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Abstract—The problem of anonymous networking when an
eavesdropper observes packet timings in a communication be
work is considered. The goal is to hide the identities of sowe-
destination nodes, and paths of information flow in the netwik.
One way to achieve such an anonymity is to usdlixes. Mixes
are nodes that receive packets from multiple sources and cnge
the timing of packets, by mixing packets at the output links,
to prevent the eavesdropper from finding sources of outgoing
packets. In this paper, we consider two simple but fundamera
scenarios: double input-single output Mix and double input
double output Mix. For the first case, we use the information-
theoretic definition of the anonymity, based on average enapy
per packet, and find an optimal mixing strategy under a strict
latency constraint. For the second case, perfect anonymitys
considered, and maximal throughput strategies with perfet
anonymity are found under a strict latency constraint and an
average queue length constraint.

I. INTRODUCTION

least, discover parts of the route between the source and the
destination. This kind of statistical analysis is knowniasrg
analysis since the eavesdropper only needs packet tinftiogs.
example, in FigurEll, if the processing delay is small, thgre

a high correlation between output and input processes,hand t
eavesdropper can easily identify the source of each oujgoin
packet.

To provide protection against the timing analysis attack,
nodes in an anonymous network need to perform an additional
task, known as mixing, before transmitting packets on autpu
links. A node with mixing ability is called aMix. In this
solution, a Mix receives packets from multiple links, re-
encrypts them, and changes the timings of packets, by mixing
(reordering) packets at the output links, in such a way that
the eavesdropper cannot relate an outgoing packet to its
corresponding sender.

The original concept of Mix was introduced by Chaum

Secure communication has become increasingly importal@. The Mix anonymity was improved by random delaying
Privacy and anonymity considerations apply to all compd4] (Stop-and-go MiXes), and dummy packet transmission [5]
nents of a communication network, such as contents of d&t@DN-MIXes), and used for the various Internet applicasio
packets, identities of source-destination nodes, andspath such as email [6] and WWWL[7](Crowds). Other proposed
information flow in the network. While a data packet’s conternonymity schemes are JAP! [8], MorphMix [9], Mixmaster
can be protected by encrypting the payload of the packBt0], Mixminion [11], Buses[[12], etc.
an eavesdropper can still detect the addresses of the sourddowever, theoretical analysis of the performance of Chaum
and the destination hyaffic analysis For example, observing Mmixing is very limited. The information-theoretic measure
the header of the packet can still reveal the identities 6f anonymity, based on Shannon’s equivocationl [13], was

its corresponding source-destination p&mnion Routing[1]

used in [14], [15] to evaluate the performance of a few

and Tor network [2] are well-known solutions that providemixing strategies, under some attack scenarios, howehr, t

protection against both eavesdropping and traffic analysie

approach does not take into account the delay or traffic

basic idea is to form an overlay network of Tor nodes, arfdatistics; whereas, modifying packet timings to obfusche
relay packets through several Tor nodes instead of takiag ®avesdropper indeed increases the transmission latemcy. |
direct path between the source and the destination. Toecreld6], [17], the authors consider the performance of soecall

a private network, links between Tor nodes are encryptégneralized Mixes, e.g., a timed pool Mix, under some active
such that each Tor node only knows the node from whigttack scenarios. In a timed pool Mix, the Mix collects input
it receives a packet and the node to which it forwards ttieessages that are placed in a pool during a round/cycle of the
packet. Therefore, any node in the Tor network sees only tWX, and then flushes the messages out with some probability.
hops (the previous and next nodes) but is not aware of thBe flushing probability is characterized by a functiin)
whole path between the source and the destination, Thereféepresenting the probability of the messages being seifiein t
a compromised node cannot easily identify source-degimatcurrent round, given that the Mix containsmessages in the
pairs. But Tor cannot solve all anonymity problems. If aRool. Again, this is a very specific type of Mix and it is not
eavesdropper can observe the traffic in and out of some noddear if this is optimal. So, the question of interest is the
it can still correlate the incoming and outgoing packets d@llowing: what is the maximum achievable anonymity under
relay nodes to identify the source and the destination or, @&constraint on delay?

This research was supported by NSF Grant 07-21286 and an ARMRI
subcontract.

An earlier version of the paper has been appeared in the &fings of
IEEE INFOCOM 2010.

Characterizing the anonymity as a function of traffic load
and the delay constraint has been considered_in [18]. The
authors in [[18] have considered a Mix with two input links
and one output link, where arrivals on the input links are two
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Fig. 1. The double input-single output Mix. The capacity atk input link Fig. 2. _The double input-double output Mix. The capacity atle link is1
is 1 packet/time slot and the capacity of the output link jpackets/time slot. Packet/time slot.

poisson processes with equal rates, and they charact@pes u previous hop. Given the source of each incoming packet, the
and lower bounds on the maximum achievable anonymitavesdropper aims to identify the source of each outgoing
under a strict delay constraint. The basic idea is that the Mpacket, i.e., assign colors, red and blue, to the outgonegust
waits for a certain amount of time, collects packets from twof packets.
sources, and sends a batch containing the received paokets First, consider the case where we do not allow for any
the output. The implicit assumption i [18] is that there @ ndelay, i.e., the Mix must send packets out in the same slot
constraint on the capacity of the output link, i.e., the batdn which they arrived. Note that this is possible, withouy an
can be transmitted instantaneously at the output, no mafgeicket drop, since at most two packets arrive in each slot,
how many packets are contained in the batch. and the capacity of the output link &packets/slot. Then, the
The path between any source-destination pair in an anomyry way to confuse the eavesdropper is to send out a random
mous network contains several nodes; each of which hagrmutation of received packets in each slot.
possibly, several input links and several output links. Athe By allowing a strict delayl” > 1 for each packet, the Mix
node, to perform routing, traffic generated by two or morgan do better; it can select and permute packets from the
sources can be merged into one outgoing stream, or ¥@rent slot and also from the previous slots, upTtcslots
merged stream can be decomposed at several output linksggfore.
different destinations. To expose the main features of maixi Next we introduce a few notations and then define the
s.trategies, we fc_>cus_on two fundamental cases: a doubleianiXmg strategy under a strict delay constraiftper packet.
single output Mix, Figuréll, and a double input-double otitpthe definitions are quite general and could be used to describ

Mix, Figure[2. Compared td [18], our model considers casgse mixing strategy and its anonymity for any multiple input
with finite link capacities and we derive optimal solutlonging|e output Mix, under a delay constraifit

for certain cases. .The remainder of the paper is organi.zeq_et the random variabld, denote arrivals ink-th slot.
as follows. In sectiofl, the double input-single outputxMi Therefore, for the double input-single output Mik, can be

is cc_)n_sidered, and the_ optimal mixing strategy is found_ ., R, B, or RB, where they respectively denote the cases of
maximize the anonymity under a strict latency constrain, arrivals, red arrival but no blue arrival, blue arrivak i

Sectiorill is d_evoted _to_ the double |r_1put-d0uble output M'_’?ed arrival, and both red and blue arrivals. Similarly define
where the opUmaI mixing strategy is found under a Strl%mdom variable);, for the output at slot. For the double
Ia_tency constraint and an average queue Igngth ConStrafoJut—single output Mix,0y € {0, R, B, RR, BB, RB, BR}
Finally, we end the paper with some concluding remarks. \,te that ordering ok B or BR at the output matters). There
is an eavesdropper (Eve) who knows whether there is a packet
Il. DOUBLE INPUT-SINGLE OUTPUT MIX at the output or not, i.e., at each timeEve knows a random
Consider Figuré]l where there are two incoming flowsariable G, := |Oy|. For any stochastic proceqsXy}r>1,
red and blue, and one outgoing link. The capacity of eaclefineX™) := X; .- Xy.
input link is 1 packet/time-slot, and the capacity of the output Since we work with a discrete-time system, we have to
link is 2 packets/time-slot. This model ensures that packets dpecify the order in which different events occur: at each
not have to be dropped due to lack of capacity, even whéme slotk, first packet arrivals occur at the beginning of the
the input links bring in data at maximum rate. Red and bluene slot, and then departures occur. At the end of time slot
packets arrive according to i.i.d. Bernoulli processesiwates k, let Qx(j) be a queue containing packets that have been
Ar and \p respectively. There is an eavesdropper observiing the system forj time slots,0 < 7 < T -1 (j = 0
the incoming and outgoing packets. Assume the eavesdroppamresponds to packets arrived in the current slot but hate n
knows the source of each incoming packet, i.e., its colois THransmitted). In the case of double input-single output ,Mix
might be made feasible by traffic analysis if the Mix is thebviously, Qx(j) € {0,R,B,RB}, for 0 < j < T — 1.
first hop of the route or, otherwise, by timing analysis of theet Q. := [Qx(0), Qr(1),---Qx(T — 1)] be the collection



of such queues which represent existing packets in the Mixraduce the anonymity and also will not violate the delay
the end of slotk. A mixing strategy consists of aelection constraint (Eve is only interested in detecting the coldrs o
strategy followed by apermutationstrategy. At each time the packets at the output, not their arrival times.). Thisoal

k, the Mix randomly selects packets froM;_;, and also means that the mixing strategy is compatible with network
from the newly arrived packet§,, and then send a randomprotocols such as TCP, as it does change the sequence numbers
permutation of the selected packets to the outputgti+1) of packets from the same flow.

denote the packets selected frapp_;(j) by the Mix at slot

k, for 0 < j < T — 1. Then, the queue dynamics can b@. Structure of Optimal Mix Strategy

described as We wish to find the optimal strategy* € ¥, that maxi-
Qr(i+1)=Qr_1(H)\Dr(j + 1), (1) mizes the anonymity. For mixing under a strict delfly the
output packets at timk are selected from the packets received
in the current slot or the past' time slots that have not
Qx(0) = I \Dy,(0) () peen transmitted before; however, in general, the rulechvhi

where D, (0) denoted the packets selected from new arrivafitermines which packet has to be transmitted, itself could
I, and “\" is the set difference operator. Note th@y,(T) = possmly depend on the entire history up to tifeln other

0 because for any mixing strategy, under delay constra/rds, if we let7; := {I*~1), O(*~} denote the history up
T, packets that have been in the system Tortime slots 0 the beginning of time slat, Oy, = vy, 7, (Q«, I1). Here, we
have to be transmitted, i.eDy(T) = Qr_1(T — 1). Let assume that the Mi).( strategy.and the Eve dgtef:tion straregy a
Dy, = [Dy(0),--- Di(T)]. Hence,Dy, = Y(Qu_1,Ix), for botr_\ (;ausal and online meaning that transmission and dmtect
some random selection stratedy, and O, = II(D;) for deC|S|on§ forOy, has to be made at tinde, and only depgnd
some permutation stratedy, thus Oy, = 1/(Qx_1, 1) where ©N the history up to timeé:. Then, we show that the optimal
¢ = Ilo Y is the mixing strategy. Lefr; denote the set Mixing strategy, in fact, only needs a finite memdfyand

of all possible mixing strategies that satisfy the strictagie does not need the entire history, .0y = ¥, _, (Qx—1, ).

and

constraintT. By the chain rule[[20], the conditional entropy inl (3) can
Next, we define anonymity of a mixing strategye ¥, De written as
based on the average conditional entropy of the output se- H(O(N)H(N)’G(N))
guence given the input sequence and the sequéhcas N
follows. _ ZH(OkU(N)a el O(kq)) 4)
Definition 1. The anonymityA¥ of a mixing strategyy is k=1
defined as N
) = H(OIW,G®, 0tk=D) )
A% — HOM | [A) (V)Y 3 k=1
Ngnoo N()\R"f'/\B) (O | ’G ) ( ) N
Note that in the above definition, the numerator is the =Y H(OI™, Gy, 0%Y) (6)
entropy of the output sequence of length given that Eve: k=1
(i) observes the input sequence of length and (ii) detects N B
packet transmissions at the output. The denominator is the =Y H(OWI™, Gy, 0%V, Q) 1) (7)
average number of red and blue arrivalsih slots. So, as k=1
N — oo, anonymity is the amount of uncertainty in each N 8
outgoing packet, bits/packet, observed by Eve. < ZH(Ok|Gk’ Qr—1, 1), (8)
k=1

Remark 1. By using the Fano's inequality, the anonymityyhere %) is because the Mix strategy and the Eve detection
prowdes a lower bound for the probability of error in detiect strategy are both causal and onlirig, (6) follows from the fac
incurred by the eavesdropper [19]. that givenO*—1) G(+*~1) does not contain any information,

Without loss of generality, we can assume that the optim&) holds because givei*~") and O*~1), @}, is known,
mixing strategy does not change the ordering of packets fréfid finally [8) follows from the fact that conditioning redisc
the same flow. This can be justified as follows. For arfji€ entropy. o
input sequence of lengthV, consider the set of possible Hence, for any mixing strategy € ¥,
output sequences of lengtlv, under the mixing strategy 1 N
Y. If, for example, the red packets do not appear at the AY < lim 7ZH(O;€|G;C,Q;C_1,I;C). 9)
output in the same order as their arrival order, we can simply N=eo N(Ar + ) k=1
reorder them according to their arrival order, without @fiag  Next, consider maximizing the Right-Hand-Side (RHS)[9f (9)
the conditional probability of the appearance of the outpyfe can define, to be state of a Markov chaif) at the
sequence given the input sequence. Note that this does @&l of timek (at the beginning of time: + 1). Note that,

1 for the double input-single output Mix, under strict deldy
At the moment that we move from slét— 1 to slot k, the delay of each

T o
remaining packet increases byhence we have used the notatibh, (j + 1) Qk < {0, R, B, RB}". Hence, maximizing RHS O.CKQ) can
for packets selected from que@@,_1(j) at timek. be interpreted as an average reward maximization problem



over an appropriately defin@darkov Decision Proces¢VIDP) Note that the above argument is still valid for any multiple
Q. with finite number of states. More accurately, maximizingqhput-single output Mix and any link capacities as long as th

RHS of [9) can be written as output link capacity is greater than or equal to the sum of
LN input-links’ capacities to ensure that there is no need apdr
max lim — » E, . [e(ge—1,%1)], (10) Packets.
YeVr N—oo N ; e In general, the DP equatioh {12) can be written in form of

where the reward function is given by the following LP

c(qe—1,%r) = H(O|lqx—1,Ix,Gg) max w (14)
= Ei [H(Oklgr—1,i,Gr)],  (11) w+ ¢(q) < c(g, u) + E[p(Q1)|Qo = g u1 = 1] ;

o . Vg € {0, R, B,RB}"
whereg, andi, are realizations of random variabl@s and; gl }

respectivel@. Hence, we have a finite state MDP with boundedhich can be solved numerically. However, the number of
rewards. Consider the class of stationary (and MarkovijEdi states grows exponentially i' which makes the character-
St C ¥, where, at each timg, decision is made only basedization of strategies and computation of the optimal sgate
onQi—1,i.e.,0r, =g, , (Qk_l,Ik). A sufficient condition complicated especially for larg&. For smallT, we might
for existence of an optimal stationary policy for{10) isgiv be able to find the optimal solution explicitly. To illusteat
by the following lemmal[21],[[25]. the structure of the optimal solution, we present the eitplic

Lemma 1. Suppose there exists a constantaind a bounded solut|on_s for7” = 0 andT = 1in the following two
subsections.

function ¢, unique up to an additive constant, satisfying the
following optimality equation
+é(g) (e(g.u) + BlO(Q1)|0 y . (12) B. The Optimal Mix Strategy fof' = 0
Wl = mEan VIR0 = &0 = Ul The case of” = 0 is trivial since, in this case, for stationary

thenw is the maximal average-reward and the optimal stgdolicies, the output sequence is i.i.d. as well, and theeefo
tionary policyy* is the one that chooses the optimizing).

N
1
Next, we show that[{12) always has a solution. ket= RHS of @ = N > H(Ok| I, Gy)
min{k > 1: Qi = 0} where byQ, = 0 = {#}* we mean k=1
a state where there are no packets in the Mix waiting for = H(O:|,Gy)

transmission. Next, consider the class of stationary fmdic ArApH (01|, = RB,G1 = 2).
Sp C ¥r, ie., Or = ¥q,_, (Qr-1,Ix). Then we have, for

any+ € Sy, and for any initial state, Therefore, to maximize the anonymity, the Mix must send a

random permutation of the received packets, in the casetbf bo

EY[7]Qo = q] < T < 0. (13) read and blue arrival, with equal probability to g&tO,|[; =
(I=Ar)T(1=Ap)T RB,G; = 2) = 1. Correspondingly, the maximum anonymity
This is because starting from any initial state, after a nuf given by
input sequence of length, i.e., no arrivals forl" time slots, AV — M_
the Markov chain has to return tb state. Such a sequence AR+ AB

occurs with probability1 — Az)T (1 —Ap)T and the expected In the rest of this section, we consider the more interesting
time is bounded as if (13) for any stationary Markov policgase ofT" = 1, where each packet has to be sent out in the
as long as\p and\p are strictly less than one. The followingcurrent slot or in the next slot.

lemma is a corollary of Theorem (6.5) of [25] (page 164).

Lemma 2. AssumeE?[7]|Qy = q] < B < oo for all 1y € Sz C. The Optimal Mix Strategy fof’ = 1

and allg, then there exists a and¢(.) satisfying DP equation  As we proved in sectiof TI7A, we only need to consider
(12). the class of stationary policies that maximize the RHS of

Hence, it follows from Lemmads) 2 afid 1 that the maximizel@)- Therefore, forT' = 1, the optimal mixing strategy is
of RHS of [9) is a stationary policy. Moreover, observe thdpe solution to the following average entropy maximization
for any stationary policy, the inequality ifll(8) and accogly ~Problem
in (@) can be replaced by equality, and therefore, the statio L N
policy * given by [12) always exists and actually maximizes max lim — Z E,, , [H(Ok|Ik, qc—1, Gr)],
the anonymity and the maximum achievable anonymity, by N=voo N k=1

definition, is given by where nowg,_; € {0, R, B, RB}. Recall that the random

AV — w_ variableQy—1 (=Qx—1(0) here) denotes what has been left in
AR+ AB the queue, at the end of time slbt— 1, for transmission in
) , _ the time slotk, where we have defined the initial condition
Throughout the paper, we use a capital letter for a randonabtarand

the corresponding lower-case letter to denote a realizatibthat random as QO_: 0, and q_kfl '§ the realization ofQ_1. ROUghly
variable. speaking, the action;, is to randomly select some packets



from I, and gx_1, and send the permutation of the selected
packets to the output. Leb denote the maximum value of
the above average entropy maximization problem, then, by
definition, A¥" = Y and the optimal mixing strategy*

is the one that chooses the corresponding optimal policy for
the average entropy maximization problem. In order to solve
the problem, next we identify the possible actions for défe
states which will allow us to define the reward function in mor
detail and provide an explicit solution.

1) Set of possible actions and corresponding rewards for
different states:There is a set of possible actions for each
state depending on different arrival types. In the follogyin
we identify the set of actions and their corresponding reiwar
for each case.

(@) AssumeQy_ = 0, then

(i) If I, = 0: In this case, obviously, there will be no
transmission at the output links;, = 0, and the queue
will remain empty as well, i.e.Q, = 0 andQy, = 0.
The corresponding entropy B (O |l = 0,Qr—1 =
0,Gy) = 0.
If I = R: Two options are possible; the Mix can
qgueue the arrived packeGf, = 0) with probability
ag, or send the packet in the current slat;(= 1)
with probability 1 — a;. No matter what the Mix
does, the entropy in this sldf (Ox|Ix = R, Qr—1 =
0, Gx) = 0. Correspondingly, the queue is updated as
Qr = R, with probability of o, or Q, = 0, with
probability of 1 — ay.
(i) If I = B: This case is similar to the previous case
except that we usg;, instead ofay. ThereforeQ, =
B, with probability 8, or Q. = 0, with probability
1-— ﬂk, andH(Ok|Ik = B, Qkfl = @,Gk) =0.
If I, = RB: The Mix has four options; it can queue
both packets (with probability — s;), send both out
(with probability si(1 — yx)), keep onlyR and send
B out (with probabilitysiyx (1 — px)), or keep only
B and sendR out (with probability s;yrpr). Note
that the parameters;, y,, and p, have been used
to characterize the probabilities of different options.
Intuitively, s, is the probability that a transmission at
the output link happens at ally, is the probability
of sending only one packet out given a transmission
must happen, ang is the probability of sendindz
out given that only one packet is transmitted at the
output. Accordingly,

(ii)

(iv)

H(Og|Ir, = RB, Qg-1 = 0,Gx)
= sk (Y H(pr) + 1 — yi)
where# is the binary entropy function given by

H(p) = —plog(p) — (1 — p)log(1l —p)

(i) If I = R: The Mix can queue the recert, with
probability v4, and sendQ,_1 to the output, or can
send bothQ,_; and the recent arrival to the output,
with probability1 —~;. Therefore@, = R (Ox = R)
with probability vx, or Qr = 0 (Or, = RR) with
probability 1 — ~4. The corresponding entropy will be
zero, i.e., H(Ok|Ix = R,Qx-1 = R,Gi) = 0.

(i) If I = B: Again the Mix has two options; it

can send a random permutation & and B to

the output, i.e.,Qr = 0, with probability a;, or

it can queue theB and send only thek out, i.e.,

Qr = B, with probability 1 — a;. The entropy is

H(Okuk = B,Qkfl = R, Gk) = ak.

If I, = RB: The Mix has three options; it can queue

both arrivals, i.e.Qx = RB, with probability 1 — ¢,

keep only the red arrival in the queue, i.€; = R,

with probability ¢, (1 — di), or keep only the blue

arrival in the queue, i.eQ)r = B, with probability
trdi. Correspondingly, in this case,

P(Ok = Ok|Ik = RB, Qk—l = R, Gk = 2)

(iv)

dy, o = RR
= (1—dk)/2 y Ok =RB (15)
(1—dk)/2 ;Ok:BR.

and

I’I(OHI}C =RB,Qr-1=R,Gi) =1 (H(dk) +1—dg).

(c) AssumeQ_1 = B, then this case is similar to the previ-

ous case and the details are omitted for brevity.

(i) If I (: Obviously, H(Ox|Ix = 0,Qr_1 =
B,Gy) =0, andQy = 0.

(i) f I, = B: HO|I, = B,Qr-1 = B,Gy) = 0.
Options are;, = B, with probability 6, or Qi = 0,
with probability 1 — §j.

(i) If Iy = R: H(Og|Iy = R,Qr-1 = B,Gj) = by.

Options are, = R, with probabilityl —by, or Q. =

(), with probability by,.

If I, = RB: The Mix can keep both arrivals in the

queue, i.e.Qr = RB, with probability 1 — z;, keep

only the red arrival in the queue, i.€); = R, with
probability zxrx, or keep only the blue arrival in the
queue, i.e.x = B, with probability z; (1 —r). The
entropy is

H(Og|Ir = RB,Qk—1 = B,Gi) = 21 (H(re) + 1 — 1) -

(iv)

(d) Assume Qr_1 = RB, then the Mix has to send the

contents of the queue to the output, i@, = RB or BR
with equal probabilities, and queue all the recent arrjvals
i.e., Qr = I;. The entropy is simplyH (O |1y, Qr-1 =
RB,Gy) = 1.

Next, we calculate the reward for each state. Recall that the

reward function is

for0<p< 1.
(b) AssumeQi_1 = R, then

Clxy, Yr) = H(Ok|Ik, qr—1,Gr) =

E;, [H(Oklik, gru—1,Gy)],

(i) If I, = 0: The Mix has to send the content of thevherei, denotes a realization df,. Therefore, averaging over
gueue to the output, therefot®, = R, and obviously, 4 possible arrivals in each state, the reward function andigue

H(O|ly =0,Qr—1 = R,G) =0 andQy = 0.

updates, for each state are the following.



(@) Qr—1 =0:

The reward function is given by

C(0,¢r) = ArABsk (ysH(pe) + 1 — y&)

and the queue is updated as

P(Qr = q|Qr—1 = 0,7n) =
Ar(1 = Ap)ak + ArABskyr(l —pr) ;9=R
B

AB(1 = AR)Br + ARABSKYRDE 1q =

)\R/\B(l—sk) ;q:RB

-—- =10
where we used the notatich— — — 7 for the probability

2) The Optimal Stationary Mix strategyaving formally
defined the reward function and the dynamics of the system in
subsection II-Cl1, we use Lemih 1 to solve the average reward
maximization problem. It turns out that the optimal strgtéeg
specified by only three parameters-, andd, and all the other
parameters must be one. The following proposition states on
of our main results.

Proposition 1. For the double input-single output Mix, and
T = 1, the optimal Mix strategy is the following. At each time
k, givenQy_1 and Iy, if

1) Qp-1=10
. kZQ,R,B: Qk:Ik,OkZQ.

of having an empty queue, since we will not need the « I, = RB: sendR out with probabilityp* or B with
explicit expression for this probability, although, it can probability 1 — p*, Qy = I;\Op.

be, obviously, derived from the other three probabilities.

Note thatyy, is specified bys parameter® < ai, Bk, Yk,
Sky PE < 1.

(b) Qr—1=R

The reward function is given by
C(R,¢x) = Ap(1— Ar)ar + ArApty (H(dk) + 1 —dy),
and the queue is updated as
P(Qk = q|Qk—1 = R, ¢x) =
ArR(1 = AB)vk + ArABte(1 —di) ;9=R
AB(1 = Agr)(1 —ax) + ArAptedr ;9= B

/\R)\B(l_tk) ;q:RB
- jq=10

Note that, in this statey; is specified by4 parameters
0 < ak, tky, Yrs di < 1.

() Qr-1 =B

The reward function is given by
C(B,yx) = Ar(1 = Ap)bk + ArAB2zix (H(re) + 1 —11),
and the queue is updated as

P(Qr = q|Qr—1 = B, ¢x) =

Ar(1=Ag)(1 —b) + ArABTezr ;9=R
AB(1 = AR)dr + ArABzi(l — 1) ;¢=B
ArAB(1 — zi) ;q=RB
___ iq=10
Note that here);, is specified byl parameter® < by, zx,

O, T < 1.
(d) Qr—1 = RB:
The reward function is given by
C(Rvak) = 17
and the queue is updated as

P(Qr = q|Qk—1 = RB,¢x) =
ArR(l—=AB) ;9=R
/\B(l — )\R) yq = B
/\R)\B yq = RB
- =10
Note that, here, there is no degrees of freedom/fo(The
Mix has to send ouf)_1).

2) Qp-1=R
o I = (Z),RZ Qk = I, Ok = Qk—l-
o I;, = B: transmit a random permutation aR and
B, Qr = 0.
e I, = RB: transmit RR with probability d* (Qx =
B), or transmit a random permutation df and B
with probability 1 — d* (Qr = R).
3) Qr1=1B
o I = (Z),BZ Qk = I, Ok = Qk—l-
o I;, = R: transmit a random permutation aR and
B, Qr = 0.
o I, = RB: transmit BB with probability r* (Qx =
R), or transmit a random permutation &8 and B
with probability 1 — r* (Qx = B).
where probabilitiegp*, d*, andr* depend on arrival rates
and \pg.

In the special cas@r = A\, p* = 3, d* = %, andr* = 1.
Proof of Propositior1L: Recall the optimality equation

12):
w+o(q) = max {C(g,u) + E[p(Q1)|Qo = q,¢1 = u]}.

Since ¢ is unique up to an additive constant, without loss of
generality, assume(p) = 0. Then, forq = @, the optimality
equation can be written as

w = max {/\R)\Bs(yH( )+ 1—1y)

$,0,Y,0.
+Ar(1 = Ap)a + ArApsy(1 — p)|p(R)
+[AB(1 = ARr)B + ArABsyplo(B)
+ [ArAp(1 = 9)|¢(RB)} .
Obviously,a = 1 and 5 = 1 maximize the right hand side if
¢(R) and ¢(B) are nonnegative. We will later see thatR)

and ¢(B) are indeed nonnegative. Therefore, the right hand
side of the optimality equation can be written as

ArABS [y (H(p) =1+ (1 = p)d(R) +pd(B)) + 1 — ¢(RB)]

+Ar(1 = AB)A(R) + Ap(1 — Ar)9(B) + ArAp@(RB).

First, consider the termil(p) — 1+ (1 —p)d(R) + pp(B). This
term is maximized by choosing
. 1

P = T s —e(B) (16)



We will later show that
H(p") =1+ (1 =p")d(R) +p"¢(B) > 0,

and thereforey* = 1. Furthermore, for* = 1, we will see

(17)

that the term inside the brackets is always nonnegative, i.e

H(p*) + (1 =p")¢(R) +p"d(B) — ¢(RB) 20,  (18)
and therefores* = 1. Finally, w is given by
w = ArABH(") + Ar(1 — App*)d(R)
+ Ap(l = Ar(l —p"))$(B). (19)

Next, consider the optimality equation fgr= R. It can be
written as

w + ¢(R)

+Ar(L = AB)Y + ArAB(1 — d)]#(R)
+As(1 = Ar)(1 — a) + ArAptd|d(B)
+)\R/\R(1 — t)d)(RB)}.

Similar to the argument foy = 0, v* = 1, if ¢(R) > 0,

anda* =1 if ¢(B) < 1. Furthermore, taking the derivative

respect tad, setting it to zero, and solving it faf* yields

1
T 14 2lte(R—a(B)"

*

(20)
Finally, t* =1 if
H(d*)+1—d"+(1—d")¢(R)+d*$(B)—¢(RB) > 0, (21)
and the optimality condition is simplified to

w+ ¢(R) AB(1 = Ar) + ArAp (H(d*) +1—d")

+[Ar(1 = AB) + ArAB(1 — d")]o(R)
+ArABd*¢(B).

Next, consider the optimality equation for= B

w + ¢(B) (;H;zgi{/\R(l—/\B)b—i—)\R/\Bz (H(r)+1—1)
+As(1 = Ar)d + ArAp2(1 —1)]¢(B)
+Ar(1 = Ap)(1 = b) + ArAp2r|d(R)
+ArAR(1 — 2)d(RB)}.

In parallel with the argument fay = R, §* = 1 if ¢(B) > 0,
andb* =1 if ¢(R) < 1. Moreover,z* =1 if

Hr*)+1—r"+(1—r")¢(B)+r*¢(R)—p(RB) > 0, (23)

where

(22)

. 1
T T I (B bR
The optimality condition is simplified to
’LU-‘rgf)(B) /\R(l—/\B)—i—)\R/\B (H(T*)-l-l—r*)
+[/\B(1 — /\R) + )\R/\B(l — T*)](b(B)
Finally, the optimality equation fo§ = RB is given by
w + ¢(RB) 14+ Ag(1—Ap)o(R)
+AB(1 — Ar)¢(B) + ArAB(RB)26)

(24)

max {AB(1 = Ar)a + ApApt (H(d) +1 —d)
v,a,t,a

o
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Fig. 3. Anonymity andp(R) for the case o\ = Ap = A.

0.4

Therefore, we need to solve equatiohs] (18}, (22), (25)
to find w, ¢(R), and ¢(B). Then, [26) can be used to find
¢(RB). Eventually, what remains to be shown is that<
#(R),#(B) < 1, and, in addition®(R), ¢(B), and ¢(RB)
satisfy inequalities (17)[(18)_(R1), arld [23).

First, consider the special case ak = Ap A. By
symmetry, ¢(R) = ¢(B) which yields p* 1/2 and
d* = r* = 1/3. Then, by solving equation§ (19) and{22),
we have,

~ X%(log3—2)+ A
=2 +A+1

o(R) = ¢(B)

and

/\2

= e g NV (g3 —1) +2(log3 = 2)A + 3]

w
Then, the anonymity isi¥” = w/2), and it is easy to check
that the solutions satisfy all the inequalities. Figyrea)3nd
[3(b) show the anonymityl®” and #(R) as functions of).

Next, consider the general case with, probably, unequal
arrival rates. We prove that the solutions indeed exist hag t
satisfy the required conditions. Usirg19) to replaci (22)



and [25) yields Then,

¢(R) = Ap[l—¢(B)(1 = Ar)l + ArABY(S), (27) d%(%(p*) T (1—pE) =1—p* >0,
#(B) = Ar[l—0¢(R)(1—Ap)]+ArABSf(§), (28) and hence,
where, Y1(§) 291(0) =14 ¢(B) > 1.
g(§) = (d* —p*)(=&) + H(d") — H(p") — d", Therefore, for—1 < ¢ < 1, ¢1(£) > 1, and [1¥) holds.
Note that from , we have
FO) =" +p" )+ H(r™) —H(p") — 1" =&, ) 1 — ArABt1(€)
and, G(RB) = — =50 (29)
¢ = o(R) - 4(B). and since[(1I7) holds, we have
Thgrefore, the optimal probabilities can be expressed as 6(RB) < 1,
functions of¢ by
i} 1 and consequently_(18) will be satisfied as well.
p= e To show [21), note thaty(R) + 1 — ¢(RB) > 0, and
o 1 therefore, it suffices to prove that
L a(§) = H(d)—d —d*6(R) +d"6(B)
Lemma 3. The functiong(¢) is an increasing function of is nonnegative. But)y(€) is a decreasing function since
and f(¢) is a decreasing function df (see Appendix for the d " 1—-d iy . "
proof). d—ng = d* log —dE—d" —d
For any pair(¢(R), $(B)) chosen from/0,1] x [0,1], we = d'(1+¢—d'E—d* —d"
have —1 < ¢ < 1, and therefore, by Lemnid 3, functiorfs = —d*<0

and g can be bounded from below and above by S0 () > (1) = H(1/5) — 2/5 — log5 —2 > 0, and

g(—1) < g(&) < g(1), consequently[{21) follows[(23) is also proved by a similar
and argument. Define a function;(¢) as
(1) < f(§) < f(-1). Y3(§) = H(") —r" —r"¢(B) +r"¢(R)
But it is easy to check that = H(@")+r&—r".
g(1) = f(=1) =1log(5/3) — 1, g(—=1) = f(1) = 1 —log3,  Then,y3(¢) is an increasing function since
and therefore, diﬂ)g =7r*>0.
—1 < £(€),9(6) < 0. . ¢
Consequently, the right-hand sides bfl(27) ahd (28) form a us
continuous mapping fron, 1] x [0,1] to [0,1] x [0,1], and P3(8) > Ps(=1)
therefore, by the Brouwer fixed point theorern ([22], p. 72), = H(1/5)—-2/5
the system of nonlinear equationk, J(27),1(28), has a swlutio — log5—23>0

(¢(R),¢(B)) € [0,1] x [0,1].

Next, we show that the solutions indeed satisfy the inequalrd therefore (23) follows. This concludes the proof of Brop

ities. First, we prove thaf(17) holds. Define sition. [
. . . 3) Numerical results:Equations[(19),[(22), and (P5) form
Vi) = HP")+ (1 -p")o(R) +p"d(B) a system of nonlinear equations which can be solved numeri-
= H") —p*{+ o(R). cally, for different values ohz and\z, by using the following
First, consider the case thatl < ¢ < 0, then algorithm.

p . Note that in the step 5 of the algorithm, we solve a linear
p— p*

Z(H(p*) = p* - »1o I system of equationsp{, d*, andr* are replaced with their
dS( #7) = #7¢) poe p* pope numerical values). Figurg 4 shows the maximum anonymity,
= —p <0 found by running the algorithm, for different arrival rat&he
Hence probabilitiesp*, d*, andr* of the optimal mixing strategy have
' been evaluated in Figufd 5 for different arrival rates and
> 0)=1 R) > 1.
$1(6) ¥ (0) = 1+ 6(R) > -

For the case thal < £ < 1, rewrite ¢, (¢) as the following Remark 2. The stationary policy does not exist far =

(&) =H(P")+ (1 —p")E + ¢(B). Ap = 1 since ashg — 1 and \p — 1, ¢(RB) — —



Algorithm 1
cph—1/2,dy + 1/3, 15+ 1/3
140
repeat
i+ (i+1)
w, ¢(R), $(B) < solve [I9), [2R), and(25)
pf,d,rr < calculate [IB),[[20), and(24)
until [p; —p}_,| < e and|d} —d;_,| < eand|r} —r}_,| <
€

=
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Fig. 4. Anonymity for different values okg and \g.

(see [[2P)). This makes sense since, in this case, if we start
with initial condition Qo = () and use the strategy specified
in Proposition[1, we get an anonymity @f’" = log(3)/2;

whereas if the initial condition i§)o = RB, the only possible 05
strategy will be to transmit the contents of the queue, and 0.45
gueue the arrivedRB in each time slot. This yields an 04
anonymity ofl/2 bit/packet. Therefore, the optimal strategy . 035
depends on the initial condition foxg = A = 1. 03
0.25

IIl. DOUBLE INPUT-DOUBLE OUTPUT MIX 2

Figure[2 shows the double input-double output Mix. The
capacity of each link id packet/time slot. Compared to the
Mix with one output link, i.e., Figur€ll, the flows of outgoing
packets are separate. © r*

At this point, we would like to clarify the main difference
between SectionSlIl arfd]Il of the paper. The focus of boffig- 5. Probabilitiep™, d*, andr* for different arrival rates\r and Ap.
sections is on flow-level anonymity. However, in the double
input-single output Mix, sectiof]ll, every packet can be ) _
analyzed to see if it belongs to a particular flow. In the deubfor the double input-double output Mix to be
input-double output Mix, even if one packet is identified as . N) (N N N
belonging to a flow, then it compromises the entire flow at AV = ]\}EI}DOH(CZR'II(% )’IJ(B )’Gg )’Gg ))’ (30)
that node. Hence, in this case, the eavesdropper does ribt nee
to detect the sender for each outgoing packet; insteadnis aiwhere similar to SectiorDII,Il(%N) and IJ(BN) are the se-
to find the corresponding source of each flow, by observimgiences of red and blue arrivals of lengih and GEN) =
a sequence of outgoing packets of sufficiently long duratiofG;(1), G;(2), ..., G;(N)), i = 1,2, where G;(t) € {0,1}
Let dr € {1,2} denote the destination of the red sourcendicates whether there is a packet at the outpirt time
Formally, we define the anonymit¢¥ of a Mix strategyy slot t. Without loss of generality, assume thag > Ap
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(the singular case ofhrp = Ap will be discussed later). Next, consider the case that there is no strict delay con-
Then, by calculating the long-run average rates of outgoistraint. In this case, one does not know how to measure the
flows, the eavesdropper can identify the correspondingcesuraverage delay because any Mix with non-zero anonymity has
destination pairs. Therefore, it is not possible to get ang drop some of the packets and the delay of the dropped
anonymity without dropping some packets from the red flowackets is infinity. So, instead, we use the average queae siz
Hence, the maximum achievable throughput for each floms the QoS metric.

cannot be more thamin{\r, Ag}(= Ap), and, at least, the

packets of the flow with higher rate, which is the red rovlé' Mix with an average queue length constraint

here, must be dropped at an average ratapf \p. ) ) _
We now present our model for a Mix with two queues In this case, instead of a per-packet latency constraint, we

for red and blue arrivals. Letiz[0,#] and Az[0,7] be the consider th_e average queue s_ize as the .QoS metrig. Similar
number of arrivals for the red and biue arrivals|int]. Also to the previous case, we consider strategies that achiete bo

let D, [0,¢] and D5 [0, ] denote the number of departures fronfnaximum throughput and perfect anonymity. Among all such
the output linksl and2 by the end of time slot. Then, to strategies, we will find an optimal strategy that minimizes t

assure any nonzero anonymity, i.e, we need mean queue length. _ ,
First note that, to get the smallest queue size, we would like

D;[0,t] < min{Ag[0,t], Ap[0,t]}; ¥Vt > 1; fori=1,2 (37) to hold with equality, i.e.,
(31) .

This is clear, because, for example, if there exists a time D1[0,#] = Do[0, 1] = min{ AR [0, ], A0, ]}; ¥t > 1 (32)
such thatAg[0,t1] > D1[0,t1] > Ag[0,t1], then obviously Then, it is clear that red and blue packets must be tranginitte
the red source is connected to the outpaind the anonymity simultaneously on output links, i.e., red packets are only
is zero. transmitted when there is a blue packet in the second queue,
and similarly, the blue packets are served when there is a red
packet in the first queue.

Also note that dividing both sides df ([32) byand taking the

Suppose that each arrival has to be transmitted wifiin limit as ¢ — oo shows that the maximum throughput should
time slots. In this case, in addition to red packets, blu&ke&c be min{\z, A\g}. Therefore, the optimal strategy must drop
have to be dropped as well. This is because it might happgie Red packets at an average raie— Ag, in a way that
that there is a blue arrival but no red packets for a tim@inimizes the mean queue length, while retaining equality
duration of ', in which case transmitting the blue packe{32).
will immediately reveals the corresponding destinatiorthaf Next, consider the problem of minimizing the mean queue
blue source. Hence, the throughput of each flow will be lesisngth. This problem can be posed as an infinite-state Markov
Ap. Recall the queue model of the Mix described earlier antkcision problem with unbounded cost. It follows from check
consider the following strategy. ing standard conditions, e.gl, [23],[24], that a statignar

Mix strategy under strict delay": For each queue, transmitoptimal policy exists for our problem, however, the average
the head-of-the-lindHOL) packet along with the HOL packetcost optimality equation[(12) may not hold. Therefore, we
of the other queue simultaneously at the correspondinguutfollow a different approach.
links. If the HOL packet has been in the queue for more thanRecall that when a red packet and a blue packet are both
T time slots and there is no arrivals in the other queue, drapailable, to minimize queue length, it is best to transhen
the HOL packet. immediately. Therefore, when one of the queues (blue or red)

Proposition 2. The above strategy is optimal in the sense th%tItS zero, from that point onwards, only one of the queues can

it yields perfect anonymity with maximum possible through € non-empty. Thus in steady-state, we can assume that one
y P ymity P pqueue can be non-empty. As a result, we have the Markov

Perfect anonymity, means that’ = 1, i.e., by observing decision process described next. I&tj) represent the state
the output sequence, the eavesdropper cannot obtain ahyhe system where there aigackets in the red queue and
information and each outgoing flow is equally likely to bajonj packets in the blue queue. The transition probabilities are
to one of sources. given by

Proof: Noting that any strategy with non-zero anonymity
must satisfy [(311), it is easy to observe that packets that P[(0,)1(0,9)] ArAp + (1= Ar)(1 = Ap)
are dropped under our strategy will be dropped under any P[0,y —1)[(0,y)] = Ar(l1—2Ap)
strategy that satisfy (31). Hence, our strategy has thermani P[0,y +1)|(0,y)] = Ap(l—2Ar),
throughput. Clearly our strategy has also perfect anoryymit
becauseG:(t) = G»(t) at all timest. Also note that in and
our strategy, packets will be immediately transmitted once Pl(z,0)|(z,0)] = AgAp+(1—Xr)(1—Ag)
a different color packet appears in the other queue. This + An(l—Ap)s
is the earliest time that a packet can be transmitted under R B/C=
@1). Hence, the average delay of those packets transmitted Pl(z —1,0)[(z,0)] = Ap(1—Ag)
successfully is also minimized under our strategy. | Pl(x +1,0)|(z,0)] = Ar(1—=Ap)(1—0ds),

A. Mix under a strict delay constrairif
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where §,, denotes probability of dropping the red packet i
state(x, 0),
that stability of the system (finiteness of mean queue Ieng

implies that the red packets must be dropped at an average

rate of \g — Ap. So our problem is to determing for each

if there is a red arrival but no blue arrival. Note?

11

where

z—1 -1
To,0 = <—+Zp_mH 1- z)) ;
=0
and

_As(1-An)
PN —2p)

Recall that, by assumptiot\z > A, and thereforéd < p <
1. The average queue length is

0o 0o
Z Y7o,y + Z TTg,0
B B r—1
+pr ””H 1-6;)].
1=0

any nonnegative integgrand for fixed values

L

I11\lote that for

f &;s,i # j, L is a linear fractional function of;. More
lf mally,
_ Aj+(1—-96;)B;
L((SJ) A; ( 5 )B/ )

x to minimize the mean queue length. We will show that tr\?/here
optimal policy is a threshold policy, which is defined below.

Definition 2. A threshold policy, with threshola, is a policy
that has the following propertiesi, = 0 for all 0 < z <

m—1, andd,, = 1, wherem is a nonnegative integer number.

The following proposition presents the main result regagdi
the optimal strategy.

Proposition 3. For the double input-double output Mix, the

threshold policy is optimal, in the sense that it minimizes t

average queue size among all maximum throughput policies
with perfect anonymity. Moreover, the threshold is given byand

L

o [~ 2 <p<l1
m* = { 0 0<p< % (33)
A (1—X
wherep = %
In other words, no buffer is needed fag > 1243133' but, as

rates get closer, fokg < A\gp < ff—fB a buffer of sizem* for

the red flow is needed. The optimal thresheold is depicted
in Figure[6. Note that the singular case ®f = A\g = A
(p = 1) is not stable. By allowing a small drop rate of for
each flow, wherd) < ¢ <« 1, one buffer for each flow can be

considered, and the thresholds and the average queue Bize cy

be expressed as functions ©of

7 z—1
A = ——l—Zp_IH(l—dl),
r—1
= +pr_””H 1-46;),
=0
j— x+j
r_ Hi:o (1 _51‘) —z
B, = pj+1— 1+Zp H (1=09)1,
1=7+1
Jj—1 00 z+]
(1 =6;) | . . —z
Bj:le)J('+1 ) j—i—l-l—Z(]—i—x-l—l)p H(l—&l)
z=1 i=j+1

Therefore 0L /34, is either positive or negative, independent
of §;, and consequently, the optim§l to minimize L is either
0orl,ie.,d; €{0,1} for all j. But, all of thed;s cannot
be zero, otherW|se the system will not be stab]e:é 00).
Definem to be the smallesf such thats; = 1. Thend, =0
forall 0 <z <m -1, andé,, = 1 which yields a threshold
policy with thresholdmn. Therefore the threshold policy is the
optimal policy.

ext, we find the optimal thresholeh*. The stationary
distribution of a threshold policy with thresholg is given

Proof of Propositio. B: The steady state distribution forb

the Markov chain representing the double input-double autp

Mix is given by
To,y = Woyopy, Y= 1725"'
x—1
Tz 0 = TrO,Opiz H(l - 51)7 T = 17 27 e

=0

TrO,Opya Yy = 1727 e
Troyo(l/p)mv T = 1725' M

o,y

Tx,0

wheremy o = (1 — p)p™. Therefore,r,,, o = 1 — p, and the
average packet-drop rat€,.,, is given by

Pirop = TmoAr(l — Ap) = Ar — AB
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which is independent of the threshald The average queue APPENDIXA

length is given by Proof of Lemmd13: Taking the derivative ofy respect to

~ o0 m ¢ yields
Lim) = Y7o,y + Ty 0
m = mat iy O = O —d)+ " e+ H ()
= (20" +m(1—-p)—p)/(1—p). (34) L, d H™) — a
Note thatZL(m), as a continuous function aof:, is strictly i dp* g ’
convex ovenn € [_0, <_>o) for any fi_xed_O < p < 1; therefore, _it but i 1— g
has a unique minimizen* which is either zero or the solution H(d*) = log =1+¢
of % = 0. Since we seek the smallest integer-valued the dd d
convexity implies thatn* is zero if and d . _p
E(O) < E(l), dp*H(p ) = log P g,
therefore

or it's a positive integern* satisfying €)= (p* — d¥)
g =0 -

L(m?) < L(m” —1), which is always nonnegative for all values &fSimilarly for

and f(€), we have
L(m*) < L(m* +1). d
PO = 0 +p)+ 07 g+ o H)
Then by using[(34), it follows that* =0 if p < £, and for d "
p > %, it satisfies - p (p*) —r*' =1,
m* dp*
2p™ > 1,
but d 1 —
and . ~H(r*) = log *r =1-¢,
2p™ T <1, dr r
hich vield and, as we saw, p
which yields .
y . 1 e (r")=¢,
m* = (—1 1-1 D
o8P therefore
This concludes the proof. ] , . .
o [ = rm+p -1
Remark 3. As far as the average queue size is concerned, 1 1
it does n(_)t matter which packet is dropped whgn= 1. T 1491-¢ + 1+ 92 -1
However, in order to get a better delay performance for those 9¢ 1
packets that are not dropped, it is better to accept the new = 7 t+t——%—1
) . 26042 142¢
arrival and drop the head-of-the line packet. o€ 1
< —+—7-1
S Ty2E "1y
IV. CONCLUSIONS - 0. (35)

The definition of anonymity and the optimal mixing strateg
for a router in an anonymous network depend on its func-
tionality. In the case of a double input-single output Mix, a

Y—lence,f(g) is a decreasing function.
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