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Abstract—Recently, it has been shown that CSMA-
type random access algorithms can achieve the maximum
possible throughput in wireless ad hoc networks. However,
the delay performance of these algorithms can be quite
bad. On the other hand, although some simple heuristics
(such as distributed approximations of greedy maximal
scheduling) can yield much better delay performance for
a large set of arrival rates, they may only achieve a fraction
of the capacity region in general. In this paper, we propose
a discrete-time version of the CSMA-type random access
algorithm that allows us to incorporate simple heuristics
which lead to very good delay performance while retaining
the throughput-optimality property. Central to our result s
is a discrete-time distributed randomized algorithm that
generates data transmission schedules according to a
product-form distribution, a counterpart of similar resul ts
obtained earlier for continuous-time models under the
perfect CSMA assumption where collisions can never
occur. An appealing feature of this algorithm is that it
explicitly takes collisions into account during the exchange
of control packets.

I. INTRODUCTION

In wireless networks with limited resources, efficient
resource allocation and optimization (e.g., power control,
link scheduling, routing, rate control) play an impor-
tant role in achieving good performance and providing
satisfactory quality-of-service (QoS). In this paper, we
study link scheduling(or Media Access Control, MAC)
for wireless networks, where all links (node pairs) may
not be able to transmit simultaneously due to transceiver
constraints and radio interference. Ascheduling algo-
rithm decides which links can transmit data at each time
instant so that no two active links interfere with each
other.

The performance metrics of interest in this paper are
throughputanddelay. The throughput performance of a
scheduling algorithm is often characterized by the largest
set of arrival rates under which the algorithm can keep

the queues in the network stable. The delay performance
of a scheduling algorithm can be characterized by the
average delay experienced by the packets transmitted
in the network. Since many wireless network applica-
tions have stringent bandwidth and delay requirements,
designing high-performance scheduling algorithms to
achieve maximum possible throughput and low delay
is of great importance, which is the main objective of
this paper. We also want the scheduling algorithms to be
distributed and have low complexity/overhead, since in
wireless ad hoc networks normally there is no centralized
entity and the resources at the nodes are very limited.

It is well known that the queue-length basedMaximum
Weighted Scheduling(MWS) algorithm is throughput-
optimal[24], in the sense that it can stabilize the network
queues for all arrival rates in the capacity region of the
network (without explicitly knowing the arrival rates).
However, for general interference models MWS requires
the network to solve an NP-Hard problem at each time
slot and hence, is not implementable in practice.

Maximal schedulingis a low-complexity alternative
to MWS but it may only achieve a small fraction of
the capacity region [5], [26].Greedy Maximal Schedul-
ing (GMS), also known asLongest-Queue-First(LQF)
Scheduling, is another natural low-complexity alternative
to MWS which has been observed to achieve very
good throughput and delay performance in a variety
of wireless network simulations. GMS proceeds in a
greedy manner by sequentially scheduling a link with
the longest queue and disabling all its interfering links.
It was shown in [6] that if the network satisfies the so-
called local-poolingcondition, then GMS is throughput-
optimal; but for networks with general topology GMS
may only achieve a fraction of the capacity region [13],
[15], [27]. Moreover, while the computational complex-
ity of GMS is low, the signaling and time overhead of
decentralization of GMS can increase with the size of
the network.
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Another class of scheduling algorithms are CSMA
(Carrier Sense Multiple Access) type random access
algorithms. Under CSMA, a node (sender of a link) will
sense whether the channel is busy before it transmits
a packet. When the node detects that the channel is
busy, it will wait for a random backoff time. Since
CSMA-type algorithms can be easily implemented in
a distributed manner, they are widely used in practice
(e.g., the IEEE 802.11 MAC protocol). In [3] the authors
derived an analytical model to calculate the throughput of
a CSMA-type algorithm in multi-hop wireless networks.
They showed that the Markov chain describing the
evolution of schedules has a product-form stationary
distribution under an idealized CSMA model (which
assumes zero propagation/sensing delay and no hidden
terminals) where collisions can never occur. Then the
authors proposed a heuristic algorithm to select the
CSMA parameters so that the link service rates are
equal to the link arrival rates which were assumed to
be known. No proof was given for the convergence
of this algorithm. This model was used in [25] to
study throughput and fairness issues in wireless ad hoc
networks. The insensitivity properties of such a CSMA
algorithm have been recently studied in [16].

Based on the results in [3], [25], a distributed algo-
rithm was developed in [11] to adaptively choose the
CSMA parameters to meet the traffic demand without
explicitly knowing the arrival rates. The results in [11]
make a time-scale separation assumption, whereby the
CSMA Markov chain converges to its steady-state dis-
tribution instantaneously compared to the time-scale of
adaptation of the CSMA parameters. Then the authors
suggested that this time-scale separation assumption can
be justified using a stochastic-approximation type ar-
gument which was verified in [18], [10]. Preliminary
ideas for a related result was reported in [21], where the
authors study distributed algorithms for optical networks.
But it is clear that their model also applies to wireless
networks with CSMA. In [22], a slightly modified ver-
sion of the algorithm proposed in [21] was shown to be
throughput-optimal. The key idea in [22] is to choose
the link weights to be a specific function of the queue
lengths to essentially separate the time scales of the link
weights and the CSMA dynamics. Further, the results
in [22] assume that the maximum queue length in the
network is known which is estimated via a distributed
message-passing procedure.

While the results in our paper are most closely related
to the works in [3], [11], [22], we also note impor-
tant contributions in [4], [7], [19], [20] which make
the connection between random access algorithms and
stochastic loss networks.

Although the recent results on CSMA-type random
access algorithms show throughput-optimality, simula-
tion results indicate that the delay performance of these
algorithms can be quite bad and much worse than MWS
and GMS. Thus, one of our goals in this paper is to
design distributed scheduling algorithms that have low
complexity, are provably throughput-optimal, and have
good delay performance. Towards this end, we design a
discrete-time version of the CSMA-type random access
algorithm which achieves the same product-form distri-
bution over schedules as in [3]. Our algorithm generates
collision-free data transmission schedules while allowing
for collisions during the control phase of the protocol (as
in the 802.11 MAC protocol), thus relaxing the perfect
CSMA assumption of the algorithms in [3], [11], [22].
Our approach to modeling collisions is different from
the approaches in [12], [18]. In [18] the authors pointed
out that, as the the transmission probabilities are made
small and the transmission lengths are made large, their
discrete-time model approximates the continuous-time
model with Poisson clocks, but in general it is difficult
to quantify the throughput difference between the two
models. The algorithm in [12] places upper bounds on
the CSMA parameters, but the loss in throughput due to
this design choice is also hard to quantify. Instead, we
directly quantify the loss in throughput as the ratio of the
duration of the control slot to the duration of the data
slot (see Remark 2 in Section IV). More importantly,
our formulation allows us to incorporate delay-reduction
heuristics in the choice of schedules while retaining the
algorithm’s throughput-optimality property.

We organize the paper as follows. In Section II
we introduce the network model. In Section III we
present the basic scheduling algorithm and show that
the (discrete-time) Markov chain of the transmission
schedules has a product-form distribution. In Section IV
we present a distributed implementation of the basic
scheduling algorithm, called Q-CSMA (Queue-length
based CSMA/CA). In Section V we propose a hybrid
Q-CSMA algorithm which combines Q-CSMA with a
distributed procedure that approximates GMS to achieve
both maximum throughput and low delay. We evaluate
the performance of different scheduling algorithms via
simulations in Section VI. The paper is concluded in
Section VII.

II. N ETWORK MODEL

We model a (single-channel) wireless network by a
graphG = (V,E), whereV is the set of nodes andE is
the set of links. Nodes are wireless transmitters/receivers.
There exists a directed link(n,m) ∈ E if node m



can hear the transmission of noden. We assume that
if (n,m) ∈ E, then(m,n) ∈ E.

For any link i ∈ E, we useC(i) to denote the set of
conflicting links (calledconflict set) of i, i.e.,C(i) is the
set of links such that if any one of them is active, then
link i cannot be active. The conflict setC(i) may include

• Links that share a common node with linki. This
models thenode-exclusive constraintwhere two
links sharing a common node cannot be active
simultaneously.

• Links that will cause interference to linki when
transmitting. This models theradio interference
constraint where two links that are close to each
other cannot be active simultaneously.

We assume symmetry in the conflict set so that ifi ∈
C(j) then j ∈ C(i).

We consider a time-slotted system. Afeasible
(collision-free) scheduleof G = (V,E) is a set of
links that can be active at the same time according
to the conflict set constraint, i.e., no two links in a
feasible schedule conflict with each other. Without loss
of generality, we assume that all links have unit capacity,
i.e., an active link can transmit one packet in one time
slot under a feasible schedule.

A schedule is represented by a vectorx ∈ {0, 1}|E|.
The ith element ofx is equal to1 (i.e., xi = 1) if link
i is included in the schedule;xi = 0 otherwise. With a
little bit abuse of notation, we also treatx as a set and
write i ∈ x if xi = 1. Note that a feasible schedulex
satisfies:

xi +
∑

j∈C(i)

xj ≤ 1, ∀i ∈ E. (1)

LetM be the set of all feasible schedules of the network.
A scheduling algorithmis a procedure to decide which

schedule to be used (i.e., which set of links to be
activated) in every time slot for data transmission. In this
paper we focus on the MAC layer so we only consider
single-hop traffic. Thecapacity regionof the network
is the set of all arrival ratesλ for which there exists a
scheduling algorithm that can stabilize the queues, i.e.,
the queues are bounded in some appropriate stochastic
sense depending on the arrival model used. For the
purposes of this paper, we will assume that if the arrival
process is stochastic, then the resulting queue length
process admits a Markovian description, in which case,
stability refers to the positive recurrence of this Markov
chain. It is known (e.g., [24]) that the capacity region is
given by

Λ = {λ | ∃µ ∈ Co(M),λ < µ}, (2)

whereCo(M) is the convex hull of the set of feasible
schedules inM. When dealing with vectors, inequalities
are interpreted component-wise.

We say that a scheduling algorithm isthroughput-
optimal, or achieves themaximum throughput, if it can
keep the network stable for all arrival rates inΛ.

III. T HE BASIC SCHEDULING ALGORITHM

We divide each time slott into a control slot and
a data slot. (Later, we will further divide the control
slot into control mini-slots.) The purpose of the control
slot is to generate a collision-freetransmission schedule
x(t) ∈ M used for data transmission in the data slot.
To achieve this, the network first selects a set of links
that do not conflict with each other, denoted bym(t).
Note that these links also form a feasible schedule, but
it is not the schedule used for data transmission. We call
m(t) the decision schedulein time slot t.

Let M0 ⊆ M be the set of possible decision
schedules. The network selects a decision schedule
according to a randomized procedure, i.e., it selects
m(t) ∈ M0 with some positive probabilityα(m(t)),
∑

m(t)∈M0
α(m(t)) = 1. Then, the transmission

schedule is determined as follows. For any linki in
m(t), if no links in C(i) were active in the previous
data slot, then linki is chosen to beactive with an
activation probabilitypi and inactive with probability
1 − pi in the current data slot. If at least one link in
C(i) was active in the previous data slot, theni will be
inactive in the current data slot. Any link not selected
by m(t) will maintain its state (active or inactive) from
the previous data slot. Conditions on the set of decision
schedulesM0 and the link activation probabilitiespi’s
will be specified later.

Basic Scheduling Algorithm (in Time Slot t)

1. In the control slot, randomly select a decision schedule
m(t) ∈ M0 with probabilityα(m(t)).
∀i ∈ m(t):

If no links in C(i) were active in the previous data
slot, i.e.,

∑

j∈C(i) xj(t− 1) = 0
(a) xi(t) = 1 with probability pi, 0 < pi < 1;
(b) xi(t) = 0 with probability p̄i = 1− pi.

Else
(c) xi(t) = 0.

∀i /∈ m(t) :
(d) xi(t) = xi(t− 1).

2. In the data slot, usex(t) as the transmission schedule.



First we will show that if the transmission schedule
used in the previous data slot and the decision schedule
selected in the current control slot both are feasible, then
the transmission schedule generated in the current data
slot is also feasible.

Lemma 1: Ifx(t − 1) ∈ M and m(t) ∈ M, then
x(t) ∈ M.

Proof: Note thatx ∈ M if and only if ∀i ∈ E such
that xi = 1, we havexj = 0 for all j ∈ C(i).

Now consider anyi ∈ E such thatxi(t) = 1. If i /∈
m(t), then we knowxi(t − 1) = xi(t) = 1, and since
x(t − 1) ∈ M, we have∀j ∈ C(i), xj(t − 1) = 0. In
addition, if j /∈ m(t), thenxj(t) = xj(t− 1) = 0 based
on Step (d) of the scheduling algorithm above; otherwise,
j ∈ m(t), then sincei ∈ C(j) andxi(t−1) = 1, xj(t) =
0 based on Step (c).

On the other hand, ifi ∈ m(t), from the scheduling
algorithm we havexi(t) = 1 only if xj(t − 1) = 0,
∀j ∈ C(i). Since i ∈ m(t) and m(t) is feasible, we
know C(i) ∩ m(t) = ∅. Therefore, for anyj ∈ C(i),
xj(t) = xj(t− 1) = 0 based on Step (d).

Becausex(t) only depends on the previous statex(t−
1) and some randomly selected decision schedulem(t),
x(t) evolves as a discrete-time Markov chain (DTMC).
Next we will derive the transition probabilities between
the states (transmission schedules).

Lemma 2: A statex ∈ M can make a transition to
a statex′ ∈ M if and only if x ∪ x′ ∈ M and there
exists a decision schedulem ∈ M0 such thatx△ x′ =
(x \ x′) ∪ (x′ \ x) ⊆ m, and in this case the transition
probability fromx to x′ is:

P (x,x′) =
∑

m∈M0:x△x′⊆m

α(m)
(

∏

l∈x\x′

p̄l

)(

∏

k∈x′\x

pk

)

(

∏

i∈m∩(x∩x′)

pi

)(

∏

j∈m\(x∪x′)\C(x∪x′)

p̄j

)

. (3)

Proof: (Necessity) Supposex is the current state
andx′ is the next state.x \ x′ = {l : xl = 1,x′

l = 0}
is the set of links that change their state from 1 (active)
to 0 (inactive).x′ \ x = {k : xk = 0,x′

k = 1} is the
set of links that change their state from 0 to 1. From the
scheduling algorithm, a link can change its state only
if the link belongs to the decision schedule. Therefore,
x can make a transition tox′ only if there exists an
m ∈ M0 such that the symmetric differencex△ x′ =
(x \ x′) ∪ (x′ \ x) ⊆ m. Additionally, since(x ∩ x′) ∪
(x \ x′) = x ∈ M, (x ∩ x′) ∪ (x′ \ x) = x′ ∈ M, and
(x \ x′) ∪ (x \ x′) = x △ x′ ∈ M, we havex ∪ x′ =
(x \ x′) ∪ (x \ x′) ∪ (x ∩ x′) ∈ M.

(Sufficiency) Now supposex ∪ x′ ∈ M and there
exists anm ∈ M0 such thatx △ x′ ⊆ m. Given m

is the selected decision schedule, we can calculate the
(conditional) probability thatx makes a transition tox′,
by dividing the links inm into the following five cases:
(1) l ∈ x \ x′: link l decides to change its state from 1

to 0, this occurs with probabilitȳpl based on Step
(b) in the scheduling algorithm;

(2) k ∈ x′ \x: link k decides to change its state from 0
to 1, this occurs with probabilitypk based on Step
(a);

(3) i ∈ m∩ (x ∩ x′): link i decides to keep its state 1,
this occurs with probabilitypi based on Step (a);

(4) e ∈ m ∩ C(x) whereC(x) = ∪l∈xC(l): link e has
to keep its state 0, this occurs with probability 1
based on Step (c);

(5) j ∈ m \ (x ∪ x′) \ C(x): link j decides to keep
its state 0, this occurs with probabilitȳpj based on
Step (b).

Note thatm ∩ C(x′ \ x) = ∅ becausex′ \ x ⊆ m, we
havem \ (x ∪ x′) \ C(x) = m \ (x ∪ x′) \ C(x ∪ x′).
Since each link inm makes its decision independently of
each other, we can multiply these probabilities together.
Summing over all possible decision schedules, we get
the total transition probability fromx to x′ given in (3).

Proposition 1: A necessary and sufficient condition
for the DTMC of the transmission schedules to be
irreducible and aperiodic is∪m∈M0

m = E, and in
this case the DTMC is reversible and has the following
product-form stationary distribution:

π(x) =
1

Z

∏

i∈x

pi
p̄i
, (4)

Z =
∑

x∈M

∏

i∈x

pi
p̄i
. (5)

Proof: If ∪m∈M0
m 6= E, supposel /∈ ∪m∈M0

m,
then from state0 the DTMC will never reach a feasible
schedule includingl. (There exists at least one such
schedule, e.g., the schedule with onlyl being active.)

On the other hand if∪m∈M0
m = E, then using

Lemma 2 it is easy to verify that state0 can reach
any other statex ∈ M with positive probability in a
finite number of steps and vice versa. To prove this,
supposex = {l1, l2, ..., lm}. Define xj = {l1, ..., lj}
for j = 0, ...,m. Note thatx0 = 0 and xm = x.
Now for 0 ≤ j ≤ m − 1, xj ∪ xj+1 = xj+1 ∈ M
andxj △ xj+1 = {lj+1}. Since∪m∈M0

m = E, there
exists anm ∈ M0 such that{lj+1} ⊆ m. Then by
Lemma 2,xj can make a transition toxj+1 with positive
probability as given in (3), hence0 can reachx with
positive probability in a finite number of steps. The
reverse argument is similar. Therefore, the DTMC is
irreducible and aperiodic.



In addition, if statex can make a transition to state
x′, then we can check that the distribution in (4) satisfies
the detailed balance equation:

π(x)P (x,x′) = π(x′)P (x′,x), (6)

hence the DTMC is reversible and (4) is indeed its
stationary distribution (see, for example, [14]).

A. Comments On Throughput-Optimality

Based on the product-form distribution in Proposi-
tion 1, one can then proceed as in [11] (under a time-
scale separation assumption) or as in [22] (without
such an assumption) to establish throughput-optimality
of the scheduling algorithm. Instead of pursuing such
a proof here, we point out an alternative simple proof
of throughput-optimality under the time-scale separation
assumption in [11].

We associate each linki ∈ E with a nonnegative
weight wi(t) in time slot t. Recall that MWS selects
a maximum-weight schedulex∗(t) in every time slott
such that

∑

i∈x∗(t)

wi(t) = max
x∈M

∑

i∈x

wi(t). (7)

Let qi(t) be the queue length of linki at the beginning
of time slot t. It was proved in [24] that MWS is
throughput-optimal if we letwi(t) = qi(t). This result
was generalized in [8] as follows. For alli ∈ E, let link
weightwi(t) = fi(qi(t)), wherefi : [0,∞] → [0,∞] are
functions that satisfy the following conditions:
(1) fi(qi) is a nondecreasing, continuous function with

limqi→∞ fi(qi) = ∞.
(2) Given anyM1 > 0, M2 > 0 and0 < ǫ < 1, there

exists aQ < ∞, such that for allqi > Q and∀i,
we have

(1−ǫ)fi(qi) ≤ fi(qi−M1) ≤ fi(qi+M2) ≤ (1+ǫ)fi(qi).

The following result was established in [8].
Theorem 1: For a scheduling algorithm, if given any

ǫ and δ, 0 < ǫ, δ < 1, there exists aB > 0 such that:
in any time slott, with probability greater than1 − δ,
the scheduling algorithm chooses a schedulex(t) ∈ M
that satisfies

∑

i∈x(t)

wi(t) ≥ (1− ǫ) max
x∈M

∑

i∈x

wi(t) (8)

whenever||q(t)|| > B, whereq(t) = (qi(t) : i ∈ E).
Then the scheduling algorithm is throughput-optimal.

If we choose the link activation probabilitypi =
ewi(t)

ewi(t)+1
, ∀i ∈ E, then (4) becomes

π(x) =
1

Z

∏

i∈x

pi
p̄i

=
1

Z

∏

i∈x

ewi(t) =
e

P

i∈x
wi(t)

Z
. (9)

Hence the (steady-state) probability of choosing a sched-
ule is proportional to its weight, so the schedules with
large weight will be selected with high probability. This
is the intuition behind our proof.

By appropriately choosing the link weight functions
fi’s, we can make the DTMC of the transmission sched-
ules converge much faster compared to the dynamics of
the link weights. For example,fi(qi) = αqi with a small
α is suggested as a heuristic to satisfy the time-scale
separation assumption in [11] andfi(qi) = log log(qi+e)
is used in the proof of throughput-optimality in [22] to
essentially separate the time scales. Here, as in [11], we
simply assume that the DTMC is in the steady-state in
every time slot.

Proposition 2: Suppose the basic scheduling algo-
rithm satisfies∪m∈M0

m = E and hence has the
product-form stationary distribution. Letpi = ewi(t)

ewi(t)+1
,

∀i ∈ E. Then the scheduling algorithm is throughput-
optimal.

Proof: We prove the proposition using Theorem 1.
Now given anyǫ and δ such that0 < ǫ, δ < 1. Let
w∗(t) := maxx∈M

∑

i∈xwi(t). Define

X :=
{

x ∈ M :
∑

i∈x

wi(t) < (1− ǫ)w∗(t)
}

.

Since the DTMC has the product-form stationary
distribution in (9), we have

π(X ) =
∑

x∈X

π(x) =
∑

x∈X

e
P

i∈x
wi(t)

Z

≤
|X |e(1−ǫ)w∗(t)

Z
<

2|E|

eǫw∗(t)
, (10)

where (10) is true because|X | ≤ |M| ≤ 2|E|, andZ >
emaxx∈M

P

i∈x
wi(t) = ew

∗(t).
Therefore, if

w∗(t) >
1

ǫ

(

|E| log 2 + log
1

δ

)

, (11)

thenπ(X ) < δ. Sincew∗(t) is a continuous, nondecreas-
ing function of qi(t)’s, with lim||q(t)||→∞w∗(t) = ∞,
there exits aB > 0 such that whenever||q(t)|| > B,
(11) holds and thenπ(X ) < δ. Hence the scheduling
algorithm satisfies the condition of Theorem 1 and is
throughput-optimal.

Remark 1:Note thatpi in the above proposition is
identical to the link activation probability in the Glauber
dynamics mentioned in [22]. Thus, our algorithm is a
generalization of Glauber dynamics where multiple links
are allowed to make decisions in a single time slot.



IV. D ISTRIBUTED IMPLEMENTATION: Q-CSMA

In this section we present a distributed implementation
of the basic scheduling algorithm. The key idea is to
develop a distributed randomized procedure to select
a (feasible) decision schedule in the control slot. To
achieve this, we further divide the control slot into
control mini-slots. Note that once a link knows whether
it is included in the decision schedule, it can determine
its state in the data slot based on its carrier sensing
information (i.e., whether its conflicting links were active
in the previous data slot) and activation probability.
We call this implementationQ-CSMA (Queue-length
based CSMA/CA), since the activation probability of a
link is determined by its queue length to achieve max-
imum throughput (as in Section III-A), and collisions
of data packets are avoided via carrier sensing and the
exchange of control messages.

At the beginning of each time slot, every linki
will select a random backoff time. Linki will send a
message announcing its INTENT to make a decision at
the expiry of this backoff time subject to the constraints
described below.

Q-CSMA Algorithm (at Link i in Time Slot t)

1. Link i selects a random (integer) backoff timeTi uni-
formly in [0,W − 1] and waits forTi control mini-slots.

2. IF link i hears an INTENT message from a link in
C(i) before the(Ti + 1)-th control mini-slot,i will not
be included inm(t) and will not transmit an INTENT
message anymore. Linki will set xi(t) = xi(t− 1).

3 IF link i does not hear an INTENT message from any
link in C(i) before the(Ti + 1)-th control mini-slot, it
will send (broadcast) an INTENT message to all links in
C(i) at the beginning of the(Ti+1)-th control mini-slot.

– If there is a collision (i.e., if there is another link in
C(i) transmitting an INTENT message in the same
mini-slot), link i will not be included inm(t) and
will set xi(t) = xi(t− 1).

– If there is no collision, linki will be included in
m(t) and decide its state as follows:

if no links in C(i) were active in the previous
data slot

xi(t) = 1 with probability pi, 0 < pi < 1;
xi(t) = 0 with probability p̄i = 1− pi.

else
xi(t) = 0.

4. If xi(t) = 1, link i will transmit a packet in the data slot.

Lemma 3:m(t) produced by Q-CSMA is a feasible
schedule. LetM0 be the set of all decision schedules

produced by Q-CSMA. If the window sizeW ≥ 2, then
∪m∈M0

m = E.
Proof: Under Q-CSMA, linki will be included in

the decision schedulem(t) if and only if it successfully
sends an INTENT message to all links inC(i) without
a collision in the control slot. This will “silence” the
links in C(i) so those links will not be included inm(t).
Hencem(t) is feasible.

Now for any maximal schedulem (a schedule is
maximal if no additional links can be added to the
schedule without violating its feasibility), note thatm
will be selected in the control slot ifTi = 0, ∀i ∈ m, and
Tj = 1, ∀j /∈ m. This occurs with positive probability
if W ≥ 2, because,

α(m) ≥ Pr
{

Ti = 0,∀i ∈ m; Tj = 1,∀j /∈ m
}

=
∏

i∈E

1

W
> 0.

Since the set of all maximal schedules will include all
links, ∪m∈M0

m = E if W ≥ 2.
Combining Lemma 3 and Propositions 1, 2 we have

the following result.
Proposition 3: Q-CSMA has the product-form distri-

bution given in Proposition 1 ifW ≥ 2. Further, it is
throughput-optimal if we letpi = ewi(t)

ewi(t)+1
, ∀i ∈ E.

Remark 2:A control slot of Q-CSMA consists ofW
mini-slots and each link needs to send at most one
INTENT message. Hence Q-CSMA has constant (and
low) signalling/time overhead, independent of the size
of the network. Suppose the duration of a data slot is
D mini-slots. Taking control overhead into account, Q-
CSMA can achieve D

D+W
of the capacity region, which

approaches the full capacity whenW ≪ D.
Remark 3:We can slightly modify Q-CSMA as fol-

lows: in Step 3, if link i does not hear an INTENT
message from any link inC(i) before the(Ti + 1)-th
control mini-slot,i will send an INTENT message to all
links in C(i) at the beginning of the(Ti + 1)-th control
mini-slot with some (positive) probabilityβi. In this case
we can show that Q-CSMA achieves the product-form
distribution even forW = 1. (We thank Libin Jiang for
this observation.)

When describing the Q-CSMA algorithm, we treat
every link as an entity, while in reality each link consists
of a sender node and a receiver node. Both carrier sens-
ing and transmission of data/control packets are actually
conducted by those nodes. In Appendix A we provide
details to implement Q-CSMA based on the nodes in
the network. Such an implementation also allows us
to handle the hidden and exposed terminal problems
associated with wireless networks [1].



V. A L OW-DELAY HYBRID Q-CSMA ALGORITHM

By Little’s law, the long-term average queueing de-
lay experienced by the packets is proportional to the
long-term average queue length in the network. In our
simulations (see Section VI) we find that the delay
performance of Q-CSMA can be quite bad when the
traffic intensity is high (this is true even in simulations of
the continuous-time CSMA algorithm) and much worse
than greedy maximal scheduling (GMS). However, GMS
is a centralized algorithm and is not throughput-optimal
in general (there exist networks, e.g., the9-link ring
network in Section VI-B, where GMS can only achieve
2/3 of the capacity region).

We are therefore motivated to design a distributed
scheduling algorithm that can combine the advantages
of both Q-CSMA (for achieving maximum throughput)
and GMS (for achieving low delay). We first develop
a distributed algorithm to approximate GMS, which we
call D-GMS.

The basic idea of D-GMS is to assign smaller backoff
times to links with larger queue lengths. However, to
handle cases where two or more links in a neighborhood
have the same queue length, some collision resolution
mechanism is incorporated in D-GMS. Further, we have
conducted extensive simulations to understand how to
reduce the control overhead required to implement D-
GMS while maintaining the ability to control the network
when the queue lengths become large. Based on these
simulations, we conclude that it is better to use the
log of the queue lengths (rather than the queue lengths
themselves) to determine the channel access priority of
the links. The resulting D-GMS algorithm is described
below.

D-GMS Algorithm (at Link i in Time Slot t)

1. Link i selects a random backoff time

Ti = W ×⌊B− logb
(

qi(t) + 1
)

⌋+ +Uniform[0,W − 1]

and waits forTi control mini-slots.
2. IF link i hears an RESV message (e.g., an RTS/CTS pair)

from a link in C(i) before the(Ti + 1)-th control mini-
slot, it will not be included inx(t) and will not transmit
an RESV message. Linki will set xi(t) = 0.

3. IF link i does not hear an RESV message from any link in
C(i) before the(Ti+1)-th control mini-slot, it will send
an RESV message to all links inC(i) at the beginning
of the (Ti + 1)-th control mini-slot.

– If there is a collision, linki will set xi(t) = 0.
– If there is no collision, linki will set xi(t) = 1.

4. If xi(t) = 1, link i will transmit a packet in the data slot.

Remark 4: In the above algorithm, each control slot
can be thought asB frames, with each frame consisting
of W mini-slots. Links are assigned a frame based on the
log of their queue lengths and theW mini-slots within
a frame are used to resolve contentions among links.
Hence a control slot of D-GMS consists ofW ×B mini-
slots, and links with empty queues will not compete for
the channel in this time slot.

Now we are ready to present ahybrid Q-CSMA
algorithm which is both throughput-optimal and has
very good delay performance. The basic idea behind the
algorithm is as follows. For links with weight greater
than a thresholdw0, the Q-CSMA procedure (as in
Section IV) is applied first to determine their states;
for other links, the D-GMS procedure is applied next
to determine their states. To achieve this, a control
slot is divided intoW0 mini-slots which are used to
perform Q-CSMA for links whose weight is greater
than w0 and W1 × B mini-slots which are used to
implement D-GMS among the other links. Each linki
uses a one-bit memoryNAi to record whether any of
its conflicting links becomes active due to the Q-CSMA
procedure in a time slot. This information is used in
constructing a schedule in the next time slot.

Hybrid Q-CSMA (at Link i in Time Slot t)

IF wi(t) > w0 (Q-CSMA Procedure)
1.1 Link i selects a random backoff timeTi =

Uniform[0,W0 − 1].
1.2 If link i hears an INTENT message from a link inC(i)

before the(Ti + 1)-th control mini-slot, then it will set
xi(t) = xi(t− 1) and go to Step 1.4.

1.3 If link i does not hear an INTENT message from any
link in C(i) before the(Ti + 1)-th control mini-slot, it
will send an INTENT message to all links inC(i) at the
beginning of the(Ti + 1)-th control mini-slot.

• If there is a collision, linki will set xi(t) = xi(t− 1).
• If there is no collision, linki will decide its state as

follows:
if no links in C(i) were active due to the Q-CSMA

procedure in the previous data slot, i.e.,NAi = 0
xi(t) = 1 with probabilitypi, 0 < pi < 1;
xi(t) = 0 with probability p̄i = 1− pi.

else
xi(t) = 0.

1.4 If xi(t) = 1, link i will send an RESV message to all
links in C(i) at the beginning of the(W0 +1)-th control
mini-slot. It will set NAi = 0 and transmit a packet in
the data slot.
If xi(t) = 0 and link i hears an RESV message from
any link in C(i) in the (W0 + 1)-th control mini-slot, it



will set NAi = 1; otherwise, it will setNAi = 0.

IF wi(t) ≤ w0 (D-GMS Procedure)
2.1 If link i hears an RESV message from any link inC(i)

in the (W0 +1)-th control mini-slot, it will setNAi = 1
andxi(t) = 0 and keep silent in this time slot.
Otherwise, linki will set NAi = 0 and select a random
backoff timeTi = (W0 + 1)+W1 × ⌊B − logb

(

qi(t) +
1
)

⌋++Uniform[0,W1−1] and wait forTi control mini-
slots.

2.2 If link i hears an RESV message from a link inC(i)
before the(Ti+1)-th control mini-slot, it will setxi(t) =
0 and keep silent in this time slot.

2.3 If link i does not hear an RESV message from any link in
C(i) before the(Ti+1)-th control mini-slot, it will send
an RESV message to all links inC(i) at the beginning
of the (Ti + 1)-th control mini-slot.

– If there is a collision, linki will set xi(t) = 0.
– If there is no collision, linki will set xi(t) = 1.

2.4 If xi(t) = 1, link i will transmit a packet in the data slot.

Remark 5:The (W0 + 1)-th control mini-slot (called
transition mini-slot, which occurs between the firstW0

mini-slots and the lastW1 × B mini-slots) is reserved
for all the links which have not been scheduled so
far to conduct carrier sensing. In this mini-slot those
links which have already been scheduled (due to the Q-
CSMA procedure) will send an RESV message so their
neighbors can sense and record this information in their
NA bit.

Remark 6:Suppose that the link weights are chosen
as in Section III-A, i.e.,wi(t) = fi(qi(t)) is an increasing
function of qi(t). Thus, wi(t) ≷ w0 is equivalent to
qi(t) ≷ q0, where q0 = f−1(w0) is the queue-length
threshold.

Remark 7:The control overhead of the hybrid Q-
CSMA algorithm isW0 +1+W1 ×B per time slot. As
in the pure D-GMS algorithm, links with empty queues
will keep silent throughout the time slot.

Let L = {i ∈ E : wi(t) > w0} be the set of links for
which the Q-CSMA procedure is applied (in time slot
t), andLc = E \ L. Let xL(t) = (xi(t) : i ∈ L) be
the transmission schedule of the links inL. Note that
in the hybrid Q-CSMA algorithm, scheduling links in
Lc will not affect the Q-CSMA procedure because those
links will be scheduled after the links inL and their
transmissions are “memoryless”. Therefore, under fixed
link weights and activation probabilities (soL is also
fixed),xL(t) evolves as a DTMC. Further, using similar
arguments as in the proofs of Propositions 1 and 3, we
have

Proposition 4: IfW0 ≥ 2, then the DTMC describing

the evolution of the transmission schedulexL(t) is
reversible and has the following product-form stationary
distribution:

π(xL) =
1

ZL

∏

i∈xL

pi
p̄i
, (12)

ZL =
∑

xL∈ML

∏

i∈xL

pi
p̄i
, (13)

whereML is the set of feasible schedules restricted to
L.

Assuming a time-scale separation property that the
DTMC of xL(t) is in steady-state in every time slot,
we establish the throughput-optimality of the hybrid Q-
CSMA algorithm in the following proposition.

Proposition 5: For each linki ∈ L, we choose its
activation probability pi = ewi(t)

ewi(t)+1
, where the link

weightswi(t)’s are appropriate functions of the queue
lengths as in Section III-A. Then the hybrid Q-CSMA
algorithm is throughput-optimal.

Proof: Write x(t) = (xL(t),xLc(t)), where
xA(t) = (xi(t) : i ∈ A) for any setA ⊆ E. Recall that
MWS selects a maximum-weight schedulex∗(t) such
that

w(x∗(t)) = w(x∗
L(t))+w(x∗

Lc(t)) = max
x∈M

∑

i∈x

wi(t) =: w∗,

wherew(xA(t)) =
∑

i∈xA(t) wi(t).
It is clear that

w(x∗
L(t)) ≤ max

xL∈ML

w(xL) =: w∗
L. (14)

For any ǫ such that0 < ǫ < 1, when ||w(t)||∞ ≥
2|E|w0

ǫ
(soL is not empty), we have

w∗
L ≥ max

i
wi(t) ≥

2|E|w0

ǫ
.

Therefore,

w(x∗
Lc(t)) ≤ |E|w0 ≤

ǫ

2
w∗
L. (15)

Using similar arguments as in the proof of Propo-
sition 2, we can show that for anyǫ and δ such that
0 < ǫ, δ < 1, if the queue lengths are large enough,
then with probability greater than1 − δ, the Q-CSMA
procedure choosesxL(t) such that

w(xL(t)) ≥ (1−
ǫ

2
) max
xL∈ML

w(xL) = (1−
ǫ

2
)w∗

L.

In addition, if the queue lengths are large enough, then
(15) holds. Therefore, sincew(xLc(t)) ≥ 0, we have

w(x(t)) = w(xL(t)) + w(xLc(t)) ≥ (1− ǫ)w∗
L +

ǫ

2
w∗
L

≥ (1− ǫ)w(x∗
L(t)) + w(x∗

Lc(t)) ≥ (1− ǫ)w∗.



Hence the hybrid Q-CSMA algorithm satisfies the con-
dition of Theorem 1 and is throughput-optimal.

Remark 8: In the above algorithm, one can replace
D-GMS by any other heuristic and still maintain
throughput-optimality. We simply use D-GMS becaise it
is an approximation to GMS which is known to perform
well in a variety of previous simulation studies. It is also
important to recall our earlier observation that GMS is
not a distributed algorithm and hence, we had to resort
to a distributed approximation.

VI. SIMULATION RESULTS

In this section we evaluate the performance of
different scheduling algorithms via simulations, which
include MWS (only for small networks), GMS
(centralized), D-GMS, Q-CSMA, and the hybrid Q-
CSMA algorithm. In addition, we have implemented
a distributed algorithm to approximate maximal
scheduling (called D-MS), which can be viewed as a
synchronized slotted version of the IEEE 802.11 DCF
with the RTS/CTS mechanism. D-MS is a special case
of D-GMS presented in Section V withB = 1 so the
backoff time of a link does not depend on its queue
length.

D-MS (at Link i in Time Slot t)

1. Link i selects a random backoff timeTi =
Uniform[0,W − 1] and waits forTi control mini-slots.

2. IF link i hears an RESV message from a link inC(i)
before the(Ti + 1)-th control mini-slot, it will not be
included in the transmission schedulex(t) and will not
transmit an RESV message. Linki will set xi(t) = 0.

3. IF link i does not hear an RESV message from any link in
C(i) before the(Ti+1)-th control mini-slot, it will send
an RESV message to all links inC(i) at the beginning
of the (Ti + 1)-th control mini-slot.

– If there is a collision, linki will set xi(t) = 0.
– If there is no collision, linki will set xi(t) = 1.

4. If xi(t) = 1, link i will transmit a packet in the data slot.
(Links with empty queues will keep silent in this time
slot.)

A. A 24-Link Grid Network

We first compare the performance of the scheduling
algorithms in a grid network with 16 nodes and 24 links
as shown in Fig. 1. Each node is represented by a circle
and each link is illustrated by a solid line with a label
indicating its index. Each link maintains its own queue.
We assume1-hop interference.
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Fig. 1. A 24-link grid network topology.

Consider the following four sets of links:

L1 = {1, 3, 8, 10, 15, 17, 22, 24},L2 = {4, 5, 6, 7, 18, 19, 20, 21},

L3 = {1, 3, 9, 11, 14, 16, 22, 24},L4 = {2, 4, 7, 12, 13, 18, 21, 23}.

Each set represents a (maximum-size) maximal schedule
of the network:Mi = eLi

, where eLi
is a vector in

which the components with indices inLi are 1’s and
others are0’s. Then, we let the arrival rate vector be a
convex combination of those maximal schedules scaled
by ρ: λ = ρ ·

∑4
i=1 ciMi, c = [0.2, 0.3, 0.2, 0.3].

Note that a convex combination of several maximum-
size maximal schedules must lie on the boundary of the
capacity region. Hence the parameterρ in [0, 1] can be
viewed as thetraffic intensity, with ρ → 1 representing
arrival rates approaching the boundary of the capacity
region.

The packet arrivals to each linki follow a Bernoulli
process with rateλi independent of the packet arrival
processes at other links. Each simulation experiment
starts with all empty queues. For each algorithm under
a fixed ρ, we take the average over10 independent
experiments, with each run being105 time slots. Due to
the high complexity of MWS in such a large network,
we do not implement it here.

For fair comparison, we choose a control overhead of
48 mini-slots for every distributed scheduling algorithm
(which lies in the range of the backoff window size spec-
ified in IEEE 802.11 DCF [2]). The parameter setting of
the scheduling algorithms is summarized below.

• D-MS: W = 48.
• D-GMS: B = 3, W = 16; b = 8.
• Q-CSMA: W = 48; link weight wi(t) =
log(0.1qi(t)) and link activation probabilitypi =
ewi(t)

ewi(t)+1
.

• Hybrid Q-CSMA: W0 = 5 for the Q-CSMA pro-
cedure,B = 3 and W1 = 14 for the D-GMS
procedure, plus1 transition mini-slot. The queue-
length thresholdq0 = 100. Other parameters are
the same as Q-CSMA.
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Fig. 2. Long-term average queue length per link in the 24-link grid
network.

Remark 9: In Q-CSMA we choose the link weight
function wi(t) = log(αqi(t)) with a small constantα.
The rationality is to make the link weights change much
slower than the dynamics of the CSMA Markov chain (to
satisfy the time-scale separation assumption). We have
tried several other choices for the link weight functions
suggested in prior literature (such asαqi(t) in [11] and
log log(qi(t) + e) in [22]) but log(αqi(t)) seems to give
the best performance.

The performance of the scheduling algorithms is
shown in Fig. 2, from which we can see that (we have
tested the algorithms under other traffic patterns, e.g.,
Poisson arrivals, different arrival rate vectors, and the
results are similar):

• Under small to moderate traffic intensity, D-GMS
and D-MS have very good delay performance (small
long-term average queue length) and perform better
than Q-CSMA. However, when the traffic intensity
is high, the average queue length under D-GMS/D-
MS blows up and their delay performance becomes
much worse than Q-CSMA.

• Hybrid Q-CSMA has the best delay performance
among the distributed scheduling algorithms. It re-
tains the stability property of Q-CSMA even under
high traffic intensity while significantly reduces the
delay of pure Q-CSMA. Note that whenρ → 1,
the performance of Hybrid Q-CSMA becomes close
to pure Q-CSMA since the effect of the D-GMS
procedure diminishes when the queue lengths of
most links exceed the queue length threshold.

• Centralized GMS has excellent delay performance,
but it is not throughput-optimal in general, as illus-
trated next.
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Fig. 3. A 9-link ring network topology.

B. A 9-Link Ring Network

Consider a 9-link ring network under the2-hop inter-
ference model, as shown in Fig. 3. It was shown in [15]
that GMS can only achieve2/3 of the capacity region in
this network. To see this, we construct a traffic pattern
using the idea in [13]. DefineLi = {i, (i+4) mod 9},
1 ≤ i ≤ 9. Starting with empty queues, in time slot
9k + i (k ∈ Z), one packet arrives at each of the2
links in Li, and, with probabilityǫ, an additional packet
arrives at each of the9 links. The average arrival rate
vector is thenλ = (29 + ǫ)e, wheree is a vector with
all components equal to1. It has been shown in [13]
that GMS will lead to infinite queue lengths under such
a traffic pattern for allǫ > 0.

On the other hand, we could use a scheduling policy
as follows. DefineL̃1 = {1, 4, 7}, L̃2 = {2, 5, 8}, L̃3 =
{3, 6, 9} and M̃i = eL̃i

for 1 ≤ i ≤ 3. In time slot
3k+i (k ∈ Z), the maximal schedulẽMi is used. Hence,
the average service rate vector isµ = 1

3e. When 0 <
ǫ < 1

9 , λ < µ, i.e.,λ lies in the interior of the capacity
region, but GMS cannot keep the network stable as we
saw above.

We evaluate the performance of the scheduling algo-
rithms under the above traffic pattern. Each simulation
experiment starts with all empty queues. For each al-
gorithm under a fixedǫ, we take the average over10
independent experiments, with each run being105 time
slots. We use exactly the same parameter setting as in
Section VI-A.

In Fig. 4 we can see that Q-CSMA and Hybrid Q-
CSMA have a much lower delay than GMS, D-GMS
(when ǫ ≥ 0.03) and D-MS (whenǫ ≥ 0.05). Fig. 5
shows that the average queue length increases linearly
with the running time (# of time slots) under D-GMS/D-
MS which imply they are not stable, while the average
queue length becomes stable under Q-CSMA/Hyrbid Q-
CSMA.
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VII. C ONCLUSION

In this paper, we have presented a discrete-time dis-
tributed queue-length based CSMA/CA protocol that
leads to collision-free data transmission schedules. The
protocol is provably throughput-optimal. The discrete-
time formulation allows us to incorporate heuristics
to dramatically reduce the delay without affecting the
theoretical throughput-optimality property. In particular,
combining CSMA with distributed GMS leads to very
good delay performance.

We believe that it should be straightforward to extend
our algorithms to be applicable to networks with multi-
hop traffic and congestion-controlled sources (see [17],
[9], [23] for related surveys).
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APPENDIX

A. Node-Based Implementation of Q-CSMA

For any noden in the network, we useN (n) to denote
the neighborhood ofn, which is the set of nodes that
can hear the transmission ofn. We assumesymmetryin
hearing: ifn′ ∈ N (n) thenn ∈ N (n′).

Let si and ri be the sender node and receiver node
of link i, respectively. If link i is included in the
transmission schedule, then in the data slot,si will send
a data packet tori, and ri will reply an ACK packet
to si. We assume that the data transmission fromsi to
ri is successful if no nodes inN (ri) are transmitting in
the same time; similarly, the ACK transmission fromri
to si is successful if no nodes inN (si) are transmitting
in the same time. We also consider the node-exclusive
constraint that two active links cannot share a common
node. Therefore, in asynchronizeddata/ACK transmis-
sion system, the conflict set of linki is:

C(i) =
{

j : j shares a common node withi,

or sj ∈ N (ri), or rj ∈ N (si).
}

.

In summary, two linksi andj conflict with each other,
i.e., i ∈ C(j) and j ∈ C(i), if they share a common
node, or if simultaneous data transmissions atsi and
sj will collide at ri and rj , or if simultaneous ACK
transmissions atri andrj will collide at si andsj.

We say that a node isactive in a time slot if it is
the sender node or receiver node of an active link. In a
time slot, eachinactivenode will conduct carrier sensing.
It will determine whether there are some active sender
nodes and some active receiver nodes in its neighborhood
by sensing whether the channel is busy during the data
transmission period and during the ACK transmission
period, respectively. In this way, linki “knows” that no
links in its conflict set are active in a time slot, ifsi and
ri don’t belong to an active link other thani, si does not
sense an active receiver node inN (si), andri does not
sense an active sender node inN (ri).

Similar to the RTS/CTS mechanism in the 802.11
MAC protocol, an INTENT message “sent” by a link
consists of an RTD (Request-To-Decide) and a CTD
(Clear-To-Decide) pair exchanged by the sender node
and receiver node of the link. To achieve this, we further
divide a control mini-slot into two sub-mini-slots. In the
first sub-mini-slot,si sends an RTD tori. If ri receives
the RTD without a collision (i.e., no nodes inN (ri) are
transmitting in the same sub-mini-slot), thenri will reply
a CTD tosi in the second sub-mini-slot. Ifsi receives the
CTD from ri without a collision, then linki = (si, ri)
will be added to the decision schedule. We choose the
length of a sub-mini-slot such that an RTD or CTD sent
by any node can reach its neighbors within one sub-
mini-slot. Note that the exchange of an RTD/CTD pair
between the sender and receiver of a link will “silence”
all its conflicting links so those links will not be added
to the decision schedule anymore.

Now we are ready to present the node-based Q-CSMA
algorithm. Some additional one-bit memories maintained
at noden (in time slot t) are summarized below (each
explanation corresponds to bit1):

• ASn(t)/ARn(t): n is available as the
sender/receiver node for a link in the decision
schedulem(t).

• ACTn(t): n is active (as either a sender or receiver
node).

• NSn(t)/NRn(t): theneighborhoodof n (i.e,N (n))
has an activesender/receivernode.

Q-CSMA Algorithm (at Node n in Time Slot t)

1. At the beginning of the time slot, noden setsASn(t) = 1
andARn(t) = 1.
Let L(n) be the set of links for whichn is the sender
node (i.e.,n = sl, ∀l ∈ L(n)). Noden randomly chooses
one link in L(n) (suppose linki = (n,m) is chosen)
and selects a backoff timeTi uniformly in [0,W − 1].
Other links in L(n) will not be included inm(t), so
xl(t) = xl(t− 1), ∀l ∈ L(n) \ i.



2. Throughout the control slot, if noden senses an RTD
transmission not intended for itself (or a collision of
RTDs) by a node inN (n), n will no longer be available
as the receiver node for a link inm(t). Thus, noden
will set ARn(t) = 0.

3. Before the(Ti+1)-th control mini-slot, if noden senses
a CTD transmission by a node inN (n) (or a collision of
CTDs),n will no longer be available as the sender node
for a link in m(t), and it will setASn(t) = 0. In this case
link i will not be included inm(t) andxi(t) = xi(t−1).

4. At the beginning of the(Ti + 1)-th control mini-slot, if
ASn(t) = 1, noden will send an RTD to nodem in
the first sub-mini-slot. Noden will then setASn(t) =
ARn(t) = 0.

4.1 If nodem receives the RTD from noden with-
out a collision andARm(t) = 1, m will send
a CTD to n in the second sub-mini-slot of the
(Ti + 1)-th control mini-slot. Nodem will then set
ASm(t) = ARm(t) = 0. The CTD message also
includes the carrier sensing information of nodem
in the previous time slot (the values ofACTm(t−1)
and NSm(t − 1)). Otherwise, no message will be
sent.

4.2 If noden receives the CTD message from nodem
without a collision, linki = (n,m) will be included
in m(t). Noden will decide link i’s state as follows:

if no links in C(i) were active in the previous
data slot, i.e.,xi(t − 1) = 1 or ACTn(t − 1) =
ACTm(t− 1) = NRn(t− 1) = NSm(t− 1) = 0

xi(t) = 1 with probabilitypi, 0 < pi < 1;
xi(t) = 0 with probability p̄i = 1− pi.

else
xi(t) = 0.

Otherwise, linki will not be included inm(t) and
xi(t) = xi(t− 1).

5. In the data slot, noden takes one of the three different
roles:

– Sender: xl(t) = 1 for some link l = (n,m) ∈ E.
Noden will send a data packet to nodem and set
ACTn(t) = 1.

– Receiver: xl(t) = 1 for some linkl = (m,n) ∈ E.
Noden will send an ACK packet to nodem (after it
receives the data packet fromm) and setACTn(t) =
1.

– Inactive: Node n setsACTn(t) = 0 and conducts
carrier sensing. Recall that data/ACK transmissions
in our system are synchronized. Thus, noden will
setNSn(t) = 0 if it senses no signal during the data
transmission period and setNSn(t) = 1 otherwise.
Similarly, noden will set NRn(t) = 0 if it senses
no signal during the ACK transmission period and
setNRn(t) = 1 otherwise.

Remark 10:Note that RTD and CTD are sent in two
different sub-mini-slots. This provides an easy way to
differentiate RTD and CTD (or collisions of RTDs and

CTDs, respectively) without having to encode the packet
type in a preamble bit of such a control packet (actually
when a collision happens, a node cannot even check this
“packet type” bit to differentiate RTD and CTD).

Proposition 6: m(t) produced by the node-based Q-
CSMA algorithm is a feasible schedule. LetM0 be the
set of decision schedules produced by the algorithm. If
the window sizeW ≥ 2, then ∪m∈M0

m = E and
the algorithm achieves the product-form distribution in
Proposition 1.

Proof: The proof is similar to the proof of Lemma 3.
Under the node-based Q-CSMA algorithm, linki will
be included in the decision schedulem(t) if and only if
its sender and receiver nodes successfully exchange an
RTD/CTD pair in the control slot. This will “silence”
all the receivers inN (si) and all the senders in in
N (ri) as well as nodessi and ri, so no links inC(i)
will be included in m(t). Hencem(t) is a feasible
schedule. Similarly, for any maximal schedulem, we
can check thatm will be selected in the control slot
with positive probability if the window sizeW ≥ 2.
Since the set of all maximal schedules will include all
links, ∪m∈M0

m = E. Then by Proposition 1 the node-
based Q-CSMA algorithm achieves the product-form
distribution.
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