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Abstract—Delay tolerant Networks (DTNs) leverage the mo-
bility of relay nodes to compensate for lack of permanent
connectivity and thus enable communication between nodes that
are out of range of each other. To decrease message delivery delay,
the information to be transmitted is replicated in the network.
We study replication mechanisms that include Reed-Solomon
type codes as well as network coding in order to improve the
probability of successful delivery within a given time limit. We
propose an analytical approach that allows us to compute the
probability of successful delivery. We study the effect of coding
on the performance of the network while optimizing parameters
that govern routing.

Index Terms—Delay Tolerant Networks, Optimal Scheduling,
Coding, Network Codes

I. I NTRODUCTION

DTNs exploit random contacts between mobile nodes to
allow end-to-end communication between points that do not
have end-to-end connectivity at any given instant. The contacts
between any two nodes may be quite rare, but still, when
there are sufficiently many nodes in the system, the timely
delivery of information to the destination may occur with high
probability. This is obtained at the cost of many replicas of
the original information, a process which requires energy and
memory resources. Since many relay nodes (and thus network
resources) may be involved in ensuring successful delivery,
it becomes crucial to design efficient resource allocation and
data storage protocols. In this paper we address this combined
problem. The basic data unit that is transferred or stored is
called a frame, and to transfer successfully a file, all frames
of which it is composed are needed at the destination. We
consider both energy costs as well as memory constraints: The
memory of a DTN node is assumed to be limited to the size
of a single frame. We study adding coding in order to improve
the storage efficiency of the DTN. We consider Reed-Solomon
type codes as well as network coding. The basic questions are
then: (i) transmission policy: When the source is in contact
with a relay node, should it transmit a frame to the relay?
(ii) scheduling: If yes, which frame should a source transfer?
Each time the source meats a relay node, it chooses a framei

for transmission with probabilityui. In a simple scenario, the
source has initially all the frame andui are fixed in time. It
was shown in [2] that the transmission policy has a threshold
structure: use all opportunities to spread frame till some time
σ and then stop (this is similar to the “spray and wait” policy
[13]). Due to convexity arguments it turns out that the optimal
ui does not depend oni [2]. In this paper we assume a general
arrival process of frames: they need not become available

for transmission simultaneously at time zero as in [2]. We
further considerdynamicscheduling: the probabilitiesui may
change in time. We define various performance measures and
solve various related optimization problems. Surprisingly, the
transmission does not follow anymore a threshold policy (in
contrast with [2]). We extend these results to include also
coding, and show that all performance measures improve
when increasing the amount of redundancy. We then study the
optimal transmission under network coding.Related Work
The works [7] and [14] describe the technique to erasure code
a file and distribute the generated code-blocks over a large
number of relays in DTNs. The use of erasure codes is meant
to increase the efficiency of DTNs under uncertain mobility
patterns. In [14] the performance gain of the coding scheme
is compared to simple replication, i.e., when additional copies
of the same file are released. The benefit of erasure coding is
quantified by means of extensive simulations and for different
routing protocols, including two-hops routing. In [7], theau-
thors address the case of non-uniform encounter patterns, and
they demonstrate strong dependence of the optimal successful
delivery probability on the way replicas are distributed over
different paths. The authors evaluate several allocation tech-
niques; also, the problem is proved to be NP–hard. The paper
[5] proposes general network coding techniques for DTNs. In
[8] ODE based models are employed under epidemic routing;
in that work, semi-analytical numerical results are reported
describing the effect of finite buffers and contact times; the
authors also propose a prioritization algorithm. The paper[15]
addresses the design of stateless routing protocols based on
network coding, under intermittent end-to-end connectivity. A
forwarding algorithm based on network coding is specified,
and the advantage over plain probabilistic routing is proved
when delivering multiple frames. Finally, [4] describes an
architecture supporting random linear coding in challenged
wireless networks. The structure of the paper is the following.
In Sec. II we introduce the network model and the optimization
problems tackled in the paper. Sec. III and Sec. IV describe
optimal solutions in the case of work conserving and not-work
conserving forwarding policies, respectively. Sec. V addresses
the case of energy constraints. Sec. VI deals with erasure
codes. Rateless coding techniques are presented in Sec. VII.
The use of network coding is addressed in Section VIII.
Sec. IX concludes the paper.

II. T HE MODEL

The main symbols used in the paper are reported in Tab. I.
Consider a network that containsN + 1 mobile nodes. We
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TABLE I
MAIN NOTATION USED THROUGHOUT THE PAPER

Symbol Meaning
N number of nodes (excluding the destination)
K number of frames composing the file
H number of redundant frames
λ inter-meeting intensity
τ timeout value
Xi(t) number of nodes having framei at time t (excluding the

destination)
X(t) summation

P

i Xi(t)
bXi, bX corresponding sample paths
z :=X(0) will be taken 0 unless otherwise stated.
ui(t) forwarding policy for framei; u = (u1, u2, . . . , uK)
u sum of theuis
Zi(t),Zi Zi(t) =

R T

0
Xi(u)du, Zi = Zi(τ), Z(t) =

(Z1(t), Z2(t), . . .), Z = Z(τ), Z =
P

Zi

Di(τ) probability of successful delivery of framei by time τ
Ps(τ) probability of successful delivery of the file by timeτ ;

Ps(τ,K,H) is used to stress the dependence onK andH

assume that two nodes are able to communicate when they
come within reciprocal radio range and communications are
bidirectional. We also assume that the duration of such con-
tacts is sufficient to exchange all frames: this let us consider
nodesmeeting timesonly, i.e., time instants when a pair of not
connected nodes fall within reciprocal radio range. Also, let
the time between contacts of pairs of nodes be exponentially
distributed with given inter-meeting intensityλ. The validity
of this model been discussed in [6], and its accuracy has been
shown for a number of mobility models (Random Walker,
Random Direction, Random Waypoint). A file containsK
frames. The source of the file receives the frames at some
times t1 ≤ t2 ≤ ... ≤ tK . ti are called thearrival times. We
assume that the transmitted file is relevant during some timeτ .
By that we mean that all frames should arrive at the destination
by time t1 + τ . Furthermore, we do not assume any feedback
that allows the source or other mobiles to know whether the
file has made it successfully to the destination within timeτ .
If at time t the source encounters a mobile which does not
have any frame, it gives it framei with probabilityui(t). We
assume thatu = 1 whereu =

∑
i ui(t). There is an obvious

constraint thatui(t) = 0 for t ≤ ti. Let X̂(t) andX(t) be

the n dimensional vectors whose components areX̂i(t) and

Xi(t). Here,X̂i(t) stand for the fraction of the mobile nodes
(excluding the destination) that have at timet a copy of frame

i, andXi(t) the expectation of̂Xi(t).

A. Dynamics of the expectation

Let X(t) =
∑K

i=1Xi(t). The dynamics ofXi is given by

dXi(t)

dt
= ui(t)λ(1 −X(t)) (1)

Taking the sum over alli, we obtain the separable differential
equation

dX(t)

dt
= λu(1−X(t)) (2)

whose solution is

X(t) = 1 + (z − 1)e−λ
R

t

0
u(r)dr, X(0) = z (3)

wherez is the total initial number of frames at the system at
time t = 0. Thus,Xi(t) is given by the solution of

dXi(t)

dt
= −ui(t)λ(z − 1)e−λ

R

t

0
u(r)dr (4)

Unless otherwise stated, we shall assume throughoutz = 0.

B. Performance measures and optimization

In the following we will use fluid approximations for
deriving optimal control policies that the source can use to
maximize the file delivery probability. Denote byD(τ) the
probability of a successful delivery of allK frames by time
τ . Define the random variableD(τ |FX) as the successful

delivery probability conditioned on̂X, whereFX is the natural

filtration of the procesŝX [3]. We have

E[DK(τ |FX)] = E

[
K∏

i=1

(1− exp(−λẐi))

]
(5)

where Ẑi =
∫ τ

0 X̂i(s)ds. We shall consider the asymptotics
asN becomes large yet keeping the total rateλ of contacts a
constant (which means that the contact rate between any two

individuals is given bỹλ = λ/N ). Using strong laws of large

numbers, we getlimN→∞ Ẑi(N) = E[Ẑi] a.s. Observe that
since eq. (5) is bounded, using the Dominated Convergence
Theorem, we obtain

Ps(τ) = lim
N→∞

E[DK(τ |FX, N)] =

K∏

i=1

(1− exp(−λE[Ẑi]))

Also, the expected delivery time (i.e. the time needed to
transmit the whole file) is given by

E[D] =

∫ ∞

0

(1− Ps(τ))dτ

Definition 2.1: We defineu to be awork conservingpolicy
if whenever the source meets a node then it forwards it a
frame, unless the energy constraint has already been attained.
We shall study the following optimization problems:

• P1. Find u that maximizes the probability of successful
delivery till time τ .

• P2.Findu that minimizes the expected delivery time over
the work conserving policies.

Definition 2.2: An optimal policy u is called uniformly
optimal for problem P1 if it is optimal for problem P1 for
all τ > 0.

Energy Constraints:Denote byE(t) the energy consumed
by the whole network for transmitting and receiving a file
during the time interval[0, t]. It is proportional toX(t)−X(0)
since we assume that the file is transmitted only to mobiles
that do not have the file, and thus the number of transmissions
of the file during[0, t] plus the number of mobiles that had it at
time zero equals to the number of mobiles that have it. Also, let
ε > 0 be the energy spent to forward a frame during a contact
(notice that it includes also the energy spent to receive thefile
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at the receiver side). We thus haveE(t) = ε(X(t) − X(0)).
In the following we will denotex as the maximum number of
copies that can be released due to energy constraint. Introduce
the constrained problemsCP1 andCP2 that are obtained from
problems P1 and P2 by restricting to policies for which the
energy consumption till timeτ is bounded by some positive
constant.

III. O PTIMAL SCHEDULING

A. An optimal equalizing solution

Theorem 3.1:Fix τ > 0. Assume that there exists some
policy u satisfying

∑K

i=1 u
i
t = 1 for all t and

∫ τ

0
Xi(t)dt is

the same for alli’s. Thenu is optimal for P1.

Proof. Define the functionζ over the real numbers:ζ(h) =
1 − exp(−λh). DenoteZ = (Z1, . . . , ZK) such thatZi =∫ τ

0
Xi(v)dv. We note that ζ is concave in h and that

logPs(τ,u) =
∑K

i=1 log(ζ(Zi)). It then follows from Jensen’s
inequality, that the success probability when usingu satisfies

logPs(τ,u) ≤ K log (ζ (Z/K)) (6)

whereZ =
∑K

i=1 Zi, and with equality ifZi are the same for
all i’s. This implies the Theorem. ⋄Not always

it will be possible to equalize the above integrals. A policyu

which is optimal among the work conservative policies will
be obtained by making them as equal as possible in a sense
that we define next.

B. Schur convexity Majorization

Definition 3.1: (Majorization and Schur-Concavity [11])
Consider twon-dimensional vectorsd(1), d(2). d(2) majorizes
d(1), which we denote byd(1) ≺ d(2), if

k∑

i=1

d[i](1) ≤

k∑

i=1

d[i](2), k = 1, ..., n− 1, (7)

and
n∑

i=1

d[i](1) =

n∑

i=1

d[i](2), (8)

whered[i](m) is a permutation ofdi(m) satisfyingd[1](m) ≥

d[2](m) ≥ ... ≥ d[n](m), m = 1, 2. A function f : Rn → R

is Schur concave ifd(1) ≺ d(2) implies f(d(1)) ≥ f(d(2)).

Lemma 3.1: [11, Proposition C.1 on p. 64] Assume that
a functiong : Rn → R can be written as the sumg(d) =∑n

i=1 ψ(di) where ψ is a concave function fromR to R.
Theng is Schur concave.

Theorem 3.2:logPs(τ,u) is Schur concave inZ =
(Z1, ..., ZK). Hence ifZ ≺ Z

′ thenPs(τ,u) ≥ Ps(τ,u
′).

C. The caseK = 2.

Consider the case ofK = 2. Let the system be empty at
time 0, i.e.,z = 0, and lett1 = 0. Consider the policy that
transmits always frame 1 duringt ∈ [t1, t2], and from timet2
onwards it transmits only frame 2. Then

X1(t) =

{
X(t) 0 ≤ t ≤ t2
X(t2) t2 < t ≤ τ

whereX(t) = 1− exp(−λt). Also,

X2(t) =

{
0 0 ≤ t ≤ t2
X(t)−X(t2) = e−λt2 − e−λt t2 ≤ t ≤ τ

This gives∫ τ

0

X1(t)dt =
−1 + λt2 + e−λt2

λ
+ (τ − t2)(1− e−λt2)

∫ τ

0

X2(t)dt =
e−λt2

λ
(λ(τ − t2)− 1 + e−λ(τ−t2))

We compute the value ofτ for which
∫ τ

0
X1(t)dt =∫ τ

0 X2(t)dt. We denote byteq the solution. We obtain (almost

instantaneous with Maple 9.5)1:

teq =
1

λ

[
LambertW

(
−

exp(ξ)

1− 2 exp(−λt2)

)
+ ξ

]

and whereξ :=
−1 + 2e−λt2 + 2λt2e

−λt2

1− 2e−λt2

Then we have the following.

Theorem 3.3:(i) Assume thatτ < teq. Then there is
no work conserving policy that equalizes

∫ τ

0 X1(t)dt =∫ τ

0
X2(t)dt. Thus there is no optimal work conserving optimal

for P1.
(ii) Assume thatτ = teq. Consider the policyu′ that transmits
always frame 1 duringt ∈ [t1, t2), then transmits always frame
2 during timet ∈ [t2, τ). Then this work conserving policy
achieves

∫ τ

0 X1(t)dt =
∫ τ

0 X2(t)dt and is thus optimal for P1.
(iii) Assume now τ > teq. Consider the work conserving
policy u

∗ that agrees withu′ (defined in part ii) till timeteq
and from that time onwards usesu1 = u2 = 0.5. Then again∫ τ

0
X1(t)dt =

∫ τ

0
X2(t)dt andu∗ is thus optimal for P1.

⋄Note that the same policyu∗ is optimal for P1 for all
horizons long enough, i.e., wheneverτ ≥ teq asu∗ equalizes∫ τ

0
X1(t)dt =

∫ τ

0
X2(t)dt for all values ofτ > teq, because

u1 = u2 = 0.5. Moreover, we have

Theorem 3.4:The work conserving policyu∗ described at
(ii) in Thm. 3.3 is uniformly optimal for problem P2.

Proof. The policyu∗ is work conserving. By construction, for
any work conserving policyu′, Z(t) ≺ Z

′(t). The optimality
then follows from Theorem 3.2. ⋄

1LambertW below is known as the inverse function off(w) = w exp(w)
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TABLE II
ALGORITHM A

A1 Usept = e1 at time t ∈ [t1, t2).
A2 Use pt = e2 from time t2 till s(1, 2) =

min(S(2, {1, 2}), t3). If s(1, 2) < t3 then switch to

pt = 1

2
(e1 + e2) till time t3.

A3 Define tK+1 = τ . Repeat the following fori = 3, ...,K:

A3.1 Setj = i. Sets(i, j) = ti

A3.2 Use pt = 1

i+1−j

Pi
k=j ek from time s(i, j) till

s(i, j−1) := min(S(j, {1, 2, ..., i}), ti+1). If j = 1
then end.

A3.3 If s(i, j − 1) < ti+1 then takej = min(j : j ∈

J(t, {1, ..., i})) and go to step [A3.2].

D. Constructing an optimal work conserving policy

We propose an algorithm that has the property that it gener-
ates a policyu which is optimal not just for the given horizon
τ but also for any horizon shorter thanτ . Yet optimality
here is only claimed with respect to work conserving policies.
Definitions:

• Zj(t) :=
∫ t

t1
xj(r)dr. We call Zj(t) the cumulative

contact intensity (CCI) of classj.
• I(t, A) := minj∈A(Zj , Zj > 0). This is the minimum

non zero CCI overj in a setA at time t.
• Let J(t, A) be the subset of elements ofA that achieve

the minimumI(t, A).
• Let S(i, A) := sup(t : i /∈ J(t, A)).
• Define ei to be the policy that sends at timet frame of

type i with probability 1 and does not send frames of
other types.

Recall thatt1 ≤ t2 ≤ ... ≤ tK are the arrival times of frames
1, ...,K. Consider the Algorithm A in Table II. Algorithm A
seeks to equalize the less populated frames at each point in
time: it first increases the CCI of the latest arrived frame, trying
to increase it to the minimum CCI which was attained over
all the frames existing before the last one arrived (step A3.2).
If the minimum is reached (at some thresholds), then it next
increases the fraction of all frames currently having minimum
CCI, seeking now to equalize towards the second smallest CCI,
sharing equally the forwarding probability among all such
frames. The process is repeated until the next frame arrives:
hence, the same procedure is applied over the novel interval.
Notice that, by construction, the algorithm will naturally
achieve equalization of the CCIs forτ large enough. Moreover,
it holds the following:

Theorem 3.5:[See Appendix] Fix someτ . Let u∗ be the
policy obtained by Algorithm A when substituting thereτ =
∞. Then
(i) u

∗ is uniformly optimal for P2.
(ii) If in addition

∫ τ

0 X
i(t)dt are the same for alli’s, thenu∗

is optimal for P1.

IV. B EYOND WORK CONSERVING POLICIES

We have obtained the structure of the best work conserving
policies, and identified their structure, and identified cases in

0,3
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0
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P
s
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Fig. 1. Success probability under
non work conserving policyu(s) as a
function of s for λ = 1, 3, 8, 15; top
curve corresponds to largest value of
λ; second top corresponds to second
largestλ etc. (this order changes only
at s very close to 0.5).

0
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0,80,20
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)

Fig. 2. The evolution ofX(t)
as a function oft under the best
work conserving policy forλ =
1, 3, 8, 15. The curves are ordered
according toλ with the top curve
corresponding to the largestλ etc.

which these are globally optimal. We next show the limitation
of work-conserving policies.

A. The case K=2

We consider the example of Section III-C but withτ < teq.
Consider the policyu(s) where0 = t1 < s ≤ t2 which trans-
mits type-1 frames during[t1, s), does not transmit anything
during [s, t2) and then transmits type 2 frames aftert2. It then
holds

X1(t) =

{
X(t) 0 ≤ t ≤ s
X(s) s ≤ t ≤ τ

whereX(t) = 1− exp(−λt). Also,

X2(t) =





0 0 ≤ t ≤ t2
X(t− (t2 − s))−X(s) =

e−λs − e−λ(t−(t2−s)) t2 ≤ t ≤ τ
This gives∫ τ

0

X1(t)dt =
−1 + λs+ e−λs

λ
+ (τ − s)(1 − e−λs)

∫ τ

0

X2(t)dt =
e−λs

λ
(λ(τ − t2)− 1 + e−λ(τ−t2))

Example 4.1:Using the above dynamics, we can illustrate
the improvement that non work conserving policies can bring.
We took τ = 1, t1 = 0, t2 = 0.8. We vary s between0
andt2 and compute the probability of successful delivery for
λ = 1, 3, 8 and 15. The corresponding optimal policiesu(s)
are given by the thresholdss = 0.242, 0.242, 0.265, 0.425.
The probability of successful delivery under the threshold
policies u(s) are depicted in Figure 1 as a function ofs
which is varied between0 andt2. In all these examples, there
is no optimal policy among those that are work conserving.
A work conserving policy turns out to be optimal for all
λ ≤ 0.9925. Note that under any work conserving policy,∫ τ

0 X2(t)dt ≤ τ(1 − X(t2)) (whereX(t2) is the same for
all work conserving policies). Now, asλ increases to infinity,
X(t2) and henceX1(t2) increase to one. Thus

∫ τ

0 X2(t) tends
to zero. We conclude that the success delivery probability tends
to zero, uniformly under any work conserving policy.
Recall that Theorem 3.3 provided the globally optimal policies
for teq ≤ τ for K = 2. The next Theorem completes the
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derivation of optimal policies forK = 2 by consideringteq >
τ .

Theorem 4.1:[See Appendix] ForK = 2 with teq > τ ,
there is an optimal non work-conserving threshold policy
u
∗(s) whose structure is given in the beginning of this

subsection. The optimal threshold is given bys = 1
λ
log
(
1−

e−λ(τ−t2)
)
. Any other policy that differs from the above on

a set of positive measure is not optimal.

B. Time changes and policy improvement

Lemma 4.1:Let p < 1 be some positive constant. For
any multi-policy u = {u1(t), ..., un(t)} satisfying u =∑n

i=1 ui(t) ≤ p for all t, define the policyv = {v1, ..., vn}

where vi = ui(t/p)/p or equivalently,ui = pvi(tp), i =
1, ..., n. Define byXi the state trajectories underu, and let
Xi be the state trajectories underv. ThenX(t) = X(tp).
Proof. We have

dX(s)

ds
= v(s)λ(1 −X(s))

wherev =
∑n

i=1 vi. Substitutings = tp we obtain

dX(s)

dt
= p

dX(s)

d(s)
= pv(s)λ(1 −X(s)) = u(t)λ(1 −X(s)))

We conclude thatX(t) = X(tp). Moreover,

dXi(s)

dt
= p

dXi(s)

ds
= pvi(s)λ(1−X(s)) = ui(t)λ(1−X(s))

We thus conclude thatXi(t) = Xi(tp) for all i. ⋄The control
v in the Lemma above is said to be anacceleratedversion
of u from time zero with an accelerating factor of1/p. An
accelerationv of u from a given timet′ is defined similarly
as vi(t) = ui(t) for t ≤ t′ andvi(t) = ui(t

′ + (t − t′)/p)/p
otherwise, for alli = 1, ..., n. We now introduce the following
policy improvement procedure.

Definition 4.1: Consider some policyu. and let u :=∑n

j=1 uj(t). Assume thatu ≤ p over some0 < p < 1 for

all t in some intervalS = [a, b] and that
∫ c

b
u(t)dt > 0 for

somec > b. Let w be the policy obtained fromu by
(i) accelerating it at timeb by a factor of 1/p,
(ii) from time d := a+ p(b − a) till time c− (1− p)(b − a),
usew(t) = u(t+ b− d). Then usew(t) = 0 till time c.

Let X(t) be the state process underu, and letX(t) be the
state process underw. Then

Lemma 4.2:Consider the above policy improvement ofu
by w. Then
(a)X i(t) ≥ Xi(t) for all 0 ≤ t ≤ c,
(b) Xi(c) = X i(c) for all i,
(c)
∫ c

a
Xi(t)dt ≤

∫ c

a
Xi(t)dt.

TABLE III
ALGORITHM B

B1 Usept = ute1 at time t ∈ [t1, t2).
B2 Usept = ute2 from time t2. till min(S(2, {1, 2}), t3). If

S(2, {1, 2}) < t3 then switch topt = 1

2
(e1 + e2)ut till

time t3.
B3 DefinetK+1 = τ . Repeat the following fori = 3, ...,K:

B3.1 Setj = i. Sets(i, j) = ti

B3.2 Usept = 1

i+1−j

Pi
k=j ekut from time s(i, j) till

s(i, j−1) := min(S(j, {1, 2, ..., i}), ti+1). If j = 1
then end.

B3.3 If s(i, j − 1) < ti+1 then takej = min(j : j ∈

J(t, {1, ..., i})) and go to step [B3.2].

C. Optimal policies forK > 2.

Theorem 4.2:Let K > 2. Then an optimal policy exists
with the following structure:

• (i) There are thresholds,si ∈ [ti, ti+1], i = 1, ...,K.
During the intervals[si, ti+1) no frames are transmitted.

• (ii) Algorithm B to decide what frame is transmitted at
the remaining times.

• (iii) After time tK it is optimal to always transmit a frame.
An optimal policyu satisfiesu(t) = 1 for all t ≥ tK (it
may differ from that only up to a set of measure zero).

Proof. (i) Let u be an arbitrary policy. Defineu(t) =∑
j uj(t). Assume that it does not satisfy(i) above. Then

there exists somei = 1, ...,K − 1, such thatu(t) is not a
threshold policy on the intervalTi := [ti, ti+1). Hence there
is a close intervalS = [a, b] ⊂ Ti such that for somep < 1,

u(t) ≤ p for all t ∈ S and
∫ ti+1

b
u(t)dt > 0. Thenu can be

strictly improved according to Lemma 4.2 and hence cannot
be optimal.
(iii) By part (i) the optimal policy has a threshold type on
the interval[tK , tK+1]. Assume that the thresholds satisfies
s < tK+1. It is direct to show that by followingu till time s
and then switching to any policy that satisfiesui(t) > 0 for
all i, Ps(τ) strictly increases. ⋄

V. THE CONSTRAINED PROBLEM

Let u be any policy that achieves the constraintE(τ) = εx
as defined in Section II-B. We make the following observation.
The constraint involves onlyX(t). It thus depends on the
individual Xi(t)’s only through their sum; the sumX(t), in
turn, depends on the policiesui’s only through their sum

u =
∑K

i=1 ui. Work conserving policies.Any policy which
is not a threshold one can be strictly improved as described in
Lemma 4.2. Consider the case of work conserving policies.
Then the optimal policy is of a threshold type [1]:u = 1
till some time s and is then zero.s is the solution of
X(s) = z + x, i.e.

s = −
1

λ
log

(
1− x− z

1− z

)
,

Algorithm A can be used to generate the optimal policy
componentsui(t), i = 1, . . . ,K. General policiesAny policy



6

u that is not of the form as described by (i)-(ii) in Theorem
4.2 can be strictly improved by using Lemma 4.2. Thus the
structure of the optimal policies is the same, except that (iii)
of Theorem 4.2 need not to hold.

VI. A DDING FIXED AMOUNT OF REDUNDANCY

We now consider adding forward error correction: we addH
redundant frames and consider the new file that now contains
K + H frames. Under an erasure coding model, we assume
that receivingK frames out of theK +H sent ones permits
successful decoding of the entire file at the receiver. LetSn,p

be a binomially distributed r.v. with parametersn andp, i.e.,
P (Sn,p = m) = B(p, n,m) :=

(
n
m

)
pm(1 − p)n−m The

probability of successful delivery of the file by timeτ is thus

Ps(τ,K,H) =

K+H∑

j=K

B(Di(τ),K +H, j),

whereDi(τ) = 1 − exp(−λ
∫ τ

0 Xi(s)ds) is the probability
that framei is successfully received by the deadline.
We assume below that the source has framei available at time
ti where i = 1, ...,K + H . In particular,ti may correspond
to the arrival time of the original framesi = 1, ...,K at the
source. For the redundant frames,ti may correspond either
to (i) the time at which the redundant frames are created by
the source, or to (ii) the moments at which they arrive at the
source in the case that the coding is done at a previous stage.

A. Main Result

Let Zi =
∫ τ

0
Xi(v)dv, wherei = 1, 2, ...,K +H .

Theorem 6.1:(i) Assume that there exists some policyu

such that
∑K+H

i=1 ui(t) = 1 for all t, and such thatZi is the
same for alli = 1, ...,K +H underu. Thenu is optimal for
P2.
(ii) Algorithm A, with K+H replacingK, produces a policy
which is optimal for P2.
Proof: (i) Let A(K,H) be the set of subsetsh ⊂ {1, ...,K +
H} that contain at leastK elements. E.g.,{1, 2, ...,K} ∈

A(K,H). Fix pi such that
∑K+H

i=1 pi = u. Then the probabil-
ity of successful delivery by timeτ is given by

Ps(τ,K,H) =
∑

h∈A(H,K)

∏

i∈h

ζ(Zi)

For anyi andj in {1, ...,K +H} we can write

Ps(τ,K,H) = ζ(Zi)ζ(Zj)g1 + (ζ(Z1) + ζ(Z2))g2 + g3

where g1, g2 and g3 are nonnegative functions of
{Z(pm),m 6= i,m 6= j}. E.g.,

g1 =
∑

h∈A{i,j}(H,K)

∏

m∈h

m 6=i, m 6=j

ζ(Zm)

whereAv(K,H) is the set of subsetsh ⊂ {1, ...,K + H}
that contain at leastK elements and such thatv ⊂ h. Now
consider maximizingPs(τ,K,H) over Zi and Zj Choose
some arbitrary policiesq and letZ ′(q) =

∫ τ

0
X(v)dv. Assume

that Z ′
i 6= Z ′

j . Since ζ(·) is strictly concave, it follows by
Jensen’s inequality thatζ(Z ′

i)+ζ(Z
′
j) can be strictly improved

by replacingZ ′
i andZ ′

j) by Zi = Zj = (Z ′
i + Z ′

j)/2. This is
also the unique maximum of the productζ(Zi)ζ(Zj) (using
the same argument as in eq. (6)), and hence ofPs(τ,K,H).
Since this holds for anyi and j and for anyp′ ≤ p, this
implies the Theorem.
(ii) Algorithm A maximizes the probability thatK+H frames
are received under a work conserving policy: the statement
hence follows observing thatPs(τ,K,H) is monotonically
not decreasing inH . ⋄

Remark 6.1:If the source is the one that creates the redun-
dant frames, then we assume that it creates them aftertK .
However, it could use less than all theK original frames
to create some of the redundant frames and in that case,
redundant frames can be available earlier. E.g., shortly after t2
it could create the xor of frame 1 and 2. We did not consider
this coding policy and such option will be explored in the
following sections.
In the same way, the other results that we had for the case
of no redundancy can be obtained here as well (those for P1,
CP1 and CP2).

VII. R ATELESS CODES

In this section, we want to identify the possible rateless
codes for the settings described in Section II, and quantifythe
gains brought by coding. In the reminder, information frames
are theK frames received at the source att1 ≤ t2 ≤ · · · ≤ tK .
The encoding frames (also called coded frames) are linear
combinations of some information frames, and will be created
according to the chosen coding scheme. Rateless erasure codes
are a class of erasure codes with the property that a potentially
limitless sequence of encoding frames can be generated from
a given set of information frames; information frames, in turn,
can be recovered from any subset of the encoding frames of
size equal to or only slightly larger thanK (the exceeding
needed frames for decoding are named “overhead”).As in
the previous section, we assume that redundant frames are
created only aftertK , i.e., when all information frames are
available. The case when coding is started before receivingall
information frames is postponed to the next section. Since en-
coding frames are generated after all information frames have
been sent out, the code must besystematicbecause information
frames are part of the encoding frames.A code is maximum-
distance separable (MDS) if theK information frames can be
recovered from any set ofK encoding frames (zero overhead).
Reed-Solomon codes are MDS and can be systematic. Notice
that the analysis of such codes is encompassed in Section III,
since they add a fixed amount of redundancy. Let us now
analyze what are the rateless codes which can be used in this
setting, i.e., which are systematic. LT codes [9], which are
one of the efficient class of rateless codes, are non-systematic
codes. In this context, “efficient” means that the overhead can
be arbitrarily small with some parameters. Raptor codes [12]
are another class of efficient rateless codes, and systematic
Raptor codes have been devised. Network codes [10] are more
general rateless codes as the generation of encoding frames
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TABLE IV
ALGORITHM C

C1 Usept = e1 at time t ∈ [t1, t2).
C2 Use pt = e2 from time t2 till s(1, 2) =

min(S(2, {1, 2}), t3). If s(1, 2) < t3 then switch to

pt = 1

2
(e1 + e2) till time t3.

C3 Repeat the following fori = 3, ...,K − 1:

C3.1 Setj = i. Sets(i, j) = ti

C3.2 Usept = 1

i+1−j

Pi
k=j ek from time s(i, j) till

s(i, j−1) := min(S(j, {1, 2, ..., i}), ti+1). If j = 1
then end.

C3.3 If s(i, j − 1) < ti+1 then takej = min(j : j ∈

J(t, {1, ..., i})) and go to step [C3.2].

C4 From t = tK to t = τ , use all transmission opportunities
to send a random linear combination of information frames,
with coefficients picked uniformly at random inFq .

relies on random linear combinations of information frames,
without no sparsity constraint for the matrix of the code. These
codes are MDS with high probability for large field size (and
consequent complexity). LT or Raptor codes are only close to
MDS, e.g., LT codes are MDS asymptotically in the number
of information frames. In fact, they are aimed to reduce the
encoding and decoding complexity. That is why in this section
we provide the analysis of the optimal control for network
codes. But, it is straightforward to extend these results to
systematic Raptor codes.
Let us determine what is the optimal policyu for sending the
information frames, when network codes are used to generate
redundant frames aftertK . After tK , at each transmission
opportunity, the source sends a redundant frame (a random
linear combination of all information frames) with probability
u. Indeed, from tK , any sent random linear combination
carries the same amount of information of each information
frame, and hence from that time, the policy is not function ofa
specific frame anymore, wherebyu instead ofu. In each sent
frame, a header is added to describe what are the coefficients
of each information frame in the linear combination the
encoded frame results from. For each generated encoding
frame, the coefficients are chosen uniformly at random for
each information frame, in the finite field of orderq, Fq.
The decoding of theK information frames is possible at the
destination if and only if the matrix made of the headers of
received frames has rankK. In the following, we shorten this
expression by saying that the received frames have rankK.
Note that, in our case, the coding is performed only by the
source since the relay nodes cannot store more than one frame.
Recall the definitionZi =

∫ τ

0
Xi(v)dv, i = 1, . . . ,K − 1.

Theorem 7.1:Let us consider the above rateless coding
scheme for coding aftertK .
(i) Assume that there exists some policyu such that∑K−1

i=1 ui(t) = 1 for all t, and such thatZi is the same for
all i = 1, . . . ,K − 1 underu. Thenu is optimal for P2.
(ii) Algorithm C produces a policy which is optimal for P2.

Proof: Let E be any set made of pairwise different elements
from {1, . . . ,K − 1}. We have

Ps(τ) =
∑

E⊂{1,...,K−1}

(
∏

i∈E

ζ(Zi)

)
Q(E)

whereQ(E) denotes the probability that the received coded
frames, added to the received information frames, form a rank
K matrix. Lete denote the number of elements inE, andPm

be the probability that exactlym coded frames are received
at the destination by timeτ . Let consider the probability that,
given thatm ≥ K−e coded frames have been received, these
frames form a rankK matrix with the receivede information
frames. We lower-bound this probability by the probability
that onlyK − e coded frames form a rankK matrix with the
e frames, and this probability corresponds to the product term
in the following equation. Then we can lower-boundQ(E) by

Q(E) ≥

(
1−

K−e−1∑

m=0

Pm

)
K−e−1∏

r=0

(
1−

1

qK−(r+e)

)
. (9)

Let us now expressPm. Let YK(t) denote the proportion
corresponding to the number of coded frames released at time
t and Λ be defined byΛ = λ

∫ τ

0 YK(t) dt. We havePm =

exp(−Λ)Λ
m

m! . Let Y (t) denote the proportion corresponding
to the total number of frames in the network at timet:

Y (t) = X(t) + YK(t) =

K∑

k=1

Xk(t) + YK(t) .

Since coded frames are released only aftertK , YK(t) = 0 for
t < tK . We can consider thatXK(t) = 0 for any t as coded
frames are sent as soon as all the information frames have
been received by the source. Thus, fork < K

dXk(t)

dt
= λuk(t)(1− Y (t))

with Y (t) = X(t) for t < tK . Thus, for t < tK , equations
(1) to (4) remain unchanged. Fort ≥ tK , X(t) = X(tK) and
Xk(t) = Xk(tK) for k < K. Hence, fort ≥ tK , we have

dYK(t)

dt
= λu(1−X(tK)− YK(t))

with YK(tK) = 0. Thus we getYK(t) = 0, ∀t < tK ,

YK(t) = (1−X(tK))(1− exp(−λu(t− tK))), ∀t ≥ tK .

Finally

Λ = λ(1−X(tK))(τ − tK −
1

λu
+

1

λu
exp(−λu(τ − tK)))) .

Hence Ps(τ) ≥
∑

E⊂{1,...,K−1}

{

(
∏

i∈E

ζ(Zi)

)
×

(
1−

K−e−1∑

m=0

Pm

)
K−e−1∏

r=0

(
1−

1

qK−(r+e)

)
} (10)
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Thus, to maximizePs(τ) for u = 1 in terms of theZi, i =
1, . . . ,K − 1, it is sufficient to maximize its lower bound in
terms of theZi. From eq. (10), for maximizing the lower
bound, we can see that the proof of Theorem 6.1 carries almost
unchanged, as the second product term in eq. (10) results in
weighting constants in front of each product in the summations
of g1, g2 andg3. Hence, the success probability is maximized
when all theZi are the same for alli = 1, . . . ,K − 1. ⋄

VIII. R ATELESS CODES FOR CODING BEFOREtK

We now consider the case where after receiving framei
and before receiving framei + 1 at the source, we allow
to code over the available information frames and to send
resulting encoding frames betweenti and ti+1. LT codes
and Raptor codes require that all the information frames are
available at the source before generating encoding frames.
Due to their fully random structure, network codes do not
have this constraint, and allow to generate encoding frames
online, along the reception of frames at the source. We present
how to use network codes in such a setting. The objective is
the successful delivery of the entire file (theK information
frames) by timeτ2. Information frames are not sent anymore,
only encoding frames are sent instead.At each transmission
opportunity, an encoding frame is generated and sent with
probabilityu(t). Note thatu is not relevant anymore because,
at each transmission, network coding allows to propagate an
equivalent amount of information of each of the frames in the
source buffer, by sending a frame which is a random linear
combination of all buffer frames. This is detailed later on.

Theorem 8.1:(i) Given any forwarding policyu(t), it is
optimal, for maximizingPs(τ), to send coded frames resulting
from random linear combinations of all the information frames
available at the time of the transmission opportunity.
(ii) For a constant policyu > 0, the probability of successful
delivery of the entire file is lower-bounded by

Ps(τ) ≥

K−1∑

j=0

∑

k1>···>kj

K∑

l0=K−k1

· · ·

kj∑

lj=K−
Pj−1

i=0
li

j∏

i=0

f(li, ki) ,

with f(l, k) =

{
Pl,k,lDk,l(τ), if l < k,

Pk,k,k

(
1−

∑k−1
m=0Dk,m(τ)

)
, if l = k

andPl,k,l =
∏l−1

r=0

(
1− 1

qk−r

)
, Dk,i(τ) = exp(−Λk)

Λi
k

i! , and

ΛK = λ

[
exp(−λutK)

(
τ − tK −

1

λu

)
+

1

λu
exp(−λuτ)

]
.

Proof: For all k = 1, . . . ,K, let E(k) beE(k) = {1, . . . , k}.
For sake of shorter notations, we say that a coded frame is “a
frame overE(k)” if the coefficients of the firstk information
frames are chosen uniformly at random inFq, while the others
are zero. We analyze first the probability of successful delivery
of the file by timeτ , i.e., the probability of decoding of theK
information frames. Let us first briefly discuss the general case,
following the formalization in [10]. As previously mentioned,

2We do not have constraints on making available at the destination a part
of theK frames in case the entire file cannot be delivered.

(a)

packets
Unrecovered

(b)

lj

l0

l1

l2

K

k1

k2

kj

Fig. 3. Received encoding matrices. (a) The decoding fails because all the
information frames cannot be recovered– matrix has not full rank. (b) The
decoding is successful– matrix has full rank.

the decoding is successful if the matrix of received coded
frames has rankK. When no coding is used, the matrix
of received uncoded frames can be only the identity for the
decoding to be possible.Hence, if a frame is lost, only the
same frame can recover the loss. However, when coding is
used, we can send coded frames which are random linear
combinations of allK information frames. Then, if any frame
is lost, the rank of the received matrix results intoK − 1: in
order to get a rank-K matrix it is sufficient to receive an extra
coded frame which is independent of all previously received
ones, i.e., dependent on the lost frame. This is known to
happen with high probability as soon asq is large enough [10].
Let us now formalize the successful decoding conditions for
our problem. As illustrated in Figure 3, we have the following
definitions:

• The received frames are overE(ki), with K = k0 >
k1 > k2 > · · · > kj ≥ 1.

• j is such that0 ≤ j < K, and denotes the number of
pairwise differentki 6= K, i = 0, . . . , j. We setkj+1 = 0.

• li, i = 0, . . . , j is the rank of received frames overE(ki).
For the coding matrix to be rankK, i.e., for the decoding to
be successful, it is necessary and sufficient to have (see Fig3):

l0 ≥ K − k1
l1 ≥ k1 − k2 − (l0 − (K − k1))...
ln ≥ K − kn+1 −

n−1∑

i=0

li
...
lj ≥ K −

j−1∑

i=0

li

For all i = 0, . . . , j, i.e., for all states (number of available
information frames) the source is in when transmitting,li is
given by the number of transmission opportunities. Hence,
to maximize the successful decoding probability, eachki,
for all i = 0, . . . , j, has to be maximized. This means
exactly making random linear combinations of all available
information frames. Let us now express the probability of
successful delivery of the file by timeτ , i.e., the probability
of decoding of theK information frames. LetYk(t) be the
fraction of nodes (excluding the destination) having a frame
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over E(k) at time t. Let Dk,i(τ) be the probability that
exactly i frames overE(k) be received at timeτ :

Dk,i(τ) = exp(−Λk)
Λi
k

i!
,

where Λk = λ
∫ τ

0
Yk(t) dt. By unfolding calculations (see

Appendix), we get

ΛK = λ

[
exp(−λutK)

(
τ − tK −

1

λu

)
+

1

λu
exp(−λuτ)

]
.

Then, by using some approximations (see Appendix) which
are tight whenq is large enough (e.g., when the frame size
is a byte, i.e.,q = 28), we obtain the lower-bound onPs(τ).
⋄Let us briefly compare the successful delivery probabilities
for the different coding schemes:

• No coding:Ps(τ) =
∏K

i=1 ζ(Zi)
• Adding fixed amount of redundancy:

Ps(τ,K,H) =
∑

h∈A(H,K)

∏

i∈h

ζ(Zi)

• Coding aftertK :

Ps(τ) ≥
K∑

e=0

{(
(1−

K−e−1∑

m=0

Pm)
K−e−1∏

r=0

(1−
1

qK−(r+e)
)
)

( ∑

E⊂{1,...,K}

(
∏

i∈E

ζ(Zi))
)}

• Coding beforetK :

Ps(τ) ≥
K−1∑

j=0

∑

k1>···>kj

K∑

l0=K−k1

. . .

kj∑

lj=K−
Pj−1

i=0
li

j∏

i=0

f(li, ki)

Coding with rateless codes aftertK allows to need an equal-
ization of theZi only for i = 1, . . . ,K − 1, i.e., for the
information frames but not for the coded frames, unlike the
scheme with fixed amount of redundancy. Coding beforetK
avoids the need for any policyu for each frame in order to
equalize theZi. This is due to the fact that, when transmitting
a single coded frame, network coding allows to propagate
an equivalent amount of information of each information
frame, thereby circumventing the coupon collector problem
that would emerge with single repetition of frames. Algorithm
A addresses this problem by striving to equalize theZi.
Hence, even though all the frames overE(ki) do not reach
the destination, it is sufficient to receive more frames over
E(kj), j > i, to recover the file. We conjecture that such a
network coding scheme may have a critical gain, compared to
the uncoded strategy, especially when the mobility model is
not random, as assumed in Sec. II.

IX. CONCLUSIONS

In this paper we addressed the problem of optimal trans-
mission policies in two hops DTN networks under memory
and energy constraints. We tackled the fundamental scheduling
problem that arises when several frames that compose the same
file are available at the source at different time instants. The
problem is then how to optimally schedule and control the
forwarding of such frames in order to maximize the delivery
probability of the entire file to the destination. We solved this
problem both for work conserving and non work conserving
policies, deriving in particular the structure of the general
optimal forwarding control that applies at the source node.

Furthermore, we extended the theory to the case of fixed
rate systematic erasure codes and network coding. Our model
includes both the case when coding is performed after all the
frames are available at the source, and also the important case
of network coding, that allows for dynamic runtime coding of
frames as soon as they become available at the source.
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X. A PPENDIX

A. Proof of Theorem 3.5

(i) The policy u
∗ generated by Algorithm A is work

conserving by construction. LetZ(τ) andZ∗(τ) denote theK-
dimensional CCI vectors corresponding to a work conserving
policy u and tou

∗, respectively. We show in the following
that it holdsZ∗(τ) ≺ Z(τ) for τ ≥ 0. Then Thm. 3.2 implies
that P ∗

s (τ,u) ≥ Ps(τ,u
′), i.e., u∗ is uniformly optimal over

work conserving policies. It is now immediate to observe
that u∗ is optimal for P2 because it minimizes the expected
delivery delayE[D] =

∫∞

0 (1 − Ps(t))dt. We now prove that
Z
∗(τ) ≺ Z(τ) for ∀τ ≥ 0.
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Let Z(t) (resp.Z∗(t)) be the CCI ofu (resp.u∗) at time t.
It is sufficient to show thatZ∗(t) ≺ Z(t) for any t ≥ 0. u∗ is
generated by Algo A such that for allt:

• u
∗ maximizes the minimum of the CCIs:

u
∗ = arg max

wc u

min
i:ti≤t

Zi(t) (11)

• u
∗ minimizes the highest gap between two CCIs

u
∗ = arg min

wc u

max
i,j:ti,tj≤t

|Zi(t)− Zj(t)| (12)

For lighter notations, we omitt as well asti, tj ≤ t when we
refer to anyi or j in the remainder of the proof. We have

K∑

i=1

Z[i] =

K∑

i=1

Z∗
[i]

We want to prove that

k∑

i=1

Z[i] ≥
k∑

i=1

Z∗
[i]

∀k = 1, . . . ,K − 1. Owing to property (11) ofu∗, we have
mini Zi ≤ mini Z

∗
i , i.e.,Z[K] ≤ Z∗

[K]. Thus, lets1 ands2 be

such that:

s1 ≤ i, Z[i] ≤ Z∗
[i]

s2 ≤ i < s1, Z∗
[i] ≤ Z[i]

i < s2, Z[i] ≤ Z∗
[i]

Let us prove by contradiction thats2 does not exist. Ifs2
exists, thenZ[1] ≤ Z∗

[1]. Since

max
i,j

|Zi(t)− Zj(t)| = Z[1] − Z[K]

we would have then

Z[1] − Z∗
[K] ≤ Z∗

[1] − Z∗
[K]

which means thatu∗ does not satisfies property (12) anymore.
Hence, we cannot haves2 ≥ 2. Thus we have:

s1 ≤ i, Z[i] ≤ Z∗
[i]

1 ≤ i < s1, Z∗
[i] ≤ Z[i]

• k ≥ s1 − 1:
Owing to the definition of s1,

∑K

i=k+1 Z[i] ≤
∑K

i=k+1 Z
∗
[i], therefore

k∑

i=1

Z[i] =

K∑

i=1

Z∗
[i] −

K∑

i=k+1

Z[i] ≥

K∑

i=1

Z∗
[i] −

K∑

i=k+1

Z∗
[i] =

k∑

i=1

Z∗
[i]

• k ≥ s1 − 2:
For all i = 1, . . . , k, Z[i] ≥ Z∗

[i], hence
∑k

i=1 Z[i] ≥
∑k

i=1 Z
∗
[i].

Thus,Z∗ ≺ Z and this ends the proof of (i).
(ii) The proof is immediate from Thm. 3.1. ⋄

B. Alternate proof of Theorem 3.5

In what follows we propose an alternate proof of the
statement (i) of Theorem 3.5, which also is descriptive of the
way the Algorithm A works. It is based on the following

Lemma 10.1:Let x, y ∈ R
n
+ and let j = min(j ∈

{1, ..., n}|xj = min(xi, i = 1, . . . , n)) where x1 ≥ x2 ≥

. . . xj−1 ≥ xj . Let δ ≤ (xj−1 −xj) where = n− j+1. Let
x′ = (x1, x2, . . . , xj + δ/, . . . , xj + δ/) andu ∈ R

n
+ such

that
∑
ui = δ andy′ = y + u. Then,

x ≺ y ⇒ x′ ≺ y′

Proof. The key observation is thatx′ = (x[1], x[2], . . . , x[j] +

δ/, . . . , x[j]+ δ/) becauseδ/ ≤ (xj−1−xj). Let us assume
by contradictionx′ 6≺ y′, i.e., there exists1 ≤ w ≤ K − 1
such that

w−1∑

h=1

x′[h] ≤
w−1∑

h=1

y′[h] ,
w∑

h=1

x′[h] >
w∑

h=1

y′[h]

Ideed, it must bew ≥ j (if not, we would contradictx ≺ y).
Now we use an argument involving piecewise linear functions
defined on[0, n] built as described in the following. Leta ∈

R
n
+ andφa(t) =

∑t

r=1 ar, for t = 0, . . . , n whereasφa(t) =
φa(m− 1)+ am · (t−m) for m− 1 ≤ t ≤ m, m = 1, . . . ,K.
Notice that ifan is not increasing, thenφa(·) is convex. Now,
we observe that

φx′(t) = φx′(j − 1) + (xj + δ/) t

for j − 1 ≤ t ≤ K. Furthermore, it holdsφx′(0) ≤ φy′(0)

and φx′(K) = φy′(K) from the assumptions. Thus, due to
the continuity ofφy′(·), there exists intervalI ⊆ [ j − 1,K],
such thatw ∈ I, so thatφx′ > φy′ in the interior ofI and
φx′ = φy′ at the end points. Since,φx′(t) is a straight line
over I, we obtain thatφy′ is stirctly concave inI, which is
impossible becausey′[i] is decreasing by definition. Hence, our

assumption is false and it must bex′ ≺ y′. ⋄Alternative
Proof. We follow the same conventions on the symbols used
before; again, we prove that at any timeτ , Z

∗(τ) ≺ Z(τ)
so that Thm. 3.2 let us state uniform optimality over work
conserving policies, i.e.,Ps(τ,u

∗) ≥ Ps(τ,u) from which
optimality for P2 is immediate.
Here, we proceed by induction on the number of frames
K. The induction basis is indeed verified forK = 2:
Z(τ) = Z∗(τ) = Z1(τ) = Z∗

1 (τ) for 0 ≤ τ ≤ t1, since
both policies are work conserving and frame2 arrives at time
t2. Hence, it means thatZ∗

1 (τ) ≤ Z1(τ) for t2 ≤ τ ≤ teq
becauseu∗1(τ) = 0 over such interval, whereasZ∗(τ) = Z(τ)
since both policies are work conserving. Fort ≥ teq, it is
sufficient to recall the general relation [11, pp. 7] that holds
for any n-ple of nonnegative real numbers(a1, . . . , an) such
that

∑
ai = 1:

( 1
n
, . . . ,

1

n

)
≺ (a1, . . . , an) (13)
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which implies, for any work conserving equalizing policyZ∗

Z
∗ = Z ·

( 1
n
, . . . ,

1

n

)
≺ Z · (a1, . . . , an) = Z

Now assume that the assumption holds forK−1 and consider
time tK when theK-th frame arrives: the inductive assumption
let us conclude thatZ∗(τ) ≺ Z(τ) for all τ ≤ tK . Also,
by construction, there exists timet∗ > tK such thatu∗

attains equalization: forτ > t∗ the statement is indeed verified
according to eq. (14). Now, we need to verify the statement
for τ ∈ [ tK , t

∗]. During interval[ tK , s(K,K − 1)), however,
Z∗
i (τ) = Z∗

i (tK) andZi(tK) ≤ Zi(τ) for i = 1, . . . ,K − 1.
Hence, sinceZ∗(tK) ≺ Z(tK)

K−1∑

h=1

Z∗
h(τ) =

K−1∑

h=1

Z∗
h(tK) ≤

K−1∑

h=1

Zh(tK) ≤
K−1∑

h=1

Zh(τ)

so thatZ∗(τ) ≺ Z(τ) for τ ∈ [tK , s(K,K − 1)). Let us
now considerτ ∈ [s, s′), wheres′ = s(K,K − j − 1), and
it holds j = min(j : j ∈ J(s, {1, ...,K})) according to the
algorithm. Obviously, ifj = 1, it holds t∗ = s and we are
done. Otherwise,1 < j < K. In this case, observe that for
τ ∈ [s, s′)

Z
∗(τ) =

(
Z∗
1 (s), . . . , Z

∗
j−1(s), Z

∗
j (s)+ δZ, . . . , Z

∗
j (s)+ δZ

)

where δZ = (Z(τ) − Z(s))/(n − j + 1) andZ(τ) − Z(s)
is the increment inZ of work conserving policies in(s, s′].
Notice that, by construction,δZ < Zj−1(s)−Zj(s). The proof
then follows from Lemma 10.1. Over subsequent intervals, the
same reasoning done inτ ∈ [s, s′) applies. ⋄

C. Proof of Theorem 4.1.

Proof. Let u be an arbitrary policy andXi, i = 1, 2 the
corresponding dynamics. During time[t1, t2) only frame 1
is available, so clearlyu2 = 0 until time t2; also, denote
ξi = Xi(τ). Consider one-dimensional cases: it is known
from [1] that the policy that maximizes

∫ τ

0 Xi(t)dt among
those that achieve the same constraintXi(τ) = ξi, i = 1, 2
is necessarily a threshold one [1]. Denotesi the thresholds
that achieve the same constraintξi, i = 1, 2 in the one-
dimensional case: optimal threshold policies have minimum
support, so that0 ≤ s1+ s2 ≤ τ . Hence, we can construct the
following policy u

′ : u′ = (1, 0) for 0 ≤ t ≤ s1, u′ = (0, 1)
for min(t2, s1) ≤ t ≤ s2, and u

′ = (0, 0) otherwise. It
must bePs(τ,u) ≤ Ps(τ,u

′) (otherwise we would incur into
contradiction with the result [1] in the1-dimensional case). We
observe that in cases1 + s2 < τ , u′ Ps(τ,u

′) can be further
increased by simply lettings2 = τ−s1, so thatu′ = u

′(s1): in
order to complete the proof we only need to prove thats1 ≤ t2
and that such a policy is then unique. By contradiction: let us
assumes1 > t2 and observe thatu′ is work conserving, but
this contradicts Thm 3.4 so thats1 ≤ t2.
We conclude thatu′(s1) has the structure claimed in the
statement. Finally, we observe thats1 is indeed unique,
sinceX2(τ) is determined by the differenceτ − t2, which
corresponds to a unique valueX2(τ) (note that it must be

t1 > τ − t2 otherwise equalization would be possible via
a work conserving policy), the explicit expression for the
threshold is obtained imposingX(s) = 1−X(τ − t2). ⋄

D. End of proof of Theorem 8.1.

Proof. Let us expressΛk. Let Y (t) beY (t) =
∑K

k=1 Yk(t).
A fluid approximation can be applied toY (t) andYk(t), k =
1, . . . ,K:

dY (t)

dt
= uλ(1− Y (t)) .

If we considerY (0) = 0, we getY (t) = 1 − exp(−λut).
Then we have, fork < K, Yk(t) = 0, ∀t ≤ tk ,

dYk(t)

dt
= uλ(1− Y (t)), ∀tk ≤ t ≤ tk+1 ,

Y (t) = Y (tk+1), ∀t ≥ tk+1 ,

Thus fork < K we get

Yk(t) = exp(−λutk)− exp(−λut), ∀tk ≤ t ≤ tk+1 ,

Yk(t) = exp(−λutk)− exp(−λutk+1), ∀t ≥ tk+1 ,

andYK(t) = exp(−λutK)− exp(−λut), ∀tk ≤ t .

Thus fork < K Λk = λ[exp(−λutk)

(
τ − tk −

1

λu

)
+

exp(−λutk+1)

(
1

λu
+ tk+1 − τ

)
] , and

ΛK = λ

[
exp(−λutK)

(
τ − tK −

1

λu

)
+

1

λu
exp(−λuτ)

]
.

Then

Ps(τ) =
K−1∑

j=0

∑

k1>···>kj

K∑

l0=K−k1

· · ·

kj∑

lj=K−
Pj−1

i=0
li

j∏

i=0

Qi ,

whereQi is the probability that the received frames overE(ki)
have rankli. LetPm,k,l be the probability thatm rows (headers
of frames) of sizek have rank at leastl ≤ k, when the elements
are chosen uniformly at random inFq. Thus

Ps(τ) =

K−1∑

j=0

∑

k1>···>kj

K∑

l0=K−k1

· · ·

kj∑

lj=K−kj−
Pj−1

i=1
li

j∏

i=0

(
∞∑

m=li

Pm,ki,li

(
1

qki−li

)m−li

Dki,m(τ)

)
.

Whenq is large enough (e.g.q = 28):

• If li = ki, then
∑∞

m=li
Pm,ki,ki

Dki,m ≥

Pki,ki,ki

(
1−

∑ki−1
m=0 Dki,m(τ)

)
and the higher q,

the tighter this lower-bound, since the probability that
random vectors onFK

q be linearly independent tends to
1 asq tends to infinity.
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• If li < ki, Pm,ki,li and Pm−1,ki,li on one hand, and
Dki,m(τ) and Dki,m−1(τ) on the other hand, are of

the same order for highq, while
(
1/qki−li

)m−li
<<

(
1/qki−li

)m−1−li . That is why we use the lower-bound:

∞∑

m=li

Pm,ki,li

(
1

qki−li

)m−li

Dki,m(τ) ≥ Pli,ki,liDki,li(τ) .

Also, note that the higherq, the tighter this lower-bound.
Hence we have the following lower-bound:

Ps(τ) ≥
K−1∑

j=0

∑

k1>···>kj

K∑

l0=K−k1

· · ·

kj∑

lj=K−
Pj−1

i=0
li

j∏

i=0

f(li, ki) ,

with f(l, k) =

{
Pl,k,lDk,l(τ), if l < k,

Pk,k,k

(
1−

∑k−1
m=0Dk,m(τ)

)
, if l = k

wherePl,k,l =
∏l−1

r=0

(
1− 1

qk−r

)
. Due to the above notes, the

higherq, the tighter this lower-bound onPs(τ). ⋄
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