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Abstract—Recently, it has been shown that CSMA- the queues in the network stable. The delay performance
type random access algorithms can achieve the maximum of a scheduling algorithm can be characterized by the
possible throughput in wireless ad hoc networks. However, gverage delay experienced by the packets transmitted
the delay performance of these algorlthm_s can be quite i the network. Since many wireless network applica-
bad. On the other hand, although some simple heuristics ;o a6 stringent bandwidth and delay requirements,
(such as distributed approximations of greedy maximal - . ) .

designing high-performance scheduling algorithms to

scheduling) can yield much better delay performance for . - .
a large set of arrival rates, they may only achieve a fraction @chieve maximum possible throughput and low delay

of the capacity region in general. In this paper, we propose 1S Of great importance, which is the main objective of
a discrete-time version of the CSMA-type random access this paper. We also want the scheduling algorithms to be
algorithm that allows us to incorporate simple heuristics distributed and have low complexity/overhead, since in
which lead to very good delay performance while retaining wireless ad hoc networks normally there is no centralized
the throughput-optimality property. Central to our result s entity and the resources at the nodes are very limited.
is a discrete-time distributed randomized algorithm that It is well known that the queue-length basddximum
generates data transmission schedules according to aWeighted SchedulingMWs) algorithm is throughput-

product-form distribution, a counterpart of similar resul ts . . . o
obtained earlier for continuous-time models under the optimal[24], in the sense that it can stabilize the network

perfect CSMA assumption where collisions can never dueues for all arrival rates in the capacity region of the
occur. An appealing feature of this algorithm is that it network (without explicitly knowing the arrival rates).
explicitly takes collisions into account during the exchage However, for general interference models MWS requires
of control packets. the network to solve an NP-Hard problem at each time
slot and hence, is not implementable in practice.

Maximal schedulings a low-complexity alternative
to MWS but it may only achieve a small fraction of

In wireless networks with limited resources, efficienthe capacity region [5]/ [26]Greedy Maximal Schedul-
resource allocation and optimization (e.g., power contrahg (GMS), also known ad.ongest-Queue-Firs{LQF)
link scheduling, routing, rate control) play an imporScheduling, is another natural low-complexity alternativ
tant role in achieving good performance and providing MWS which has been observed to achieve very
satisfactory quality-of-service (QoS). In this paper, wgood throughput and delay performance in a variety
study link scheduling(or Media Access ContrpMAC) of wireless network simulations. GMS proceeds in a
for wireless networks, where all links (node pairs) magreedy manner by sequentially scheduling a link with
not be able to transmit simultaneously due to transceiv@e longest queue and disabling all its interfering links.
constraints and radio interference. stheduling algo- It was shown in([6] that if the network satisfies the so-
rithm decides which links can transmit data at each tin@lledlocal-poolingcondition, then GMS is throughput-
instant so that no two active links interfere with eacbptimal; but for networks with general topology GMS
other. may only achieve a fraction of the capacity region|[13],

The performance metrics of interest in this paper afg5], [27]. Moreover, while the computational complex-
throughputanddelay. The throughput performance of aty of GMS is low, the signaling and time overhead of
scheduling algorithm is often characterized by the largedstcentralization of GMS can increase with the size of
set of arrival rates under which the algorithm can keape network.
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Another class of scheduling algorithms are CSMA Although the recent results on CSMA-type random
(Carrier Sense Multiple Accepdype random accessaccess algorithms show throughput-optimality, simula-
algorithms. Under CSMA, a node (sender of a link) wiltion results indicate that the delay performance of these
sense whether the channel is busy before it transmitgorithms can be quite bad and much worse than MWS
a packet. When the node detects that the channelaisd GMS. Thus, one of our goals in this paper is to
busy, it will wait for a random backoff time. Sincedesign distributed scheduling algorithms that have low
CSMA-type algorithms can be easily implemented ioomplexity, are provably throughput-optimal, and have
a distributed manner, they are widely used in practiggwod delay performance. Towards this end, we design a
(e.g., the IEEE 802.11 MAC protocol). In![3] the authorsliscrete-time version of the CSMA-type random access
derived an analytical model to calculate the throughput afgorithm which achieves the same product-form distri-
a CSMA-type algorithm in multi-hop wireless networksbution over schedules as inl [3]. Our algorithm generates
They showed that the Markov chain describing theollision-free data transmission schedules while allgwin
evolution of schedules has a product-form stationafyr collisions during the control phase of the protocol (as
distribution under an idealized CSMA model (whichin the 802.11 MAC protocol), thus relaxing the perfect
assumes zero propagation/sensing delay and no hid@3$MA assumption of the algorithms inl[3], [11], [22].
terminals) where collisions can never occur. Then tl@ur approach to modeling collisions is different from
authors proposed a heuristic algorithm to select tiige approaches in [12], [18]. In_[18] the authors pointed
CSMA parameters so that the link service rates aogit that, as the the transmission probabilities are made
equal to the link arrival rates which were assumed small and the transmission lengths are made large, their
be known. No proof was given for the convergencdiscrete-time model approximates the continuous-time
of this algorithm. This model was used in_[25] tanodel with Poisson clocks, but in general it is difficult
study throughput and fairness issues in wireless ad hocquantify the throughput difference between the two
networks. The insensitivity properties of such a CSMModels. The algorithm in_[12] places upper bounds on
algorithm have been recently studied inl[16]. the CSMA parameters, but the loss in throughput due to

Based on the results inl[3],_[25], a distributed algahis design choice is also hard to quantify. Instead, we
rithm was developed in_[11] to adaptively choose thdirectly quantify the loss in throughput as the ratio of the
CSMA parameters to meet the traffic demand withoduration of the control slot to the duration of the data
explicitly knowing the arrival rates. The results in [11klot (see Remarkl2 in Sectidn]lV). More importantly,
make a time-scale separation assumption, whereby the formulation allows us to incorporate delay-reduction
CSMA Markov chain converges to its steady-state dikeuristics in the choice of schedules while retaining the
tribution instantaneously compared to the time-scale algorithm’s throughput-optimality property.
adaptation of the CSMA parameters. Then the authorswe organize the paper as follows. In Sectibh I
suggested that this time-scale separation assumption g&n introduce the network model. In Sectionl] Il we
be justified using a stochastic-approximation type apresent the basic scheduling algorithm and show that
gument which was verified in_[18]/ [10]. Preliminarythe (discrete-time) Markov chain of the transmission
ideas for a related result was reported(in! [21], where tkehedules has a product-form distribution. In Sedfioh IV
authors study distributed algorithms for optical networksve present a distributed implementation of the basic
But it is clear that their model also applies to wirelesscheduling algorithm, called Q-CSMA (Queue-length
networks with CSMA. In[[22], a slightly modified ver-based CSMA/CA). In Sectioh]V we propose a hybrid
sion of the algorithm proposed in [21] was shown to b®-CSMA algorithm which combines Q-CSMA with a
throughput-optimal. The key idea in_[22] is to choosdistributed procedure that approximates GMS to achieve
the link weights to be a specific function of the queueoth maximum throughput and low delay. We evaluate
lengths to essentially separate the time scales of the lithle performance of different scheduling algorithms via
weights and the CSMA dynamics. Further, the resuld$mulations in Sectiofi_VI. The paper is concluded in
in [22] assume that the maximum queue length in ti&ection VII.
network is known which is estimated via a distributed
message-passing procedure.

While the results in our paper are most closely related
to the works in [3], [11], [22], we also note impor- We model a (single-channel) wireless network by a
tant contributions in[[4], [177], [[19], [[20] which make graphG = (V, E), whereV is the set of nodes an#l is
the connection between random access algorithms dhd set of links. Nodes are wireless transmitters/recgiver
stochastic loss networks. There exists a directed linkn,m) € E if node m
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can hear the transmission of node We assume that whereCo(M) is the convex hull of the set of feasible

if (n,m) € E, then(m,n) € E. schedules intM. When dealing with vectors, inequalities
For any linki € E, we useC(i) to denote the set of are interpreted component-wise.

conflicting links (calledconflict se} of 4, i.e.,C() is the We say that a scheduling algorithm throughput-

set of links such that if any one of them is active, thepptimal or achieves thenaximum throughpuif it can

link 7 cannot be active. The conflict sét/) may include keep the network stable for all arrival rates/An

¢ Links that share a common node with liik This
models thenode-exclusive constrainivhere two I1l. THE BASIC SCHEDULING ALGORITHM

links sharing a common node cannot be active \yu givide each time slot into a control slot and

simultaneously. _ _ a data slot. (Later, we will further divide the control
« Links th"?‘t will cause mterferenc«_s t‘? link when slot into control mini-slots.) The purpose of the control
transmitting. This models theadio interference qq js o generate a collision-freeansmission schedule
constraintwhere two links that are close to eaclg( e M used for data transmission in the data slot.
other cannot be active simultaneously. To achieve this, the network first selects a set of links
We assume symmetry in the conflict set so that & that do not conflict with each other, denoted f(t).
C(y) thenj € C(7). Note that these links also form a feasible schedule, but

We consider a time-slotted system. Aeasible itis notthe schedule used for data transmission. We call
(collision-fre§ scheduleof G = (V,FE) is a set of m(t) the decision schedul@ time slotz.
links that can be active at the same time accordingLet My C M be the set of possible decision
to the conflict set constraint, i.e., no two links in &chedules. The network selects a decision schedule
feasible schedule conflict with each other. Without loscording to a randomized procedure, i.e., it selects
of generality, we assume that all links have unit capacity)(t) € M, with some positive probabilityv(m(t)),

i.e., an active link can transmit one packet in one time;, ;o\, «(m(¢)) = 1. Then, the transmission
slot under a feasible schedule. schedule is determined as follows. For any lihkn

A schedule is represented by a vectoe {0,1}/%l. m(¢), if no links in C(i) were active in the previous
The i** element ofx is equal tol (i.e., z; = 1) if link data slot, then linki is chosen to beactive with an
i is included in the schedule:; = 0 otherwise. With a activation probability p; and inactive with probability
little bit abuse of notation, we also treatas a set and 1 — p; in the current data slot. If at least one link in
write 7 € x if z; = 1. Note that a feasible scheduie C(i) was active in the previous data slot, thewill be
satisfies: inactive in the current data slot. Any link not selected

. by m(t) will maintain its state (active or inactive) from
i+ Z rj< b Vi€ . (1) tr?/e pge)vious data slot. Conditi(()ns on the set of Lecision
Fec®) schedulesM,, and the link activation probabilities;’s
Let M be the set of all feasible schedules of the networWill be specified later.

A scheduling algorithnis a procedure to decide which
schedule to be used (i.e., which set of links to be
activated) in every time slot for data transmission. In thBasic Scheduling Algorithm (in Time Slot?)
paper we focus on the MAC layer so we only consider
single-hop traffic. Thecapacity regionof the network 1. In the control slot, randomly select a decision schedule
is the set of all arrival ratea for which there exists a ~ m(t) € Mo with probability a(m(?)).
scheduling algorithm that can stabilize the queues, i.e., Vi € m(t)f L o .
the queues are bounded in some appropriate stochastic If no links in C(i) were active in the previous data

- . slot, i.e.,> . o zj(t—1)=0
sense depending on the arrival model used. For the @) E%g)“:“)lx\jvﬁth prc))babilityp- 0<pi<1;

purposes of this paper, we will assume that if the arrival (b) ;(t) = 0 with probability 5; = 1 — p;.

process is stochastic, then the resulting queue length Else

process admits a Markovian description, in which case, (€) z;(t) = 0.

stability refers to the positive recurrence of this Markov Vi ¢ m(¢) :

chain. It is known (e.g./[24]) that the capacity region is (d) z;(t) = zi(t — 1).

given by 2. In the data slot, use(t) as the transmission schedule.

A={X\|3p e CoM), X < u}, (2)



First we will show that if the transmission schedules the selected decision schedule, we can calculate the
used in the previous data slot and the decision sched(denditional) probability thak makes a transition ta’,
selected in the current control slot both are feasible, thby dividing the links inm into the following five cases:
the transmission schedule generated in the current d@13 | € x \ x’: link [ decides to change its state from 1

slot is also feasible. to 0, this occurs with probability, based on Step

Lemma 1: Ifx(t — 1) € M and m(t) € M, then (b) in the scheduling algorithm;

x(t) € M. (2) k e x'\x: link k£ decides to change its state from 0
Proof: Note thatx € M if and only if Vi € E such to 1, this occurs with probability, based on Step
thatz; = 1, we havez; =0 for all j € C(7). (a);

Now consider anyi € E such thatz;(t) = 1. If i ¢ (3) i € mnN (xNx'): link ¢ decides to keep its state 1,
m(t), then we knowz;(t — 1) = z;(¢) = 1, and since this occurs with probability; based on Step (a);
x(t —1) € M, we haveVj € C(i), z;(t —1) = 0. In  (4) e € mNC(x) whereC(x) = UiexC(l): link e has
addition, if j ¢ m(t), thenz;(t) = z;(t — 1) = 0 based to keep its state O, this occurs with probability 1

on Step (d) of the scheduling algorithm above; otherwise, based on Step (c);
j € m(t), then since € C(j) andz;(t—1) =1,z;(t) = (5) j € m\ (xUx')\ C(x): link j decides to keep

0 based on Step (c). its state O, this occurs with probabilify; based on
On the other hand, if € m(¢), from the scheduling Step (b).
algorithm we haver;(t) = 1 only if z;(t — 1) = 0, Note thatm NC(x’ \ x) = () becausex’ \ x C m, we

Vj € C(i). Sincei € m(t) and m(t) is feasible, we havem \ (x Ux')\C(x) = m\ (x Ux')\ C(x UxX').
know C(i) N m(t) = (. Therefore, for anyj € C(i), Since each link iim makes its decision independently of
zj(t) = z;(t — 1) = 0 based on Step (d). B each other, we can multiply these probabilities together.
Becausex(t) only depends on the previous statg— Summing over all possible decision schedules, we get
1) and some randomly selected decision schedu(¢), the total transition probability fronx to x’ given in [3).
x(t) evolves as a discrete-time Markov chain (DTMC). [ |
Next we will derive the transition probabilities between Proposition 1: A necessary and sufficient condition
the states (transmission schedules). for the DTMC of the transmission schedules to be
Lemma 2: A statex € M can make a transition to irreducible and aperiodic iSUmem,m = E, and in
a statex’ € M if and only if x Ux’ € M and there this case the DTMC is reversible and has the following

exists a decision scheduta € M, such thatx A x’ = product-form stationary distribution:
(x\ x)U (x'\ x) € m, and in this case the transition 1 1 pi
probability fromx to x’ is: x) = 7 iexﬁ.’ )
Pxx) = Y am)( [T a)( IT ») z = Y II% (5)
meMo:xAx’'Cm lex\x’ kex'\x xeMiex Pi
( H i H ﬁj>.(3) Proof: If Umesm,m # E, supposed ¢ Umen,m,
then from stated the DTMC will never reach a feasible

FemGe) FEmAGNCEL) schedule including. (There exists at least one such

Proof: (Necessity Supposex is the current state schedule, e.g., the schedule with oilipeing active.)
andx’ is the next statex \ x' = {l : x; = 1,x; = 0} On the other hand ifUyncm,m = E, then using
is the set of links that change their state from 1 (activeemmal2 it is easy to verify that sta®@ can reach
to O (inactive).x’ \ x = {k : x;, = 0,x) = 1} is the any other statex € M with positive probability in a
set of links that change their state from 0 to 1. From tHfimite number of steps and vice versa. To prove this,
scheduling algorithm, a link can change its state onjupposex = {l1,ls,...,l,,}. Definex; = {li,....1;}
if the link belongs to the decision schedule. Thereforfgr ; = 0,...,m. Note thatx, = 0 and x,, = x.
x can make a transition ta’ only if there exists an Now for 0 < j < m — 1, x; UX,41 = Xjp1 € M
m € M, such that the symmetric differenceA x' = andx; A xj11 = {l;+1}. SinceUmem,m = E, there
(x\x) U (x'\ x) € m. Additionally, since(xNx’) U exists anm € M, such that{l;4+1} € m. Then by

x\x)=xeM, xnx)U(x'\x)=x"€ M, and Lemmd2x; can make a transition t;, with positive
(x\x)U(x\x)=xAx" € M, we havex Ux' = probability as given in[{3), hencé can reachx with
(x\xHU\x)U((xnx') e M. positive probability in a finite number of steps. The

(Sufficiency Now supposex U x’ € M and there reverse argument is similar. Therefore, the DTMC is
exists anm € M, such thatx A x’ C m. Givenm irreducible and aperiodic.



In addition, if statex can make a transition to stateHence the (steady-state) probability of choosing a sched-
x’, then we can check that the distribution[ih (4) satisfiese is proportional to its weight, so the schedules with
the detailed balance equation: large weight will be selected with high probability. This

r(X)Px,X) = 7(x)P(x,x), ©6) is the intuitioq behind our.proof. _ . .

By appropriately choosing the link weight functions
hence the DTMC is reversible anfl (4) is indeed itg:s"\ve can make the DTMC of the transmission sched-
stationary distribution (see, for example, [14]). B e converge much faster compared to the dynamics of

o the link weights. For examplg;(¢;) = ag; with a small
A. Comments On Throughput-Optimality o is suggested as a heuristic to satisfy the time-scale

Based on the product-form distribution in Proposkeparation assumption in11] afidg;) = log log(g;+e)
tion [, one can then proceed as [nl[11] (under a timgs used in the proof of throughput-optimality in [22] to
scale separation assumption) or as lin][22] (withogksentially separate the time scales. Here, dsin [11], we
such an assumption) to establish throughput-optimal&ymply assume that the DTMC is in the steady-state in
of the scheduling algorithm. Instead of pursuing suciery time slot.

a proof here, we point out an alternative simple proof proposition 2: Suppose the basic scheduling algo-
of throughput-optimality under the time-scale separatiQihm satisfiesUpmep,m = E and hence has the
assumption in[[11]. _ _ product-form stationary distribution. Le; = -,

We associate each link € £ with a nonnegative v; ¢ g Then the scheduling algorithm is throughput-
weight w;(t) in time slot¢. Recall that MWS selects gptima),

a maximum-weight schedule”(t) in every time slott Proof: We prove the proposition using Theorén 1.

such that Now given anye and ¢ such that0 < ¢, < 1. Let
| Z:(t) wi(t) = )I{J%%c;wi(t). (7) w*(t) := maxyem ;e wi(t). Define
1€X* 1EX
Let ¢;(¢) be the queue length of linkat the beginning X = {X eEM: D wi(t) < (1- G)w*(t)}-
of time slot ¢t. It was proved in [[24] that MWS is iex

throughput-optimal if we letw;(t) = ¢;(t). This result
was generalized in_[8] as follows. For alk £, let link
weightw;(t) = fi(q:(t)), wheref; : [0,00] — [0, 0] are

Since the DTMC has the product-form stationary
distribution in [9), we have

functions that satisfy the following conditions: S wi(t)
. - - - 0 e rex
(1) fi(g:) is a nondecreasing, continuous function with m(X) = Y wx) =) —
limg, 00 fi(qi) = o0. XEX xEX
(2) Given anyM; > 0, M, > 0 and0 < € < 1, there < | X|e(t=e)w () _ 2lEl (10)
exists a@) < oo, such that for allg; > @ and Vi, - Z ecw*(t)’
we have

where [10) is true becaus&’| < (M| < 2/Pl andZ >
(1=€)fi(q:) < filai—My) < fi(gi+Ma) < (14€) fi(@igmaxee s sy wi(h) — gw* (1),

The following result was established inl [8]. Therefore, if

Theorem 1: For a scheduling algorithm, if given any
eandd, 0 < ¢,0 < 1, there exists aB > 0 such that: wi(t) > l(,E‘ log 2 + log l)j (11)
in any time slott, with probability greater thanl — 4, € 0

the scheduling algorithm chooses a schedul®) € M henr(x) < 4. Sincew* (t) is a continuous, nondecreas-
that satisfies ing function of g;(t)’s, with 1imy|q(s)||—e0 w*(t) = oo,
Z wi(t) > (1—e) m%izwi(t) (8) there exits aB > 0 such that wheneveliq(t)|| > B,
xXE

iex(t) iex (11) holds and themr(X') < 4. Hence the scheduling
whenever|q(t)|| > B, whereq(t) = (¢i(t) : i € E). algorithm satls_fles the condition of Theordm 1 and is
Then the scheduling algorithm is throughput-optimal. throughput-optimal. _ . ._
If we choose the link activation probability; =  Remark 1:Note thatp; in the above proposition is
esiigil’ Vi € E, then [3) becomes |dent|c§1I to the I_|nk ac't_lva'Elon probability in the_GIau_ber
dynamics mentioned in_[22]. Thus, our algorithm is a
m(x) = 1 H Pi _ 1 Hewi(t) _ e2iex w?‘(t)' ©) generalization of Glauber dynamics where multiple links
Zxxp; 7 Z are allowed to make decisions in a single time slot.

1EX 1EX



IV. DISTRIBUTED IMPLEMENTATION: Q-CSMA produced by Q-CSMA. If the window siFé > 2, then

In this section we present a distributed impIementa‘tit%Jri“‘E/"“)m = k. o _ ,
of the basic scheduling algorithm. The key idea is to  Proof: Under Q-CSMA, linki will be included in
develop a distributed randomized procedure to seldBf decision schedubm(?) if and only if it successfully
a (feasible) decision schedule in the control slot. Te£NdS an INTENT message to all links @iti) without
achieve this, we further divide the control slot int§ Collision in the control slot. This will “silence” the
control mini-slots. Note that once a link knows whethdlks in C(2) so those links will not be included im(z).
it is included in the decision schedule, it can determifdencem(t) is feasible.
its state in the data slot based on its carrier sensingNow for any maximal schedulen (a schedule is
information (i.e., whether its conflicting links were aetiv Maximal if no additional links can be added to the
in the previous data slot) and activation probabilitgchedule without violating its feasibility), note that
We call this implementatioQ-CSMA (Queue-length will be selected in the control slot#; = 0, Vi € m, and
based CSMA/CA), since the activation probability of aZj = 1, Vj ¢ m. This occurs with positive probability
link is determined by its queue length to achieve mak- W = 2, because,
imum throughput (as in Sectidn_IIl}1A), and collisions 1
of data packets are avoided via carrier sensing and #@n) > Pr{Ti =0,Yiem; T, =1,Yj ¢ m} = H T > 0.
exchange of control messages. icE

At the beginning of each time slot, every link
will select a random backoff time. Link will send a  Since the set of all maximal schedules will include all

message announcing its INTENT to make a decision latks, Umepm,m = E if W > 2. [ |
the expiry of this backoff time subject to the constraints Combining Lemmd_3 and Propositions[1, 2 we have
described below. the following result.

Proposition 3: Q-CSMA has the product-form distri-
bution given in Propositionl1l i#¥ > 2. Further, it is
Q-CSMA Algorithm (at Link < in Time Slot t) throughput-optimal if we lep;, = %’ Vie E.

Remark 2: A control slot of Q-CSMA consists o/

1. Link i selects a random (integer) backoff tirfi¢ uni- mini-slots and each link needs to send at most one
formly in [0, W —1] and waits forT; control mini-slots. |NTENT message. Hence Q-CSMA has constant (and

2. IF link i hears an INTENT message from a link ingy signalling/time overhead, independent of the size
C(i) before the(T; + 1)-th control mini-slot; will not ¢ o “anyork. Suppose the duration of a data slot is

be included inm(¢) and will not transmit an INTENT o i .
message anymore. Linkwill set ;(t) = z(t — 1). D mini-slots. Taking control overhead into account, Q-

3 IF link i does not hear an INTENT message from anfySMA can achieves 2y of the capacity region, which
link in C(i) before the(T; + 1)-th control mini-slot, it approaches the full capacity whéh < D.
will send (broadcast) an INTENT message to all links in Remark 3:We can slightly modify Q-CSMA as fol-
C(i) at the beginning of th€T; +1)-th control mini-slot. |ows: in Step 3, if link: does not hear an INTENT
— If there is a collision (i.e., if there is another link inmessage from any link i€ (i) before the(T; + 1)-th
C(i) transmitting an INTENT message in the samgontrol mini-slot,; will send an INTENT message to all
m_ini—slot), link 4 will not be included inm(t) and |inks in C(i) at the beginning of théT; + 1)-th control
_ \ll;mtlhseer}texiis(tr)no:c:f)ill(its;)r}).linkz‘ will be included i Mini-slot with some (positive) probability;. In this case
’ we can show that Q-CSMA achieves the product-form

m(t) and decide its state as follows: o o
if no links in C(i) were active in the previousd'St”bUt'O” even folV = 1. (We thank Libin Jiang for

data slot this observation.)
x;(t) = 1 with probability p;, 0 < p; < 1; When describing the Q-CSMA algorithm, we treat
z;(t) = 0 with probability p; = 1 — p;. every link as an entity, while in reality each link consists
else of a sender node and a receiver node. Both carrier sens-
zi(t) = 0. ing and transmission of data/control packets are actually

details to implement Q-CSMA based on the nodes in
the network. Such an implementation also allows us

Lemma 3:m(¢) produced by Q-CSMA is a feasibleo handle the hidden and exposed terminal problems
schedule. LetM, be the set of all decision scheduleassociated with wireless networks [1].




V. A Low-DELAY HYBRID Q-CSMA ALGORITHM Remark 4:1n the above algorithm, each control slot
By Little’s law, the long-term average queueing de<an be thought a® frames, with each frame consisting
lay experienced by the packets is proportional to i W minifslots. Links are assigned af_ra_me base_d on the

long-term average queue length in the network. In olf9 of their queue lengths and thi& mini-slots within
simulations (see SectioR V) we find that the dela§ frame are used to resolve contentions among links.
performance of Q-CSMA can be quite bad when tHdence a control slot of D-GMS consists bf x B mini-
traffic intensity is high (this is true even in simulations oflots, and links with empty queues will not compete for
the continuous-time CSMA algorithm) and much wors@€ channel in this time slot.
than greedy maximal scheduling (GMS). However, GMS
is a centralized algorithm and is not throughput-optimal Now we are ready to present laybrid Q-CSMA
in general (there exist networks, e.g., thdink ring algorithm which is both throughput-optimal and has
network in Section VI-B, where GMS can only achiev&ery good delay performance. The basic idea behind the
2/3 of the capacity region). algorithm is as follows. For links with weight greater
We are therefore motivated to design a distributéban a thresholdwy, the Q-CSMA procedure (as in
scheduling algorithm that can combine the advantag@ection[IV) is applied first to determine their states;
of both Q-CSMA (for achieving maximum throughputfor other links, the D-GMS procedure is applied next
and GMS (for achieving low delay). We first developo determine their states. To achieve this, a control
a distributed algorithm to approximate GMS, which wélot is divided into W, mini-slots which are used to
call D-GMS. perform Q-CSMA for links whose weight is greater
The basic idea of D-GMS is to assign smaller backdffian wo and W; x B mini-slots which are used to
times to links with larger queue lengths. However, ttnplement D-GMS among the other links. Each link
handle cases where two or more links in a neighborhouges a one-bit memoryWA; to record whether any of
have the same queue length, some collision resolutits conflicting links becomes active due to the Q-CSMA
mechanism is incorporated in D-GMS. Further, we hagsocedure in a time slot. This information is used in
conducted extensive simulations to understand how @enstructing a schedule in the next time slot.
reduce the control overhead required to implement D-
GMS while maintaining the ability to control the network
when the queue lengths become large. Based on thelserid Q-CSMA (at Link ¢ in Time Slot ¢)
simulations, we conclude that it is better to use the
log of the queue lengths (rather than the queue lengthg ;,(+) > w, (Q-CSMA Procedure)
themselves) to determine the channel access priority ©ff Link i selects a random backoff timel;, =
the links. The resulting D-GMS algorithm is described  Uniform[0, W, — 1].
below. 1.2 If link 7 hears an INTENT message from a link @t:)

before the(T; + 1)-th control mini-slot, then it will set
x;(t) = z;(t — 1) and go to Step 1.4.

D-GMS Algorithm (at Link 4 in Time Slot ¢) 1.3 If link i does not hear an INTENT message from any
link in C(¢) before the(T; + 1)-th control mini-slot, it
1. Link i selects a random backoff time will send an INTENT message to all links &(¢) at the
beginning of the(T; + 1)-th control mini-slot.
T; = W x | B —log, (i(t) +1)]* + Uniform{0, W — 1] « If there is a collision, linki will set z;(t) = z;(t — 1).

« If there is no collision, linki will decide its state as
follows:
if no links inC(i) were active due to the Q-CSMA
procedure in the previous data slot, i.&4; =0
x;(t) = 1 with probabilityp;, 0 < p; < 1;
x;(t) = 0 with probabilityp, = 1 — p;.
else
:vi(t) =0.
1.4 If 2;(t) = 1, link ¢ will send an RESV message to all
. . L links in C(4) at the beginning of th¢iW,, + 1)-th control
— Ifthere ISa coII|s_|qn, ""?"Z W'". set z;(t) = 0. mini-slot.(l'z will set NA; = 0 and fransmit)a packet in
— If there |_s no cpII|S|on, I|.nkz will set_ x;(t) = 1. the data slot.
4. If 2;(t) = 1, link 7 will transmit a packet in the data slot. If z;(t) = 0 and link i hears an RESV message from
any link in C(4) in the (Wy + 1)-th control mini-slot, it

and waits forT; control mini-slots.

2. IFlink i hears an RESV message (e.g., an RTS/CTS pair)
from a link in C(i) before the(T; + 1)-th control mini-
slot, it will not be included inx(¢) and will not transmit
an RESV message. Linkwill set z;(t) = 0.

3. IFlinki does not hear an RESV message from any link in
C(i) before the(T; + 1)-th control mini-slot, it will send
an RESV message to all links if\(i) at the beginning
of the (T; + 1)-th control mini-slot.




will set NA; = 1; otherwise, it will setNA4; = 0. the evolution of the transmission schedulg(¢) is
reversible and has the following product-form stationary

IF wi(t) < wp (D-GMS Procedure) distribution:

2.1 If link ¢ hears an RESV message from any linkd) 1 4
in the (Wy + 1)-th control mini-slot, it will setNA; =1 n(xy) = — &7 (12)
andz;(t) = 0 and keep silent in this time slot. 21 iex, Pi
Otherwise, linki will set NA; = 0 and select a random Di
backoff timeT; = (Wy + 1) + W7 x | B —log, (qi (t) + Zr = Z = (13)
1)]* 4 Uniform(0, W, — 1] and wait forT; control mini- xLEMy i€xy T
slots. where M, is the set of feasible schedules restricted to

2.2 If link ¢ hears an RESV message from a link (i) I

before thg(T;+1)-th control mini-slot, it will set; (t) = ' . . .
0 and keep silent in this time slot. Assuming a time-scale separation property that the

2.3 Iflink i does not hear an RESV message from any link id | MC Of x.(t) is in steady-state in every time slot,
C(i) before the(T; + 1)-th control mini-slot, it will send W€ establish the throughput-optimality of the hybrid Q-
an RESV message to all links (i) at the beginning CSMA algorithm in the following proposition.

of the (7; + 1)-th control mini-slot. Proposition 5: For each linki € L, we choose its
— If there is a collision, linki will set z;(t) = 0. activation probability p; = -7, where the link
— If there is no collision, linki will set z;(t) = 1. weightsw;(t)’s are appropriate functions of the queue

2.4 Ifz;(t) = 1, link i will transmit a packet in the data slot.lengths as in Section II[JA. Then the hybrid Q-CSMA
algorithm is throughput-optimal.

. Proof: Write x(t) = (x5(t),xr-(t)), where
Remark 5:The (W, + 1)-th control mini-slot (called xA(t) = (z:i(t) : i € A) for any setA C E. Recall that

transition mini-slot which occurs between the fir§t, MWS selects a maximum-weight schedut&(t) such
mini-slots and the lasti’; x B mini-slots) is reserved y ..

for all the links which have not been scheduled so
far to conduct carrier sensing. In this mini-slot those(x*(t)) = w(x} (t))+w(x7.(t)) = maXZwi(t) = w",
links which have already been scheduled (due to the Q- ic€x
CS_MA procedure) will send an RE_SV_ message so thWherew(xA(t)) _ Ziexm) wi(t).
neighbors can sense and record this information in their; is clear that
NA bit.

Remark 6: Suppose that the link weights are chosen w(xz(t) < max w(xr) =: wj. (14)
as in Sectiof II[-A,, i.e.w;(t) = f;(¢:(t)) is an increasing xrEMe

function of ¢;(t). Thus, w;(t) = wp is equivalent to  For anye such thatd < ¢ < 1, when |[w(t)[|cc >
¢(t) = qo, whereqy = f~!(wp) is the queue-length @ (so L is not empty), we have
threshold 2| Bfw
Remark 7:The control overhead of the hybrid Q- wy, > maxw;(t) > kel
CSMA algorithm isW, + 1+ W; x B per time slot. As ‘ €
in the pure D-GMS algorithm, links with empty queues Therefore,
will keep silent throughout the time slot. w(xt (£)) < |EJwo < ng. (15)

Let L = {i € E': wi(t) > wo} be the set of links for  ysing similar arguments as in the proof of Propo-
which the Q-CSMA procedure is applled.(ln time slogjtion [2, we can show that for any and § such that
t), and L = E'\ L. Let x1(t) = (z4(t) : i € L) be o < ¢ § < 1, if the queue lengths are large enough,

the transmission schedule of the links in Note that then with probability greater thah — 4, the Q-CSMA
in the hybrid Q-CSMA algorithm, scheduling links inprocedure chooses; (¢) such that

L will not affect the Q-CSMA procedure because those . .
links will be scheduled after the links i and their w(xg(t)) > (1 — 5) max w(xg) = (1- §)w}§.
transmissions are “memoryless”. Therefore, under fixed N _ xreMe
link weights and activation probabilities (sb is also In addition, if the queue lengths are large enough, then
fixed), x.,(t) evolves as a DTMC. Further, using similaf15) holds. Therefore, since(x..(t)) > 0, we have
arguments as in the proofs of Propositiohs 1 @nd 3, we . € .
e wix(t) = wixc(t) +wixe(t) = (1 - uj + s
Proposition 4: IfWW, > 2, then the DTMC describing > (1 —-euw(xp(t) +wxi(t) > (1 —ew.



Hence the hybrid Q-CSMA algorithm satisfies the con- O O
dition of TheoreniIl and is throughput-optimal. = 4 5 8 7
Remark 8:In the above algorithm, one can replace 8 9 10
D-GMS by any other heuristic and still maintain " 12 13 14

throughput-optimality. We simply use D-GMS becaise it . " o

is an approximation to GMS which is known to perform

well in a variety of previous simulation studies. It is also 18 b 2 o
important to recall our earlier observation that GMS is O-2 23 24
not a distributed algorithm and hence, we had to resort

to a distributed approximation. Fig. 1. A 24-link grid network topology.

V1. SIMULATION RESULTS

In this section we evaluate the performance o
different SChedUIing algorithms via SimUIationS, WhiChﬁ1 ={1,3,8,10,15,17,22,24}, Lo = {4,5,6,7,18, 19,20, 21}
include MWS (only for small networks), GMS
(centralized), D-GMS, Q-CSMA, and the hybrid Q-£s ={1,3,9,11,14,16,22,24}, L4 = {2,4,7,12,13,18, 21, 23}.
CSMA algorithm. In addition, we have implemented
a distributed algorithm to approximate maxima

scheguhng ((;:allletc: dD'MS)Z Wh'?r;hcalnEEE \gg\évii ?)SC hich the components with indices id; are 1's and
synchronized siotted version of the ’ thers arel’s. Then, we let the arrival rate vector be a

with the RTS/CTS me_chanlsr_n. D'MS. s a special Ca%%nvex combination of those maximal schedules scaled
of D-GMS presented in Sectidn] V witlB = 1 so the P = p YL M, ¢ = [02,0.3,0.2,03
. - : =14 79 - c&y Ve, Uozy Ul |

lt;?:;ktﬁﬁ time of a link does not depend on its queulq{)te that a convex combination of several maximum-

size maximal schedules must lie on the boundary of the
capacity region. Hence the parametein [0, 1] can be
viewed as thdraffic intensity with p — 1 representing
arrival rates approaching the boundary of the capacity
region.

¢ Consider the following four sets of links:

)

Each set represents a (maximum-size) maximal schedule
f the network:M; = e,,, wheree,, is a vector in

D-MS (at Link 4 in Time Slot t)

1. Link ¢ selects a random backoff timel; = . . .
Uniform[0, 1¥" — 1] and waits forT; control mini-slots. The packet arrivals to each linkfollow a Bernoulli

2. IF link i hears an RESV message from a linkdgi) Process with rate\; in_dependent of the packet arr_ival
before the(T; + 1)-th control mini-slot, it will not be Processes at other links. Each simulation experiment
included in the transmission schedwé) and will not starts with all empty queues. For each algorithm under
transmit an RESV message. Linkwill set z;(t) =0. a fixed p, we take the average ovdl independent

3. IFlink i does not hear an RESV message from any link isxperiments, with each run bei@® time slots. Due to

C(i) before the(T; +1)-th control mini-slot, it will send the high complexity of MWS in such a large network,
an RESV message to all links (i) at the beginning \ve do not implement it here.
of the (T; + 1)-th control mini-slot.
— If there is a collision, linki will set x;(t) = 0.
— If there is no collision, linki will set z;(¢t) = 1.

For fair comparison, we choose a control overhead of
48 mini-slots for every distributed scheduling algorithm
N . _ (which lies in the range of the backoff window size spec-
4. If 2;(t) = 1, link ¢ will transmit a packet in the data slot.... . .
. . ) ; - ified in IEEE 802.11 DCH[2]). The parameter setting of
(Links with empty queues will keep silent in this time . . i .
the scheduling algorithms is summarized below.

slot.)
o D-MS: W = 48.
e« D-GMS: B=3, W =16, b=8.
e Q-CSMA: W = 48; link weight w;(t) =
A. A 24-Link Grid Network 1og((()31qi(t)) and link activation probabilityp; =

We first compare the performance of the scheduling o 7-
algorithms in a grid network with 16 nodes and 24 links « Hybrid Q-CSMA: W, = 5 for the Q-CSMA pro-
as shown in Fig]1. Each node is represented by a circle cedure,B = 3 and W; = 14 for the D-GMS
and each link is illustrated by a solid line with a label ~ procedure, plud transition mini-slot. The queue-
indicating its index. Each link maintains its own queue. length thresholdg, = 100. Other parameters are
We assumd-hop interference. the same as Q-CSMA.
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network. Consider a 9-link ring network under ttzehop inter-

ference model, as shown in Fig. 3. It was showrin [15]
that GMS can only achiev&/3 of the capacity region in

Remark 9:In Q-CSMA we choose the link weightthi_s netwqu. Tp see this, we construct a traffic pattern
function w;(t) = log(agi(t)) with a small constant, USING the idea in [13]. Definé; = {i, (i +4) mod 9},
The rationality is to make the link weights change much = g < 9. Starting with empty_ queues, in time slot
slower than the dynamics of the CSMA Markov chain (tgk T (k € Z), one packe_t_ arrives at _e_ach of the
satisfy the time-scale separation assumption). We h ws in £;, and, with prqbab|l|tye, an addmonal_ packet
tried several other choices for the link weight function@mv‘c‘ls_at each of tQQ links. The average arrival _rate
suggested in prior literature (such as;(t) in [11] and VECr s thenk = (5 + e, wheree is a vector with

- - Il components equal ta. It has been shown in_[13]
log1 ;(t) +e) in [22]) butl ;(t)) seems to give a . o .
tﬁi Eig Eog.\rfofznanE:e D og(agi(t)) g that GMS will lead to infinite queue lengths under such

The performance of the scheduling algorithms %traﬁlc pattern for alk > 0.

shown in Fig[2, from which we can see that (we have On the other hand, we could use a scheduling policy
tested the algorithms under other traffic patterns, e.g$ follows. DefineC, = {1,4,7}, Lo = {2,5,8}, L3 =
Poisson arrivals, different arrival rate vectors, and tHe,6,9} and M; = ez for 1 < i < 3. In time slot

results are similar): 3k+i (k € Z), the maximal schedul®; is used. Hence,
« Under small to moderate traffic intensity, D-GMéhe ?verage service rate vectorus= ze. When0 <

< g5, A <, i.e, A lies in the interior of the capacity

and D-MS have very good delay performance (Smarlélgion, but GMS cannot keep the network stable as we

long-term average queue length) and perform bettseaw above.

than Q-CSMA. However, when the traffic intensity .
is high, the average queue length under D-GMS/D- Ve evaluate the performance of the scheduling algo-

MS blows up and their delay performance becomdéihms under the above traffic pattern. Each simulation
much worse than Q-CSMA. experiment starts with all empty queues. For each al-

« Hybrid Q-CSMA has the best delay performanc_%orithm under a fi)_(eck, we t_ake the average oven
among the distributed scheduling algorithms. It réfdependent experiments, with each run being time
tains the stability property of Q-CSMA even unde?'OtS_- We use exactly the same parameter setting as in
high traffic intensity while significantly reduces the>ectiorlVI-A.
delay of pure Q-CSMA. Note that whem — 1, In Fig.[4 we can see that Q-CSMA and Hybrid Q-
the performance of Hybrid Q-CSMA becomes clos€SMA have a much lower delay than GMS, D-GMS
to pure Q-CSMA since the effect of the D-GMSwhen e > 0.03) and D-MS (whene > 0.05). Fig.[3
procedure diminishes when the queue lengths siiows that the average queue length increases linearly
most links exceed the queue length threshold. with the running time £ of time slots) under D-GMS/D-

« Centralized GMS has excellent delay performancklS which imply they are not stable, while the average
but it is not throughput-optimal in general, as illusqueue length becomes stable under Q-CSMA/Hyrbid Q-
trated next. CSMA.
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VIlI. CONCLUSION

In this paper, we have presented a discrete-time djs:
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networks. InProceedings of IEEE INFOCOMApril 2008. CTD from r; without a collision, then linki = (s;,7;)
will be added to the decision schedule. We choose the
APPENDIX length of a sub-mini-slot such that an RTD or CTD sent

by any node can reach its neighbors within one sub-
mini-slot. Note that the exchange of an RTD/CTD pair

For any noder in the network, we usd/(n) to denote petween the sender and receiver of a link will “silence”
the neighborhood of:, which is the set of nodes thaty| jts conflicting links so those links will not be added
can hear the transmission of We assumesymmetryin g the decision schedule anymore.
hearing: ifn’ € N'(n) thenn € N'(n'). _ Now we are ready to present the node-based Q-CSMA

Let s; andr; be the sender node and receiver nodggorithm. Some additional one-bit memories maintained

of link i, respectively. If link is included in the at noden (in time slott) are summarized below (each
transmission schedule, then in the data slpwill send  explanation corresponds to Hi:

a data packet tor;, andr; will reply an ACK packet
to s;. We assume that the data transmission frgnto

r; is successful if no nodes iV (r;) are transmitting in
the same time; similarly, the ACK transmission from
to s; is successful if no nodes iV (s;) are transmitting
in the same time. We also consider the node-exclusive
constraint that two active links cannot share a common®

e AS,(t)/AR,(t): n is available as the
sendefreceiver node for a link in the decision
schedulem(t).

o ACT,(t): n is active (as either a sender or receiver

node).

NS, (t)/NR,(t): theneighborhoodf n (i.e, N'(n))

has an activesendefreceivernode.

node. Therefore, in aynchronizedlata/ACK transmis-

sion system, the conflict set of linkis:

In summary, two linkg and; conflict with each other,

Ci) = {j : j shares a common node with

Q-CSMA Algorithm (at Node n in Time Slot ¢)

1. Atthe beginning of the time slot, noadesetsAS,, (t) =1
or s; GN(TZ'), orr; EN(SZ').}. andARn(t):l. ®)
Let L(n) be the set of links for which: is the sender
node (i.e.n = s;, VI € L(n)). Noden randomly chooses

le., i € C_(j)_andj € C(@), if they shgre. a common one link in L(n) (suppose linki = (n,m) is chosen)
node, or if simultaneous data transmissionssatand and selects a backoff tim&; uniformly in [0, W — 1].
s; will collide at r; andr;, or if simultaneous ACK Other links in L(n) will not be included inm(t), so

transmissions at; andr; will collide at s; ands;. zi(t) = i (t — 1),Vl € L(n) \ .



2. Throughout the control slot, if node senses an RTD CTDs, respectively) without having to encode the packet
transmission not intended for itself (or a collision otype in a preamble bit of such a control packet (actually
RTDs) by a node inV'(n), n will no longer be available when a collision happens, a node cannot even check this
as the receiver node for a link im(¢). Thus, noden “packet type” bit to differentiate RTD and CTD).
will set ARy, (t) = 0. Proposition 6: m(t) produced by the node-based Q-

3. Before thgT; 4 1)-th control mini-slot, if noder senses . . .
a CTD transmission by a node i¥i(n) (or a collision of CSMA algorithm is a feasible schedule. Lty be the

CTDs),n will no longer be available as the sender nogeet of decision schedules produced by the algorithm. If
for a link in m(t), and it will setAS, (t) = 0. In this case the window sizeW > 2, then Umesm,m = E and
link 7 will not be included inm(t) andz;(t) = z;(t—1). the algorithm achieves the product-form distribution in

4. At the beginning of théT; + 1)-th control mini-slot, if Proposition[1.
AS,(t) = 1, noden will send an RTD to noden in Proof: The proof is similar to the proof of Lemma 3.
the first sub-mini-slot. Node: will then set AS,,(t) = Under the node-based Q-CSMA algorithm, linkwill
AR (t) = 0. be included in the decision schedule(t) if and only if
4.1 If nodem receives the RTD from node with- jts sender and receiver nodes successfully exchange an

out a collision andAR,,(t) = 1, m will send prpeTp pair in the control slot. This will “silence”

a CTD fton in the second sub-mini-slot of theall the receivers in\(s;) and all the senders in in
(T; + 1)-th control mini-slot. Noden will then set 5

A, (1) = ARn(f) = 0. The CTD message alsoN_(”) as well as _nodesi andr;, so no_Iinks in(,’(z’)
includes the carrier sensing information of nage Will be included in m(¢). Hencem(t) is a feasible
in the previous time slot (the values 867}, (t — 1) schedule. Similarly, for any maximal schedue, we
and NS,,,(t — 1)). Otherwise, no message will becan check thain will be selected in the control slot
sent. with positive probability if the window sizéV > 2.
4.2 If noden receives the CTD message from nade Since the set of all maximal schedules will include all
without a collision, linki = (n, m) will be included links, Umeq,m = E. Then by Propositiofil1 the node-

in m(¢). Noden will decide linki's state as follows: based Q-CSMA algorithm achieves the product-form
if no links inC(z) were active in the prewousdistribution -

data slot, i.e.x;(t —1) = 1 or ACT,,(t — 1) =
ACT,,(t—1)=NR,(t—1) = NS,,(t—1)=0
z;(t) = 1 with probability p;, 0 < p; < 1;
x;(t) = 0 with probability p; = 1 — p;.
else
Otherwise, linki will not be included inm(¢) and
l‘l(t) = CCi(t — 1)
5. In the data slot, node takes one of the three different
roles:

— Sender z;(t) = 1 for some linkl = (n,m) € E.
Noden will send a data packet to node and set
ACT,,(t) = 1.

— Receiver z;(t) = 1 for some linkl = (m,n) € E.
Noden will send an ACK packet to node: (after it
receives the data packet from) and setdCT,, (t) =
1.

— Inactive Node n sets ACT,,(t) = 0 and conducts
carrier sensing. Recall that data/ACK transmissions
in our system are synchronized. Thus, nedevill
setNS,(t) = 0 if it senses no signal during the data
transmission period and s&iS,, (t) = 1 otherwise.
Similarly, noden will set NR,,(t) = 0 if it senses
no signal during the ACK transmission period and
set NR,(t) = 1 otherwise.

Remark 10:Note that RTD and CTD are sent in two
different sub-mini-slots. This provides an easy way to
differentiate RTD and CTD (or collisions of RTDs and
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