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Abstract—A fundamental challenge of managing mutable data to prohibitively long synchronization delay due to the karg
replication in a Peer-to-Peer (P2P) system is how to efficiély number of peers and unreliable overlay. Even “deadlock”
maintain consistency under various sharing patterns with letero- may occur when a crashed replica node makes other replica

geneous resource capabilities. This paper presents a framerk . S -
for balanced consistency maintenance (BCoM) in structuredP2P nodes wait forever. Hence, the system scalability is reisuli

systems. Replica nodes of each object are organized into aer due to the lowered availability from long synchronization
for disseminating updates, and a sliding window update pratcol delay for a large number of nodes. At the other extreme,

!S developed to bound .the consistency..'!'he effect of windovize eyentual consistency allows replica nodes concurrenttiatep
in response to dynamic network conditions, workload update their local copies and only requires that all replica copies

and resource limits is analyzed through a queueing model. Tk b identical aft | h fail f d wedat
enables us to balance availability, performance and congi&ncy ecome iaentical after a long enough falure-ire€ and paa

strictness for various application requirements. On top ofthe free interval. Since in P2P systems replica nodes are highly
dissemination tree, two enhancements are proposed: a fastunreliable, the update-issuing node may have gone offline by

recovery scheme to strengthen the robustness against nodeca the time update conflicts are detected, leading to unrelsigva
link failures; and a node migration policy to remove and prevent ., niicts. It is infeasible to rely on a long duration withcuty

the bottleneck for better system performance. Simulationsare fail furth dat due t hich tual .
conducted using P2PSim to evaluate BCoM in comparison to ailure or further updates, due to which eventual conseten

SCOPE [24]. The experimental results demonstrate that BCoM fails to provide any end-to-end performance guarantee B P2
significantly improves the availability of SCOPE by lowering the  users. As surveyed in [23], wide area data sharing appicsti

discard rate from almost 100% to 5% with slight increase in vary widely in their frequency of reads and updates among
latency. replicas, in their tolerance of stale data and handling afabg
conflicts.
This paper presents a Balanced Consistency Maintenance

Structured P2P systems have been effectively designed @oM) protocol for in structured P2P systems for balancing
wide area data applications [21] [10] [16] [18] [22] [20]. #h the consistency strictness, availability and performaimage
most of them are designed for read-only or low-write sharingpnsideration is given to dynamic workload, frequent epli
contents, a lot of promising P2P applications demand for supode churns, heterogeneous resource capabilities, dededif
porting mutable contents, such as modifiable storage sgstempplication consistency requirements. BCoM protocolaseri
(e.g. OceanStore [16], Publius [19]), mutable contentisbar izes all updates to eliminate the complicated conflict hizgdl
(e.g. P2P WiKi [13]), even interactive ones (e.g. P2P online P2P systems, while allowing certain obsoleteness in each
games [2] [5] and P2P collaborative workspace [12]). P2®plica node to improve the availability and performance. A
organization improves availability, fault tolerance, aswhla- sliding window update protocol is used to specify the number
bility for static content sharing. But mutable content sh@r of allowable updates buffered by each replica nodes. This
raises issues of replication and consistency managem2mt. Provides bounded consistency, the performance of whids fal
dynamic network characteristics combined with the diverstween the sequential and the eventual consistency.
application consistency requirements and heterogeneeers p  Two main categories of bounded consistency are proposed
resource constraints also impose unique challenges for FBPP2P systems: probabilistic consistency [4] [30] andetim
consistency management. This requires a consistency@olubounded consistency [25] [26], both of which have main
to work efficiently in such dynamic conditions. limitations, but are relaxed with BCoM. (1) In the probasiiic

P2P systems are typically large scale, where peers with veonsistency the probability is guaranteed with regard to al
ious resource capabilities experience diverse netwodatat replica nodes but not for an individual node. BCoM ensures
Also, their dynamic joining and leaving make the P2P overlayode level as well as system-wide consistency bound. (2)
failure prone. Neither sequential consistency [15] nonéwal Time-bounded consistency sets the validation timer sotheat
consistency [8] individually works well in P2P environmelit estimated number of updates within the timer valid duratson
has been proved [14] that among the three properties, atorsicall. To avoid the inaccuracy in this translation, BCoMase
consistency, availability and partition-tolerance, oo can the sliding window to directly bound the number of updates
be satisfied at a time. Applying sequential consistencydeaallowed to be buffered at each node. (3) BCoM eliminates both
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redundant propagations in probabilistic bounded consigte migration scheme, that is to migrate more capable nodes
and the individual computations of the timer in time-bouhdeto upper layers and less capable nodes to lower layers to
consistency. Since redundancy is not needed for consistenuinimize the side effect of the bottleneck node and maximize
probability and the window size does not depend on thbe overall performance. If an upper layer node is slow in
latency at individual nodes, it is convenient to assign omgen propagating updates, the consistency constraint blockssan
to set and adjust the window size. tors from receiving new updates, and all its subtree nodes
An update window protocol has been designed for weldo not receive updates in a timely manner. Two forms of
server systems [31] to bound the uncommitted updates rinde migration are presented, one is to remove the blocking
each replica node. But update conflicts and potential cascatid the other is to prevent the blocking so that unnecessary
ing impacts can hardly been addressed when optimizing therformance and availability degradations are removed.
window size. Moreover, there are two challenges for applyin  The contributions of our paper are the following:

this technique to P2P systems: (1) unlike the web-servers, propose a consistency maintenance framework in struc-
P2P replica nodes are highly dynamic and unreliable; (2) the yreq P2P systems for balancing the consistency strict-
number of replicas in P2P systems is orders of magnitude pess, availability and performance through a sliding win-
larger than that in web-server systems. (1) and (2) together o update protocol with two enhancement schemes.
make any optimization model impractical for P2P systems Analyze the problem of optimizing the window size in
because it requires information on each node’s update rate, response to dynamic network conditions, update work-
propagating latency, etc. BCoM analyzes the window size 544, and resource constraints through a queueing model
through a queueing model based on dynamic network condi- 1o serve diverse consistency requirements from various
tion, update workload and available resources. It peradljic mutable data sharing applications.
collects the general system information, such as the @yars |, Eyaluate the performance of BCoM with comparison to
of replica node and the bottleneck latency, and guides the gcopg using the P2PSim simulation tool.
window size setting with extremely low overhead. In this way ; ; ) ;
. . Lo The rest of the paper is organized as follows: Sec.ll intro-
the consistency maintenance and performance optimization

BCoM scale well with the P2P systems and adapt promptdsyces the three core techniques in B.COM and the pf°t°°°'
) " eployment. Sec.lll presents the analytical model for wind
to the dynamic conditions.

In BCoM, replica nodes of each object are organized intoSize setting. The performance evaluation is given in Sec.lV

d-ary dissemination treelDT) on top of the overlay structure.and the eX|.st|ng literature is reviewed in Sec.V. The paper i
. . o concluded in Sec.VI.

The system-wide consistency bound is incrementally aeltiev
by each internal tree node through applying the sliding wind
update protocol to its children. This makes the consistency
scalable with the total number of replica nodes. Since eachBCOM aims to: (1) provide bounded consistency for main-
replica node takes charge of its children in update propamattaining a large number of replicas of a mutable object; (2) ba
and consistency maintenance, the work of consistency exairnce the consistency strictness, availability and perémee in
nance is evenly distributed. Even though the root is resptens fesponse to dynamic network conditions, update workload, a
for serializing updates and accepting new joining node, wigsource constraints; (3) make the consistency maintenanc
show that it will not become a bottleneck.The overhead épbust against frequently node churns and failures. Tollfulfi
dDT is lightweight and evenly distributed to prevent “hothese objectives, BCoM organizes all replica nodes of an
spot” and “single node failure” problems as efficiently ae thobject into a d-ary dissemination treé{T") on top of the
previous identifier space partitioning methods in [24] [29f°2P overlay for disseminating updates. It applies three cor
Another primary goal of constructing@DT is to reduce the techniques: sliding window update, ancestor cache, ared tre
latency experienced by each replica node to receive an epd3@de migration on thelDT' for consistency maintenance. In
from the root. ThuglDT inserts the new join or re_join nodesthis SeCtion, we fiI’St introduce thﬁDT Structure, a.nd then
to the smallest subtree and tries to balance the tree toesho@XPlain the three techniques in detail.
the overlay distance. , L

BCoM presents two enhancements to further improve tAg DiSsemination Tree Structure
performance of alDT. One is theancestor cachescheme, For each object BCoM builds a tree with node degtee
where each node maintains a cache of ancestors for femtted at the node whose ID is closest to the object ID in the
recovery from parent node failures. This also relieves-treeverlay identifier space. We denote this d-ary disseminatio
structure’s “multiplication of loss” problem [11] (i.e.lathe tree of objecti as dDT;, which consists of only the peers
subtree nodes rooted at the crashed node will lose the wg)dateolding copies of object. We name such a peer as a “replica
which is especially critical in P2P systems. Maintaining thnode” of i, or simply as a replica node. An update can
ancestor cache does not introduce extra overhead since libeissued by any replica node, but it should be submitted
needed information conveniently piggybacks on update -prap the root. The root serializes the updates to eliminate the
agation. A small size of cache can also significantly improw@mplicated handling of update conflicts because the update
the robustness against node failures. The other isnthae issuing nodes may have gone offline.

Il. DESCRIPTION OFBCOM



The dynamic node behavior requires the construction tife traditional tree balanced algorithm is that rejoininighw
dDT to serve two cases (1) single node joining and (Zubtree may increase the tree depth by more thawhich
node with subtree rejoining. The goal of tree construct®n is beyond the one by one tree height increase handled by
to minimize the tree height under both cases, which lowettsem. Another important reason is that maintaining thel tota
the update propagation latency and object discard rate farmber of nodes in each subtree is simpler and more time
consistency maintenance. efficient than the depth of each subtree. Since the internal

We show an example of DT; construction for case (1) nodes need to wait until the insertion completes, the update
with node degreel set to2 in Fig.1. The replica nodes aretree depth can be collected layer by layer from the leaves
ordered by their joining time as node nodel and so on. back to the root. This makes the real time maintenance of the
At the beginning when nodé and node2 joined, both were tree depth quite difficult and unnecessary when tree nodes ar
assigned by nodé (i.e. the root) as a child. Then, node frequently joining and leaving. However, the internal n®de
joined when nodé’s degree was full, so it passed nogléo can immediately update the total number of nodes in the
its child who has the smallest number of subtree nodes deénoseibtree after forwarding the joining node to a child. Thetre
as asSub,,.. Since both children (i.e. nodeand node2) had depth is periodically collected to help set the sliding vand
the sameSub,,., it randomly selected one to break the tiesize as discussed in Sec.ll-B2, where its result does nat nee
say nodel, and updated th8ub,,, (1) accordingly.Sub,, of to be updated in real time. But using an outdated tree depth
a join node is one standing for itself. Nodeassigned nodd for dDT construction will lead to unbalanced tree and degrade
as its child, since it had a space for a new child. When nbddghe performance.
joined, noded did not have space for a new child and passed
node4 to the child with smallesSub,, , node2. Similarly, 5 Sliding Window Update Protocol
node5 and nodes joined. The tree construction algorithm is 1) Basic Operation in Sliding Window Update:
given in Alg.1. For case (2) when nodecrashed, all of its  Sliding window regulates the consistency bound for update
children detected the crash independently and contactest otpropagations to all replica nodes inddT'. “Sliding” refers
ancestor to rejoin the tree, each acting as a delegate oft@isthe incremental adjustment of window size in response to
subtree to save individual rejoining of subtree nodesbh,,,. dynamic system condition. UDT; of objecti is assigned a
counts for all its subtree nodes and itself. Sec.ll-C exglaisliding window sizek;, any replica node irlDT; can buffer

how to contact an ancestor for rejoining. up to k; unacknowledged updates before being blocked from
receiving new updates. At the beginning, root receives tise fi
— update, sends to all children and waits for their ACKs. There
X Nodecrsh are two types of ACKs, RACK and NR_ACK, both indicating

B s the successful receiving of the update ARK indicates that

the sender is ready to receive the next update:ANEK means

the sender is not ready. While waiting, the root accepts and
buffers the incoming updates as long askitsize buffer does

not overflow. When receiving an_RCK from a child, the
root sends the next update to this child if there is a buffered
update that has not been sent to this child. When receiving an
NR_ACK from a child, it will not send the next update, but
Fig. 1. Dissemination Tree Example the update is marked to be received by this child.

After receiving ACKs from all children, the update is re-
moved from its buffer. There are two cases of buffer overflow:
1) when the root’s buffer is full, the new updates are disedrd
until there is a space; 2) when an internal node’s bufferlis fu
the node sends NRACK to its parent for the last received
update. An RACK is sent to its parent when there is space in
the buffer. A leaf node does not maintain such update buffer.
After receiving an update, it immediately sendsARK to its
parent. Fig.2 shows an example of window size se8,td
stands for the version number of the updateVad® — V13
means the node keeps the updates fidih version tol3th
version. Each internal node keeps the next version for its
slowest child until the latest version it received, and elaelf
node only keeps the latest version it received.

dDT directs a join node and a rejoin node with its subtree to 2) Setting of Sliding Window Size:
the child node with the smallest subtree nodes when the parenThe sliding window sizé:; plays a critical role in balancing
node degree is full. The reason for not using the tree depththe consistency strictness, the object availability ardgbdate

Algorithm 1 dDT Construction(p, q)
Input: nodep receives node’s join request
Output: parent of node in dDT
if p does not havel childrenthen
SUbno.(p) = +SUbno(q)
return p
else
find a child f of p s.t. f has the smallesfub,,.
SUbno(f) = +SUbno(q)
return dDT Construction(f, q)
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of all m nodes simultaneously failing is unlikely. When the
node does not have: ancestors, it caches information for all
the nodes beginning from the root.

A node contacts its cached ancestors sequentially layer by
layer upwards when its parent becomes unreachable. This can
be detected by ACK and maintenance message transmissions.
The sequential contact operation will find the closest aioces

> AR no matter how many layers of node crashes exist. The root is
finally contacted for relocation if all the other ancestarast.
Fig. 2. An example of sliding window update protocol We assume the root is reliable, since the overlay routing wil
automatically handle the root failure by letting the nod¢hwi
the nearest ID to replace the crashed root/bfr".

dissemination performance. The valuekgfis an indicator of  the contacted ancestor runs the tree construction Alg.1 to
consistency strictness. The largerhelps mask the long net- g 5 new position for this rejoining node with its subtree.

work latency and temporary unavailability of the replicales, gconm does not replace the crashed node by a leaf node to
lowers the update discards and improves the availabilite Taintain the original tree structure, since migration gsin

disadvantages of a largéf are (1) discrepancy between the,s pottieneck node down to the leaf layer for performance
replica local view and the most updated view at the root @ivin o rovement. The new parent transfers the latest version of
rise to weaker consistency; and (2) longer queueing delayfy, gpject to this new child position if necessary. Sinceheac
update propagation, thus lowering the update dissemmatig,je only keeps:; previous updates, content transmission
performance. On the extremes, infinite buffer size provides ,seq to avoid the communication overhead for getting the

eventual consistency without discarding updates, andebuffyissing updates from other nodes. The sliding window update
size zero provides sequential consistency with worst @d%opagation resumes for incoming updates.

discards. , , ) . The ancestor cache provides fast recovery from node and
We explain here how the root updates the window size Wity fajlures with a small overhead and high success proba-

the analytical model in Sec.lll giving the specific formué@ tpjji,  Assuming the probability of a replica node failure a
guide the update. The root measures input metrics e¥ery,, the ancestor cache with size has a successful recovery
seconds and adjusts tlg value only when the metrics Stableprobability of 1 — p™. It is very unlikely that all of them

and the oldk; violates the constraint in Eq.7. In this waycached ancestors fail simultaneously; even if it occurs, th
the unnecessary changes due to the temporary disturbanges can be contacted for the relocation. An ancestor cache
are eliminated to keep théDT; stable. In casé:; needs 10 ig easjly maintained by piggybacking an ancestor list tcheac
be adjusted, it is incrementally increased or decreasedyne, pgate. Whenever a node receives this update it adds iself t
one until the constraints are satisfied. . the ancestor list before propagating the update to therefnild
The computation ofk; requires the information on the gach node refers to the newly received ancestor list toskfre
update arrival rate\, the tree heightl, and the bottleneck jis cache. There is no extra communication for the piggyback

service timey;. The arrival rate is directly measured bysnqg the storage overhead is also negligible for keeping the
the root. The tree height and bottleneck service time ay§ormation ofm ancestors.

collected periodically from leaf nodes to the root in a botto
up fashion. The two metrics are aggregated at every interfial Tree Node Migration
node, so that the maintenance message always keeps the SamBy internal node with the subtree rooted at it will be
size. The aggregation is performed as follows: each leaénoglgcked from receiving new updates if one of its slowest
initializes the tree height to zerd.(= 0) and the bottleneck chilg is blocked due to the sliding window constraint. It is
service timey, to its update propagation time. Each nodgyite possible that a lower layer node performs faster then t
sends the maintenance message to its parent. Once an intg§g@ileneck node, so we should promote the faster node to a
node receives the maintenance messages from all childremjijher level and degrade the bottleneck node to a lower.level
updatesL as the maximum value of its children’s tree heightq, example in Fig.1, assume notlés the bottleneck getting
plus1 and ny, as the maximum value among its and evenhe root 0 blocked. The faster node may be a descendant
child’s service time. If its service time is longer than al@lsi ¢ the bottleneck node (A) or a descendant of a sibling of
a non-blocking migration is executed to swap the parent Withe pottleneck node (B). When blocking occurs, nddean
the child. This aggregation continues until the root is healc swap the bottleneck nodé with a faster descendant with
more recent updates, like node to remove the blocking.
Before blocking occurs, nodecan be swapped with its fastest
Each replica node maintains a cacherofincestors starting child with the same update version to prevent the blocking.
from its parent leading to the root in t@T'. The value ofn  The performance improvement through node migration is
is set based on the node churn rate (i.e. the number of nodeafirmed by our queuing model @fD7 in Fig.3. There are
leaving the system during a given period) so that the pdigibi two forms of node migration, as described below.
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« Blocking triggered migration: the blocked node searchésformation in the entire system (e.g. [31]). BCoM adjusts t
for a faster descendant, which has a more recent updsliing window size timely to dyanmic P2P systems relying
than the bottleneck node and swaps them to remove the limited information.
blocking. This section presents the analytical model of the sliding

« Non-blocking migration: when a node observes a childindow sizek; of objecti, where the update propagation to
performing faster than itself, it swaps with this childall replica nodes is modeled by a queuing system. We first
This migration prevents the potential blocking and speedsalyze the queueing behavior when an update is discarded,
up the update propagation for the subtree rooted at ttieen calculate the update discard probability and the dgdec
parent. latency for a replica node to receive an update, finally, we

The swapping of (A) in Fig.1 is an example of blocking€tk; to balance the availability and latency constrained by
triggered migration and (B) is an example of non-blockingonsistency bounds.

migration. Both f_orms_ of migrat_ion swap one layer at a timg Queueing Model

and, hence, multiple times of migrations are needed forimult . .

layer swapping. The non-blocking migration helps promog? Assuming the total number of replica nodesMsthe node

the faster nodes to upper layers, which makes the searatin fiigreel aﬁd, and_trt]herz ?res ]EfL :.ko(logf N))OlayeLrs (;f
blocking-triggered migration easier. Since the overlayTDHn ernalnoges with upcate butter si e (i.e. layer o
né)des with sliding windowt;). The leaf nodes are in layer-

routing in structured P2P networks relies on cooperativ d d buffer. Th d val deled b
nodes, we assume BCoM is run by these cooperative P%'i—‘d 0 not need buffer. The update arrivals are modeled by

nodes transparent to the end users. Tree node migration LPS&O'SSO” process with average arrival rajg(simply as)),

only the local information and improves the overall syster‘?\S each update is issued by a replica node independently and

identically at random. The latency of receiving an updatenfr

erformance. o
P the parent and acknowledged by the child is denoted as the
E. Basic Operations in BCoM service time for update propagation. The service time f@ on
BCoM provides three basic operations: layer to its adjacent layer below is the longest parentschil

service time in these two layers; denotes the service time

« Subscribe: when a node wants to read the object .
and keep it updatedy sends the subscription request téor update propagation from laygte layer,.,,. For examples,
1o 1S the service time from the root to its slowest child,—_;

the root ofdDT; by overlay routing. After receiving the ’ the | ¢ ice time f | de to its child
request, the root runs Alg.1 to locate a parent join IS the Jongest service ime Irom a faygrs node 1o 1is chi

dDT,, who will transfer its most updated version to (i.e. a leaf node). The update propagation delay is assumed t

The subsequent updates are received under sliding V\)ﬂ? exponential distribute_d. The update propa_lgati_onismTi
e modeled as a queuing process shown in Fig.3 (a): The

dow protocol. The message overhead for a subscriptigﬁ . .
is O(log,; N), since locating a new node at most search dates arrive \.N'th average rateat _the root, then go to the
along a path from the root to a leaf #DT;. ayery buffer with S|ze{~ci. The service time for propagating
« Unsubscribe: when a node does not want object from layery to layer, is Ho- Aft(_er that, _the _updates go to
Iﬁyer-l nodes’ buffer of sizek; with service time asu; for

anymore, it promotes its fastest child as the new pare ina to | d Th i d wh
and transfers its parent and other children’s informatidf{ 0P29ating o 1ayei- nodes. The propagations end when

to the newly promoted node. also notifies them of the updates are received by the leaves in the layer-
newly promoted node to update their related maintenance N
information. The message overhead for a node leaving is — @ k; @
O(1), since the number of the affected node is no more (a)
than d, and each has constant overhead to update the 2
related maintenance information. [ # @
« Update: after subscribing, if a nogewants to update (b)
the object, it sends the update request directly to the

root using IP routing. The root’s IP address is obtained : L*k; @

through the subscription or the ancestor cache. If the root (c)

crashesp submits the update to the new root through

overlay routing. Updates are serialized at the root by their Fig. 3. Queuing Model of Update Propagation

arrival time. The specific policy for resolving conflicts
is application dependent. The message overhead of arf\n update may only be discarded by the root when its buffer
update isO(1) for the direct submission to the root. ~ overflows. This happens when the root is waiting forARK
from the slowest child in layey; who is waiting for RACK
I1l. ANALYTICAL MODEL FORSLIDING WINDOW SETTING  from its slowest child in layes: The waiting cascades until
The unstableness of P2P systems forbids us to use dng bottleneck node of théDT; is reached, say in the layer-
complicated optimization techniques that require sevesats 0 < [ < L. The nodes in layers+ 1...L (if | < L) do
of computation at workstations (e.g. [28]) or every nodeot receive any update even when their buffers are not full.



All the nodes in the path from the root to the bottleneck node. Window Size Setting

have buffer overflow. The nodes along the path are denotedrne effectiveness of a consistency protocol is measured by
by po, p1 ... 1, Wherepy is the root andp, is the bottleneck three attributes: consistency strictness, object aviéitialand
node. After the bottleneck nogg receives an update, it sendgatency for receiving an update, and the three are in subtle
an R ACK to its parent. The RACK is then propagated 10 ensjon towards each other. Given the update arrival rade an
the rootpo, such that the root can purge the update from ifse service time, increasing the window sikg lowers the
buffer and accept a new one. The update propagation frefacard probability, while prolongs the expected latenoy a
Po = p1,P1 = P2, pi—1 — pu S in parallel and the service yeakens the consistency strictness. It is hard to accyratel
time 4, betweerp; andp;—, should be the longest along thisyodel the delay for an update to be received by each replica
path (i.e.pu—1 > p;,0 < j < 1—1). Therefore, the queuing node, since besides the queueing delay at each node, the
model of update discarding is transformed to a queue with tB?namic node joining and leaving cause disturbance on the
effective buffer sizd « k; for the dDT;, and the service time hqate propagation process. The expected |ateidy, . 1, |
is p(l —1), as shown in Fig.3 (b). _ _indicates the average delay for an update to arrive at aceepli
This queuing model of the update discard explains that givRgqe, which serves as a simple and approximate indicater. Th
ak;, the effective buffer sizé«; is determined by, which is  ¢qnsistency strictness is measured by the number of updates
the layer the bottleneck node resides. The larger the eféect, replica node has not yet received, which is at niost; in
buffer size, the lower the discard probability. So when th(?DTZ-.
bottleneck node is a leaf & L), buffer resources ofDT; i gcoMm sets the window size to balance among the three
maximal used with effective buffer siz + k;. This inspires a¢ribytes by maximizing the object availability under the
the Tree Node Migration techniques presented in Sec.ll-Bonsiraints that the number of not-yet-received updates is
which help to move down the bottleneck node to the_leaf layghunded tok,, and latency for receiving the update is no
to boost the overall performance of thDT;. The discard \orse than the sequential consistency for a small bdtinid
probability of an update is computed based on the queuigg 7 p(7, ] is the expected latency with a window sike
model ofdDT; after optimized by tree node migrations as iRng g7, ] is the expected latency for sequential consistency
Fig.3 (c). The queue becomesid/M/1/ queue with buffer ¢, this D7}, which serves as the baseline for bounding
size L + k;, arrival rateA and service timguz ;. the latency performance. The latency threshdldand the
B. Availability and Latency Computation consjstepcy stri.ctness threshol(q’m are set agcprding to
Define the update request intensity as application re_quwements. In our S|mulat|_on, _empwmal@_ttmg
N T, to 1.3 achieves good results shown in Fig.6 and Fig.7, the
p= (1) discard probability is improved from almo%00% to 5% at

) . L1 ) the cost of latency increases less than one third most of the
Define the probability of updates in the queue as. Based e 1 s set to60 based on the network size ®600.
on the queueing theory fabf/M/1 finite queue [6],7,, is
o . BT ]
represented as Eq.2. k; = argmin mp. s.t. BlTL]
L

T = p" 7o (2
IV. PERFORMANCEEVALUATION

<Ts,Lxk < Km @)

The discard probability isr..x,, which indicates the buffer
overflow. FromS2%ir, = 1, we getry = %. And the  In this section, we evaluate the efficiency of BCoM with
discard probability is computed in Eq.3. comparison to SCOPE [24], which is a seminal work of consis-
tency maintenance in structured P2P networks. We extend the
P2PSim tool [1] to simulate the heterogeneous node caesciti
and transmission latency. While BCoM can be applied to every
type of structured P2P system, we choose Tapestry [7] as a

representative network for simulations.

1-p Lxk; (3)

MLk = 77 Lo; P

The expected number of packets in the quélid/;,.,]| is
calculated in Eq.4.

E[Npa)= Y. nxmn (4)
0<n<Lxk; A. Simulation Setting
Plug in the Eq.2 forr,, the final form of E[Nr.x,] is given  We simulate a network o000 nodes because anything
in Eq.5. larger cannot be executed stably in P2PSim. The number of
(L k; + 1)plrkit1 o objects ranges from0? to 10%. The object popularity follows
BNk, ] = (pL*kitl — 1) + 1-p) ® 3 Zipf’s distribution, and the update arrivals are genefate

The expected dela[T}...] is calculated by Little’s law by a Poisson process with different average arrival ratgs. B

in Eq.6, wherelZ[ Ny, ] is the expected number of packets iiflefault each node issuex)0 updates during a simulation

the queue and(1 — 1.4, ) is the arrival rate of the acceptedCYcle, which is7.2 « 10° time slots. This setup is aimed at
updates. simulating the situation where frequent updates may osérlo

the servers, which motivates the use of P2P systems. Giagn th
E[Tpun] = B[Nk, ©) transmitting one update uses orilyy to 100 slots, the number
CA = Trek;) of time slots covered in a simulation cycle (i22 x 10) is



large enough to generate sustainable results. The datéspoio upgrade its discard rate to be comparable with that of
in our figures are the average values26ftrials. BCoM. As a result, their latency results are also tuned bette
The heterogeneity of node capacities follows a Pareto dis- summary, BCoM achieves much higher availability than
tribution [29]. We set the shape parametet 1 and scale pa- SCOPE at the cost of controlled latency increase for bounded
rameterb = 900 to get900 different node capacities. Networkconsistency in large scale P2P systems with frequent update
topology is simulated by two transit-stub topologies gatet Such good balance confirms the objectives in the analytical
by GT_ITM [9] to model dense and sparse networks: (1) tslknodel of the window size setting.
small (dense) 2 transit domains each with transit nodes4
stub domains attached to each transit node, Zindodes in D. The Overhead of BCoM
each stub domain. (2) tslk-large (spars8) transit domains This simulation compares the overhead of BCoM with that
each with4 transit nodes4 stub domains attached to eactpf SCOPE as shown in Fig.10. The consistency maintenance
transit node, and nodes in each stub domain. overhead of each object consists of three parts: subscribe
The node degree is set fpsince the average Gnutella nod®verhead, update overhead, and crash/migrate overhea, wh
degree is3 to 5. To have a fair comparison, we also set thaccount for subscribing, updating the object and recogerin
vector degree of each SCOPE nodestarhe update discard from crashes, respectively. We use the label "migrate” to
rate (the ratio of the number of discarded updates to the toigdicate the migration and crash recovery overhead in BCoM.
number of arriving updates), angpdate dissemination |atencyBCOM keeps the overhead at the same level as that in SCOPE.
(the average delay for each node to receive the update) ede uEhe reason is that the ancestor cache maintenance and the
to measure the protocol efficiency. node migration mostly piggyback on update disseminations
for sliding window optimization to reduce overhead.
B. Efficiency of the Window Size

L . - . .. E. Fault Tolerance of BCoM
This simulation explores the efficiency of applying sliding
window protocol. The curves in Fig.4 and Fig.5 show that This simulation examines BCoM's robustness against node

by increasing the window size from to 20, the discard failures by varying the node mean life time. Life time is the
rate is dropped from80% to around5% and the latency is ratio of the average number of slots a node stays online at one
increased only by20%, which confirms that BCoM signifi- time to the total number of slots in a simulation cycle. The
cantly improves the availability with slight sacrifice otdacy Smaller the life time is, the more frequently the nodes join

performance Compared to the Sequentia' Consistency_ a.nd |eaVe. The resu|tS Of SCOPE are not presented because
N their discard rate is nearly00% when the nodes are joining
C. Scalability of BCoM or leaving. The results of Fig.11, Fig.12, and Fig.13 shoat th

This simulation verifies the scalability of BCoM with com-BCoM keeps the tree depth, the discard rate and the latency
parison to SCOPE by varying the number of replica nodes atitigood status for different frequencies of node joining and
the update rate of each object. The results in Fig.6 and Fidé@ving. The ancestor cache helps maintain the tree steuctu
show that the discard rate of BCoM is maintained to less thafgder node churns. And adaptive window size setting keeps
10% as the number of replicas per object increases ftorro ~ the availability and latency performance stable.

1000 and the number of updates issued per node is increased
from 1 to 200. On the other hand, applying applying the se- ) ) .
quential consistency makes the discard rate of SCOPE almBstConsistency Maintenance in P2P systems

100%, except with a very small number of replica nodes (i.e. In structured P2P systems, strong consistency is provided
10 nodes per object) or with an extremely low update ratey organizing replica nodes to an auxiliary structure on top
(i.e. 1 node per object). The sliding window protocol and thef the overlay for update propagation, like the tree strectu
adaptive window size setting contribute to good availapiliin SCOPE [24], two-tired structure in OceanStore [16], and
maintenance under dynamic system conditions. a hybrid of tree and two-tired structure in [29]. The tree

As shown in Fig.7 the latency of BCoM is slightly higherconstructions in [24] [29] follow the node ID partitioning,
than that in SCOPE when the number of replica nodes iisstead,dDT inserts the new node to the smallest subtree
large. This is due to the accumulated queuing delay at egohmake it balanced under dynamic node joining and leaving.
internal node introduced by sliding window. But the incieeasiDT achieves the same load balance and failure robustness
is controlled within1/3rd of the latency of SCOPE, whichas them with greatly enhanced availability for consistency
matches with the latency increase bound in window sizengettimaintenance.
for improved discard rate. The results of Fig.9 show that theIn unstructured P2P systems, mainly two types of bounded
latency of BCoM is similar to that of SCOPE when updateonsistency are provided: 1) probabilistic bounded censis
rates are low, and longer than SCOPE when update ratescy: rumor spreading [4] and replica chain [30] are used
are high. The reason is that under frequent updates, a riewensure a certain probability of an update being received,;
join or re-join node needs to have larger content transfer 2) time-bounded consistency: TTL guided push and/or pull
get the latest version, which prolongs the average latemcymethods are used in [25] [26] to indicate the valid period
BCoM. However, we do not apply this requirement in SCOPfor a replica copy, when the period expires the replica node

V. RELATED WORK
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needs to check validity with the source to serve the follgwirheterogeneous peer capacities, and (4) scalability witrgel
read requests. Node-level consistency is not ensured kb proumber of peers. The LagOver [3] constructed an update
abilistic bounded consistency, and the ambiguity intradlic delivery tree by jointly considering each user’'s capacitg a
by translating the valid time duration to the number of incordatency requirements to address (1) and (3), both of which
sistency updates in time-bounded consistency, are avdigedare also handled by tree node migration in BCoM. The

our sliding window update protocol. major difference is that LagOver improves the performance
o to meet the individual replica node’s requirement, whilel@o
B. Overlay Content Distribution migration improves performance system-wide. And LagOver

Update delivery in P2P overlay has four requirements: (1)'&duires information on each user's latency requiremedt an
bounded delay for update delivery, (2) robustness to frequéapacity, which are infeasible to be implemented in P2P
node churns and update workload changes, (3) awarenesSystems. But node migration exploits local information &nd
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