
that the parameterssk, yk, and pk have been used
to characterize the probabilities of different options.
Intuitively, sk is the probability that a transmission at
the output link happens at all,yk is the probability
of sending only one packet out given a transmission
must happen, andpk is the probability of sendingR
out given that only one packet is transmitted at the
output. Accordingly,

H(Ok|Ik = RB,Qk−1 = ∅, Gk)

= sk (ykH(pk) + 1− yk) ,

whereH is the binary entropy function given by

H(p) = −p log(p)− (1− p) log(1 − p)

for 0 < p < 1.

(b) AssumeQk−1 = R, then

(i) If Ik = ∅: The Mix has to send the content of the
queue to the output, thereforeOk = R, and obviously,
H(Ok|Ik = ∅, Qk−1 = R,Gk) = 0 andQk = ∅.

(ii) If Ik = R: The Mix can queue the recentR, with
probability γk, and sendQk−1 to the output, or can
send bothQk−1 and the recent arrival to the output,
with probability1−γk. Therefore,Qk = R (Ok = R)
with probability γk, or Qk = ∅ (Ok = RR) with
probability1−γk. The corresponding entropy will be
zero, i.e.,H(Ok|Ik = R,Qk−1 = R,Gk) = 0.

(iii) If Ik = B: Again the Mix has two options; it
can send a random permutation ofR and B to
the output, i.e.,Qk = ∅, with probability ak, or
it can queue theB and send only theR out, i.e.,
Qk = B, with probability 1 − ak. The entropy is
H(Ok|Ik = B,Qk−1 = R,Gk) = ak.

(iv) If Ik = RB: The Mix has three options; it can queue
both arrivals, i.e.,Qk = RB, with probability1− tk,
keep only the red arrival in the queue, i.e.,Qk = R,
with probability tk(1 − dk), or keep only the blue
arrival in the queue, i.e.,Qk = B, with probability
tkdk. Correspondingly, in this case,

P (Ok = ok|Ik = RB,Qk−1 = R,Gk = 2)

=







dk ; ok = RR
(1− dk)/2 ; ok = RB
(1− dk)/2 ; ok = BR.

(15)

and

H(Ok|Ik = RB,Qk−1 = R,Gk) = tk (H(dk) + 1− dk) .

(c) AssumeQk−1 = B, then this case is similar to the previ-
ous case and the details are omitted for brevity.

(i) If Ik = ∅: Obviously, H(Ok|Ik = ∅, Qk−1 =
B,Gk) = 0, andQk = ∅.

(ii) If Ik = B: H(Ok|Ik = B,Qk−1 = B,Gk) = 0.
Options areQk = B, with probabilityδk, orQk = ∅,
with probability1− δk.

(iii) If Ik = R: H(Ok|Ik = R,Qk−1 = B,Gk) = bk.
Options areQk = R, with probability1−bk, orQk =
∅, with probability bk.

(iv) If Ik = RB: The Mix can keep both arrivals in the
queue, i.e.,Qk = RB, with probability1 − zk, keep
only the red arrival in the queue, i.e.,Qk = R, with
probability zkrk, or keep only the blue arrival in the
queue, i.e.,Qk = B, with probabilityzk(1− rk). The
entropy is

H(Ok|Ik = RB,Qk−1 = B,Gk) = zk (H(rk) + 1− rk) .

(d) AssumeQk−1 = RB, then the Mix has to send the
contents of the queue to the output, i.e.,Ok = RB orBR
with equal probabilities, and queue all the recent arrivals,
i.e., Qk = Ik. The entropy is simplyH(Ok|Ik, Qk−1 =
RB,Gk) = 1.

Next, we calculate the reward for each state. Recall that the
reward function is

C(xk, ψk) = H(Ok|Ik, qk−1, Gk) = Eik [H(Ok|ik, qk−1, Gk)] ,

whereik denotes a realization ofIk. Therefore, averaging over
4 possible arrivals in each state, the reward function and queue
updates, for each state are the following.
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(a) Qk−1 = ∅:
The reward function is given by

C(∅, ψk) = λRλBsk (ykH(pk) + 1− yk) ,

and the queue is updated as

P (Qk = q|Qk−1 = ∅, ψk) =














λR(1− λB)αk + λRλBskyk(1− pk) ; q = R
λB(1− λR)βk + λRλBskykpk ; q = B
λRλB(1− sk) ; q = RB
−−− ; q = ∅

where we used the notation“−−− ” for the probability
of having an empty queue, since we will not need the
explicit expression for this probability, although, it can
be, obviously, derived from the other three probabilities.
Note thatψk is specified by5 parameters0 ≤ αk, βk, yk,
sk, pk ≤ 1.

(b) Qk−1 = R:
The reward function is given by

C(R,ψk) = λB(1−λR)ak+λRλBtk (H(dk) + 1− dk) ,

and the queue is updated as

P (Qk = q|Qk−1 = R,ψk) =














λR(1− λB)γk + λRλBtk(1 − dk) ; q = R
λB(1 − λR)(1− ak) + λRλBtkdk ; q = B
λRλB(1 − tk) ; q = RB
−−− ; q = ∅

Note that, in this state,ψk is specified by4 parameters
0 ≤ ak, tk, γk, dk ≤ 1.

(c) Qk−1 = B:
The reward function is given by

C(B,ψk) = λR(1−λB)bk+λRλBzk (H(rk) + 1− rk) ,

and the queue is updated as

P (Qk = q|Qk−1 = B,ψk) =














λR(1− λB)(1− bk) + λRλBrkzk ; q = R
λB(1 − λR)δk + λRλBzk(1− rk) ; q = B
λRλB(1 − zk) ; q = RB
−−− ; q = ∅

Note that hereψk is specified by4 parameters0 ≤ bk, zk,
δk, rk ≤ 1.

(d) Qk−1 = RB:
The reward function is given by

C(RB,ψk) = 1,

and the queue is updated as

P (Qk = q|Qk−1 = RB,ψk) =














λR(1− λB) ; q = R
λB(1− λR) ; q = B
λRλB ; q = RB
−−− ; q = ∅

Note that, here, there is no degrees of freedom forψk (The
Mix has to send outQk−1).

2) The Optimal Stationary Mix strategy:Having formally
defined the reward function and the dynamics of the system in
subsection II-C1, we use Lemma 1 to solve the average reward
maximization problem. It turns out that the optimal strategy is
specified by only three parametersp, r, andd, and all the other
parameters must be one. The following proposition states one
of our main results.

Proposition 1. For the double input-single output Mix, and
T = 1, the optimal Mix strategy is the following. At each time
k, givenQk−1 and Ik, if

1) Qk−1 = ∅

• Ik = ∅, R, B: Qk = Ik, Ok = ∅.
• Ik = RB: sendR out with probabilityp∗ or B with

probability 1− p∗, Qk = Ik\Ok.

2) Qk−1 = R

• Ik = ∅, R: Qk = Ik, Ok = Qk−1.
• Ik = B: transmit a random permutation ofR and
B, Qk = ∅.

• Ik = RB: transmitRR with probability d∗ (Qk =
B), or transmit a random permutation ofR andB
with probability 1− d∗ (Qk = R).

3) Qk−1 = B

• Ik = ∅, B: Qk = Ik, Ok = Qk−1.
• Ik = R: transmit a random permutation ofR and
B, Qk = ∅.

• Ik = RB: transmitBB with probability r∗ (Qk =
R), or transmit a random permutation ofR andB
with probability 1− r∗ (Qk = B).

where probabilitiesp∗, d∗, andr∗ depend on arrival ratesλR
andλB .

In the special caseλR = λB, p∗ = 1
2 , d∗ = 1

3 , andr∗ = 1
3 .

Proof of Proposition 1: Recall the optimality equation
(12):

w + φ(q) = max
u
{C(q, u) + E[φ(Q1)|Q0 = q, ψ1 = u]} .

Sinceφ is unique up to an additive constant, without loss of
generality, assumeφ(∅) = 0. Then, forq = ∅, the optimality
equation can be written as

w = max
s,p,y,α,β

{λRλBs (yH(p) + 1− y)

+[λR(1− λB)α+ λRλBsy(1− p)]φ(R)

+[λB(1 − λR)β + λRλBsyp]φ(B)

+ [λRλB(1− s)]φ(RB)} .

Obviously,α = 1 andβ = 1 maximize the right hand side if
φ(R) andφ(B) are nonnegative. We will later see thatφ(R)
and φ(B) are indeed nonnegative. Therefore, the right hand
side of the optimality equation can be written as

λRλBs [y (H(p)− 1 + (1− p)φ(R) + pφ(B)) + 1− φ(RB)]

+λR(1− λB)φ(R) + λB(1− λR)φ(B) + λRλBφ(RB).

First, consider the termH(p)−1+(1−p)φ(R)+pφ(B). This
term is maximized by choosing

p∗ =
1

1 + 2φ(R)−φ(B)
. (16)
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We will later show that

H(p∗)− 1 + (1 − p∗)φ(R) + p∗φ(B) ≥ 0, (17)

and thereforey∗ = 1. Furthermore, fory∗ = 1, we will see
that the term inside the brackets is always nonnegative, i.e.,

H(p∗) + (1− p∗)φ(R) + p∗φ(B) − φ(RB) ≥ 0, (18)

and therefores∗ = 1. Finally, w is given by

w = λRλBH(p
∗) + λR(1− λBp

∗)φ(R)

+ λB(1 − λR(1 − p
∗))φ(B). (19)

Next, consider the optimality equation forq = R. It can be
written as

w + φ(R) = max
γ,d,t,a

{λB(1− λR)a+ λRλBt (H(d) + 1− d)

+[λR(1− λB)γ + λRλB(1− d)]φ(R)

+[λB(1− λR)(1− a) + λRλBtd]φ(B)

+λRλR(1− t)φ(RB)}.

Similar to the argument forq = ∅, γ∗ = 1, if φ(R) > 0,
and a∗ = 1 if φ(B) < 1. Furthermore, taking the derivative
respect tod, setting it to zero, and solving it ford∗ yields

d∗ =
1

1 + 21+φ(R)−φ(B)
. (20)

Finally, t∗ = 1 if

H(d∗)+1−d∗+(1−d∗)φ(R)+d∗φ(B)−φ(RB) ≥ 0, (21)

and the optimality condition is simplified to

w + φ(R) = λB(1− λR) + λRλB (H(d∗) + 1− d∗)

+[λR(1− λB) + λRλB(1− d
∗)]φ(R)

+λRλBd
∗φ(B). (22)

Next, consider the optimality equation forq = B

w + φ(B) = max
δ,r,z,b

{λR(1− λB)b + λRλBz (H(r) + 1− r)

+[λB(1− λR)δ + λRλBz(1− r)]φ(B)

+[λR(1 − λB)(1 − b) + λRλBzr]φ(R)

+λRλR(1 − z)φ(RB)}.

In parallel with the argument forq = R, δ∗ = 1 if φ(B) ≥ 0,
andb∗ = 1 if φ(R) ≤ 1. Moreover,z∗ = 1 if

H(r∗)+1−r∗+(1−r∗)φ(B)+r∗φ(R)−φ(RB) ≥ 0, (23)

where
r∗ =

1

1 + 21+φ(B)−φ(R)
. (24)

The optimality condition is simplified to

w + φ(B) = λR(1 − λB) + λRλB (H(r∗) + 1− r∗)

+[λB(1− λR) + λRλB(1− r
∗)]φ(B)

+λRλBr
∗φ(R). (25)

Finally, the optimality equation forq = RB is given by

w + φ(RB) = 1 + λR(1− λB)φ(R)

+λB(1− λR)φ(B) + λRλBφ(RB)(26)
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Fig. 3. Anonymity andφ(R) for the case ofλR = λB = λ.

Therefore, we need to solve equations (19), (22), and (25)
to find w, φ(R), andφ(B). Then, (26) can be used to find
φ(RB). Eventually, what remains to be shown is that0 ≤
φ(R), φ(B) ≤ 1, and, in addition,φ(R), φ(B), andφ(RB)
satisfy inequalities (17), (18), (21), and (23).

First, consider the special case ofλR = λB = λ. By
symmetry, φ(R) = φ(B) which yields p∗ = 1/2 and
d∗ = r∗ = 1/3. Then, by solving equations (19) and (22),
we have,

φ(R) = φ(B) =
λ2(log 3− 2) + λ

−λ2 + λ+ 1
,

and

w =
λ2

−λ2 + λ+ 1

[

−λ2(log 3− 1) + 2(log 3− 2)λ+ 3
]

.

Then, the anonymity isAψ
∗

= w/2λ, and it is easy to check
that the solutions satisfy all the inequalities. Figures 3(a) and
3(b) show the anonymityAφ

∗

andφ(R) as functions ofλ.
Next, consider the general case with, probably, unequal

arrival rates. We prove that the solutions indeed exist and they
satisfy the required conditions. Using (19) to replacew in (22)
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and (25) yields

φ(R) = λB [1− φ(B)(1 − λR)] + λRλBg(ξ), (27)

φ(B) = λR[1− φ(R)(1 − λB)] + λRλBf(ξ), (28)

where,

g(ξ) = (d∗ − p∗)(−ξ) +H(d∗)−H(p∗)− d∗,

f(ξ) = (r∗ + p∗)ξ +H(r∗)−H(p∗)− r∗ − ξ,

and,
ξ = φ(R)− φ(B).

Therefore, the optimal probabilities can be expressed as
functions ofξ by

p∗ =
1

1 + 2ξ
,

d∗ =
1

1 + 21+ξ
,

r∗ =
1

1 + 21−ξ
.

Lemma 3. The functiong(ξ) is an increasing function ofξ
and f(ξ) is a decreasing function ofξ (see Appendix for the
proof).

For any pair(φ(R), φ(B)) chosen from[0, 1] × [0, 1], we
have−1 ≤ ξ ≤ 1, and therefore, by Lemma 3, functionsf
andg can be bounded from below and above by

g(−1) ≤ g(ξ) ≤ g(1),

and
f(1) ≤ f(ξ) ≤ f(−1).

But it is easy to check that

g(1) = f(−1) = log(5/3)− 1, g(−1) = f(1) = 1− log 3,

and therefore,
−1 < f(ξ), g(ξ) < 0.

Consequently, the right-hand sides of (27) and (28) form a
continuous mapping from[0, 1] × [0, 1] to [0, 1] × [0, 1], and
therefore, by the Brouwer fixed point theorem ([22], p. 72),
the system of nonlinear equations, (27), (28), has a solution
(φ(R), φ(B)) ∈ [0, 1]× [0, 1].

Next, we show that the solutions indeed satisfy the inequal-
ities. First, we prove that (17) holds. Define

ψ1(ξ) = H(p∗) + (1− p∗)φ(R) + p∗φ(B)

= H(p∗)− p∗ξ + φ(R).

First, consider the case that−1 ≤ ξ ≤ 0, then

d

dξ
(H(p∗)− p∗ξ) = p∗′ log

1− p∗

p∗
− p∗ − p∗′ξ

= −p∗ ≤ 0.

Hence,
ψ1(ξ) ≥ ψ1(0) = 1 + φ(R) ≥ 1.

For the case that0 ≤ ξ ≤ 1, rewriteψ1(ξ) as the following

ψ1(ξ) = H(p
∗) + (1− p∗)ξ + φ(B).

Then,

d

dξ
(H(p∗) + (1− p∗)ξ) = 1− p∗ ≥ 0,

and hence,

ψ1(ξ) ≥ ψ1(0) = 1 + φ(B) ≥ 1.

Therefore, for−1 ≤ ξ ≤ 1, ψ1(ξ) ≥ 1, and (17) holds.
Note that from (26), we have

φ(RB) =
1− λRλBψ1(ξ)

1− λRλB
, (29)

and since (17) holds, we have

φ(RB) ≤ 1,

and consequently (18) will be satisfied as well.
To show (21), note thatφ(R) + 1 − φ(RB) ≥ 0, and

therefore, it suffices to prove that

ψ2(ξ) = H(d∗)− d∗ − d∗φ(R) + d∗φ(B)

= H(d∗)− d∗ξ − d∗

is nonnegative. Butψ2(ξ) is a decreasing function since

d

dξ
ψ2 = d∗′ log

1− d

d
− d∗′ξ − d∗ − d∗′

= d∗′(1 + ξ)− d∗′ξ − d∗ − d∗′

= −d∗ ≤ 0

So ψ2(ξ) ≥ ψ2(1) = H(1/5) − 2/5 = log 5 − 2 ≥ 0, and
consequently (21) follows. (23) is also proved by a similar
argument. Define a functionψ3(ξ) as

ψ3(ξ) = H(r∗)− r∗ − r∗φ(B) + r∗φ(R)

= H(r∗) + r∗ξ − r∗.

Then,ψ3(ξ) is an increasing function since

d

dξ
ψ3 = r∗ ≥ 0.

Thus,

ψ3(ξ) ≥ ψ3(−1)

= H(1/5)− 2/5

= log 5− 2 ≥ 0,

and therefore (23) follows. This concludes the proof of Propo-
sition 1.

3) Numerical results:Equations (19), (22), and (25) form
a system of nonlinear equations which can be solved numeri-
cally, for different values ofλR andλB , by using the following
algorithm.

Note that in the step 5 of the algorithm, we solve a linear
system of equations (p∗, d∗, and r∗ are replaced with their
numerical values). Figure 4 shows the maximum anonymity,
found by running the algorithm, for different arrival rates. The
probabilitiesp∗, d∗, andr∗ of the optimal mixing strategy have
been evaluated in Figure 5 for different arrival ratesλR and
λB.

Remark 2. The stationary policy does not exist forλR =
λB = 1 since asλR → 1 and λB → 1, φ(RB) → −∞
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Algorithm 1
1: p∗0 ← 1/2, d∗0 ← 1/3, r∗0 ← 1/3
2: i← 0
3: repeat
4: i← (i+ 1)
5: w, φ(R), φ(B) ⇐ solve (19), (22), and (25)
6: p∗i , d

∗
i , r

∗
i ⇐ calculate (16), (20), and (24)

7: until |p∗i −p
∗
i−1| ≤ ǫ and|d∗i −d

∗
i−1| ≤ ǫ and|r∗i −r

∗
i−1| ≤

ǫ

0
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Fig. 4. Anonymity for different values ofλR andλB .

(see (29)). This makes sense since, in this case, if we start
with initial conditionQ0 = ∅ and use the strategy specified
in Proposition 1, we get an anonymity ofAψ

∗

= log (3)/2;
whereas if the initial condition isQ0 = RB, the only possible
strategy will be to transmit the contents of the queue, and
queue the arrivedRB in each time slot. This yields an
anonymity of1/2 bit/packet. Therefore, the optimal strategy
depends on the initial condition forλR = λB = 1.

III. D OUBLE INPUT-DOUBLE OUTPUT M IX

Figure 2 shows the double input-double output Mix. The
capacity of each link is1 packet/time slot. Compared to the
Mix with one output link, i.e., Figure 1, the flows of outgoing
packets are separate.

At this point, we would like to clarify the main difference
between Sections II and III of the paper. The focus of both
sections is on flow-level anonymity. However, in the double
input-single output Mix, section II, every packet can be
analyzed to see if it belongs to a particular flow. In the double
input-double output Mix, even if one packet is identified as
belonging to a flow, then it compromises the entire flow at
that node. Hence, in this case, the eavesdropper does not need
to detect the sender for each outgoing packet; instead, it aims
to find the corresponding source of each flow, by observing
a sequence of outgoing packets of sufficiently long duration.
Let dR ∈ {1, 2} denote the destination of the red source.
Formally, we define the anonymityAψ of a Mix strategyψ
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Fig. 5. Probabilitiesp∗, d∗, andr∗ for different arrival ratesλR andλB .

for the double input-double output Mix to be

Aψ = lim
N→∞

H
(

dR|I
(N)
R , I

(N)
B , G

(N)
1 , G

(N)
2

)

, (30)

where similar to Section II,I(N)
R and I

(N)
B are the se-

quences of red and blue arrivals of lengthN , andG(N)
i =

(Gi(1), Gi(2), ..., Gi(N)), i = 1, 2, whereGi(t) ∈ {0, 1}
indicates whether there is a packet at the outputi in time
slot t. Without loss of generality, assume thatλR > λB
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(the singular case ofλR = λB will be discussed later).
Then, by calculating the long-run average rates of outgoing
flows, the eavesdropper can identify the corresponding source-
destination pairs. Therefore, it is not possible to get any
anonymity without dropping some packets from the red flow.
Hence, the maximum achievable throughput for each flow
cannot be more thanmin{λR, λB}(= λB), and, at least, the
packets of the flow with higher rate, which is the red flow
here, must be dropped at an average rate ofλR − λB.

We now present our model for a Mix with two queues
for red and blue arrivals. LetAR[0, t] and AB [0, t] be the
number of arrivals for the red and blue arrivals in[0, t]. Also
letD1[0, t] andD2[0, t] denote the number of departures from
the output links1 and 2 by the end of time slott. Then, to
assure any nonzero anonymity, i.e, we need

Di[0, t] ≤ min{AR[0, t], AB[0, t]}; ∀t ≥ 1; for i = 1, 2
(31)

This is clear, because, for example, if there exists a timet1
such thatAR[0, t1] ≥ D1[0, t1] > AB[0, t1], then obviously
the red source is connected to the output1 and the anonymity
is zero.

A. Mix under a strict delay constraintT

Suppose that each arrival has to be transmitted withinT
time slots. In this case, in addition to red packets, blue packets
have to be dropped as well. This is because it might happen
that there is a blue arrival but no red packets for a time
duration of T , in which case transmitting the blue packet
will immediately reveals the corresponding destination ofthe
blue source. Hence, the throughput of each flow will be less
λB . Recall the queue model of the Mix described earlier and
consider the following strategy.

Mix strategy under strict delayT : For each queue, transmit
thehead-of-the-line(HOL) packet along with the HOL packet
of the other queue simultaneously at the corresponding output
links. If the HOL packet has been in the queue for more than
T time slots and there is no arrivals in the other queue, drop
the HOL packet.

Proposition 2. The above strategy is optimal in the sense that
it yields perfect anonymity with maximum possible throughput.

Perfect anonymity, means thatAψ = 1, i.e., by observing
the output sequence, the eavesdropper cannot obtain any
information and each outgoing flow is equally likely to belong
to one of sources.

Proof: Noting that any strategy with non-zero anonymity
must satisfy (31), it is easy to observe that packets that
are dropped under our strategy will be dropped under any
strategy that satisfy (31). Hence, our strategy has the maximum
throughput. Clearly our strategy has also perfect anonymity
becauseG1(t) = G2(t) at all times t. Also note that in
our strategy, packets will be immediately transmitted once
a different color packet appears in the other queue. This
is the earliest time that a packet can be transmitted under
(31). Hence, the average delay of those packets transmitted
successfully is also minimized under our strategy.

Next, consider the case that there is no strict delay con-
straint. In this case, one does not know how to measure the
average delay because any Mix with non-zero anonymity has
to drop some of the packets and the delay of the dropped
packets is infinity. So, instead, we use the average queue size
as the QoS metric.

B. Mix with an average queue length constraint

In this case, instead of a per-packet latency constraint, we
consider the average queue size as the QoS metric. Similar
to the previous case, we consider strategies that achieve both
maximum throughput and perfect anonymity. Among all such
strategies, we will find an optimal strategy that minimizes the
mean queue length.

First note that, to get the smallest queue size, we would like
(31) to hold with equality, i.e.,

D1[0, t] = D2[0, t] = min{AR[0, t], AB[0, t]}; ∀t ≥ 1 (32)

Then, it is clear that red and blue packets must be transmitted
simultaneously on output links, i.e., red packets are only
transmitted when there is a blue packet in the second queue,
and similarly, the blue packets are served when there is a red
packet in the first queue.

Also note that dividing both sides of (32) byt and taking the
limit as t → ∞ shows that the maximum throughput should
be min{λR, λB}. Therefore, the optimal strategy must drop
the Red packets at an average rateλR − λB , in a way that
minimizes the mean queue length, while retaining equality
(32).

Next, consider the problem of minimizing the mean queue
length. This problem can be posed as an infinite-state Markov
decision problem with unbounded cost. It follows from check-
ing standard conditions, e.g., [23], [24], that a stationary
optimal policy exists for our problem, however, the average-
cost optimality equation (12) may not hold. Therefore, we
follow a different approach.

Recall that when a red packet and a blue packet are both
available, to minimize queue length, it is best to transmit them
immediately. Therefore, when one of the queues (blue or red)
hits zero, from that point onwards, only one of the queues can
be non-empty. Thus in steady-state, we can assume that one
queue can be non-empty. As a result, we have the Markov
decision process described next. Let(i, j) represent the state
of the system where there arei packets in the red queue and
j packets in the blue queue. The transition probabilities are
given by

P [(0, y)|(0, y)] = λRλB + (1− λR)(1− λB)

P [(0, y − 1)|(0, y)] = λR(1 − λB)

P [(0, y + 1)|(0, y)] = λB(1− λR),

and

P [(x, 0)|(x, 0)] = λRλB + (1 − λR)(1 − λB)

+ λR(1− λB)δx

P [(x− 1, 0)|(x, 0)] = λB(1− λR)

P [(x+ 1, 0)|(x, 0)] = λR(1− λB)(1 − δx),
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Fig. 6. The optimal threshold to minimize the average queue length.

where δx denotes probability of dropping the red packet in
state(x, 0), if there is a red arrival but no blue arrival. Note
that stability of the system (finiteness of mean queue length)
implies that the red packets must be dropped at an average
rate ofλR − λB. So our problem is to determineδx for each
x to minimize the mean queue length. We will show that the
optimal policy is a threshold policy, which is defined below.

Definition 2. A threshold policy, with thresholdm, is a policy
that has the following properties:δx = 0 for all 0 ≤ x ≤
m−1, andδm = 1, wherem is a nonnegative integer number.

The following proposition presents the main result regarding
the optimal strategy.

Proposition 3. For the double input-double output Mix, the
threshold policy is optimal, in the sense that it minimizes the
average queue size among all maximum throughput policies
with perfect anonymity. Moreover, the threshold is given by

m∗ =

{

⌈− 1
log ρ⌉ − 1 ; 1

2 < ρ < 1

0 ; 0 ≤ ρ ≤ 1
2 ,

(33)

whereρ = λB(1−λR)
λR(1−λB) .

In other words, no buffer is needed forλR ≥ 2λB

1+λB
, but, as

rates get closer, forλB < λR <
2λB

1+λB
, a buffer of sizem∗ for

the red flow is needed. The optimal thresholdm∗ is depicted
in Figure 6. Note that the singular case ofλR = λB = λ
(ρ = 1) is not stable. By allowing a small drop rate ofǫλ for
each flow, where0 < ǫ≪ 1, one buffer for each flow can be
considered, and the thresholds and the average queue size can
be expressed as functions ofǫ.

Proof of Proposition 3: The steady state distribution for
the Markov chain representing the double input-double output
Mix is given by

π0,y = π0,0ρ
y, y = 1, 2, · · ·

πx,0 = π0,0ρ
−x

x−1
∏

i=0

(1− δi), x = 1, 2, · · ·

where

π0,0 =

(

1

1− ρ
+

∞
∑

x=1

ρ−x
x−1
∏

i=0

(1− δi)

)−1

,

and

ρ =
λB(1− λR)

λR(1− λB)
.

Recall that, by assumption,λR > λB , and therefore0 ≤ ρ <
1. The average queue length is

L̄ =

∞
∑

y=0

yπ0,y +

∞
∑

x=1

xπx,0

= π0,0

[

ρ

(1− ρ)2
+

∞
∑

x=1

xρ−x
x−1
∏

i=0

(1− δi)

]

.

Note that for any nonnegative integerj, and for fixed values
of δis, i 6= j, L̄ is a linear fractional function ofδj . More
formally,

L̄(δj) =
Aj + (1− δj)Bj
A′
j + (1− δj)B′

j

,

where

A′
j =

1

1− ρ
+

j
∑

x=1

ρ−x
x−1
∏

i=0

(1− δi),

Aj =
ρ

(1− ρ)2
+

j
∑

x=1

xρ−x
x−1
∏

i=0

(1 − δi),

B′
j =

∏j−1
i=0 (1 − δi)

ρj+1



1 +

∞
∑

x=1

ρ−x
x+j
∏

i=j+1

(1− δi)



 ,

and

Bj =

∏j−1
i=0 (1− δi)

ρj+1



j + 1 +

∞
∑

x=1

(j + x+ 1)ρ−x
x+j
∏

i=j+1

(1 − δi)



 .

Therefore,∂L̄/∂δj is either positive or negative, independent
of δj , and consequently, the optimalδj to minimizeL̄ is either
0 or 1, i.e., δ∗j ∈ {0, 1} for all j. But, all of theδjs cannot
be zero, otherwise the system will not be stable (L̄ = ∞).
Definem to be the smallestj such thatδ∗j = 1. Thenδx = 0
for all 0 ≤ x ≤ m− 1, andδm = 1 which yields a threshold
policy with thresholdm. Therefore the threshold policy is the
optimal policy.

Next, we find the optimal thresholdm∗. The stationary
distribution of a threshold policy with thresholdm is given
by

π0,y = π0,0ρ
y, y = 1, 2, · · ·

πx,0 = π0,0(1/ρ)
x, x = 1, 2, · · · ,m

whereπ0,0 = (1 − ρ)ρm. Therefore,πm,0 = 1 − ρ, and the
average packet-drop rate,Pdrop, is given by

Pdrop = πm,0λR(1− λB) = λR − λB
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which is independent of the thresholdm. The average queue
length is given by

L̄(m) =

∞
∑

y=1

yπ0,y +

m
∑

x=0

xπx,0

=
(

2ρm+1 +m(1− ρ)− ρ
)

/(1− ρ). (34)

Note that L̄(m), as a continuous function ofm, is strictly
convex overm ∈ [0,∞) for any fixed0 ≤ ρ < 1; therefore, it
has a unique minimizerm∗ which is either zero or the solution
of ∂L̄

∂m
= 0. Since we seek the smallest integer-valuedm∗, the

convexity implies thatm∗ is zero if

L̄(0) ≤ L̄(1),

or it’s a positive integerm∗ satisfying

L̄(m∗) < L̄(m∗ − 1),

and
L̄(m∗) ≤ L̄(m∗ + 1).

Then by using (34), it follows thatm∗ = 0 if ρ ≤ 1
2 , and for

ρ > 1
2 , it satisfies

2ρm
∗

> 1,

and
2ρm

∗+1 ≤ 1,

which yields

m∗ = ⌈−
1

log ρ
⌉ − 1.

This concludes the proof.

Remark 3. As far as the average queue size is concerned,
it does not matter which packet is dropped whenδx = 1.
However, in order to get a better delay performance for those
packets that are not dropped, it is better to accept the new
arrival and drop the head-of-the line packet.

IV. CONCLUSIONS

The definition of anonymity and the optimal mixing strategy
for a router in an anonymous network depend on its func-
tionality. In the case of a double input-single output Mix, an
eavesdropper knows the next hop of every packet but the router
attempts to hide the identity of the packet at the output linkso
as to make it harder for the eavesdropper to follow the path of
a flow further downstream. On the other hand, when there are
two inputs, two outputs and only two flows, even revealing the
identity of one packet at the output compromises that portion
of both flow’s route. For the first case, the optimal mixing
strategy was found to achieve the maximum anonymity under
a per-packet latency constraint. For the second case, the maxi-
mum throughput strategies with perfect anonymity were found
for a per-packet latency constraint and for minimum average
queue size. Our results in this paper represent a first attempt
at theoretically characterizing optimal mixing strategies in two
fundamental cases. Further research is needed to find optimal
mixing strategies under more general constraints or for the
multiple input-multiple output Mix.

APPENDIX A

Proof of Lemma 3:Taking the derivative ofg respect to
ξ yields

g′(ξ) = (p∗ − d∗) + (p∗′ − d∗′)ξ + d∗′
d

dd∗
H(d∗)

−p∗′
d

dp∗
H(p∗)− d∗′,

but
d

dd∗
H(d∗) = log

1− d∗

d∗
= 1 + ξ

and
d

dp∗
H(p∗) = log

1− p∗

p∗
= ξ,

therefore
g′(ξ) = (p∗ − d∗)

which is always nonnegative for all values ofξ. Similarly for
f(ξ), we have

f ′(ξ) = (r∗ + p∗) + (p∗′ + r∗′)ξ + r∗′
d

dr∗
H(r∗)

− p∗′
d

dp∗
H(p∗)− r∗′ − 1,

but
d

dr∗
H(r∗) = log

1− r∗

r∗
= 1− ξ,

and, as we saw,
d

dp∗
H(p∗) = ξ,

therefore

f ′(ξ) = r∗ + p∗ − 1

=
1

1 + 21−ξ
+

1

1 + 2ξ
− 1

=
2ξ

2ξ + 2
+

1

1 + 2ξ
− 1

≤
2ξ

1 + 2ξ
+

1

1 + 2ξ
− 1

= 0. (35)

Hence,f(ξ) is a decreasing function.
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