
Routing and Scheduling for Energy and Delay
Minimization in the Powerdown Model

Matthew Andrews
Bell Labs

Murray Hill, NJ
andrews@research.bell-labs.com

Antonio Fernández Anta
U. Rey Juan Carlos

Móstoles, Madrid, Spain
anto@gsyc.es

Lisa Zhang
Bell Labs

Murray Hill, NJ
ylz@research.bell-labs.com

Wenbo Zhao
UCSD

La Jolla, CA
w3zhao@ucsd.edu

Abstract—Energy conservation is drawing increasing attention
in data networking. One school of thought believes that a
dominant amount of energy saving comes from turning off
network elements. The difficulty is that transitioning between
the active and sleeping modes consumes considerable energy
and time. This results in an obvious trade-off between saving
energy and provisioning performance guarantees such as end-to-
end delays.

We study the following routing and scheduling problem in a
network in which each network element either operates in the
full-rate active mode or the zero-rate sleeping mode. For a given
network and traffic matrix, routing determines the path along
which each traffic stream traverses. For frame-based periodic
scheduling, a schedule determines the active period per element
within each frame and prioritizes packets within each active
period. For a line topology, we present a schedule with close-to-
minimum delay for a minimum active period per element. For
an arbitrary topology, we partition the network into a collection
of lines and utilize the near-optimal schedule along each line.
Additional delay is incurred only when a path switches from
one line to another. By minimizing the number of switchings via
routing, we show a logarithmic approximation for both energy
consumption and end-to-end delays.

If routing is given as input, we present two schedules one
of which has active period proportional to the traffic load per
network element, and the other proportional to the maximum
load over all elements. The end-to-end delay of the latter is
much improved compared to the delay for the former. This
demonstrates the trade-off between energy and delay.

I. INTRODUCTION

The telecommunication infrastructure in the US is estimated
to consume 60 billion Kwh per year. Such a enormous
consumption partially results from the fact that most networks
are engineered to handle peak traffic. Network elements tend to
operate at full speed and consume maximum power, while typ-
ical traffic is only a small fraction of the maximum throughput.
It is estimated that, if the energy consumption of each network
element is adapted to be proportional to its traffic load, up to
80% of the energy in the access layer and up to 40% in the
network core can be saved, totaling around 24 billion Kwh
per year [1].

Powering down is a promising mechanisms for dynamically
adapting the power consumption to the actual load at each
network element (routers, switches, CPUs, Ethernet links, etc).
It saves energy by switching off the element when possible. In
this model each network element either operates in the active
mode at the full rate or in the sleep mode at the zero rate. We
consider provisioning a set of connections each with a desired

connection rate in a network, with two potentially conflicting
objectives of minimizing the total energy consumption by
the network elements and the end-to-end delay experienced
by the connections. Routing and scheduling are two integral
components of the problem. Routing determines which path
each connection follows, and scheduling decides the active
periods for each network element and prioritizes packets
within each active period. If switching between the two modes
were free, then one plausible approach for scheduling would
be activating a network element instantaneously at the arrival
of each packet, processing at full rate till the queue drains and
then switching to the sleep mode instantaneously. This effort
tends to favor both energy and delay.

Unfortunately, switching between the active and sleep
modes consumes considerable energy and time (it could go
up to the order of milliseconds [6], [9]). Therefore, from the
perspective of energy, the fraction of the total active time
of a network element should be proportional to the total
connection rates that the element carries. In addition, if the
active proportion is the same, it consumes less energy to
have long active periods infrequently than to have short active
periods frequently, as this saves transition costs. On the other
hand, from the perspective of delay, it is most convenient to
operate in the active mode all the time. Barring this option,
for the same active proportion it is advantageous to have short
active periods frequently than long active periods infrequently,
since the long sleep periods that accompany the long active
periods contribute to the queuing delay.

To our knowledge, integral approaches to globally optimize
power consumption at a network level are scarce. One of the
papers that studies techniques of energy saving at a network
level is due to Nedevschi et al. [8]. In this paper, changing
the transmission rate and powering down (parts of) the net-
work equipment are explored as two alternative techniques to
globally reduce energy consumption in a network. When using
sleep states, much time and energy can be used to transit from
sleeping to active and vice versa if many such transitions occur.
Then, the authors propose that edge routers group packets of
the same source-destination pair and transmit them in bursts,
in order to reduce the number of transitions and maximize the
sleeping time.

II. MODEL AND RESULTS

We are given a network to support a set of connections, each
of which needs to transmit packets between a pair of terminal

2

nodes at a specified rate. Connection i is routed along path
Pi, where, Pi can be either given as input or be computed as
part of the output. We study both situations. If the routes are
not part of the input, the routing part of the problem specifies
a route Pi for each connection i. The packet arrival is leaky-
bucket controled and connection i has a desired rate of ρi. The
scheduling part of the problem specifies the active period of
each link, i.e. when a link operates at the full rate normalized
to R = 1, and how packets are prioritized within each active
period. Transitioning between two modes takes δ units of time,
and consumes energy at the same rate as the full rate, though
it cannot process any packets during the transition.

We focus on frame-based schedules, in which each link is
active for a fixed duration within every frame of T steps,
(0, T], (T, 2T], · · · . Let Re =

∑

i:e∈Pi
ρi be the total rates

that go through link e. Let

Ae = T · Re

be the minimum length of an active period for link e. We call
a schedule minimal if the duration of the active period on each
link e is exactly Ae. Obviously, for a fixed set of routes and
for a fixed T , a minimal schedule is energy optimal.

We prove the following results. For simplicity, we assume
that transmitting one packet across a link takes one unit of
time, or time step. Our results below generalize to links with
arbitrary link transmission times.

• We begin with a line topology. Since routing is fixed, we
focus on scheduling only. We present a minimal schedule
in which the end-to-end delay for each connection i of
ki links is upper bounded by 2T + ki. We also present
a quasi-minimal schedule in which the duration of the
active period is Amax = maxe Ae for all e. For this case
we show an end-to-end delay of T + ki for all i.
For each fixed T , the energy-delay trade-off between
these two schedules is obvious, since the one with smaller
delay consumes more energy and vice versa. Within each
schedule, we also observe the trade-off since a larger T
implies a larger delay bound but fewer active-sleeping
transitions, and therefore less energy consumption.

• We then show how to apply our techniques for line
scheduling to obtain results for networks with arbitrary
topology. If routing is not part of the input we first choose
routes with the objective of minimizing

∑

e Ae together
with the transition cost. This sum can be approximated
to within a factor of Õ(log n) where n is the size of the
network. In addition, we can also guarantee that the routes
form a tree. Via caterpillar decomposition we partition the
tree into a collection of lines and each connection path
intersects with at most 2 logn lines. Along each line we
adopt the minimal schedule. When a packet moves from
line to line, a maximum extra delay of T is sufficient.
This allows us to prove an Õ(log n) guarantee in the
end-to-end delay for all connections.

• If routing is already specified, we present a straight-
forward minimum schedule with a delay bound of T · ki

for each connection i. However, if links are active for

longer in sufficiently large frames, then the delay can
be much improved. This again demonstrates an obvious
trade-off between energy and delay.

III. SCHEDULING OVER A LINE

We begin with scheduling a set of connections over a line.
Note that the terminals of each connection are not necessarily
the end points of the line. Although the line topology is
restricted, the solution is used as a building block for handling
arbitrary topologies. For a line, we can choose any frame size
T , as long as T ≥ Ae + 2δ for all e. Since Ae = T · Re, this
implies

T ≥ max
e

2δ

1 − Re

.

Lemma 1. For a line topology, after an initial delay of at
most T each packet can reach its destination with at most
Amax additional queueing delay. The activation period is Ae,
minimal for each link e.

Proof: We first define a minimal schedule. Let us label
the links along the line as e1, e2, etc. For any integer j ≥ 1,
the jth active period for the ith link ei is [jT +i, jT +i+Aei

).
From now on we consider a fixed j. Let Si be the set of packets
that have ei as their first link and that are injected during the
period [(j − 1)T + i, jT + i). We show in the following that
the packets in ∪iSi travel to their destinations during the jth
active period of each link.

We assign to these packets timeslots in the active periods
such that i) for each packet the timeslots over its routing path
are non-decreasing; ii) for two packets that share a common
link, they are assigned distinct slots over this common link.
With these requirements, the timeslots define when each
packet gets to advance.

From packets in ∪iSi, we repeatedly extract those whose
paths form a minimal cover of the entire line, i.e. any proper
subset of these packet paths cannot cover the entire line. From
this minimal cover C, we removed overlaps and create an exact
cover in which each link is covered by exactly one packet path.
Since C is minimal, we start with the unique packet path, say
p, that contains e1. We walk along p until it first overlaps
with another packet path, say q. We keep p − p ∩ q for the
exact cover and remove p∩q. Note that due to the minimality
of C, q again is unique. We proceed to walk along q until
it overlaps with another packet path. We remove the overlap
from q in a similar manner. When all overlaps are removed, C
becomes an exact cover. Now every path C is assigned the next
available timeslot from each of the active periods. Note that
the next available timeslot is the kth slot of each active period
for some common k. This invariant holds through a simple
induction. Note also that if a packet path is cut, the removed
part always follows the unremoved part and is therefore always
assigned a larger timeslot later on. This ensures the timeslot
assignment is feasible for packet movement. When the union
of the remaining packet paths do not cover the entire line, we
carry out the above process on each disconnected line. Note
also that at most Ae of packets in ∪iSi require each link e.

3

The active periods therefore have enough slots for all packets.
Hence, in addition to transmission time (reflected by the shifts
of the active periods from one link to the next) packets in ∪iSi

experience a total of at most Amax queueing time.
The above centralized algorithm that iteratively creates

covers can easily be replaced by a distributed protocol called
farthest-to-go (FTG). For each link e, during its active period
FTG gives priority to the packet in ∪iSi that has the most
number of remaining links to traverse. To see that FTG fits
the proof above, we note that for each k ≥ 0, the packets that
use the kth timeslot in each active interval have their packets
paths form a minimal cover of the line.

If we relax the active period of each link to be Amax, each
packet experiences no queueing delay once it starts moving,
after an initial delay of up to T .

Lemma 2. For a line topology, after an initial delay of at
most T each packet can reach its destination with no further
queueing delay. The activation period is Amax for each link.

Proof: For any integer j ≥ 1 the jth active period for the
ith link ei along the line is [jT + i, jT + i + Amax). As in
the proof of Lemma 1 let Si be the set of packets that have
ei as their first link and that are injected during the period
[(j−1)T+i, jT+i). We show in the following that the packets
in ∪iSi travel to their destinations during the jth active period
of each link.

Note that at most Amax of the packets from ∪iSi have e
along their paths. Therefore, the well-known interval graph
coloring result (e.g. [5]) implies that each packet in S can
be assigned a color in [1, Amax] such that two packets are
assigned distinct colors if they share any link in common.
These colors define the timeslots during the active periods
that the packets can advance. In this way, when a packet
moves from one link to the next it has a slot immediately
for transmission.

IV. COMBINED ROUTING AND SCHEDULING

We now turn our attention to the case of an arbitrary network
topology. If routing is not given as input, we first choose a path
Pi for each connection i. Recall that Re =

∑

i:e∈Pi
ρi is the

total rate on link e as a result of routing. Let

f(Re) =

{

0 for Re = 0
2δ + ReT for Re > 0

.

By routing connections with the objective of min
∑

e f(Re)
we minimize the total active periods together with the transi-
tion time over all links, and therefore minimize the energy.
Note that the above formulation only makes sense when
Re < 1. We can reasonably assume Re � 1 regardless of
routing since this paper is motivated by the scenario in which
full rate R = 1 is significantly larger than what is needed.

Note that f(·) is a concave function and the routing problem
in fact corresponds to the well-studied buy-at-bulk network
design problem. Awerbuch and Azar [3] offer a solution using
the concept of probabilistically approximating metrics by tree
metrics (see e.g. [4]. The idea is to approximate distances in a

graph G by a probability distribution over trees. In particular,
let dij(G) be the length of link (i, j) in the graph G. Suppose
that tree H is randomly chosen according to the probability
distribution and let dij(T) be the distance between i and j in
the tree H . We say that the probability distribution over trees
α-probabilistically approximates the graph G if,

E(dij(H))/α ≤ dij(G) ≤ dij(H).

Awerbuch and Azar [3] show that an α stretch implies an
O(α) approximation for buy-at-bulk if we randomly pick a
tree according to the probability distribution and by then route
all connections along the unique path specified by the tree. We
use the following result on α.

Theorem 3 ([2]). Every network G can be α-probabilistically-
approximated by a polynomially computable probability dis-
tribution over spanning trees, for α = Õ(log n).

The notion of Õ(log n) hides terms log log n and smaller.
In fact the exact value of α is O(log n log log n log3 log log n).
This implies,

Theorem 4. There is a randomized algorithm that chooses
a routing such that the total active period together with the
transition time is Õ(log n) times the minimum optimal. In
addition, the routes form a tree, and for any connection the
expected routing distance over the tree is Õ(log n) times the
shortest path distance over the original network.

We further take advantage of the fact that the resulting
routes form a tree. We solve the scheduling problem by
combining caterpillar decomposition of a tree and scheduling
over a line topology. More specifically, we design a minimal
schedule on a line under which the queueing delay of a packet
is at most T initially plus a total of at most Amax = T ·Rmax

once the packet starts moving. Given that the links that support
the routing as a result of Theorem 4 form a tree, we show
below that a technique known as caterpillar decomposition
allows us to partition this tree into a collection of lines so
that the routing path of each connection goes through at most
2 logn lines. Every time a packet switches to a new line, in
the worst case, it pays for an initial queueing delay.

Knowing how to schedule on a line, we partition the routing
tree into a collection of lines in a fashion similar to the
caterpillar decomposition [7].

Lemma 5 ([7]). Any tree can be partitioned into lines, such
that the unique path between any two nodes traverses at most
2 logn lines, where n is the number of nodes in the tree.

Once the tree is decomposed into lines as in Lemma 5, the
minimal schedule of Lemma 1 is used in each line.

Lemma 6. The expected end-to-end delay of connection i is
4T log n + Õ(ki log n), where ki is the shortest path distance
over the original network. Further, the schedule is minimal.

Proof: The stretch of the spanning tree implies the length
of the routing path in the selected tree is Õ(log n) times
the shortest path distance in the original graph. Therefore,

4

the transmission time is Õ(log n) times ki. From caterpillar
decomposition, a routing path in the tree may be partitioned
into 2 logn lines. Therefore, the queueing delay is at most
2 logn times the maximum delay in one line, T +Amax ≤ 2T .

Observe that as Re � 1, the length of the non-active period
in each frame is T −Ae = Ω(T). Then, a packet that arrives at
the beginning of this period has to wait Ω(T) before moving.
Hence, the packet delay for connection i is lower bounded as
Ω(T +ki). Combining this with Theorem 4 and Lemma 6 we
have,

Theorem 7. The combined routing and scheduling scheme
ensures an Õ(log n) approximation for delay minimization and
Õ(log n) for energy minimization.

V. SCHEDULING WITH GIVEN ROUTES

In the previous section on the combined routing and
scheduling scheme, we took advantage of the fact that the
routes form a tree. In this section we focus on scheduling
assuming routes are given as input, and assume these routes
form an arbitrary topology.

A. Energy-Optimal Algorithm
We begin with a simple algorithm to demonstrate that a

minimal schedule is always possible in a network of arbitrary
topology, but a packet may experience a delay of T per link.
Let ki be the hop count of route Pi for connection i.

Theorem 8. For a network with an arbitrary topology, the
end-to-end delay of connection i is bounded by T · ki under
a minimal schedule.

Proof: We first define a minimal schedule. For each time
frame, link e is activated for the first T · Re time steps. The
schedule works as follows. At (the start of) time step jT , let
Se be the set of packets queueing at link e. During the time
frame [jT, (j+1)T), only packets from Se advance along link
e. That is, packets that arrive during [jT, (j + 1)T) have to
wait till the next frame [(j + 1)T, (j + 2)T) even if there is
room during the active period [jT, jT+TRe). In the following
we show that |Se| ≤ TRe. We assume inductively that so
far it takes one frame for each packet to advance one link.
Therefore, Se consists of packets from connections that start
at link e and are injected during [(j − 1)T, jT), and from
connections that have e as the ith link and are injected during
[(j − i)T, (j − i + 1)T). The total rate of these connections
is Re. Therefore, |Se| ≤ T · Re. Since all packets from Se

are queueing at link e at the beginning of a time frame, they
can be transmitted along link e during the active period of the
frame which is the first T · Re time steps.

This minimal schedule can be seen as a direct application
of Lemma 1 on the trivial decomposition of connection routes
into lines in which each link is a different line. For that reason
a packet experiences a line switch (and hence a delay of at
most T) at each edge. Clearly, any other decomposition of
the connection paths into lines would improve the end-to-end
delay by reducing line switches. Unfortunately, there is not

a lot of room for improvement in the worst case, since it
is possible to find networks and connection sets such that,
independent of how the decomposition is done, almost every
connection i will experience Ω(ki) line switches. However,
experimental results presented in Section VI show that at a
practical level this could be a promising approach.

B. Delay-Improved Algorithm
We show now that, by allowing the active period to be non-

minimal, the maximum delay suffered by the packets can be
reduced to 2T , for large enough T . Due to space limitation
we state without proving the following result.

Theorem 9. For sufficiently large frame length T , all packets
injected during one frame can reach their destinations during
the active period of the next frame, and the length of the
activation period is at most T + O(kmax ln(mT)), where m
is the number of links in the network and kmax = maxi ki.

VI. EXPERIMENTAL RESULTS

In this section, we compare via simulation two frame-
based schedules, a coordinated schedule and a simple schedule
without coordination. Both schedules are minimal, and hence
are optimal in terms of energy. Therefore, we use the (average
and maximum) delay of packets when using each of them as
the goodness metric. The coordinated schedule, called here
schedule with coordination (SWC) is defined for lines. It
activates each edge e for a time Ae in each frame (with the
active periods shifted along the line), and applies the farthest-
to-go (FTG) scheduling protocol in each of the edges of the
line, as was described in Lemma 1. The schedule without
coordination (SWOC) simply activates each edge e for a time
Ae at the beginning of the frame, and uses FIFO to schedule
packets. This schedule can be seen as a greedy implementation
of the schedule described in Section V-A.

Two sets of simulations are performed. The first uses a
network which is a line, while the second uses a general
network. In each scenario, the number of connections is fixed,
with the terminals of each connection chosen uniformly at
random among all the nodes in the network. The connection
rate is fixed to ρ = 1/50, so that ρT packets arrive for
each connection in each T -frame. Every packet arrives at
a uniformly chosen time step within the frame. However,
following the lines of Lemma 1, SWC does not schedule
packets to move until the next frame (even if the link is
active and there are available time slots). For any given set of
parameters, the experiment corresponding to these parameters
is performed 10 times, and the observed results averaged.

A. Lines
We first present the simulation results on a network which

is a line of 40 links. In this network 50 connections with
path length 10 are randomly chosen. Then, simulations with
time frame size T in the range 50 to 250 are performed.
Figure 1 shows the average and the maximum end-to-end delay
observed in these simulations.

5

50 100 150 200 25050

100

150

200

250

300

Time frame T

Av
er

ag
e

en
d−

to
−e

nd
 d

el
ay

Schedule without coordination
Schedule with coordination

, 50 100 150 200 2500

100

200

300

400

500

600

700

800

900

1000

Time frame T

M
ax

im
um

 e
nd

−t
o−

en
d

de
la

y

Schedule without coordination
Schedule with coordination

Fig. 1. Average (left) and maximum (right) end-to-end delay for a line
network of length 40, with 50 connections of path length 10.

From Figure 1, it can be observed that the SWC provides
significantly smaller end-to-end delay than the SWOC. Both
the average and maximum end-to-end delays increase with
T under SWC and SWOC. However, the growth is faster
under SWOC, which means that the larger the frame, the more
convenient it is to use SWC instead of SWOC. We have also
observed that changing the length of the connection path does
not change the fact that SWC performs better than SWOC.
For instance, for path length of 30, SWC gives at least 26.8%
better average end-to-end delay.

50 100 150 200 2500

50

100

150

200

250

300

350

400

450

Time frame T

Av
er

ag
e

en
d−

to
−e

nd
 d

el
ay

Schedule without coordination
Schedule with coordination

, 50 100 150 200 2500

200

400

600

800

1000

1200

1400

Time frame T

M
ax

im
um

 e
nd

−t
o−

en
d

de
la

y

Schedule without coordination
Schedule with coordination

Fig. 2. Average (left) and maximum (right) end-to-end delay for l = 1.

50 100 150 200 2500

50

100

150

200

250

300

350

400

450

Time frame T

Av
er

ag
e

en
d−

to
−e

nd
 d

el
ay

Schedule without coordination
Schedule with coordination

, 50 100 150 200 2500

200

400

600

800

1000

1200

1400

Time frame T

M
ax

im
um

 e
nd

−t
o−

en
d

de
la

y

Schedule without coordination
Schedule with coordination

Fig. 3. Average (left) and maximum (right) end-to-end delay for l = 10.

B. NSF Network
The second network we consider is the NSF network, which

consists of 14 nodes and 20 links. In this (and any arbitrary)
network, SWOC works as it did in the line, simply using
shortest path routing. However, we need to define how to make
SWC work in the NFS network (and in any arbitrary network
in general). The solution is to do line decomposition: decom-
posing the network into edge-disjoint lines, route connections
along the lines, and use SWC in each line. In this case, we have
manually decomposed the NSF network into four link-disjoint
lines. For space restriction we do not show the decomposition.

When needed, a packet has to switch lines. In our simula-
tions, when this occurs, the switching packet p is treated in
the new line as any new arriving packet (and, in particular,
p will not move until the next frame). This highly penalizes

SWC at each line switch. We are interested in the impact of
line switches on the end-to-end delay with respect to the path
length, captured by a parameter κ, which is the ratio of the
length of a connection path to the number of line switches.
Since the original NSF network is small, we extend the NSF
network by replacing each link with a path of length l. This
allows increasing the ratio κ just defined without changing the
number of line switches. Hence, in our simulations l roughly
represents the above ratio.

In each experiment in the NSF network 100 connections are
created. In each connection the same number of packets ρT
are injected in each terminal node towards the other in each
T -frame. As said above, these packets are routed via shortest
paths when using SWOC and via decomposition lines when
using SWC.

The results of the simulations are presented in Figures 2 and
3. For small l (e.g. l = 1 in Figure 2) SWC and SWOC have
comparable performances. However, as l becomes larger (e.g.
l = 10 in Figure 3), SWC provides significantly better delays
than SWOC, both on average and in the worse case. Table
I summarizes several parameters observed in the experiments
for the values l = 1, 5, 10. It is easy to verify in that table

of Re Connect. length Line switches
l nodes Average Max Average Max Average Max
1 14 0.20 0.46 2.0 4.0 0.63 2.0

10 194 0.21 0.42 20.7 44 1.1 4

TABLE I
THE LENGTH OF CONNECTION PATHS AND THE NUMBER OF LINE

SWITCHES.

that l in fact behaves as the ratio κ. Hence, from this table
and the previous figures one can conclude that as the ratio κ
grows (which is 2.0/0.63 < 10.5/1.17 < 20.7/1.1, see Table
I), SWC gives much better end-to-end delay performance than
SWOC.

REFERENCES

[1] In Proceedings of the Vision and Roadmap Workshop on Routing Telecom
and Data Centers Toward Efficient Energy Use, October 2008.

[2] I. Abaraham, Y. Bartal, and O. Neiman. Nearly right low stretch spanning
trees. In Proc. IEEE FOCS, 2008.

[3] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proc. IEEE
FOCS, 1997.

[4] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proc.
ACM STOC, 1998.

[5] P. Fishburn. Interval orders and interval graphs. Wiley and Sons, New
York, 1985.

[6] Robert Hays. Active/idle toggling with low-power idle. IEEE
P802.3az Energy Efficient Ethernet Task Force meeting, January 2008.
http://www.ieee802.org/3/az/public/jan08/hays 01 0108.pdf.

[7] J. Matoušek. On embedding trees into uniformly convex banach spaces.
Israel Journal of Mathematics, 114:221 – 237, 1999.

[8] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy,
and David Wetherall. Reducing network energy consumption via sleeping
and rate-adaptation. In Jon Crowcroft and Michael Dahlin, editors, NSDI,
pages 323–336. USENIX Association, 2008.

[9] Gavin Parnaby and George Zimmerman. 10gbase-t ac-
tive / low-power idle toggling. IEEE P802.3az Energy
Efficient Ethernet Task Force meeting, January 2008.
http://www.ieee802.org/3/az/public/jan08/parnaby 01 0108.pdf.

