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On Space-Time Capacity Limits in Mobile and
Delay Tolerant Networks

Philippe Jacquet, Bernard Mans and Georgios Rodolakis

Abstract

We investigate the fundamental capacity limits of spacetjourneys of information in mobile and Delay
Tolerant Networks (DTNs), where information is either sanitted or carried by mobile nodes, using store-carry-
forward routing. We define the capacity of a journeg.(a path in space and time, from a source to a destination)
as the maximum amount of data that can be transferred fronsdhece to the destination in the given journey.
Combining a stochastic model (conveying all possible jeys) and an analysis of the durations of the nodes’
encounters, we study the properties of journeys that maxirtie space-time information propagation capacity,
in bit-meters per second. More specifically, we provide thgcal lower and upper bounds on the information
propagation speed, as a function of the journey capacityhénparticular case of random way-point-like models
(i.e.,when nodes move for a distance of the order of the network dosige before changing direction), we show
that, for relatively large journey capacities, the infotima propagation speed is of the same order as the mobile
node speed. This implies that, surprisingly, in sparse argel-scale mobile DTNs, the space-time information
propagation capacity in bit-meters per second remainsagptiopal to the mobile node speed and to the size of the
transported data bundles, when the bundles are relatigede| We also verify that all our analytical bounds are
accurate in several simulation scenarios.

. INTRODUCTION

The problem of determining fundamental limits on the perfance of mobile and ad hoc networks
continues to attract the interest of researchers. Sevemabriant results have been achieved with the
seminal papers by Gupta and Kumar [7] (which provided the @iegpacity bounds in static wireless
networks) and by Grossglauser and Tse [6] (which showedtligamobility can increase the capacity of
an ad hoc network). Various mobility models have been studiethe literature, and the delay-capacity
relationships under those models have been characterzgd[4], [13], [15]). However, the nature of
these trade-offs is strongly influenced by the choice of tloditty model [14].

Moreover, there has been an increased interest in mobil®ad&tworks where end-to-end multi-hop
paths may not exist and communication routes may only béadlaithrough time and mobility; depending
on the context, these networks are now commonly referredtasnhittently Connected Networks (ICNs)
or Delay Tolerant Networks (DTNSs). Although limited, thedaemrstanding of the fundamental properties
of such networks is steadily increasing. There is a sigmficamber of results focusing on characterizing
the packet propagation delay [3], [5], [17], assuming theaiket transmissions are instantaneous, and more
recently, the information propagation speed [8], [10],][IThe authors of [3] took a graph-theoretical
approach in order to upper bound the time it takes for diseotad mobile networks to become connected
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through the mobility of the nodes. The papers [5], [17] aralthe delay of common routing schemes,
such as epidemic routing, under the assumption that the-nmeeting time between pairs of nodes
follows an exponential distribution. However, this asstionpis not generally verified, depending on the
relationship between the size of the network domain and eteyant time-scale of the network scenario
under consideration [1], and this can result in either anr-egmation or an under-estimation of the
actual system performance [2]. Departing from the expaakiriter-meeting time hypothesis, in [10],
[11], Kong and Yeh studied the information disseminaticenay in large wireless and mobile networks,
in constrained i.i.d. mobility and Brownian motion modelhey showed that, when the network is not
percolated, the latency scales linearly with the Eucliddiatance between the sender and the receiver. The
first analytical estimates of the constant upper bounds ersgieed at which information can propagate
in DTNSs, again without considering the quantity of inforimoatthat can be transmitted, were obtained
in [8].

In contrast, in this paper, we investigate the space-tinpa@ty of such networkg,e., the maximum
amount of information that can be transferred from a source destination over time. As the network is
almost surely disconnected, we refer to journeys rather pladhs, where a journey is an alternation of data
transmissions and carriages using store-carry-forwanting. Informally, our objective is to determine
how fast a given amount of dagacan reach its destination. Formally, we use a probabilisticlel of
space-time journeys of packets of information in DTNs (it [Il), and define the journey capacity as
well as the information propagation speed (in Section th)provide the following main contributions:

« we characterize the duration of node meetings, by boundiegtobability function of the durations

of the nodes’ encounters, in Section IV;

« we prove the first non trivial lower bounds on the informatmopagation speed (Theorém 1), for a
bounded journey capacity, in random waypoint-like mogilibh SectionV;

« we prove general upper bounds on the information propagateed (Theoreil 2 and Corollaries 1
and 2), as a function of the journey capacity, and we invastighe properties of journeys that
maximize the space-time network capacity in bit-metersggeond, in Sectioh VI;

« we compare and verify the analytical bounds with simulatieasurements in Sectién VII.

We provide concluding remarks in Section VIII.

[I. NETWORK AND MOBILITY MODEL

We consider a network ot nodes in a square area of sie= L x L and radio range?. As we want
to focus on DTNSs that are almost surely disconnected, weamidllyze the case where is fixed, while
n, A — oo, such that the node density= 7 is bounded by some constant.

Formally, we adopt the random geometric graph model [16p twodes at distance smaller than a
maximum radio range? can exchange information. Moreover, we consider that tke aawhich nodes
can transmit data when they are within range is fixed, andled@uainits of data per second.



Initially, the nodes are distributed uniformly at randonveEy node follows an i.i.d. random trajectory,
reflected on the borders of the square (like billiard ball$)le nodes change direction at Poisson rassd
keep a constant speedbetween direction changes. The motion direction anglesiaifermly distributed
in [0,27) and are mutually independent among all nodes. When 0, we have gpure billiard model
(nodes only change direction at the border). When 0, we have aandom walk modelwhenr — oo
we are on the Brownian limit. When = O(1) — 0 we are on aandom way-point-like modekince
nodes travel a distance of ordérbefore changing direction or hitting the border.

[1l. SPACE-TIME JOURNEY ANALYSIS

We studyjourneys with a given capacitye., journeys that guarantee that at least an amount of data can
be transferred to the destination. Our aim is to find the glsbjburney (in time) with journey capacity at
leasty, that connects any source to any destination in the netwonkagh, in order to derive the overall
information propagation speed.

We base our analysis on a probabilistic model of journeysamkepts of information that encapsulates
all possible shortest journeys originating at the sourseysed in [8]. LetC be a simple journeyi.g., a
journey not returning to the same node twice). L&C) be the terminal point. LeT'(C) be the time at
which the journey terminates. LetC) be the probability of the journeg.

Let ¢ be an inverse space vectag., with components expressed in inverse distance unitsd Lt a
scalar in inverse time units. We denote ©y(, ¢) the journey Laplace transform, defined for a domain

definition for (¢, 0):
w(¢,0) = Elexp(=¢-Z(C) - 0T(C)))
= 2cp(C)exp(—=¢- Z(C) —0T(C)).

We call p(zo,z1,t) the normalized density of journeys starting fram at time 0, and arriving a;
before timet:

pam =0 O #l0).

llz1—Z(C)||[<R,T(C)<t

Let us consider that a bundle of information;obits is generated at= 0 on a node at coordinatg =
(x0,0). Let us initially consider a destination node which staygiomdess at coordinate; = (x1, y1);
in this casep(zo, z;,t) denotes the probability that the destination receives dnef linformation before
time t. Now, let us consider a moving destination node, that istkxtat coordinate; = (z1,y;), at time
t. We denotez = z; — z. Let ¢(z,t,y) denote the probability that there exists a journey of cdpeaati
leasty reaching the destination before time

The information propagation spee€ly), considering a journey capacity is defined as the minimum
ratio of distance over time above which the journey prohigbiends too0, i.e.,

o if ”it” > s(y), thenlim)z 00 ¢(2,t,y) = 0;

o if ”it” < s(y), thenlimy ;) 1~ q(z,t,y) > 0.

We also define thepace-time information propagation capacityy) (from now on simply referred
to as thespace-time capacijy as the maximal transport capacity in bit-meters per séctmat can be



achieved by any journey of capacify Thus, in this model, the space-time capacity correspoodbé
productc(y) = s(y)y.

Therefore, in order to determine the space-time capagititdiof mobile and delay tolerant networks,
we will analyze the information propagation speed, as atfanof the journey capacity; in the following
sections, we will compute lower and upper bounds. In ordedddve the bounds, we first study the
characteristics of node meetings.

IV. NODE MEETINGS

A meeting (or encounter) between two nodes occurs when distaince becomes smaller than or equal
to R, i.e., when the nodes come into communication range.
Lemma 1:A node A, moving in directiony,, meets new nodes moving in direction betwegnand
Y1+ dy at rate: fy, | o = 228 sin(L52)dy, for vy, 1 € (—m, 7], where R is the radio range.
Proof: See appendix. [ |
We denote the meeting duration by the random varidble
Lemma 2: The probability P(7" > t) that a meeting has duration at leagtatisfies:

™R
P(T > t) < min(1, —).
(7> 1) < min(1, 1)

Proof: The average number of neighbors of any node:i&?. From Lemmall, the rate at which a

node meets new neighbors fis= %. Therefore, from the Little formula, the average meetimggti.e.,
the time that a node remains a neighbor) eq@%{iﬁ = ”SQ—UR. The proof follows by applying Markov’s
inequality. [ |

In the pure billiard modelife., when 7 = 0), we can give the exact formulas on the meeting time
distribution. We note that our model where nodes bounce erbtirders like billiard balls is equivalent
to considering an infinite area made of mirror images of thgimmal network domain square: a mobile
node moves in the original square while its mirror images eniovthe mirror squares [8].

Lemma 3:We denote the meeting duration by the random varidbl&he probability density function

pT(t)OfTiS: )
v 41 R R
t) = ~log | & 1 - 1
pr(t) =7 log %t—l‘( +(Ut)2) 20t @

for t > 0, wherev is the node speed is the radio range.

1

Whent — oo, the cumulative probability?(7" > t) is:

P(T > t) = 35;2 +0 (é;) |

Proof: See appendix. [ |



V. LOWER BOUND

We prove a lower bound,(y) on the information propagation speed, for journey capagityn the
random way-point-like mobility modeli.e., when nodes travel a distance of the order of the network
domain length before changing direction. Initially, we discon the pure billiard mobility modei.e., we
assume that nodes do not change direction unless they higattaker. Finally, we remark that the result
can be generalized to node mobility with a small change datiion rate.

We will show that, for all destination nodes which, at timeare at distance ~ s, (y)t of the initial
source location, there is a journey of duratibmnd of capacityy from the source to the destination,
with probability strictly larger thar). We consider large distances= ©(,/n), wheren is the number
of nodes in the network; in this case, the square network doimas a side length = ©(,/n), as we
are interested in the case where the node density is cor(bianstrictly larger than 0), as discussed in
Section[ll. We show that, when the journey capacityy is< % for a constantk, the lower bound is
sr(y) = v, wherev is the mobile node speed.

Fig. 1. Definitions of rendez-vous point of the information generated at locatighwith the destinationD (left), and of anglepc with
respect to the speed of nodéand locationB (right).

We consider a source nodeand a destination node. We denote byws andvp the respective vector
speeds of the source and the destination. We assume thatutee starts sending the information at time
0. We define the pointd as the third vertex of the isosceles triangle, formed with tiho other vertices
located atS and D (at time 0) and with sidesSA and DA of equal lengthr, while DA is parallel to
the destination speed,, as illustrated in Figurgl1l. Point is therefore theendez-vous poinbdf a node
moving at constant speed in the direction ofS A, and the destination node, while the nodes contact (at
the same location) occurs at timg = ~. Similarly, if the (asymptotic) information propagatiopeed
is equal to the node speed the information will reach the destination at locatidh= A + AZ, with
|AZ| = o(r), at timety =ts + o(%).

We will describe a routing scheme that constructs a jourri@uaationt 4 = - +o(%), which originates
at S and ends at any given point, and guarantees that for any direction of the destinatiaterepeed,
the journey capacity is at leagt We assume w.l.0.g. that the radio rangéis- 1 and the communication
rate is alsoG = 1, to simplify the expressions (to generalize, it is suffitiemperform a simple scaling).
We note that, in this case, ensuring a journey capacity &t lequal toy is equivalent to ensuring a
minimum meeting durationy for all transmissions in the journey.

The routing scheme proceeds in three stages, illustratédgure[2. In all stages, the information is



Fig. 2. Overview of the routing scheme achieving the loweurzbof information propagation towards the rendez-vousitpdi in three
stages.

passed among nodes moving at relative direction of angledegt anda, with a value ofa that we
will precise in the following.

Initially, we consider a poinB located on the destination’s trajectory (before the rendris pointA).
We also takeB such that the distance from the rendez-vous pdig 5 = O(1/r). In the first stage, the
information is transmitted to new nodes (according to thevalbangle restriction and ensuring a journey
capacity at least) until reaching a node, whose trajectory’s distance frBnis at most,/7.

In the second stage the node with the information simplyelsaa straight line (of length + O(,/r))
until approaching the poinB within distance,/r.

In the third stage, the information is transmitted to newe®¢again, with a relative direction angle
in [3,a], and ensuring a journey capacity at legytuntil the information is transmitted to a node that
passes within distance of the rendez-vous pointl, while the contact duration with the destination is
sufficient to transfer all the information.

We will show that this routing scheme guarantees that th@mmtion will reach the destination with a
journey of capacity at least, with a total journey duration of + O(%). More precisely, we show that
the duration of the first and third stages%%). Since the duration of the second stagg is O(%),

a lower bound on the information propagation speed. is

We now analyze the duration of the three routing stages.

1) Stage 1:We introduce the following notations. L&t be the node that most recently received all
the information, moving at speed-. We definep- as the angle formed between the veait® (defined
by the locations of the nod€' and the pointB) and the speed, as depicted in Figurel 1.

Lemma 4:The durationt; of stage 1 of the routing scheme @(4), almost surely. The distance
traveled isO (/7).

Proof: See appendix. [ |

2) Stage 2:

Lemma 5: The durationt, of stage 2 of the routing scheme Jst- O(%), almost surely.

Proof: The initial distanceS B is at most-+rz = r+O(y/r). From Lemma}, the distance = C A
at the end of stage 1 is+ O(y/r). The minimum distance of nod€ trajectory toB, and is at most
ro =11 sin(%) — /r+0(r2), as depicted in Figur@ 2. Therefore, there is a point in thttory such



that the final distance of nodé from the pointB is exactly/r. Therefore, the total distance traveled in
stage 2 is at mosti(1 + (o)) = r + O(v/7). |

3) Stage 3:At the beginning of stage 3, there is a node carrying the mé&tion, located within distance
rg + +/r from the rendez-vous point, and within distange from the destination’s trajectory. In this
stage, the information is transmitted to new nodes (agaoording to the above angle restriction and
ensuring a capacity at leagt until reaching a node that passes within distahcd the rendez-vous point
A, while the contact duration with the destination is at least

Equivalently to stage 1, let’ be the node that most recently received all the informatioaying at
speedv.. We introduce again the anglg-, this time defined with respect to the rendez-vous pdint
namely,¢¢ is the angle formed between the vectod (defined by the locations of the nodéand the
rendez-vous poinfl) and the speed.

Lemma 6:We consider a nod€’, at distance - from the rendez-vous point, moving with speed
at a direction such that the relative angle with the destna direction is at most = ﬁ If the angle
oc is at mostﬁ, then the trajectory of’ passes within range of the destination and guaranteeshihat t
meeting duration with a destination locatedAtmoving at constant speed, will be at least equaj.to

Proof: The relative speed of the nodg with respect to the destination’s speed, is at mosin(3) <

va. If the nodeC passes within distance from the rendez-vous point, the meeting duration is at least

1;;” (since the distance traveled within range, in the frame &remce of the destination, is at least
1 — m). Therefore, in order for the meeting durati@hto be at least equal tg, it is sufficient that:
m<1—yva= % In this case, we guarantee a meeting duration at least emyaMoreover, if we have
¢c < 5=, the node will pass within distancg from the rendez-vous point. |

Lemma 7:The durationt; of stage 3 isO(%), almost surely. At the end of stage 3, the destination is
reached at the rendez-vous point with probability stritaigger thano.

Proof: See appendix. [ |

Theorem 1:Consider a network with constant node densifyradio rangeR and communication rate
G, where nodes move at speed- 0 and change direction at rate= 0. When the journey capacity is at
mosty = % where K is a constant, a lower bound on the information propagati@es iss; (y) = v.

Proof: Considering the final position of any destination, we canngef rendez-vous poim. If
the distance of the rendez-vous point from the source locatt time0 is » — oo, based on the previous
lemmas, there exists with strictly positive probability @uijney of capacity at least that reaches any
rendez-vous pointl within time ~ . Therefore, the asymptotic information speed is at least [ ]

We note that, in case the network domadn= L x L is sufficiently large, for all destination nodes
which, at timet = ©(L), are at distance = o(vt) of the initial source location, there is almost surely a
journey of durationt and of capacityy from the source to the destination.

Remark 1:Although, we derived the lower bound in a pure billiard mabimodel, the proof can be
easily generalized to a random walk model, where the chahdeeztion rate isO(%), by restarting from

the first stage at any change of direction (an event whichrscadinite number of times).



VI. UPPERBOUND AND SPACE-TIME CAPACITY

In this section, our aim is to find the shortest journey of cipaat leasty that connects any source to
any destination in the network domain. We prove an upper @awity) on the information propagation

speed, for journeys of capacity
Theorem 2:Consider a network witm mobile nodes with radio rang&, communication raté, in
a square area of sizd = L x L, where nodes move at speedand change direction at rate When
n — oo, such that the node density becomes- ;, an upper bound on the information propagation

speed, for journeys of capacity is the smallest ratio oﬁ with:

v(y)dmvvRIy(pR) ) ’ B
) )

1—7(y) 52 L(pR

min 0 with 6 = $p21}2 + <T+

p,0>0 | p

wherel,() and ;() aremodified Bessel functionand,

e Y(y) = min(THG 1), if 7> 0;

. 2 .
e Y(y) = mm(%, 1), if 7=0.

Remark 2: The expression off has meaning whemvR%*y(y) < 1. Above this threshold, the upper
bound for the information propagation speed is infinite. iSacbehavior is expected, since there exists

a critical node density above which the graph is fully coneeéwr at least percolates [12]. In addition,
according to Theoreml 2, in percolated networks, there istealrjourney capacityy., such that, when
y > 1., the propagation speed is bounded by a constant.

Proof: We assume that a source starts emitting information atiposit= 0 and timet = 0. We
consider the probabilistic space-time journey model preskin Sectioh_Ill, which includes all shortest
journeys originating at the source. Equivalently, we mgdetneys of very small beacons of information,
such that beacon transmissions are instantaneous.

We initially consider an infinite network with a Poisson dénsof nodesA. We will upper bound
the probability density of journeys in the infinite networkodel. However, by applying an analytical
depoissonization technique [9], we obtain an equivalepngsgotic estimate of the journey density when
the number of nodes is large but not random.

We decompose the journeys into two types of segments, nmgdetide movements and beacon trans-
missions:

. emission segments (u, v): the node transmits immediately after receiving the beacas the speed

of the node that just received the beacon, arid the emission space vector and is such thaK R;

« move-and-emit segments,(u, v, w) = M (v, w)+u: M(v, w) is the space-time vector correspond-
ing to the motion of the node carrying the beacon, wherlie the initial vector speed of the node
when it receives the beacon amdis the final speed of the node just before transmitting thedrea
the vectoru is the emission space vector which ends the segment.

Considering any sequence of segments, we can always upped ltlee segment probabilities (see [8],

Section 1lI-B). In fact, the conditional probabilities vgin the node direction and speed, are upper bounded
by unconditional probabilities:
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« P(S.(u)) = P(u))\, whereP(u) is the probability density of: inside the disk of radius?, and
is the node density (to make the emission possible);
e P(S,(u,v,w)) = P(u)P(M(v,w))2v\, where P(u) is the probability density ofi on the circle
of radiusR (we only need to consider the earliest transmissions, wbathur at the maximum radio
range), P(M (v, w)) is the probability that the node movement equals the spac®eé/ (v, w),
andwv is the node speed.
This upper bound journey model results in a higher densitpofneys than in the actual network. But,
in this model, any journey can be decomposed into a sequenioelependent segments. Consequently,
we can express a journéyas an arbitrary sequence of emissmnmove-and-emit segmentse., using
regular expression notatiod, = (S, + S,,)*. Moreover, we can calculate the Laplace transform of the
journey probability density, based on the Laplace tramsfoof the segments. We denote the segment
Laplace transforms by, (¢, 0) = E(e= %) andl,,(¢,0) = E(e~(¢95n), for emission and move-and-
emit segments, respectively. Equivalently to the formahtdiyﬁ = 1+x+22+234 ..., which represents
the Laplace transform of an arbitrary sequence of randomalas with Laplace transform, the journey
Laplace transform has a denominatdc, 6), equal to:

k(G 0) = 1= (1e(C, 0) + (€, 0)) - 2
We have the following Laplace transform expressions:
e 1.(¢,0) = E(e™¢"), whereu is uniform in the disk of radius?, with density \, i.e., I.((,0) =
AL (¢ R).
e 1.(¢,0) = E(e= ) E(e= M) “whereu is uniform on the circle of radiug, with density ),
i.e., B(e™) = 2rARIy([¢|R), and E(e=o M) = 1 (see [8)).

VORI
We derive an upper bound on the information propagationdsgdaehe special case where the journey

capacity isy = 0, from the analysis of the singularities of the journey Lapldaransform, for\ equal to
the node density in the networkf( Theorem 1 in [8]). The upper bound is the smallest ré;tiof the
non-negative paifp, #) which is a root of the denominaté«p, ) (with p = |
the segment Laplace transforms expressionglin (2).

), obtained by substituting

In order to generalize to journeys of a given capagjty> 0, we will restrict the set of possible
journeys, to those satisfying the desired capacity coimstrand calculate the Laplace transform of the
journey density in this restricted set.

First, we remark that, a journey has a capacity at lgadtand only if the journeythicknesgi.e., the
minimum duration of all data transmissions in the journsygtileast equal té, with G the communication
rate. Therefore, when considering journeys of a given dgpage can equivalently focus on the possible
journeys with minimum node meeting durati¢n

Therefore, in the upper-bound journey model, we can suibstihe probability of any emission segment
with the probability of the same emission segment, whileitaathlly ensuring that the emission duration
is at leasty. Thus, for the singularity analysis, we substitute[ih (2 ®oisson density with a node
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densityvy(y), wherev(y) is an upper bound on the probability that the meeting dunaisoat least?.
This direct substitution is feasible because we work withupper bound journey model, where successive
segments (including all transmissions) are independetiteoprevious network state. Again, this results in
considering a higher density of journeys than in the actealvark (including some transmissions which
are not actually possible, due to the node directions); kewehere is no impact on the validity of our
analysis, since we are interested in upper bounds.

To conclude the proof, it suffices to substitute quantity) using Lemmai3 whem = 0, and Lemmal2
whenrt > 0. [ |

We derive the following corollaries expressing the behawb the upper bound when the journey
capacity is large, in random waypoint-like - 0) and random walk/Brownian motion mobility- > 0),
respectively.

Corollary 1: When nodes move at speed> 0, and% — 0 (i.e., the journey capacity is large) with
T > 0, the propagation speed upper boundi Z—va).

Proof: See appendix. [ |

Corollary 2: When the node speed is> 0, andg — 0 (i.e., the journey capacity is large) with
T = O(7) — 0, the propagation speed upper bound is O(r + %RQ).

Proof: See appendix. [ |

We observe that, for large journey capacitieghe upper bound on the information propagation speed
sy (y) tends to the actual mobile node speeith random way-point-like mobility, while it decreases with
the inverse square root of the journey capagityn random walk or Brownian motion mobility. In both
cases, the resulting upper bound on the space-time capégity- sy (y)y is a function which increases
with .

Remark 3:When nodes move at speed> 0 in random way-point-like mobility:

. from Theorentll, a lower bound on the propagation speed fer any bounded;, and when the

node density i3/ = ©(1);

. from Corollary[2, an upper bound on the propagation speed fsr journey capacitiey such that

v = o(y).
Therefore, we notice that there is a range of valueg,dbr which our bounds are almost tight. More
generally, we deduce that the information propagation gpegandom way-point-like mobility models
is of the same order as the mobile node speed, for (bounded)gp capacities that are relatively large
with respect to the node density.

This implies that, in sparse but large-scale mobile DTNg $pace-time information propagation
capacity in bit-meters per second remains proportionah&mobile node speed and to the size of the
transported data bundles, when the bundles are relati&ede | It is rather surprising that the propagation
speed does not tend t® when the size of the bundles increases, which would resuét sub-linear
increase of the space-time capacity.
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Fig. 3. Snapshots of simulated information propagatiorhege different timest(= 100, 170, 240), for a small journey capacity = 0.5
(top) and a larger journey capacify= 2.5 (bottom). Larger black squares represent nodes that haeéeel all the information at the time
of the snapshot.

VII. NUMERICAL RESULTS

In this section, we perform simulation measurements to @mpgo the analytical bounds on the
information propagation, derived in the previous sectioe developed a simulator that follows the
network and mobility model described in Sectloh Il. We siatalthe epidemic broadcast of information,
and we consider journeys with a given lower bound on the égpacas described in Sectignllll. We note
that the simulation is more general than the simple broadifes packet of size;, since the information
can also be transferred on a given journey using smallergisckn fact, we precisely ensure that the
journeys of the simulated broadcast have a capacity at {eagithout imposing further restrictions. For
all the following simulations, we consider a communicatrate G = 1 units of data per seconce.Q.,
if one unit of data corresponds to Mbits, the journey capacity in the following examples shibbke
multiplied by = Mbits).

We first show how information propagates in a full epidemiodulcast, by illustrating two typical
and distinct situations, depending on the journey capagitin the simulated scenario, a source starts
broadcasting information at time= 50, in a network of5000 nodes, in &2000m x 2000m square, with
radio rangeR = 10m, and mobile node speed= 5m/s, with pure billiard mobility ¢ = 0). In Figure[3,
we consider two cases: a smaller journey capagity 0.5 (top) and a larger journey capacity= 2.5
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(bottom). For each case, we depict three snapshots of thelaged information propagation at three
different times,t = 100, 170, 240, from left to right. The small black dots represent the melnbdes;
when two dots are in contact, the corresponding nodes alenwdbmmunication range. The larger black
squares represent nodes that have received all the infonmatt the time of the snapshate., those that
can be reached by a journey of capagjtyThe simulation scenario is exactly the same in both the top
and bottom figures, with the only change concerning the @umrapacities. In both cases, the location
of the source is approximately located at the center of tk dontaining the black squares, at the top
left figure. We observe that, at the top row of Figlie 3 comesiing to a small journey capacity, the
information propagates as a full disk that grows at a comnstte, which coincides with the information
propagation speed; all nodes inside the disk can be reachedjdurney of capacity, almost surely.
Equivalently, this means that the average information agagpion delay scales linearly with the distance
from the source, and the ratio of the propagation delay dverdistance is equal to the inverse of the
information propagation speed. On the other hand, at thinotow, corresponding to a larger journey
capacity, only some of the nodes inside the disk have beahedaby a journey of capacity. In this
case, the average information propagation delay does metssarily scale linearly with the distance from
the source. However, the information still propagates anaafler than before) maximum speed, equal to
the rate at which the disk radius grows.

Next, we simulate a network &0 nodes, moving in an arg®0m x 600m, with a radio range ofOm,

a mobile node speed &fn/s and a communication raté' = 1 units of data per second. We simulate
two different mobility parameters (rates of direction cgapr = 0 for the pure billiard mobility model,
where nodes change direction only when they bounce on thdehoandr = 0.05 for a random walk
model.

In Figure[4 we plot the ratio of the propagation delay over distance from the source, versus the
distance, for journey capacitigs= {1;2;3}. Each sample point in the plots corresponds to a simulation
measurement. The distance is measured from the locatidreafdurce when the information was emitted
to the location of the destination when the information waseived. We notice that, for all journey
capacities, the ratio of the propagation delay over theadcs is larger than a non-zero constant. The
constant lower bound on the ratio, in this simulation scends close to the inverse of the mobile
node speed (which is plotted in the figures as a straight foregomparison). Furthermore, this constant
corresponds to the upper bound on the information propagapeed, which was calculated in Theoiém 2.
In fact, for small journey capacitie®.g.,y = 0.5), we notice that the upper bound on the information
propagation speed is larger than (but close to) the mobitke repeed. For larger journey capacities and
7 = 0, the upper bound can be obtained from Corolldry 2, and indeedsponds to the mobile node
speed. We also notice that, fer= 0.05, the average distance that each node travels before clgangin
direction is100m, which is of the order of the square network domain lengtheré&fore, in this case,
the upper bound on the propagation speed also remains dabe testimate for random waypoint-like
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Fig. 4. Ratio of information propagation delay over disenersus distance from the source, for different journeaciies ¢ = {1;2; 3},
respectively), compared to the inverse of the mobile nod=dpwith pure billiard mobility £ = 0 — left), and random walk mobility
(7 = 0.05 — right).

mobility in Corollary[2,i.e., the mobile node speed.

In Figure[®, we depict the simulatederagepropagation time versus the distance, for several differen
journey capacity valueg = {0.5; 1;1.5;2;2.5; 3}. Time is measured in seconds, and distance in meters,
therefore, the inverse slope of the plots provides us wighitifiormation propagation speediins—!. We
compare it to a line of fixed slope corresponding to the mobdde speed. For comparison, we plot the
theoretical upper bounds on the information propagatiaedp(derived from Theoreid 2) in Figuré 6.
Simulations show that the theoretical speed is clearly geupound. Moreover, we notice that the upper
bound in the case corresponding to random waypoint-like ilityls tighter, due to the fact that our
analysis of the node encounter duration analysis (see LeB)nmsexact in this case.

In FiguresL b, we also notice that, for journey capacitiesaip tinits of data per second, the measure-
ments rapidly converge to a straight line of fixed slope, Whioplies a fixed information propagation
speed, as illustrated by the top row of Figlde 3. However,ldoger journey capacities, border effects
become significant and the slope of the measurements terigshis means that, although the maximum
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Fig. 6. Upper bound for the information propagation speed asction of the journey capacity:(= 500, A = 600m x 600m, R = 10m,
v ="5m/s, G =1 units of data per second), with pure billiard mobility £ 0 — left), and random walk mobility{ = 0.05 — right).

information propagation speed is still a non-zero consthetinformation does not propagate uniformly as
a disk growing at constant speed. In this case, informatropggation occurs similarly to the expectation
illustrated in the bottom row of Figufd 3.

Finally, in Figurel .Y, we plot the space-time capacity inrbiéters per second, versus the distance from
the source, achieved by journeys of different capaciies{0.5; 1; 1.5; 2; 2.5; 3}, in the same simulation
scenario. The space-time capacity is obtained by multiglythe average propagation spe€g) with
the journey capacity). We observe indeed that, for journey capacities up tmits of data, the plots of

~
~

the space-time capacity in Figuré 7, converge:tg) = s(y)y ~ vy; this is consistent with Remaik 3.
For larger capacities, the space-time capacity has notecged to a constant value, due to the fact that
the network domain is finite. However, we note that, in a lamgetwork, the space-time capacity would
be larger for journeys of larger capacities. In fact, in afinite network, the space-time capacity would

converge to a constant value for any finite journey capacity.
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VIIl. CONCLUDING REMARKS

We characterized the space-time capacity limits of mobilé\B, by providing lower (Theorem 1) and
upper bounds (Theorelnh 2) on the information propagatioedpeith a given journey capacity. Moreover,
we verified the accuracy of our bounds with extensive siniatin several scenarios.

Such theoretical bounds are paramount in order to increaseulnderstanding of the fundamental
properties and performance limits of DTNs, as well as toglesir optimize the performance of specific
routing protocols. In fact, our results provide lower angh@pbounds on the best achievable propagation
delay of bundles of data, over large distances.

It is also worth noting that our analysis provides the firsbwn lower bounds on the information
propagation speed in mobile DTNs (for random waypoint-hikebility models), and generalize previously
known upper bounds.

More specifically, in the case of random waypoint-like mitpimodels, we showed that for relatively
large journey capacities, the information propagatioredpe of the same order as the mobile node speed.
This implies that, in sparse but large-scale mobile DTNs,gpace-time information propagation capacity
in bit-meters per second remains proportional to the maoinlge speed and to the size of the transported
data bundles, when the bundles are relatively large.
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APPENDIX
A. Proof of Lemmall (Meeting Rate)

Whenn, A — oo, we can consider an infinite network with a Poisson densithadesy = 7 to
simplify the proof. In fact, if we consider an areé of the infinite network, the number of other nodes
is given by a Poisson process of rateand we cardepoissonizét [9], to obtain the equivalent result
when the number of nodesis large but not random.

Let u be a unit vector always centered at the position of nddéVe denote byf the rate at which
mobile nodes enter the neighborhood range of nddat position Ru with respect to the node location
z4(t), whereR is the radio range.

Let us denote byB a second network node, with a constant vector spegdThe Poisson density of
presence of3 at any location on the plane is The relative speed of the nodesvis — v 4. The projection
of the relative speed on the vect@u equals(Ru - (vp — v4)) u. The rate at which any nodB enters
the neighborhood range of the nodeat u, is f(v4, vp,u) = max{0,u- (vp — va)VvR}.

By averaging onu, we have the total meeting rate:

s

Fvava) = [ v = valcosvvRi = wlvs — valR

(VB

Therefore, the rate at which a node meets new neighbors pogronal to their relative speed. From the
law of sines, the relative speed is proportionalsim(%), where Ay = iy — 1)y is the angle formed
between the speed vectors. By normalizing, we obtain theinteeate.

B. Proof of Lemmal3 (Distribution of Encounter Duration)

We consider the encounter of two nodésind B, moving at speeds, andv respectively. We define
Av =vp — v, as the relative speed of the nodes. Therefore, taking asveefad reference the position
of node A, node B is moving at constant speedlv, as illustrated in Figure_10. We denote By the
Euclidean norm of the relative spedce(, the relative velocity). From the law of cosines, it holds:

Av = |[vg — vall :2Usin(%), 3)

wherey € [0, 27) is the angle between the node speed vectors.
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From Lemmalll, the rate at which nodes meet is proportionahéir trelative speed. Therefore,
normalizing [(B), the angl@ is distributed according to the probability density fuoati

pyl@)dz = isin(g)dx, z € [0,27), (4)
and, substituting” = 2vsin(5) according to[(B), the density functign, (V) of the relative velocity is:
1

= Kidv, V e [0,20]. (5)

L(V)dV =
pA() 2,U\/m

Fig. 8. Encounter of noded and B in the frame of reference centered it Av is the relative speed aB, d is the length of the chord
traveled byB within range,{ is the distance of the chord from A.

3.0
25

2.0

vt41

1| (1+ iyz) — o7 of the node encounter duratidh, for v = 1.

Fig. 9. Probability density functiopr(t) = 7 log
Always in the frame of reference of nodg we denote byl the distance traveled by node within
range of nodeA. In other words is the length of a chord of the circle of radiuis (the radio range),
centered at nodd. We define/ as the distance of the chord fror as depicted in Figurie 10. We remark
that, as a node moves and meets new neighbors, quénstgistributed uniformly at random betweén
and R, since meetings occur equiprobably at any point of the dianygerpendicular to the node relative

speed. Therefore, sinee= 2v/ R? — (2, the distribution of the length is:
JJ2
Pd>z)=4/1- —. (6)

Differentiating, we obtain the probability density furart:

pa(z) = 2]%\/%’ z € [0,2R]. (7)



18

If T is the duration of the encounter, we have:
d=AvxT, (8)

where all quantities are random variables.
Let us consider a given relative velocityy = V. In this case, we can define the conditional probability
densitypr(t | Av = V) of the encounter duration, withe [0, 2]:

pr(t | Av=V)dt = pa(x | Av =V )dz = ps(Vt)Vdt,

wherex = V't, according to[(B).

Combining with [7), )
Vet

27/4— (V)2

Considering the probability density functign-(¢), and using[(b) and{9), we have for> 0:

pr(t | Av=V)= (9)

2v
pr(t) = / pr(t | Av=V) X pa,(V)dV
0
Ft+1

1 R? R
F 1+ — ) = —.
wt—1 (vt) 2ut

= log
We note that the fact that nodes bounce on the borders doesnpatt on this result. We plot the
probability density functiorpr(t) (for R =1, v = 1) in Figure[9.

By simple integration, we obtain the probabili(7" > t):

1 zt+1| /R v 1
P(T >t) = ~log | & — ——t]+=. 10
(T>1) 40g%t—1‘<vt R)+2 (10)
For larget, we have% > 0. Therefore, using the identitpgz = 23" ;-1 (i—jr})%“, we have:
R
R? R*
P(T>t) = )
(T>1) =30 + Ot

C. Proof of Lemmal4 (Duration of Routing Stage 1)

Since we consider meetings of relative angle at mosthe relative speed of two meeting nodes is
maximized when the angle between thenu i@nd equalu sin(3)). Therefore, in order for the meeting
duration7 to be at least equal tg, it is sufficient that the distancé traveled within range, in the frame
of reference of one of the nodes (see Fidure 10), satisfies:

d > vay > 2v sin(g)y.

According to (6),P(d > z) = /1 —Z, and P(T' > y) > /1 — “2%. Assuming thaty > L, we

takea = -,
vy

“[3
ot

P(T=zy) = 2

m
1
For smallery, the same bound clearly still holds.
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Fig. 10. Encounter of noded4 and B in the frame of reference centeredt Av is the relative speed aB, d is the length of the chord

tra\}eled byB within range,/ is the distance of the chord from A
From Lemmd. 1L, the probability to meet a node at an anglg in] is P, = cos($) — cos(§) >

sincea < 7.
The rate at which a node meets new nodes at such an angleingnthat the meeting duration is at

leasty, is:
4

We note that the angle. determines the distanaé; of node C trajectory from the pointB (see
Figurell). In fact, it holdsdp = |C B| sin ¢. When a node moves, varies, whiledz remains unchanged.

In fact ¢~ always increases when a node moves towards the destingtiarever, after a node movement
), ¢c is not modified asymptotically.

of distanced, we haveA¢ps = (|CB‘) and if § = o
Thus, if the initial angle between the source and the ddstimas b, the expected timé<(¢}) until

5 < ¢c <alis:
2b 327 1
Et) < =< =0(—).
(h) < af — advv UI/)

From Lemmdll, the rate at which a node meets nodes at relatgle @), ¢ + dv] is %—”sm(g)dﬁ
Therefore, the nodé€’ that last received the information meets new nodésvith angle ¢, < f, and
with meeting duration at leagt, with rate (assuming that: remains betweerj anda):

at—= sin( 4 .
fo> 2“_”13(T > y)/ T sin(® + ayde > ) | oty
a— = 4 NG
_) (we note that < 2K). We notice that

and the expected timg(t}) until meeting such a node @(
the ¢/ = o(r) almost surely, and we can indeed assume ¢hatemains constant until meeting’
1= O(g) almost surely. The distance

Therefore, it holds that the duratidgn of stage 1 ist; =t} + ¢
traveled isvt; +O(-), where the second term corresponds to the further distangedrby the information

in O(1) transmissions. Sincé = O(1), the total distance traveled @(%).

D. Proof of Lemma]7 (Duration of Routing Stage 3)
' < - receives the
rC

We proceed equivalently to stage 1. Stage 3 ends when a ndteangle ¢¢
information. Equivalently to the proof of Lemnia 4, the exigectimet), until the relative speed of the
node to the rendez-vous poirtis between? anda is E(t;) = ().
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We consider meetings with nodés, such that2rq < g—f wherek; > 0 is a constant. The nod€
that last received the information meets new no@ésvith angle ¢ < % (< ﬁ), and with meeting
duration at leasy, with rate (assuming thatc is betweens anda):

k1
) a+ = k G (e .
f2> 2P(T > y)/ 7 sin(2 4 o) > POSRE) L -9y,

El kL 4 4T

v
and the expected tim&(¢}) until meeting such a node '@(U—“f). Since ¢ varies, if it becomes larger
thana (or smaller tharg), the information is forwarded to a new node such thatis between; anda
again (in constant time).

Moreover, we have indeed that = O(\/r) < %(1 + O(1)) for some positive constarit;, since the
distance traveled at this stage is at mo#&t+ vtj + O(1) = O(y/r). We assume thatc < rp, which
we can ensure by choosing poibt sufficiently far from the rendez-vous point. In this case, when
the information is transmitted to node, the node’s direction, with respect to the destinationses) is
of angle at most)o < a. Therefore, after time; = @(%), the destination is reached with probability
strictly larger thar0.

E. Proof of Corollary( 1
W. I. 0. g., we takeR = 1 andG = 1. Let (p,6(p)) be an element of the s&i. We have:

0(p) = /(T +v(y)vH(p))? + p*v® — 7, (11)

with

_ Awvl(p)
Ho =T ene)y

For y sufficiently large, such that(y)v = % — 0,

0(p) = V72 + p*v? — 7 + . H(p)—~2 +0(2),
St By

and, sincefl (p) = 4rvly(p) + O(%), we obtain the ratio:
0 T2+ p20? — 7 T iy v
o) VTAPVT, ()22 + 0%,
p p VT2 4 pPo? 2yp

Therefore, whemp — 0,

(12)

[ 2 3 2 2
Bo) _ o TV o
p 2 2yp yip Yy

The sum4- + 7% is minimized wherp = T /¥~ and its minimum istv, /2.
T 2yp v Y yT
3

As a result, the ratioe(T”) is minimized with valuerv, /== + O(<§>2), which corresponds to the
propagation speed bound.
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F. Proof of Corollary[2

Again, we take w. |. 0. g.R = 1 andG = 1, and we consider the kernel get 0(p)). From [11), when
T — 0,

0(p) =/ (v(y)vH (p))? + p*v2 + O(7).

We obtain the ratio:

am::¢wwwH@»3Hﬂ+O€)

2

In this case,\/(”(y)”pilj(m)z + v? is minimized when the quantity(p) = M[)H(p) is also minimized.
We takev(y) = % since this is an upper bound for any value of the parameldnss, using[(12)

when % — 0,
’ wvH(p)  w*vio(p) V2
J(p) = T = +0(55).
vyp 8yp
Therefore, the minimum of (p) is %” min,,(I“Tf”)) + O(Z—i), attained forp = 1.608. .., and we have the

propagation speed upper bound:- O(Z—j + 7).
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